1
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
2
|
Liu D, Kang H, Gao M, Pei W, Wang S, Chen Z. Silencing of purinergic receptor P2Y2 inhibited enteric neural crest cell proliferation, invasion and migration via suppressing ERK signaling pathway in Hirschsprung disease. 3 Biotech 2023; 13:312. [PMID: 37637003 PMCID: PMC10447770 DOI: 10.1007/s13205-023-03721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
The current study aimed to explore the effect and underlying mechanism of the purinergic receptor P2Y2 in regulating the loss of intestinal neurons and the intestinal neural crest in Hirschsprung's disease (HSCR). Western blotting was used to assess the expression levels of P2Y2 in colon tissues. An in vivo HSCR mouse model was established following treatment with benzalkonium chloride (BAC). We overexpressed or silenced P2Y2 in SH-SY5Y cells, and cell proliferation, migration, and invasion were subsequently investigated by CCK-8, wound healing, and transwell assays, respectively. Additionally, we implemented a xenograft model to assess the impact of P2Y2 on tumor growth as well as the expression of extracellular signal-regulated kinase (ERK). The results showed that the expression of P2Y2 protein in the colon tissues of patients with HSCR was lower than that in the normal colon tissues. P2Y2 expression is downregulated in the colon tissues of mice with HSCR. Additionally, P2Y2 silencing inhibited SH-SY5Y cell proliferation, invasion, and migration. Furthermore, adenosine 5'-triphosphate (ATP, a strong agonist of P2Y2)-induced P2Y2 overexpression enhanced the proliferation, invasion, and migration of SH-SY5Y cells. Immunofluorescence staining and western blot analysis revealed that P2Y2 silencing downregulated phosphorylated (p)-ERK in SH-SY5Y cells. In addition, treatment with PD98059, a p-ERK inhibitor, reversed the effects of ATP on SH-SY5Y cell proliferation, invasion, and migration. Finally, we demonstrated that P2Y2 silencing suppressed tumor growth and decreased p-ERK expression. Overall, the results of the present study suggest that P2Y2 plays an important role in HSCR pathogenesis. P2Y2 silencing inhibited the proliferation, invasion, and migration of nerve cells by suppressing the ERK signaling pathway. P2Y2 silencing could be considered an innovative and possible target for treating HSCR.
Collapse
Affiliation(s)
- Dengrui Liu
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Hongxia Kang
- Department of Pain, Gansu Provincial People’s Hospital, Lanzhou, 730000 Gansu China
| | - Mingtai Gao
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Wei Pei
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Shimo Wang
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Zhou Chen
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| |
Collapse
|
3
|
Mata-Martínez E, Gonzalez-Gallardo A, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Activation of Store-Operated Calcium Entry (SOCE) Regulates Cell Migration in Metastatic Ovarian Cancer Cells. Pharmaceuticals (Basel) 2023; 16:944. [PMID: 37513856 PMCID: PMC10384695 DOI: 10.3390/ph16070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Store-operated calcium entry (SOCE) is an important process in calcium signaling. Its role in physiological and pathological events is well recognized. However, in cancerous systems, the importance of SOCE in relation to the degree of cancer aggressiveness, as well as its regulation by ligands such as purinergic molecules, are not well documented. This study aimed to characterize a differential effect of the P2Y2 receptor (promoted by UTP of 10 µM and inhibited by ARC118925XX of 1 µM) on intracellular calcium response between metastatic (SKOV-3) and non-metastatic (CAOV-3) ovarian cell lines in conditions of normal (1.5 mM) and zero extracellular calcium concentration. The sustained calcium influx observed exclusively in SKOV-3 cells was associated with the presence of SOCE (promoted by thapsigargin (74.81 ± 0.94 ΔF) and sensitive to 2-APB (20.60 ± 0.85 ΔF)), whereas its absence in CAOV-3 cells (26.2 ± 6.1 ΔF) was correlated with a low expression of ORAI1. The relevance of SOCE in metastatic SKOV-3 cells was further corroborated when 2-APB significantly inhibited (40.4 ± 2.8% of covered area) UTP-induced cell migration (54.6 ± 3.7% of covered area). In conclusion, our data suggest that SOCE activation elicited by the P2Y2 receptor is involved in the aggressiveness of ovarian cancer cells.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Boulevard Juriquilla#3001, Juriquilla 76230, Querétaro, Mexico
| | - Adriana Gonzalez-Gallardo
- Unidad de Proteogenómica, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla#3001, Juriquilla 76230, Querétaro, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Boulevard Juriquilla#3001, Juriquilla 76230, Querétaro, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Boulevard Juriquilla#3001, Juriquilla 76230, Querétaro, Mexico
| |
Collapse
|
4
|
Franciosi MLM, do Carmo TIT, Zanini D, Cardoso AM. Inflammatory profile in cervical cancer: influence of purinergic signaling and possible therapeutic targets. Inflamm Res 2022; 71:555-564. [PMID: 35376994 DOI: 10.1007/s00011-022-01560-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Cervical cancer is the fourth most prevalent type of cancer in the world. The tumor microenvironment of this disease is associated with the production of several cytokines, pro and anti-inflammatory, and with the purinergic signaling system so that changes in these components are observed throughout the pathological process. The aim of this review is to understand the pathophysiology of cervical cancer based on immunological processes and purinergic signaling pathways, in addition to suggesting possibilities of therapeutic targets. MATERIALS AND METHODS To make up this review, studies covering topics of cervical cancer, inflammation and purinergic system were selected from the Pubmed. RESULTS The main pro-inflammatory cytokines involved are IL-17, IL-1β, IL-6, and IL-18, and among the anti-inflammatory ones, IL-10 and TGF-β stand out. As new therapeutic targets, P2X7 and A2A receptors have been suggested, since blocking P2X7 would lead to reduced release of pro-inflammatory cytokines, and blocking A2A would increase activation of cytotoxic T lymphocytes in the context of tumor combat. The association between the immune system and the purinergic system, already known in other types of disease, also presents possibilities for a better understanding of biomolecular processes and therapeutic possibilities in the context of cervical cancer.
Collapse
Affiliation(s)
- Maria Luiza Mukai Franciosi
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484-Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Daniela Zanini
- Graduate Program in Biomedical Sciences, Medicine Course, Federal University of Fronteira Sul, Fronteira Sul, Campus Chapecó, Rodovia SC 484-Km 02, Chapecó, SC, 89815-899, Brazil
| | - Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences, Medicine Course, Member of the Brazilian Purine Club, Federal University of Fronteira Sul, Fronteira Sul, Campus Chapecó, Rodovia SC 484-Km 02, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
5
|
Reyna-Jeldes M, Díaz-Muñoz M, Madariaga JA, Coddou C, Vázquez-Cuevas FG. Autocrine and paracrine purinergic signaling in the most lethal types of cancer. Purinergic Signal 2021; 17:345-370. [PMID: 33982134 PMCID: PMC8410929 DOI: 10.1007/s11302-021-09785-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.
Collapse
Affiliation(s)
- M Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - J A Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - C Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile.
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México.
| |
Collapse
|
6
|
Zaparte A, Cappellari AR, Brandão CA, de Souza JB, Borges TJ, Kist LW, Bogo MR, Zerbini LF, Ribeiro Pinto LF, Glaser T, Gonçalves MCB, Naaldijk Y, Ulrich H, Morrone FB. P2Y 2 receptor activation promotes esophageal cancer cells proliferation via ERK1/2 pathway. Eur J Pharmacol 2020; 891:173687. [PMID: 33130276 DOI: 10.1016/j.ejphar.2020.173687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Esophageal cancer is a prominent worldwide illness that is divided into two main subtypes: esophageal squamous cell carcinoma and esophageal adenocarcinoma. Mortality rates are alarming, and the understanding of the mechanisms involved in esophageal cancer development, becomes essential. Purinergic signaling is related to many diseases and among these various types of tumors. Here we studied the effects of the P2Y2 receptor activation in different types of esophageal cancer. Esophageal tissue samples of healthy controls were used for P2Y2R expression quantification. Two human esophageal cancer cell lines Kyse-450 (squamous cell carcinoma) and OE-33 (adenocarcinoma) were used to perform in vitro analysis of cell proliferation, migration, adhesion, and the signaling pathways involved in P2Y2R activation. Data showed that P2Y2R was expressed in biopsies of patients with ESCC and adenocarcinoma, as well as in the two human esophageal cancer cell lines studied. The RT-qPCR analysis demonstrated that OE-33 cells have higher P2RY2 expression than Kyse-450 squamous cell line. Results showed that P2Y2R activation, induced by ATP or UTP, promoted esophageal cancer cells proliferation and colony formation. P2Y2R blockage with the selective antagonist, AR-C 118925XX, led to decreased proliferation, colony formation and adhesion. Treatments with ATP or UTP activated ERK 1/2 pathway in ESCC and ECA cells. The P2Y2R antagonism did not alter the migration of esophageal cancer cells. Interestingly, the esophageal cancer cell lines presented a distinct profile of nucleotide hydrolysis activity. The modulation of P2Y2 receptors may be a promising target for esophageal cancer treatment.
Collapse
Affiliation(s)
- Aline Zaparte
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Angélica R Cappellari
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Caroline A Brandão
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Júlia B de Souza
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Thiago J Borges
- Transplant Research Center, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Luíza W Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Maurício R Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Cancer, Rua Andre Cavalcante, 37, Centro, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Maria Carolina B Gonçalves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Fernanda B Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Pfaffenzeller MS, Franciosi MLM, Cardoso AM. Purinergic signaling and tumor microenvironment in cervical Cancer. Purinergic Signal 2020; 16:123-135. [PMID: 32170538 PMCID: PMC7166227 DOI: 10.1007/s11302-020-09693-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is the fourth most common type of cancer incidence in the world female population, and it has become a public health problem worldwide. Several factors are involved in this type of cancer, including intrinsic factors related to the inflammatory process, such as extracellular nucleotides and adenosine-components of the purinergic system. The present review focuses on the role of the purinergic system in cervical cancer, especially regarding the interaction of extracellular nucleotides with their respective receptors expressed in the tumor microenvironment of cervical cancer and their role in the host immune response. The high concentrations of extracellular nucleotides in the tumor microenvironment of cervical cancer interfere in the regulation, proliferation, differentiation, and apoptosis of cancer cells of the uterine cervix through different P1 and P2 receptor subtypes. Such diverse cellular processes that are mediated by adenosine triphosphate and adenosine across the tumor microenvironment and that also have effects on host immune defense will be reviewed here in detail.
Collapse
Affiliation(s)
| | | | - Andréia Machado Cardoso
- Academic Coordination, Medicine, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC Brazil
| |
Collapse
|
8
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
9
|
Qiu Y, Liu Y, Li WH, Zhang HQ, Tian XX, Fang WG. P2Y2 receptor promotes the migration and invasion of breast cancer cells via EMT-related genes Snail and E-cadherin. Oncol Rep 2018; 39:138-150. [PMID: 29115551 PMCID: PMC5783596 DOI: 10.3892/or.2017.6081] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
Adenosine 5'-triphosphate (ATP) is one of the most abundant biochemical constituents within the tumor microenvironment and is postulated to play critical roles in the progression of a number of types of tumors via interaction with the P2Y2 receptor. In the present study, we demonstrated that the P2Y2 receptor was highly expressed in MCF7 and Hs578T breast cancer cells. Downregulation of the P2Y2 receptor by small interfering RNA (siRNA) significantly attenuated ATP- or UTP-driven migration and invasion of the breast cancer cells as well as expression of EMT-related genes Snail and E-cadherin. Consistent with the observations in vitro, the P2Y2 receptor was found to be abundantly expressed at the invasive edge of the tumor, in infiltrating tumor cells in breast adipose tissues and/or the cancer embolus in the lymphatic sinuses compared with the tumor core areas. Furthermore, high Snail expression and weak or negative expression of E-cadherin were observed at the invasive edge of tumors. Taken together, these data indicate that the P2Y2 receptor promoted cell migration and invasion in breast cancer cells via EMT-related genes Snail and E-cadherin.
Collapse
Affiliation(s)
- Ying Qiu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Yan Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Wei-Hua Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Hong-Quan Zhang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xin-Xia Tian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Wei-Gang Fang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
10
|
Rafehi M, Neumann A, Baqi Y, Malik EM, Wiese M, Namasivayam V, Müller CE. Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y 2 Receptor. J Med Chem 2017; 60:8425-8440. [PMID: 28938069 DOI: 10.1021/acs.jmedchem.7b00854] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A homology model of the nucleotide-activated P2Y2R was created based on the X-ray structures of the P2Y1 receptor. Docking studies were performed, and receptor mutants were created to probe the identified binding interactions. Mutation of residues predicted to interact with the ribose (Arg110) and the phosphates of the nucleotide agonists (Arg265, Arg292) or that contribute indirectly to binding (Tyr288) abolished activity. The Y114F, R194A, and F261A mutations led to inactivity of diadenosine tetraphosphate and to a reduced response of UTP. Significant reduction in agonist potency was observed for all other receptor mutants (Phe111, His184, Ser193, Phe261, Tyr268, Tyr269) predicted to be involved in agonist recognition. An ionic lock between Asp185 and Arg292 that is probably involved in receptor activation interacts with the phosphate groups. The antagonist AR-C118925 and anthraquinones likely bind to the orthosteric site. The updated homology models will be useful for virtual screening and drug design.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University , PO Box 36, Postal Code 123, Muscat, Oman
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Michael Wiese
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn , 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany.,PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn , 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| |
Collapse
|
11
|
Muscella A, Cossa LG, Vetrugno C, Antonaci G, Marsigliante S. Inhibition of ZL55 cell proliferation by ADP via PKC-dependent signalling pathway. J Cell Physiol 2017; 233:2526-2536. [PMID: 28777435 DOI: 10.1002/jcp.26128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022]
Abstract
Extracellular nucleotides can regulate cell proliferation in both normal and tumorigenic tissues. Here, we studied how extracellular nucleotides regulate the proliferation of ZL55 cells, a mesothelioma-derived cell line obtained from bioptic samples of asbestos-exposed patients. ADP and 2-MeS-ADP inhibited ZL55 cell proliferation, whereas ATP, UTP, and UDP were inactive. The nucleotide potency profile and the blockade of the ADP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 suggest that P2Y1 receptor controls ZL55 cell proliferation. The activation of P2Y1 receptor by ADP leads to activation of intracellular transduction pathways involving [Ca2+ ]i , PKC-δ/PKC-α, and MAPKs, ERK1/2 and JNK1/2. Cell treatment with ADP or 2-MeS-ADP also provokes the activation of p53, causing an accumulation of the G1 cyclin-dependent kinase inhibitors p21WAF1 and p27Kip . Inhibition of ZL55 cell proliferation by ADP was completely reversed by inhibiting MEK1/2, or JNK1/2, or PKC-δ, and PKC-α. Through the inhibition of ADP-activated transductional kinases it was found that PKC-δ was responsible for JNK1/2 activation. JNK1/2 has a role in transcriptional up-regulation of p53, p21WAF1/CIP1 , and p27kip1 . Conversely, the ADP-activated PKC-α provoked ERK1/2 phosphorylation. ERK1/2 increased p53 stabilization, required to G1 arrest of ZL55 cells. Concluding, the importance of the study is twofold: first, results shed light on the mechanism of cell cycle inhibition by ADP; second, results suggest that extracellular ADP may inhibit mesothelioma progression.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universita' del Salento, Lecce, Italy
| | - Luca G Cossa
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universita' del Salento, Lecce, Italy
| | - Carla Vetrugno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universita' del Salento, Lecce, Italy
| | - Giovanna Antonaci
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universita' del Salento, Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universita' del Salento, Lecce, Italy
| |
Collapse
|
12
|
Rafehi M, Burbiel JC, Attah IY, Abdelrahman A, Müller CE. Synthesis, characterization, and in vitro evaluation of the selective P2Y 2 receptor antagonist AR-C118925. Purinergic Signal 2016; 13:89-103. [PMID: 27766552 DOI: 10.1007/s11302-016-9542-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 01/18/2023] Open
Abstract
The Gq protein-coupled, ATP- and UTP-activated P2Y2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y2 receptor-induced β-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (β-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 μM. AR-C118925 is soluble in buffer at pH 7.4 (124 μM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Joachim C Burbiel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Isaac Y Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany. .,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
13
|
Song Z, Zheng N, Ba X, Yin L, Zhang R, Ma L, Cheng J. Polypeptides with quaternary phosphonium side chains: synthesis, characterization, and cell-penetrating properties. Biomacromolecules 2014; 15:1491-7. [PMID: 24635536 PMCID: PMC3993874 DOI: 10.1021/bm5001026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Polypeptides bearing quaternary phosphonium
side chains were synthesized
via controlled ring-opening polymerization of chlorine-functionalized
amino acid N-carboxyanhydride monomers followed by
one-step nucleophilic substitution reaction with triethylphosphine.
The conformation of the resulting polypeptides can be controlled by
modulating the side-chain length and α-carbon stereochemistry.
The phosphonium-based poly(l-glutamate) derivatives with
11 σ-bond backbone-to-charge distance adopt stable α-helical
conformation against pH and ionic strength changes. These helical,
quaternary phosphonium-bearing polypeptides exhibit higher cell-penetrating
capability than their racemic and random-coiled analogues. They enter
cells mainly via an energy-independent, nonendocytic cell membrane
transduction mechanism and exhibit low cytotoxicity, substantiating
their potential use as a safe and effective cell-penetrating agent.
Collapse
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Castilla-Ortega E, Escuredo L, Bilbao A, Pedraza C, Orio L, Estivill-Torrús G, Santín LJ, de Fonseca FR, Pavón FJ. 1-Oleoyl lysophosphatidic acid: a new mediator of emotional behavior in rats. PLoS One 2014; 9:e85348. [PMID: 24409327 PMCID: PMC3883702 DOI: 10.1371/journal.pone.0085348] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Leticia Escuredo
- Departamento de Psicobiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ainhoa Bilbao
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Laura Orio
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Departamento de Psicobiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- * E-mail: (LJS); (FRDF)
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Departamento de Psicobiología, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail: (LJS); (FRDF)
| | - Francisco Javier Pavón
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
15
|
Li WH, Qiu Y, Zhang HQ, Liu Y, You JF, Tian XX, Fang WG. P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br J Cancer 2013; 109:1666-75. [PMID: 23969730 PMCID: PMC3776994 DOI: 10.1038/bjc.2013.484] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/11/2013] [Accepted: 07/26/2013] [Indexed: 01/03/2023] Open
Abstract
Background: Our previous study demonstrated that extracellular adenosine 5′-triphosphate (ATP) stimulated prostate cancer cell invasion via P2Y receptors. However, the purinergic receptor subtype(s) involved in this process remains unclear. Here we aimed to determine whether P2Y2, one subtype of P2Y receptors, was involved in the invasion and metastasis of prostate cancer cells, and elucidated the underlying mechanism. Methods: RNAi was introduced to silence the expression of P2Y2. In vitro invasion and migration assays and in vivo experiments were carried out to examine the role of P2Y2 receptor in cell invasion and metastasis. cDNA microarray was performed to identify the differentially expressed genes downstream of ATP treatment. Results: P2Y2 was significantly expressed in the prostate cancer cells. Knockdown of P2Y2 receptor suppressed cell invasion and metastasis in vitro and in vivo. Further experiments identified that ATP could promote IL-8 and Snail expression and inhibit E-cadherin and Claudin-1 expression. Knockdown of P2Y2 receptor affected the expression of these EMT/invasion-related genes in vitro and in vivo. Conclusion: P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes. Thereby, P2Y2 receptor could be a potential therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- W-H Li
- 1] Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China [2] Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Activation of the PI3K/Akt signaling pathway through P2Y₂ receptors by extracellular ATP is involved in osteoblastic cell proliferation. Arch Biochem Biophys 2011; 513:144-52. [PMID: 21763267 DOI: 10.1016/j.abb.2011.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/31/2022]
Abstract
We studied the PI3K/Akt signaling pathway modulation and its involvement in the stimulation of ROS 17/2.8 osteoblast-like cell proliferation by extracellular ATP. A dose- and time-dependent increase in Akt-Ser 473 phosphorylation (p-Akt) was observed. p-Akt was increased by ATPγS and UTP, but not by ADPβS. Akt activation was abolished by PI3K inhibitors and reduced by inhibitors of PI-PLC, Src, calmodulin (CaM) but not of CaMK. p-Akt was diminished by cell incubation in a Ca²⁺-free medium but not by the use of L-type calcium channel blockers. The rise in intracellular Ca²⁺ induced by ATP was potentiated in the presence of Ro318220, a PKC inhibitor, and attenuated by the TPA, a known activator of PKC. ATP-dependent p-Akt was diminished by TPA and augmented by Ro318220 treatment in a Ca²⁺-containing but not in a Ca²⁺-free medium. ATP stimulated the proliferation of both ROS 17/2.8 cells and rat osteoblasts through PI3K/Akt. In the primary osteoblasts, ATP induces alkaline phosphatase activity via PI3K, suggesting that the nucleotide promotes osteoblast differentiation. These results suggest that ATP stimulates osteoblast proliferation through PI-PLC linked-P2Y₂ receptors and PI3K/Akt pathway activation involving Ca²⁺, CaM and Src. PKC seems to regulate Akt activation through Src and the Ca²⁺ influx/CaM pathway.
Collapse
|
17
|
Koltsova SV, Platonova A, Maksimov GV, Mongin AA, Grygorczyk R, Orlov SN. Activation of P2Y receptors causes strong and persistent shrinkage of C11-MDCK renal epithelial cells. Am J Physiol Cell Physiol 2011; 301:C403-12. [PMID: 21562307 DOI: 10.1152/ajpcell.00018.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purinergic receptors activate diverse signaling cascades and regulate the activity of cell volume-sensitive ion transporters. However, the effects of ATP and other agonists of P2 receptors on cell volume dynamics are only scarcely studied. In the present work, we used the recently developed dual-image surface reconstruction technique to explore the influence of purinergic agonists on cell volume in the C11-Madin-Darby canine kidney cell line resembling intercalated cells from kidney collecting ducts. Unexpectedly, we found that ATP and UTP triggered very robust (55-60%) cell shrinkage that lasted up to 2 h after agonist washout. Purinergic regulation of cell volume required increases in intracellular Ca(2+) and could be partially mimicked by the Ca(2+)-ionophore ionomycin or activation of protein kinase C by 4β-phorbol 12-myristate 13-acetate. Cell shrinkage was accompanied by strong reductions in intracellular K(+) and Cl(-) content measured using steady-state (86)Rb(+) and (36)Cl(-) distribution. Both shrinkage and ion efflux in ATP-treated cells were prevented by the anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and by the BK(Ca) channel inhibitors charybdotoxin, iberiotoxin, and paxilline. To evaluate the significance of cell-volume changes in purinergic signaling, we measured the impact of ATP on the expression of the immediate-early gene c-Fos. Thirty-minute treatment with ATP increased c-Fos immunoreactivity by approximately fivefold, an effect that was strongly inhibited by charybdotoxin and completely prevented by NPPB. Overall, our findings suggest that ATP-induced cell-volume changes are partially responsible for the physiological actions of purinergic agonists.
Collapse
Affiliation(s)
- Svetlana V Koltsova
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Park JH, Ryu JM, Han HJ. Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J Cell Physiol 2010; 226:267-75. [PMID: 20658539 DOI: 10.1002/jcp.22338] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fibronectin (FN) is the foremost proliferation-associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin-1 phosphorylation levels in a time-dependent manner. Phosphorylation of Src, FAK, and caveolin-1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin-1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin-1 siRNA, or the caveolar disruptor methyl-β-cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin-1 siRNA, MβCD, GGTI-286 (RhoA inhibitor), or Y-27632 (Rho kinase inhibitor). FN-induced increase of protooncogenes (c-fos, c-myc, and c-Jun) and cell-cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin-1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin-1, RhoA, Akt, and ERK 1/2 blocked FN-induced [(3)H]-thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA-PI3K/Akt-ERK 1/2 pathway through caveolin-1 phosphorylation.
Collapse
Affiliation(s)
- Jae Hong Park
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
19
|
Buzzi N, Boland R, Russo de Boland A. Signal transduction pathways associated with ATP-induced proliferation of colon adenocarcinoma cells. Biochim Biophys Acta Gen Subj 2010; 1800:946-55. [PMID: 20562007 DOI: 10.1016/j.bbagen.2010.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND In previous work, we have demonstrated that extracellular adenosine 5'-triphosphate (ATP) acts on intestinal Caco-2 cell P2Y receptors promoting a rapid increase in the phosphorylation of ERK1/2, p46 JNK and p38 MAP kinases (MAPKs). METHODS AND RESULTS In this study, we investigated whether the extracellular ATP-P2Y receptor signalling pathways were required for the proliferation of Caco-2 cells. Confocal microscopy and immunobloting studies showed that ERK1/2 and JNK translocate into the nucleus of the cells stimulated by ATP, where they participate, together with p38 MAPK, in the phosphorylation of JunD, ATF-1 and ATF-2 transcription factors. In addition, ATP through the activation of MAPKs induces the expression of the immediate early genes products of the Jun family, c-Fos and MAP kinase phosphatase-1 (MKP-1). Moreover, ERK1/2 and p38 MAPK are involved in the phosphorylation of MKP-1 in Caco-2 cells. Of physiological significance, in agreement with the mitogenic role of the MAPK cascade, ATP increased Caco-2 cell proliferation, and this effect was blocked by UO126, SB203580 and SP600125, the specific inhibitors of ERK1/2, p38 MAPK and JNK1/2, respectively. CONCLUSION Extracellular ATP induces proliferation of Caco-2 human colonic cancer cells by activating MAPK cascades and modulation of transcription factors. GENERAL SIGNIFICANCE These findings and identification of the specific P2Y subtype receptors involved in the mitogenic effect of ATP on Caco-2 cells might be relevant for understanding tumor cell development, resistance to treatment regimens and the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Buzzi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
20
|
Franke H, Sauer C, Rudolph C, Krügel U, Hengstler JG, Illes P. P2 receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo. Glia 2009; 57:1031-45. [PMID: 19115395 DOI: 10.1002/glia.20827] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ATP acts as a growth factor as well as a toxic agent by stimulating P2 receptors. The P2 receptor-activated signaling cascades mediating cellular growth and cell survival after injury are only incompletely understood. Therefore, the aim of the present study was to identify the role of the phosphoinositide 3 kinase (PI3-K/Akt) and the mitogen-activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) pathways in P2Y receptor-mediated astrogliosis after traumatic injury and after microinfusion of ADP beta S (P2Y(1,12,13) receptor agonist) into the rat nucleus accumbens (NAc). Mechanical damage and even more the concomitant treatment with ADP beta S, enhanced P2Y(1) receptor-expression in the NAc, which could be reduced by pretreatment with the P2X/Y receptor antagonist PPADS. Quantitative Western blot analysis indicated a significant increase in phosphorylated (p)Akt and pERK1/2 2 h after ADP beta S-microinjection. Pretreatment with PPADS or wortmannin abolished the up-regulation of pAkt by injury alone or ADP beta S-treatment. The ADP beta S-enhanced expression of the early apoptosis marker active caspase 3 was reduced by PPADS and PD98059, but not by wortmannin. Multiple immunofluorescence labeling indicated a time-dependent expression of pAkt and pMAPK on astrocytes and neurons and additionally the colocalization of pAkt, pMAPK, and active caspase 3 with the P2Y(1) receptor especially at astrocytes. In conclusion, the data show for the first time the involvement of PI3-K/Akt-pathway in processes of injury-induced astroglial proliferation and anti-apoptosis via activation of P2Y(1) receptors in vivo, suggesting specific roles of P2 receptors in glial cell pathophysiology in neurodegenerative diseases.
Collapse
Affiliation(s)
- H Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Welter-Stahl L, da Silva CM, Schachter J, Persechini PM, Souza HS, Ojcius DM, Coutinho-Silva R. Expression of purinergic receptors and modulation of P2X7 function by the inflammatory cytokine IFNgamma in human epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1176-87. [PMID: 19306841 DOI: 10.1016/j.bbamem.2009.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 12/20/2022]
Abstract
The cervical epithelial cell line, HeLa, is one of the oldest and most commonly used cell lines in cell biology laboratories. Although a truncated P2X(7) receptor has recently been identified in HeLa cells, the expression of other purinergic receptors or the function of the P2X(7) protein has not been characterized. We here show that HeLa cells express transcripts for most P2X and P2Y purinergic receptors. Treatment of cells with ATP or other P2X(7) agonists does not stimulate cell death, but can induce atypical calcium fluxes and ion currents. Cervical epithelial cells represent an important target for sexually-transmitted pathogens and are commonly exposed to pro-inflammatory cytokines such as IFNgamma. Stimulation of HeLa cells with IFNgamma upregulates expression of P2X(7) mRNA and full-length protein, modifies ATP-dependent calcium fluxes, and renders the cells sensitive to ATP-induced apoptosis, which can be blocked by a P2X(7) antagonist. IFNgamma treatment also increased dramatically the sensitivity of the intestinal epithelial cell line, HCT8, to ATP-induced apoptosis. Significantly, IFNgamma also stimulated P2X(7) expression on human intestinal tissues. Responses to other purinergic receptor ligands suggest that HeLa cells may also express functional P2Y(1), P2Y(2) and P2Y(6) receptors, which could be relevant for modulating ion homeostasis in the cells.
Collapse
|
22
|
Kong Q, Peterson TS, Baker O, Stanley E, Camden J, Seye CI, Erb L, Simonyi A, Wood WG, Sun GY, Weisman GA. Interleukin-1beta enhances nucleotide-induced and alpha-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y(2) receptor. J Neurochem 2009; 109:1300-10. [PMID: 19317852 DOI: 10.1111/j.1471-4159.2009.06048.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The heterologous expression and activation of the human P2Y(2) nucleotide receptor (P2Y(2)R) in human 1321N1 astrocytoma cells stimulates alpha-secretase-dependent cleavage of the amyloid precursor protein (APP), causing extracellular release of the non-amyloidogenic protein secreted amyloid precursor protein (sAPPalpha). To determine whether a similar response occurs in a neuronal cell, we analyzed whether P2Y(2)R-mediated production of sAPPalpha occurs in rat primary cortical neurons (rPCNs). In rPCNs, P2Y(2)R mRNA and receptor activity were virtually absent in quiescent cells, whereas overnight treatment with the pro-inflammatory cytokine interleukin-1beta (IL-1beta) up-regulated both P2Y(2)R mRNA expression and receptor activity by four-fold. The up-regulation of the P2Y(2)R was abrogated by pre-incubation with Bay 11-7085, an IkappaB-alpha phosphorylation inhibitor, which suggests that P2Y(2)R mRNA transcript levels are regulated through nuclear factor-kappa-B (NFkappaB) signaling. Furthermore, the P2Y(2)R agonist Uridine-5'-triphosphate (UTP) enhanced the release of sAPPalpha in rPCNs treated with IL-1beta or transfected with P2Y(2)R cDNA. UTP-induced release of sAPPalpha from rPCNs was completely inhibited by pre-treatment of the cells with the metalloproteinase inhibitor TACE inhibitor (TAPI-2) or the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, and was partially inhibited by the MAPK/extracellular signal-regulated kinase inhibitor U0126 and the protein kinase C inhibitor GF109203. These data suggest that P2Y(2)R-mediated release of sAPPalpha from cortical neurons is directly dependent on a disintegrin and metalloproteinase (ADAM) 10/17 and PI3K activity, whereas extracellular signal-regulated kinase 1/2 and PI3K activity may indirectly regulate APP processing. These results demonstrate that elevated levels of pro-inflammatory cytokines associated with neurodegenerative diseases, such as IL-1beta, can enhance non-amyloidogenic APP processing through up-regulation of the P2Y(2)R in neurons.
Collapse
Affiliation(s)
- Qiongman Kong
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Burgos M, Neary JT, González FA. P2Y2 nucleotide receptors inhibit trauma-induced death of astrocytic cells. J Neurochem 2007; 103:1785-800. [PMID: 17868308 DOI: 10.1111/j.1471-4159.2007.04872.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nucleotides as well as other neurotransmitters are known to be released to the extracellular space upon injury. To determine whether nucleotides acting on P2Y(2) nucleotide receptors promote protective or degenerative events after trauma in astrocytic cells, a well-established model of in vitro brain trauma was applied to 1321N1 cells expressing recombinant P2Y(2) nucleotide receptors (P2Y(2)R-1321N1). Cellular death was examined by measuring DNA fragmentation and caspase activation. Fragmented DNA was observed 48 h post-injury in 1321N1 cells, while P2Y(2) nucleotide receptor expressing cells did not show DNA fragmentation. A laddering pattern of fragmented DNA following injury was observed upon inhibition of P2Y(2) nucleotide receptors with suramin. Time-dependent increases of cleaved caspase-9, a mitochondrial-associated caspase, correlated with injury-induced cellular death. A decreased bax/bcl-2 gene expression ratio was observed in P2Y(2)R-1321N1 cells after traumatic injury, while untransfected 1321N1 cells showed a significant time-dependent increase of the bax/bcl-2 gene expression ratio. Activation of protein kinases was assessed to determine the signaling pathways involved in cell death and survival responses following traumatic injury. In P2Y(2)R-1321N1 and 1321N1 cells p38 phosphorylation was stimulated in a time-dependent manner but the phosphatidylinositol 3-kinase-dependent activation of extracellular signal-regulated kinase 1/2 and protein kinase B (PKB)/Akt was only observed in P2Y(2)R-1321N1 cells after injury. The stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) signaling pathway was not activated by traumatic injury in either astrocytic cell line. Inhibition of p38 kinase signaling pathway by treatment with PD1693, a MKK3/6 inhibitor, abolished the expression of cleaved caspase-9, the increase in the bax/bcl-2 gene expression ratio, as well as the fragmentation of DNA that followed injury of 1321N1 cells. Taken together, our results demonstrate a novel role for P2Y(2) nucleotide receptors and extracellular nucleotides in mediating survival responses to glial cells undergoing cellular death induced by trauma.
Collapse
Affiliation(s)
- Michelle Burgos
- Department of Biochemistry, Medical-Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | | | | |
Collapse
|
24
|
Tsukimoto M, Maehata M, Harada H, Ikari A, Takagi K, Degawa M. P2X7 receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. THE JOURNAL OF IMMUNOLOGY 2006; 177:2842-50. [PMID: 16920919 DOI: 10.4049/jimmunol.177.5.2842] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular ATP causes apoptosis and/or necrosis of the hemopoietic lineage through the activation of P2X7 receptors. In this study, we investigated P2X7 receptor-mediated cell death during murine T cell maturation. The expression level and activity of P2X7 receptors, as measured by induction of cell death and pore formation, were higher in splenocytes than thymocytes. Flow cytometric analysis revealed that cell shrinkage was induced by activation of the P2X7 receptor in murine lymphocytes and the responding cells were T cells. Splenic T cells were more responsive than their thymic counterpart. These observations indicate that the system of P2X7 receptor-mediated cell death in T cells could be modulated during T cell maturation. Furthermore, decreased extracellular Cl- suppressed ATP-induced cell shrinkage in splenocytes without inhibiting ERK1/2 phosphorylation, which is reported to mediate necrotic cell death. Treatment with U0126 (a MEK inhibitor) suppressed ATP-induced ERK1/2 phosphorylation without inhibiting cell shrinkage. Moreover, decreased extracellular Cl- and treatment with U0126 suppressed ATP-induced cell death. These observations indicate that the activation of P2X7 receptor leads to T cell death by two independent pathways, one of which is cell shrinkage dependent and the other of which involves the phosphorylation of ERK1/2. In conclusion, we demonstrate increasing P2X7 receptor activity during T cell maturation and the existence of two essential pathways in P2X7 receptor-mediated T cell death. Our findings suggest that ATP-induced cell death of peripheral T lymphocytes is important in P2X7 receptor-regulated immune responses.
Collapse
|
25
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 998] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Heo JS, Han HJ. ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells 2006; 24:2637-48. [PMID: 16916926 DOI: 10.1634/stemcells.2005-0588] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of ATP and its related signal cascades on the proliferation of mouse ESCs. ATP increased the level of [(3)H]thymidine/5-bromo-2'-deoxyuridine incorporation and the number of cells in both a time- and dose-dependent manner. AMP-CPP (a P2X(1) and P2X(3) agonist), ATP-gammaS (a P2Y agonist), and 2-methylthio-ATP (a P2X and P2Y agonist) stimulated [(3)H]thymidine incorporation. P2 purinoceptor antagonists (suramin, reactive blue 2) inhibited the ATP-induced increase in [(3)H]thymidine incorporation. Reverse transcription-polymerase chain reaction analysis revealed P2X(3), P2X(4), P2Y(1), and P2Y(2) expression in mouse ESCs. Adenylate cyclase inhibitor (SQ 22536), phospholipase C inhibitors (neomycin or U 73122), and protein kinase C (PKC) inhibitors (bisindolylmaleimide I or staurosporine) inhibited the ATP-induced increase in [(3)H]thymidine incorporation. ATP increased the level of intracellular cAMP and inositol phosphates. ATP translocated PKC alpha, delta, and zeta from the cytosol to the membrane compartment. ATP and its agonists increased [Ca(2+)](i). In addition, the ATP-induced increase in [(3)H]thymidine incorporation was completely inhibited by a combination of EGTA (extracellular Ca(2+) chelator) and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM (intracellular Ca(2+) chelator). ATP phosphorylated Akt and p44/42 mitogen-activated protein kinases (MAPKs) in a time-dependent manner, and either suramin or reactive blue 2 (RB2) blocked the ATP-induced phosphorylation of Akt. Suramin, RB2, the phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin), or the Akt inhibitor inhibited the phosphorylation of p44/42 MAPKs. The ATP-induced increase in [(3)H]thymidine incorporation was inhibited by wortmannin, the Akt inhibitor, and the MAPK kinase inhibitor (PD 98059). Suramin, RB2, PD 98059, and wortmannin blocked the ATP-induced increase in the cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 levels. In conclusion, ATP stimulates mouse ESC proliferation through PKC, PI3K/Akt, and MAPKs via the P2 purinoceptors.
Collapse
Affiliation(s)
- Jung Sun Heo
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | |
Collapse
|
27
|
Montiel M, de la Blanca EP, Jiménez E. P2Y receptors activate MAPK/ERK through a pathway involving PI3K/PDK1/PKC-zeta in human vein endothelial cells. Cell Physiol Biochem 2006; 18:123-34. [PMID: 16914897 DOI: 10.1159/000095180] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AIMS In this study we investigated the effects of P2 receptors in the regulation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in human umbilical vein endothelial cells (HUVEC). METHODS Cytosolic Ca(2+) concentration ([Ca(2+)](i)) was measured using fura-2/AM, and MAPK/ ERK phosphorylation using Western blot analysis. RESULTS ATP, 2-meSATP, UTP and UDP cause a rapid and transitory increase in the phosphorylation of MAPK/ERK. In contrast, negligible response was seen for a,Beta-meATP, a general P2X receptors agonist. ATP-dependent activation of MAPK/ERK was prevented by pretreatment of HUVEC with pertussis toxin or MEK inhibitor PD98059. In addition, activation of the MAPK/ ERK cascade by ATP was blocked in cells pretreated with wortmannin and LY294002, but not by U73122, BAPTA or a Ca(2+)-free medium. Furthermore, an inhibition of ATP-dependent MAPK/ERK phosphorylation was observed in HUVEC pretreated with high doses of GF109203X or myristoylated PKC- zeta pseudosubstrate. Similar results were observed when cells were pretreated with the Src tyrosine kinase inhibitor PP2. However, ATP-stimulated MAPK/ERK activation was unaffected in cells pretreated with AG1478 or perillic acid. We also found that ATP stimulates both the phosphorylation of 3- phosphoinositide-dependent protein kinase-1 (PDK1) and its translocation to plasma membrane in a time-dependent manner. CONCLUSION These observations suggest that the effects mediated by ATP in HUVEC occur via PTX-sensitive G-protein-coupled P2Y receptors through PI3K-dependent mechanisms, in which PDK1 and PKC-zeta are two key molecules within signal cascade leading to MAPK/ERK activation.
Collapse
Affiliation(s)
- Mercedes Montiel
- Department of Biochemistry and Molecular Biology, Malaga University, Malaga, Spain
| | | | | |
Collapse
|
28
|
Han S, Ritzenthaler JD, Sitaraman SV, Roman J. Fibronectin increases matrix metalloproteinase 9 expression through activation of c-Fos via extracellular-regulated kinase and phosphatidylinositol 3-kinase pathways in human lung carcinoma cells. J Biol Chem 2006; 281:29614-24. [PMID: 16882662 DOI: 10.1074/jbc.m604013200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enhanced expression of matrix metalloproteinase-9 (MMP-9) is associated with human lung tumor invasion and/or metastasis. We have demonstrated that fibronectin (FN), a matrix glycoprotein, stimulates human non-small cell lung carcinoma (NSCLC) cell proliferation. The current study examines the effect of FN on MMP-9 expression in NSCLC cells. We show that FN increases MMP-9 protein, mRNA expression, and gelatinolytic activity in NSCLC cells. The integrin alpha5beta1 mediated the effects of FN because alpha5 small interfering RNA blocked FN-stimulated MMP-9 protein expression, and also abrogated FN-induced phosphorylation of ERK and phosphatidylinositol 3-kinase (PI3K) signals. The inhibitor of ERK, PD98095, and of PI3K, wortmannin, but not that of protein kinase A, H89, of Rho kinase, Y-27632, of mTOR, rapamycin, or of JNK, SP600125, prevented FN-induced MMP-9 gelatinolytic activity and gene expression. FN enhanced MMP-9 gene promoter activity; however, there was no response to FN in DNA constructs with an AP-1 site mutation. FN increased AP-1 DNA binding activity, and this was abrogated by cyclic AMP response element decoy oligonucleotides, which also diminished FN-induced MMP-9 promoter activity. FN increased the expression of the AP-1 subunit c-Fos protein, but not in the presence of PD98095 and wortmannin. The AP-1 inhibitor, nordihydroguaiaretic acid, and a c-Fos small interfering RNA eliminated the effect of FN on MMP-9 expression. This study indicates that FN, by binding to the integrin alpha5beta1 receptor, stimulates the expression of MMP-9 through increased AP-1/DNA binding and c-Fos protein expression via ERK and PI3K signaling pathways. The data unveils a novel mechanism by which FN could promote NSCLC cell invasion and metastasis.
Collapse
Affiliation(s)
- Shouwei Han
- Division of Pulmonary, Allergy and Critical Care Medicine, Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
29
|
Erb L, Liao Z, Seye CI, Weisman GA. P2 receptors: intracellular signaling. Pflugers Arch 2006; 452:552-62. [PMID: 16586093 DOI: 10.1007/s00424-006-0069-2] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
P2 receptors for extracellular nucleotides are divided into two categories: the ion channel receptors (P2X) and the G-protein-coupled receptors (P2Y). For the P2X receptors, signal transduction appears to be relatively simple. Upon activation by extracellular ATP, a channel comprised of P2X receptor subunits opens and allows cations to move across the plasma membrane, resulting in changes in the electrical potential of the cell that, in turn, propagates a signal. This regulated flux of ions across the plasma membrane has important signaling functions, especially in impulse propagation in the nervous system and in muscle contractility. In addition, P2X receptor activation causes the accumulation of calcium ions in the cytoplasm, which is responsible for activating numerous signaling molecules. For the P2Y receptors, signal transduction is more complex. Intracellular signaling cascades are the main routes of communication between G-protein-coupled receptors and regulatory targets within the cell. These signaling cascades operate mainly by the sequential activation or deactivation of heterotrimeric and monomeric G proteins, phospholipases, protein kinases, adenylyl and guanylyl cyclases, and phosphodiesterases that regulate many cellular processes, including proliferation, differentiation, apoptosis, metabolism, secretion, and cell migration. In addition, there are numerous ion channels, cell adhesion molecules and receptor tyrosine kinases that are modulated by P2Y receptors and operate to transmit an extracellular signal to an intracellular response. These intracellular signaling pathways and their regulation by P2 receptors are discussed in this review.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, University of Missouri-Columbia, Life Sciences Center, 1201 Rollins Rd., Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
30
|
Shukla A, Barrett TF, Nakayama KI, Nakayama K, Mossman BT, Lounsbury KM. Transcriptional up‐regulation of MMPs 12 and 13 by asbestos occurs via a PKCδ‐dependent pathway in murine lung. FASEB J 2006; 20:997-9. [PMID: 16571779 DOI: 10.1096/fj.05-4554fje] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Asbestos is a known inflammatory, carcinogenic, and fibrotic agent, but the mechanisms leading to asbestos-induced lung diseases are unclear. Using a murine inhalation model of fibrogenesis, we show that asbestos causes significant increases in mRNA levels of lung matrix metalloproteinases (MMPs 12 and 13) and tissue inhibitor of metalloproteinases (TIMP1), as well as increased activities of MMP 2, 9, and 12 in bronchoalveolar lavage fluids (BALF). Asbestos-exposed PKCdelta knockout (PKCdelta-/-) mice exhibited decreased expression of lung MMP12 and MMP13 compared with asbestos-exposed wild-type mice. Studies using small molecule inhibitors in murine alveolar epithelial type II cells (C10) and primary lung fibroblasts confirmed that asbestos transcriptionally up-regulates MMPs via an EGFR (or other growth factor receptors)/PI3K/PKCdelta/ERK1/2 pathway. Moreover, use of a broad-spectrum MMP inhibitor showed that MMPs play an important role in further enhancing asbestos-induced signaling events by activating EGFR. These data reveal a potentially important link between asbestos signaling and integrity of the extracellular matrix (ECM) that likely contributes to asbestos-induced lung remodeling and diseases.
Collapse
Affiliation(s)
- Arti Shukla
- Department of Pharmacology, University of Vermont College of Medicine, 89 Beaumont Ave. Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
31
|
Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, González FA, Seye CI, Erb L. Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 2006; 31:169-83. [PMID: 15953819 DOI: 10.1385/mn:31:1-3:169] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 01/05/2023]
Abstract
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry and Neuroscience Program, University of Missouri-Columbia, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang M, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA. P2Y nucleotide receptor interaction with alpha integrin mediates astrocyte migration. J Neurochem 2005; 95:630-40. [PMID: 16135088 DOI: 10.1111/j.1471-4159.2005.03408.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Astrocytes become activated in response to brain injury, as characterized by increased expression of glial fibrillary acidic protein (GFAP) and increased rates of cell migration and proliferation. Damage to brain cells causes the release of cytoplasmic nucleotides, such as ATP and uridine 5'-triphosphate (UTP), ligands for P2 nucleotide receptors. Results in this study with primary rat astrocytes indicate that activation of a G protein-coupled P2Y(2) receptor for ATP and UTP increases GFAP expression and both chemotactic and chemokinetic cell migration. UTP-induced astrocyte migration was inhibited by silencing of P2Y(2) nucleotide receptor (P2Y(2)R) expression with siRNA of P2Y(2)R (P2Y(2)R siRNA). UTP also increased the expression in astrocytes of alpha(V)beta(3/5) integrins that are known to interact directly with the P2Y(2)R to modulate its function. Anti-alpha(V) integrin antibodies prevented UTP-stimulated astrocyte migration, suggesting that P2Y(2)R/alpha(V) interactions mediate the activation of astrocytes by UTP. P2Y(2)R-mediated astrocyte migration required the activation of the phosphatidylinositol-3-kinase (PI3-K)/protein kinase B (Akt) and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways, responses that also were inhibited by anti-alpha(V) integrin antibody. These results suggest that P2Y(2)Rs and their associated signaling pathways may be important factors regulating astrogliosis in brain disorders.
Collapse
Affiliation(s)
- Min Wang
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ahmad S, Ahmad A, McConville G, Schneider BK, Allen CB, Manzer R, Mason RJ, White CW. Lung epithelial cells release ATP during ozone exposure: signaling for cell survival. Free Radic Biol Med 2005; 39:213-26. [PMID: 15964513 DOI: 10.1016/j.freeradbiomed.2005.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/07/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
The common air pollutant ozone causes acute toxicity to human airways. In primary and transformed epithelial cells from all levels of human or rat airways, ozone levels relevant to air pollution (50-200 ppb) increased extracellular [ATP] within 7-30 min. A human bronchial epithelial cell line (16HBE14o(-)) that forms electrically resistant polarized monolayers had up to 10-fold greater apical than basolateral surface extracellular [ATP] within 7 min of ozone exposure. Increased extracellular [ATP] appeared due to ATP secretion or release because (1) inhibition of ectonucleotidase (cell surface enzyme(s) which degrade ATP) by ozone did not occur until >120 min of ozone exposure and (2) brefeldin A, a secretory inhibitor, eliminated elevation of extracellular [ATP] without affecting intracellular ATP. Extracellular ATP protected against ozone toxicity in a P2Y receptor-dependent manner as (1) removal of ATP and adenosine by apyrase and adenosine deaminase, respectively, potentiated ozone toxicity, (2) extracellular supplementation with ATP, a poorly hydrolyzable ATP analog ATPgammaS, or UTP inhibited apoptotic and necrotic ozone-mediated cell death, and (3) ATP-mediated protection was eliminated by P2 and P2Y receptor inhibitors suramin and Cibacron blue (reactive blue 2), respectively. The decline in glucose uptake caused by prolonged ozone exposure was prevented by supplemental extracellular ATP, an effect blocked by suramin. Further, Akt and ERK phosphorylation resulted from exposure to supplemental extracellular ATP. Thus, extracellularly released ATP signals to prevent ozone-induced death and supplementation with ATP or its analogs can augment protection, at least in part via Akt and /or ERK signaling pathways and their metabolic effects.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kupzig S, Walker SA, Cullen PJ. The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. Proc Natl Acad Sci U S A 2005; 102:7577-82. [PMID: 15890781 PMCID: PMC1103707 DOI: 10.1073/pnas.0409611102] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 01/10/2023] Open
Abstract
Ras proteins are binary switches that, by cycling through inactive GDP- and active GTP-bound conformations, regulate multiple cellular signaling pathways, including those that control growth and differentiation. For some time, it has been known that receptor-mediated increases in the concentration of intracellular free calcium ([Ca(2+)](i)) can modulate Ras activation. Increases in [Ca(2+)](i) often occur as repetitive Ca(2+) spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca(2+) oscillations increase in frequency with the amplitude of receptor stimuli, a phenomenon critical for the induction of selective cellular functions. Here, we show that Ca(2+) oscillations are optimized for Ca(2+)-mediated activation of Ras and signaling through the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. We present additional evidence that Ca(2+) oscillations reduce the effective Ca(2+) threshold for the activation of Ras and that the oscillatory frequency is optimized for activation of Ras and the ERK/MAPK pathway. Our results describe a hitherto unrecognized link between complex Ca(2+) signals and the modulation of the Ras/ERK/MAPK signaling cascade.
Collapse
Affiliation(s)
- Sabine Kupzig
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
35
|
Ramos-Nino ME, Vianale G, Sabo-Attwood T, Mutti L, Porta C, Heintz N, Mossman BT. Human mesothelioma cells exhibit tumor cell–specific differences in phosphatidylinositol 3-kinase/AKT activity that predict the efficacy of Onconase. Mol Cancer Ther 2005; 4:835-42. [PMID: 15897248 DOI: 10.1158/1535-7163.mct-04-0243] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant mesothelioma is an aggressive cancer with no known cure, which has become a therapeutic challenge. Onconase is one of few chemotherapeutic agents that have been studied in patients with malignant mesothelioma that has the advantage of low toxicity and limited side effects. Here, we evaluate the effect of Onconase on killing of malignant mesothelioma cells and how the phosphatidylinositol 3-kinase/AKT (PI3-K/AKT) survival pathway influences this effect. Our results show that Onconase induces apoptosis in malignant mesothelioma cell lines and that this effect is tumor cell specific. Malignant mesothelioma cell lines with the highest AKT activation, which correlated with the presence of the SV40 large and small T antigen (SV40+), were the most resistant to the drug. Finally, a cooperative effect was observed between small molecule inhibitors of PI3-K and Onconase in the killing of malignant mesothelioma cells. Our results suggest that kinase screening of individual malignant mesotheliomas for endogenous levels of activated PI3-K/AKT may be predictive of the efficacy of Onconase and possibly other chemotherapeutic agents.
Collapse
Affiliation(s)
- Maria E Ramos-Nino
- Department of Pathology, College of Medicine, University of Vermont College of Medicine, 89 Beaumont Avenue, HSRF 215, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Jacques-Silva MC, Bernardi A, Rodnight R, Lenz G. ERK, PKC and PI3K/Akt pathways mediate extracellular ATP and adenosine-induced proliferation of U138-MG human glioma cell line. Oncology 2005; 67:450-9. [PMID: 15714002 DOI: 10.1159/000082930] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 05/15/2004] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Extracellular nucleotides and nucleosides induce proliferation in a set of human glioma cell lines. In this study we investigate the signal transduction pathways involved in ATP and adenosine-mediated proliferation in U138-MG human glioma cells. METHODS Cell proliferation was accessed through [(3)H]thymidine incorporation, cell counting and flow cytometry. Protein phosphorylation was detected through Western blotting. RESULTS ATP or adenosine (100 microM) induced extracellular signal-regulated protein kinase (ERK), Akt and GSK3beta phosphorylation. The increase in [(3)H]thymidine incorporation induced by ATP or adenosine was decreased when cells were incubated with LY 294002 (by +/-90%), GF 109203X (by +/-76%) or PD 098059 (by +/-63%). The increase in cell numbers with ATP or adenosine was less after a 48-hour treatment of cells with ATP or adenosine plus GF 109203X (by +/-66%) or LY 294002 (by +/-83%). Percentage of cells in S phase was decreased in cells treated with LY 294002 plus ATP when compared to ATP- treated cells. CONCLUSION Stimulation of purinergic receptors in U138-MG cells leads to cell proliferation mediated by PI3K/Akt, ERK and PKC signaling. It may be clinically important for pharmacological intervention in gliomas to associate purinergic receptor antagonists and signal transduction pathways blockers.
Collapse
Affiliation(s)
- Maria C Jacques-Silva
- Departamentos de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
37
|
Elia MG, Muscella A, Romano S, Greco S, Di Jeso B, Verri T, Storelli C, Marsigliante S. Effects of extracellular nucleotides in the thyroid: P2Y2 receptor-mediated ERK1/2 activation and c-Fos induction in PC Cl3 cells. Cell Signal 2004; 17:739-49. [PMID: 15722198 DOI: 10.1016/j.cellsig.2004.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/22/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
Aim of the present paper was to investigate the signaling pathways of P2Y2 in rat thyroid PC Cl3 cell line and its effects on proliferation. This study demonstrates that P2Y2 activation provoked: (a) a cytosol-to-membrane translocation of PKC-alpha, -betaI and -epsilon; (b) the phosphorylation of the extra cellular signal-regulated kinases 1 and 2 (ERK1/2); (c) the expression of c-Fos protein; (d) no effects on the G1/S progression and overall cell proliferation. The P2Y2-stimulated ERK1/2 phosphorylation was: (a) completely blocked by PD098059, a mitogen-activated protein kinase (MEK) inhibitor or by W-7, a Ca2+-calmodulin (CaM) antagonist; (b) reduced by GF109203X, inhibitor of PKCs, or AG1478, inhibitor of EGFR tyrosine kinase, or LY294002/wortmannin, inhibitors of phosphoinositide 3-kinases, or cytochalasin D, inhibitor of actin microfilament bundles polymerization. The c-Fos induction was greatly diminished by Go6976 or PD098059, and completely abolished when combined. In conclusion, data indicate that the P2Y2-induced phosphorylation of ERK1/2 and the induction of c-Fos are due to the operation of CaM, with PKC, PI3K, EGFR and receptor endocytosis mechanisms endorsing the signalling. On the other hand, no mitogenic effects of P2Y2 are whatsoever noticed in PC Cl3 cells.
Collapse
Affiliation(s)
- Maria Giovanna Elia
- Laboratorio di Fisiologia Cellulare, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Universita' di Lecce, Ecotekne, Via Prov. le per Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S. Differential signalling of purinoceptors in HeLa cells through the extracellular signal-regulated kinase and protein kinase C pathways. J Cell Physiol 2004; 200:428-39. [PMID: 15254971 DOI: 10.1002/jcp.20033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that HeLa cells express P2Y2 and P2Y6 receptors endogenously and determined the pathways by which the P2Y2 controls proliferation and Na+/K+ATPase activity. Our objective in this study was to investigate the hypothesis that P2Y6 also controls proliferation and Na+/K+ATPase activity; the pathways used in these actions were partially characterised. We found that P2Y6 activation controlled cell proliferation but not the activity of the Na+/K+ATPase. UDP activation of P2Y6 provoked: (a) an increase in free cytosolic calcium; (b) the activation of protein kinase C-alpha, -beta, -delta, -epsilon, and -zeta but not of PKC-iota and -eta; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2); (d) the expression of c-Fos protein. The P2Y6 induced cell proliferation was blocked by the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD098059, thereby indicating that the ERK pathway mediates the mitogenic signalling of P2Y6. PKC and phosphoinositide 3-kinase (PI3K) inhibitors were tested at two different time points of ERK1/2 phosphorylation (10 and 60 min). The results suggest that novel PKCs and PI3K initiate the response but both conventional and atypical PKCs are required for the maintenance of the UDP-induced phosphorylation of ERK1/2. The induction of c-Fos was greatly diminished by conventional or atypical PKC-zeta inhibition, suggesting that it may be due to PKC-alpha/beta and -zeta activity. These observations demonstrate that UDP acts as a proliferative agent in HeLa cells activating multiple signalling pathways involving conventional, novel, and atypical PKCs, PI3K, and ERK. Of these pathways, conventional and atypical PKCs appear responsible for the induction of c-Fos, while ERK is responsible for cell proliferation and depends upon both novel and atypical PKCs and PI3K activities.
Collapse
Affiliation(s)
- Antonella Muscella
- Laboratorio di Fisiologia Cellulare, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università di Lecce, Ecotekne, Lecce, Italia
| | | | | | | | | |
Collapse
|