1
|
Haroon M, Sultana S, Najibi SA, Wang ET, Michaelson A, Al Muied PSM, Nielsen AE, Mancini RJ. Efflux-Enhanced Imidazoquinolines To Exploit Chemoresistance. ACS OMEGA 2025; 10:12319-12333. [PMID: 40191321 PMCID: PMC11966297 DOI: 10.1021/acsomega.4c11297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The imidazoquinoline family of toll-like receptor (TLR) immune cell agonists has long demonstrated moderate anticancer immunogenic effects by activating tumoricidal immune cells and depleting immunosuppressive cells within the tumor microenvironment. At a molecular level, we have also established that several imidazoquinolines traffic from within cancer cells to the extracellular space via P-glycoprotein (P-gp)-mediated efflux, a process commonly upregulated as multidrug-resistant (MDR) cancers acquire chemoresistance. However, imidazoquinoline P-gp efflux has never been deliberately enhanced to exploit this process. This study pioneers efforts to optimize imidazoquinoline efflux, ultimately balancing immunogenic potency alongside functional efflux susceptibility. Starting from an established imidazoquinoline scaffold previously optimized for potency, efflux was significantly enhanced by elaborating the N1 benzylic position with amide- and sulfonamide-linked P-gp affinity fragments consisting of empirically established P-gp substrates as well as computationally predicted P-gp binders. Lead compounds were identified from this series that exhibited enhanced P-gp efflux with functional retention of TLR agonism. Similar to the parent imidazoquinoline scaffold, leads had limited direct cytotoxicity in both treatment-naive and MDR B16 melanoma models and did not significantly affect the efficacy or trafficking of the chemotherapeutic doxorubicin. Efflux-enhanced imidazoquinolines were preferentially expelled from MDR-B16 cells relative to treatment-naive cells, resulting in immunogenicity that was enhanced as a consequence of the acquired MDR phenotype. Because enhanced P-gp-mediated efflux is common to most MDR cancer types, we envision that these results could inspire the design of immunotherapeutic drugs with mechanisms of action that are broadly enhanced in MDR cancers that have failed treatment or acquired resistance to chemotherapeutics.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Sharmin Sultana
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Seyedeh A. Najibi
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Emily T. Wang
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Abbey Michaelson
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Pranto S. M. Al Muied
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Amy E. Nielsen
- Astante
Therapeutics Inc., 201
E. Fifth Street, Cincinnati, Ohio 45202, United States
| | - Rock J. Mancini
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
- Astante
Therapeutics Inc., 201
E. Fifth Street, Cincinnati, Ohio 45202, United States
| |
Collapse
|
2
|
Prandial state and biological sex modulate clinically relevant efflux transporters to different extents in Wistar and Sprague Dawley rats. Biomed Pharmacother 2023; 160:114329. [PMID: 36731343 DOI: 10.1016/j.biopha.2023.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2) are clinically relevant efflux transporters implicated in the oral absorption of many food and drug substrates. Here, we hypothesised that food intake could influence protein and mRNA intestinal expression of P-gp/abcb1a, BCRP/abcg2, and MRP2/abcc2 differently in male and female Wistar and Sprague Dawley rats. To test this hypothesis, we used enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR) to quantify the protein and mRNA intestinal expression of these transporters, respectively. Our study found food and sex differences in P-gp expression, whereby in the fed state P-gp expression decreased in male Wistar rats, but P-gp expression increased in females. In the fed state, BCRP expression increased in both male and female Wistar rats, compared with the fasted state. In contrast, no sex differences or food effect differences were seen in Sprague Dawley rats for P-gp and BCRP expression. On the other hand, in the fed state, MRP2 expression was higher in male and female Wistar and Sprague Dawley rats when compared with the fasted state. Sex differences were also observed in the fasted state. Overall, significant strain differences were reported for P-gp, BCRP and MRP2 expression. Strong to moderate positive linear correlations were found between ELISA and PCR quantification methods. ELISA may be more useful than PCR as it reports protein expression as opposed to transcript expression. Researchers must consider the influence of sex, strain and feeding status in preclinical studies of P-gp, BCRP and MRP2 drug substrates.
Collapse
|
3
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
4
|
Oligoprogression of Solid Tumors on Immune Checkpoint Inhibitors: The Impact of Local Ablative Radiation Therapy. Biomedicines 2022; 10:biomedicines10102481. [PMID: 36289743 PMCID: PMC9599608 DOI: 10.3390/biomedicines10102481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
The breakthrough of a limited number of clones while on immune checkpoint inhibitors (ICIs), known as oligoprogression, has been previously described. The benefit of ablative radiation therapy (RT) directed at these clones, as opposed to changing systemic therapy, is unclear. We analyzed 30 patients with advanced solid tumors, the majority of whom (23/30, 86.7%) had either hepatocellular or urothelial carcinoma, who experienced oligoprogression on ICIs and were referred for RT. In this study, oligoprogression was defined as having experienced progression at three or fewer metastatic sites outside of the brain after achieving at least stable disease on ICIs for a minimum of three months. The median time to oligoprogression was 11.1 months from the initiation of immunotherapy. 24 patients had one oligoprogressive lesion and six had two. The median radiation dose delivered was 4650 cGy in a median of five fractions. The median progression-free survival (PFS) after RT was 7.1 months, and the time to oligoprogression was not a significant predictor of PFS2. 26 patients continued on ICIs after RT. While 17 patients subsequently progressed, 15 did so at three or fewer metastatic sites and could have theoretically stood to benefit from an additional course of salvage RT to further extend the lifespan of their ICIs. Overall survival at 6, 12, and 24 months was 100.0%, 96.3%, and 82.8%, respectively. These results suggest that RT may provide a PFS benefit and extend the lifespan of ICIs in patients who experience oligoprogression. Regardless of PFS, however, overall survival in this population appears to be excellent.
Collapse
|
5
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
6
|
Research advances in the role and pharmaceuticals of ATP-binding cassette transporters in autoimmune diseases. Mol Cell Biochem 2022; 477:1075-1091. [PMID: 35034257 DOI: 10.1007/s11010-022-04354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Autoimmune diseases are caused by the immune response of the body to its antigens, resulting in tissue damage. The pathogenesis of these diseases has not yet been elucidated. Most autoimmune diseases cannot be cured by effective drugs. The treatment strategy is to relieve the symptoms of the disease and balance the body's autoimmune function. The abnormal expression of ATP-binding cassette (ABC) transporters is directly related to the pathogenesis of autoimmune diseases and drug therapy resistance, which poses a great challenge for the drug therapy of autoimmune diseases. Therefore, this paper reviews the interplay between ABC transporters and the pathogenesis of autoimmune diseases to provide research progress and new ideas for the development of drugs in autoimmune diseases.
Collapse
|
7
|
Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resist Updat 2022; 60:100811. [DOI: 10.1016/j.drup.2022.100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
|
8
|
Elfadadny A, El-Husseiny HM, Abugomaa A, Ragab RF, Mady EA, Aboubakr M, Samir H, Mandour AS, El-Mleeh A, El-Far AH, Abd El-Aziz AH, Elbadawy M. Role of multidrug resistance-associated proteins in cancer therapeutics: past, present, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49447-49466. [PMID: 34355314 DOI: 10.1007/s11356-021-15759-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Cancer, a major public health problem, is one of the world's top leading causes of death. Common treatments for cancer include cytotoxic chemotherapy, surgery, targeted drugs, endocrine therapy, and immunotherapy. However, despite the outstanding achievements in cancer therapies during the last years, resistance to conventional chemotherapeutic agents and new targeted drugs is still the major challenge. In the present review, we explain the different mechanisms involved in cancer therapy and the detailed outlines of cancer drug resistance regarding multidrug resistance-associated proteins (MRPs) and their role in treatment failures by common chemotherapeutic agents. Further, different modulators of MRPs are presented. Finally, we outlined the models used to analyze MRP transporters and proposed a future impact that may set up a base or pave the way for many researchers to investigate the cancer MRP further.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Rokaia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Mandour
- Department of Veterinary Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt.
| |
Collapse
|
9
|
Gao X, Aguanno D, Board M, Callaghan R. Exploiting the metabolic energy demands of drug efflux pumps provides a strategy to overcome multidrug resistance in cancer. Biochim Biophys Acta Gen Subj 2021; 1865:129915. [PMID: 33965440 DOI: 10.1016/j.bbagen.2021.129915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND P-glycoprotein (P-gp) is a prevalent resistance mediator and it requires considerable cellular energy to ensure ATP dependent efflux of anticancer drugs. The glycolytic pathway generates the majority of catabolic energy in cancer cells; however, the high rates of P-gp activity places added strain on its inherently limited capacity to generate ATP. This is particularly relevant for compounds such as verapamil that are believed to trap P-gp in a futile transport process that requires continuing ATP consumption. Ultimately, this leads to cell death and the hypersensitivity of resistant cells to verapamil is termed collateral sensitivity. RESULTS We show that the addition of verapamil to resistant cells produces a prominent reduction in ATP levels that supports the idea of disrupted energy homeostasis. Even in the absence of verapamil, P-gp expressing cells display near maximal rates of glycolysis and oxidative phosphorylation, which prevents an adequate response to the demand for ATP to sustain transport activity. Moreover, the near perpetually maximal rate of oxidative phosphorylation in the presence of verapamil resulted in elevated levels of reactive oxygen species that affect cell survival and underscore collateral sensitivity. CONCLUSIONS Our results demonstrate that the strained metabolic profiles of P-gp expressing resistant cancer cells can be overwhelmed by additional ATP demands. GENERAL SIGNIFICANCE Consequently, collateral sensitising drugs may overcome the resistant phenotype by exploiting, rather than inhibiting, the energy demanding activity of pumps such as P-gp.
Collapse
Affiliation(s)
- Xuexin Gao
- Human Disease and Membrane Transport Laboratory, Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Canberra 2601, Australia
| | - Doriane Aguanno
- Human Disease and Membrane Transport Laboratory, Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Canberra 2601, Australia
| | - Mary Board
- St. Hilda's College, University of Oxford, Oxford OX4 1DY, UK
| | - Richard Callaghan
- Human Disease and Membrane Transport Laboratory, Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Canberra 2601, Australia.
| |
Collapse
|
10
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
11
|
Al Rihani SB, Darakjian LI, Deodhar M, Dow P, Turgeon J, Michaud V. Disease-Induced Modulation of Drug Transporters at the Blood-Brain Barrier Level. Int J Mol Sci 2021; 22:ijms22073742. [PMID: 33916769 PMCID: PMC8038419 DOI: 10.3390/ijms22073742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) is a highly selective and restrictive semipermeable network of cells and blood vessel constituents. All components of the neurovascular unit give to the BBB its crucial and protective function, i.e., to regulate homeostasis in the central nervous system (CNS) by removing substances from the endothelial compartment and supplying the brain with nutrients and other endogenous compounds. Many transporters have been identified that play a role in maintaining BBB integrity and homeostasis. As such, the restrictive nature of the BBB provides an obstacle for drug delivery to the CNS. Nevertheless, according to their physicochemical or pharmacological properties, drugs may reach the CNS by passive diffusion or be subjected to putative influx and/or efflux through BBB membrane transporters, allowing or limiting their distribution to the CNS. Drug transporters functionally expressed on various compartments of the BBB involve numerous proteins from either the ATP-binding cassette (ABC) or the solute carrier (SLC) superfamilies. Pathophysiological stressors, age, and age-associated disorders may alter the expression level and functionality of transporter protein elements that modulate drug distribution and accumulation into the brain, namely, drug efficacy and toxicity. This review focuses and sheds light on the influence of inflammatory conditions and diseases such as Alzheimer’s disease, epilepsy, and stroke on the expression and functionality of the BBB drug transporters, the consequential modulation of drug distribution to the brain, and their impact on drug efficacy and toxicity.
Collapse
Affiliation(s)
- Sweilem B. Al Rihani
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
| | - Lucy I. Darakjian
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
| | - Malavika Deodhar
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
| | - Pamela Dow
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
| | - Jacques Turgeon
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Veronique Michaud
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-856-938-8697
| |
Collapse
|
12
|
Al-Abbas NS, Shaer NA. Combination of coumarin and doxorubicin induces drug-resistant acute myeloid leukemia cell death. Heliyon 2021; 7:e06255. [PMID: 33786386 PMCID: PMC7988287 DOI: 10.1016/j.heliyon.2021.e06255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/04/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Background Chemotherapy remains to be the method of choice used by clinicians to treat acute myeloid leukemia (AML) patients. However, the most common problem usually faced in the course of treatment is multidrug resistance (MDR). Nowadays, combination therapy involving natural products as adjuvant therapy to chemotherapy and radiotherapy has been used for many of health problems. Coumarin is a natural compound with known chemotherapeutic activity, as well as other pharmacological properties. We focused on the combination of coumarin and doxorubicin in overcoming of drug-resistance in acute myeloid leukemia. Methods Cell viability, Apoptotic and necrotic cell death with FACS, oxidative stress detection, and protein expression analysis were used in this study. Results Coumarin as a single drug exerts a significant cell death on Human acute myeloid leukemia (HL60); however, it does not show the same effect on drug-resistant acute myeloid leukemia (HL60/ADR). Comparing the effects of doxorubicin and coumarin as single drugs versus a combination of coumarin and doxorubicin showed a significant apoptotic cell death. Conclusion In AML patients, the development of multiple drug resistance (MDR) is the biggest challenge in treating AML patients. Combination therapy with coumarin may be a good choice to overcome the drug resistance in AML patients.
Collapse
Affiliation(s)
- Nouf S Al-Abbas
- Biology Department, Jumum College University, Umm Alqura University, Saudi Arabia
| | - Nehad A Shaer
- Chemistry Department, Umm Al-Qura University, Saudi Arabia
| |
Collapse
|
13
|
Gerard L, Duvivier L, Gillet JP. Targeting tumor resistance mechanisms. Fac Rev 2021; 10:6. [PMID: 33659924 PMCID: PMC7894262 DOI: 10.12703/r/10-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer develops resistance to treatments through many mechanisms. Single-cell analyses reveal the intratumor heterogeneity and dynamic relationships between cancer cell subpopulations. These analyses also highlight that various mechanisms of resistance may coexist in a given tumor. Studies have unraveled how the microenvironment affects tumor response to treatments and how cancer cells may adapt to these treatments. Though challenging, individualized treatment based on the molecular characterization of the tumor should become the new standard of care. In the meantime, the success rate of clinical trials in oncology remains dramatically low. There is a need to do better and improve the predictability of preclinical models. This requires innovative changes in ex vivo models and the culture system currently being used. An innovative ligand design is also urgently needed. The limited arsenal of medicinal chemistry reactions and the biases of scaffold selection favor structurally similar compounds with linear shapes at the expense of disc and spherical shapes, which leave a large chemical shape space untouched. In this regard, venoms have received increasing interest as a wellspring for drug candidates. Overall, the characterization of tumor heterogeneity has contributed to advancing our understanding of the mechanisms that underlie cancer resistance to treatments. Targeting these mechanisms will require setting key milestones to significantly improve the translatability of preclinical studies to the clinic with the hope of increasing the success rate of clinical trials.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium
| | - Laurent Duvivier
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium
| |
Collapse
|
14
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein. Molecules 2020; 25:molecules25020247. [PMID: 31936160 PMCID: PMC7024235 DOI: 10.3390/molecules25020247] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/26/2023] Open
Abstract
: Multidrug resistance (MDR) is a complicated ever-changing problem in cancer treatment, and P-glycoprotein (P-gp), a drug efflux pump, is regarded as the major cause. In the way of developing P-gp inhibitors, natural products such as phenolic acids have gotten a lot of attention recently. The aim of the present study was to investigate the modulating effects and mechanisms of caffeic acid on human P-gp, as well as the attenuating ability on cancer MDR. Calcein-AM, rhodamine123, and doxorubicin were used to analyze the interaction between caffeic acid and P-gp, and the ATPase activity of P-gp was evaluated as well. Resistance reversing effects were revealed by SRB and cell cycle assay. The results indicated that caffeic acid uncompetitively inhibited rhodamine123 efflux and competitively inhibited doxorubicin efflux. In terms of P-gp ATPase activity, caffeic acid exhibited stimulation in both basal and verapamil-stimulated activity. The combination of chemo drugs and caffeic acid resulted in decreased IC50 in ABCB1/Flp-InTM-293 and KB/VIN, indicating that the resistance was reversed. Results of molecular docking suggested that caffeic acid bound to P-gp through GLU74 and TRY117 residues. The present study demonstrated that caffeic acid is a promising candidate for P-gp inhibition and cancer MDR attenuation.
Collapse
|
16
|
Allam RM, El-Halawany AM, Al-Abd AM. Chemo-sensitizing agents from natural origin for colorectal cancer: Pharmacodynamic and cellular pharmacokinetics approaches. DRUG RESISTANCE IN COLORECTAL CANCER: MOLECULAR MECHANISMS AND THERAPEUTIC STRATEGIES 2020:93-116. [DOI: 10.1016/b978-0-12-819937-4.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Muthusamy G, Gunaseelan S, Prasad NR. Ferulic acid reverses P-glycoprotein-mediated multidrug resistance via inhibition of PI3K/Akt/NF-κB signaling pathway. J Nutr Biochem 2018; 63:62-71. [PMID: 30342318 DOI: 10.1016/j.jnutbio.2018.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023]
Abstract
In this study, the modulatory effect of ferulic acid on P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) was examined in KB ChR8-5 resistant cells and drug-resistant tumor xenografts. We observed that ferulic acid enhanced the cytotoxicity of doxorubicin and vincristine in the P-gp overexpressing KB ChR8-5 cells. Further, ferulic acid enhances the doxorubicin induced γH2AX foci formation and synergistically augmented doxorubicin-induced apoptotic signaling in the drug-resistant cells. It has also been noticed that NF-κB nuclear translocation was suppressed by ferulic acid and that this response might be associated with the modulation of phosphatidyinositol 3-kinase (PI3K)/Akt/signaling pathway. We also found that ferulic acid and doxorubicin combination reduced the size of KB ChR8-5 tumor xenograft by threefold as compared to doxorubicin-alone treated group. Thus, ferulic acid contributes to the reversal of the MDR through suppression of P-gp expression via the inhibition of PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ganesan Muthusamy
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | - Srithar Gunaseelan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | - Nagarajan Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India.
| |
Collapse
|
18
|
Abstract
Transporters play important roles in absorption, distribution, metabolism, and elimination (ADME) processes, as well as drug pharmacokinetics (PK) and pharmacodynamics (PD). They are also important in maintaining the homeostasis of endogenous compounds and nutrients in the body. Increasing evidences also suggest that they are important in mediating drug-drug interactions (DDIs). While the significance of transporters in drug pharmacodynamics and DDIs are beyond the scope of this overview, the basic concepts of transporters, their contributions in membrane permeation processes, and their roles in influencing drug ADME pathway and PK will be discussed. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yan Zhang
- Drug Metabolism Pharmacokinetics & Clinical Pharmacology, Incyte Corporation, Wilmington, Delaware
| |
Collapse
|
19
|
Miyake MM, Nocera A, Miyake MM. P-glycoprotein and chronic rhinosinusitis. World J Otorhinolaryngol Head Neck Surg 2018; 4:169-174. [PMID: 30506047 PMCID: PMC6251952 DOI: 10.1016/j.wjorl.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous definition that includes different disease states that usually are associated with abnormal inflammatory responses. Besides being prevalent, the mechanisms involved in its pathogenesis are not clear and there are few therapeutic options with tolerable side effects. P-glycoprotein (P-gp) is an efflux pump responsible of extruding xenobiotics and cellular metabolites from multiple cell types. It has been widely studied in the cancer field, due to its ability to confer resistance to chemotherapy. It also promotes Type 2 helper T-cell polarizing cytokine secretion in CRS and may represent a potential target to differentiate subtypes of CRS and personalize treatment. This state-of-the-art review explores current knowledge on the participation of P-gp in the pathogenesis of CRS, the P-gp inhibition as a novel targeted therapeutic strategy and the exosomal P-gp test, a non-invasive biomarker that can represent an important advance in the field of rhinology.
Collapse
Affiliation(s)
- Marcel M Miyake
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, RuaDoutorCesário Motta Júnior, 61 - Vila Buarque, São Paulo, SP, 01221-020, Brazil
| | - Angela Nocera
- Department of Otolaryngology, Division of Rhinology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA
| | - Michelle M Miyake
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, RuaDoutorCesário Motta Júnior, 61 - Vila Buarque, São Paulo, SP, 01221-020, Brazil
| |
Collapse
|
20
|
Ronchi E, Sanfilippo O, Di Fronzo G, Bani MR, Della Torre G, Catania S, Silvestrini R. Detection of the 170 kDa P-Glycoprotein in Neoplastic and Normal Tissues. TUMORI JOURNAL 2018; 75:542-6. [PMID: 2575816 DOI: 10.1177/030089168907500605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A membrane purification procedure and an immunoblotting assay have been designed to allow screening of human solid tumors for overexpression of the GP170 glycoprotein without employing a disaggregation method to obtain cell suspensions. The electrophoresed membrane proteins were probed, after Western Blotting, with the C219 monoclonal antibody and iodinated Protein A. The labeling intensity of the bands on the autoradioimmunoblots were quantified by densitometry. To test for the presence of GP170, we used membranes from the UV 2237 fibrosarcoma line and its adriamycin-resistant variant ADMR, grown in vitro or as solid tumor in mice. Membranes of human normal and tumor tissues obtained from previously untreated patients were also tested. An immunoreaction was observed in the adriamycin-resistant UV 2237 lines grown in vitro or in vivo. Quantitatively, the binding of the resistant cell line grown in vitro was higher than that observed in cells grown in mice. Bands in the GP 170 region were observed in 4/7 normal and in 7/7 tumor colon tissues and in the normal medulla from 2 patients with cancer of the renal cortex. No reaction could be found in samples from normal tissue, primary tumor or nodal metastasis from 7 patients with breast cancer.
Collapse
Affiliation(s)
- E Ronchi
- Division of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Donskow-Łysoniewska K, Krawczak K, Kozłowska E, Doligalska M. The intestinal nematode inhibits T-cell reactivity by targeting P-GP activity. Parasite Immunol 2018; 39. [PMID: 29063624 DOI: 10.1111/pim.12497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Host immunosuppression occurs during chronic nematode infection, partly due to effector T-cell hyporesponsiveness. The role of P-glycoprotein (P-gp), a member of the ABC transporter family, has been assessed in T-cell activity. This study assesses the possible role of P-gp in T-cell activity during nematode infection. Our findings indicate that blockade of P-gp in vivo increased protection against Heligmosomoides polygyrus nematode infection and was associated with the enhanced T-cell activity. Three P-gp-inhibitors, verapamil (VRP), cyclosporine (CsA) and tariquidar (XR9576), were used to determine the influence of nematode infection on the P-gp function of T cells. The influence of the nematode on the uptake, efflux and kinetics of extrusion in T-cell subsets CD4+ and CD8+ was assessed by the accumulation of Rho123 dye. The results indicate that H. polygyrus infection contributes to the inhibition of T-cell function by elevating P-gp activity. The blockade of P-gp in the T cells of infected mice led to an impressive increase in T-cell proliferation and IL-4 cytokine release through the upregulation of NF-κB activation. These results provide the first evidence that the P-gp function of T cells is altered during nematode infection to open the way for further studies aiming to explore the role of P-gp in host-parasite interactions.
Collapse
Affiliation(s)
- K Donskow-Łysoniewska
- Faculty of Biology, Department of Parasitology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| | - K Krawczak
- Faculty of Biology, Department of Parasitology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| | - E Kozłowska
- Faculty of Biology, Department of Immunology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| | - M Doligalska
- Faculty of Biology, Department of Parasitology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Cell Migration Related to MDR-Another Impediment to Effective Chemotherapy? Molecules 2018; 23:molecules23020331. [PMID: 29401721 PMCID: PMC6017720 DOI: 10.3390/molecules23020331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance, mediated by members of the ATP-binding cassette (ABC) proteins superfamily, has become one of the biggest obstacles in conquering tumour progression. If the chemotherapy outcome is considered successful, when the primary tumour volume is decreased or completely abolished, modulation of ABC proteins activity is one of the best methods to overcome drug resistance. However, if a positive outcome is represented by no metastasis or, at least, elongation of remission-free time, then the positive effect of ABC proteins inhibition should be compared with the several side effects it causes, which may inflict cancer progression and decrease overall patient health. Clinical trials conducted thus far have shown that the tested ABC modulators add limited or no benefits to cancer patients, as some of them are merely toxic and others induce unwanted drug–drug interactions. Moreover, the inhibition of certain ABC members has been recently indicated as potentially responsible for increased fibroblasts migration. A better understanding of the complex role of ABC proteins in relation to cancer progression may offer novel strategies in cancer therapy.
Collapse
|
23
|
Zhitomirsky B, Farber H, Assaraf YG. LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: implications for anticancer drug design evading multidrug resistance. J Cell Mol Med 2018; 22:2131-2141. [PMID: 29377455 PMCID: PMC5867146 DOI: 10.1111/jcmm.13485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 01/17/2023] Open
Abstract
LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP‐driven efflux transporter P‐glycoprotein (P‐gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above‐mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P‐gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P‐gp‐overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P‐gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P‐gp transport substrates, and therefore, P‐gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P‐gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P‐gp‐overexpressing cells may facilitate the identification of potent P‐gp transport inhibitors (i.e. chemosensitizers).
Collapse
Affiliation(s)
- Benny Zhitomirsky
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hodaya Farber
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
24
|
Dewanjee S, Dua TK, Bhattacharjee N, Das A, Gangopadhyay M, Khanra R, Joardar S, Riaz M, Feo VD, Zia-Ul-Haq M. Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules 2017; 22:molecules22060871. [PMID: 28587082 PMCID: PMC6152721 DOI: 10.3390/molecules22060871] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistance (MDR) is regarded as one of the bottlenecks of successful clinical treatment for numerous chemotherapeutic agents. Multiple key regulators are alleged to be responsible for MDR and making the treatment regimens ineffective. In this review, we discuss MDR in relation to P-glycoprotein (P-gp) and its down-regulation by natural bioactive molecules. P-gp, a unique ATP-dependent membrane transport protein, is one of those key regulators which are present in the lining of the colon, endothelial cells of the blood brain barrier (BBB), bile duct, adrenal gland, kidney tubules, small intestine, pancreatic ducts and in many other tissues like heart, lungs, spleen, skeletal muscles, etc. Due to its diverse tissue distribution, P-gp is a novel protective barrier to stop the intake of xenobiotics into the human body. Over-expression of P-gp leads to decreased intracellular accretion of many chemotherapeutic agents thus assisting in the development of MDR. Eventually, the effectiveness of these drugs is decreased. P-gp inhibitors act by altering intracellular ATP levels which are the source of energy and/or by affecting membrane contours to increase permeability. However, the use of synthetic inhibitors is known to cause serious toxicities. For this reason, the search for more potent and less toxic P-gp inhibitors of natural origin is underway. The present review aims to recapitulate the research findings on bioactive constituents of natural origin with P-gp inhibition characteristics. Natural bioactive constituents with P-gp modulating effects offer great potential for semi-synthetic modification to produce new scaffolds which could serve as valuable investigative tools to recognize the function of complex ABC transporters apart from evading the systemic toxicities shown by synthetic counterparts. Despite the many published scientific findings encompassing P-gp inhibitors, however, this article stand alones because it provides a vivid picture to the readers pertaining to Pgp inhibitors obtained from natural sources coupled with their mode of action and structures. It provides first-hand information to the scientists working in the field of drug discovery to further synthesise and discover new P-gp inhibitors with less toxicity and more efficacies.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Anup Das
- Department of Pharmaceutical Technology, ADAMAS University, Barasat, Kolkata 700126, India.
| | | | - Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Swarnalata Joardar
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan.
| | - Vincenzo De Feo
- Department of Pharmacy, Salerno University, Fisciano 84084, Salerno, Italy.
| | - Muhammad Zia-Ul-Haq
- Environment Science Department, Lahore College for Women University, Jail Road, Lahore 54600, Pakistan.
| |
Collapse
|
25
|
Abdullahi W, Davis TP, Ronaldson PT. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? AAPS JOURNAL 2017; 19:931-939. [PMID: 28447295 DOI: 10.1208/s12248-017-0081-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022]
Abstract
Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA.
| |
Collapse
|
26
|
El-Awady R, Saleh E, Hashim A, Soliman N, Dallah A, Elrasheed A, Elakraa G. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front Pharmacol 2017; 7:535. [PMID: 28119610 PMCID: PMC5223437 DOI: 10.3389/fphar.2016.00535] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ekram Saleh
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; National Cancer Institute - Cancer Biology Department, Cairo UniversityCairo, Egypt
| | - Amna Hashim
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Nehal Soliman
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Alaa Dallah
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Azza Elrasheed
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ghada Elakraa
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
27
|
Rosa Fernandes L, Stern ACB, Cavaglieri RDC, Nogueira FCS, Domont G, Palmisano G, Bydlowski SP. 7-Ketocholesterol overcomes drug resistance in chronic myeloid leukemia cell lines beyond MDR1 mechanism. J Proteomics 2016; 151:12-23. [PMID: 27343758 DOI: 10.1016/j.jprot.2016.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease with a characteristic BCR-ABL tyrosine kinase (TK) fusion protein. Despite the clinical efficacy accomplished by TKIs therapies, disease progression may affect patient response rate to these inhibitors due to a multitude of factors that could lead to development of a mechanism known as multidrug resistance (MDR). 7-Ketocholesterol (7KC) is an oxidized cholesterol derivative that has been extensively reported to cause cell death in a variety of cancer models. In this study, we showed the in vitro efficacy of 7KC against MDR leukemia cell line, Lucena. 7KC treatment induced reduction in cell viability, together with apoptosis-mediated cell death. Moreover, downregulation of MDR protein caused intracellular drug accumulation and 7KC co-incubation with either Daunorubicin or Vincristine reduced cell viability compared to the use of each drug alone. Additionally, quantitative label-free mass spectrometry-based protein quantification showed alteration of different molecular pathways involved in cell cycle arrest, induction of apoptosis and misfolded protein response. Conclusively, this study highlights the effect of 7KC as a sensitizing agent of multidrug resistance CML and elucidates its molecular mechanisms. SIGNIFICANCE CML patients treated with tyrosine kinase inhibitors (TKIs) have showed a 5-year estimated overall survival of 89%, with cumulative complete cytogenetic response of 87%. However, development of drug resistance is a common feature of the disease progression. This study aimed at showing the effect of 7KC as a cytotoxic and sensitizing agent of multidrug resistance CML cell lines. The cellular and molecular basis of this compound were elucidated using a comprehensive strategy based on quantitative proteomic and cell biology assays. We showed that 7KC induced cell death and overcomes drug resistance in CML through mechanisms that go beyond the classical MDR1 pathways.
Collapse
Affiliation(s)
- Lívia Rosa Fernandes
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Ana Carolina Bassi Stern
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Rita de Cássia Cavaglieri
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | | | - Gilberto Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of Sao Paulo, Brazil.
| | - Sérgio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil.
| |
Collapse
|
28
|
Kuwano M, Sonoda K, Murakami Y, Watari K, Ono M. Overcoming drug resistance to receptor tyrosine kinase inhibitors: Learning from lung cancer. Pharmacol Ther 2016; 161:97-110. [PMID: 27000770 DOI: 10.1016/j.pharmthera.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There are various receptor tyrosine kinase (TK)-targeted drugs that are currently used in the treatment of patients with non-small cell lung cancer (NSCLC). Among them, the epidermal growth factor receptor (EGFR) TK inhibitors (TKIs) are the most extensively studied. Receptor TKIs including EGFR TKIs have shown dramatic therapeutic efficacies in malignant tumors, which harbor activating mutations in the EGFR gene. However, within 1 or 2years after treatment, patients harboring these mutations often develop resistance to TKI therapy. This review article is aimed at drawing attention to the fact that we must first understand how receptor TKI resistance is acquired to develop strategies for overcoming resistance to TKIs. Furthermore, an insight into the specific molecules or signaling pathways that mediate resistance is a key factor for understanding and overcoming acquired drug resistance. Finally, we present our views on the continuing battle against "drug resistance," and provide further guidelines and strategies on how to minimize the development of drug-resistant tumors.
Collapse
Affiliation(s)
- Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, St. Mary's Hospital, Kurume 830-8543, Japan; Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Kahori Sonoda
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Murakami
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, St. Mary's Hospital, Kurume 830-8543, Japan; Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Yu J, Zhou P, Asenso J, Yang XD, Wang C, Wei W. Advances in plant-based inhibitors of P-glycoprotein. J Enzyme Inhib Med Chem 2016; 31:867-81. [PMID: 26932198 DOI: 10.3109/14756366.2016.1149476] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance (MDR) has emerged as the main problem in anti-cancer therapy. Although MDR involves complex factors and processes, the main pivot is the expression of multidrug efflux pumps. P-glycoprotein (P-gp) belongs to the family of adenosine triphosphate (ATP)-binding cassette (ABC) transporters. It functions in cellular detoxification, pumping a wide range of xenobiotic compounds out of the cell. An attractive therapeutic strategy for overcoming MDR is to inhibit the transport function of P-gp and thus, increase intracellular concentration of drugs. Recently, various types of P-gp inhibitors have been found and used in experiments. However, none of them has passed clinical trials due to their high side-effects. Hence, the search for alternatives, such as plant-based P-gp inhibitors have gained attention recently. Therefore, we give an overview of the source, function, structure and mechanism of plant-based P-gp inhibitors and give more attention to cancer-related studies. These products could be the future potential drug candidates for further research as P-gp inhibitors.
Collapse
Affiliation(s)
- Jun Yu
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - Peng Zhou
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - James Asenso
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - Xiao-Dan Yang
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - Chun Wang
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - Wei Wei
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| |
Collapse
|
30
|
Hussain SA, Sulaiman AA, Alhaddad H, Alhadidi Q. Natural polyphenols: Influence on membrane transporters. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:97-104. [PMID: 27069731 PMCID: PMC4805155 DOI: 10.5455/jice.20160118062127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/02/2023]
Abstract
Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology.
Collapse
Affiliation(s)
- Saad Abdulrahman Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Amal Ajaweed Sulaiman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Hasan Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| |
Collapse
|
31
|
Gottesman MM, Lavi O, Hall MD, Gillet JP. Toward a Better Understanding of the Complexity of Cancer Drug Resistance. Annu Rev Pharmacol Toxicol 2015; 56:85-102. [PMID: 26514196 DOI: 10.1146/annurev-pharmtox-010715-103111] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resistance to anticancer drugs is a complex process that results from alterations in drug targets; development of alternative pathways for growth activation; changes in cellular pharmacology, including increased drug efflux; regulatory changes that alter differentiation pathways or pathways for response to environmental adversity; and/or changes in the local physiology of the cancer, such as blood supply, tissue hydrodynamics, behavior of neighboring cells, and immune system response. All of these specific mechanisms are facilitated by the intrinsic hallmarks of cancer, such as tumor cell heterogeneity, redundancy of growth-promoting pathways, increased mutation rate and/or epigenetic alterations, and the dynamic variation of tumor behavior in time and space. Understanding the relative contribution of each of these factors is further complicated by the lack of adequate in vitro models that mimic clinical cancers. Several strategies to use current knowledge of drug resistance to improve treatment of cancer are suggested.
Collapse
Affiliation(s)
- Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Orit Lavi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Matthew D Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, B-5000 Namur, Belgium;
| |
Collapse
|
32
|
Al-Abd AM, Aljehani ZK, Gazzaz RW, Fakhri SH, Jabbad AH, Alahdal AM, Torchilin VP. Pharmacokinetic strategies to improve drug penetration and entrapment within solid tumors. J Control Release 2015; 219:269-277. [PMID: 26342660 DOI: 10.1016/j.jconrel.2015.08.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/28/2015] [Indexed: 02/08/2023]
Abstract
Despite the discovery of a large number of anticancer agents, cancer still remains among the leading causes of death since the middle of the twentieth century. Solid tumors possess a high degree of genetic instability and emergence of treatment resistance. Tumor resistance has emerged for almost all approved anticancer drugs and will most probably emerge for newly discovered anticancer agents as well. The use of pharmacokinetic approaches to increase anticancer drug concentrations within the solid tumor compartment and prolong its entrapment might diminish the possibility of resistance emergence at the molecular pharmacodynamic level and might even reverse tumor resistance. Several novel treatment modalities such as metronomic therapy, angiogenesis inhibitors, vascular disrupting agents and tumor priming have been introduced to improve solid tumor treatment outcomes. In the current review we will discuss the pharmacokinetic aspect of these treatment modalities in addition to other older treatment modalities, such as extracellular matrix dissolving agents, extracellular matrix synthesis inhibitors, chemoembolization and cellular efflux pump inhibition. Many of these strategies showed variable degrees of success/failure; however, reallocating these modalities based on their influence on the intratumoral pharmacokinetics might improve their understanding and treatment outcomes.
Collapse
Affiliation(s)
- Ahmed M Al-Abd
- Department of Pharmacology, Medical Division, National Research Centre, Dokki, Giza, Egypt; Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA; Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zekra K Aljehani
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana W Gazzaz
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah H Fakhri
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha H Jabbad
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
33
|
Donnenberg VS, Donnenberg AD. Stem cell state and the epithelial-to-mesenchymal transition: Implications for cancer therapy. J Clin Pharmacol 2015; 55:603-19. [PMID: 25708160 DOI: 10.1002/jcph.486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/19/2015] [Indexed: 01/09/2023]
Abstract
The cancer stem cell paradigm, the epithelial-to-mesenchymal transition and its converse, the mesenchymal-to-epithelial transition, have reached convergence. Implicit in this understanding is the notion that cancer cells can change state, and with such change come bidirectional alterations in motility, proliferative activity, and drug resistance. As such, tumors present a moving target for antineoplastic therapy. This article will review the evolving adult stem cell paradigm and how changes in our understanding of the bidirectional nature of cancer cell differentiation may affect the selection and timing of antineoplastic therapy. The goal is to determine how to best administer therapies potentially targeted against the cancer stem cell state in the context of established treatment regimens, and to evaluate long-term effects beyond tumor regression.
Collapse
Affiliation(s)
- Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
34
|
Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320941. [PMID: 25866775 PMCID: PMC4383356 DOI: 10.1155/2015/320941] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
Abstract
Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Rajni Khan
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
35
|
Sedláková I, Laco J, Caltová K, Červinka M, Tošner J, Řezáč A, Špaček J. Clinical significance of the resistance proteins LRP, Pgp, MRP1, MRP3, and MRP5 in epithelial ovarian cancer. Int J Gynecol Cancer 2015; 25:236-43. [PMID: 25594141 DOI: 10.1097/igc.0000000000000354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the correlation between the expressions of lung resistance protein (LRP), P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP)-1, MRP3, and MRP5 and histopathological parameters and clinical outcome, and to determine the predictive and prognostic value of these transport proteins in patients with ovarian cancer. METHODS Tumor samples from 111 chemonaive patients with epithelial ovarian cancer who underwent primary surgery from 2006 to 2010 were immunohistochemically stained for LRP, Pgp, MRP1, MRP3, and MRP5 expressions. RESULTS MRP1 expression was greater among patients with late disease than among patients with early stage ovarian cancer [International Federation of Gynecology and Obstetrics (FIGO) I + II, 71.6% (confidence interval, 60-100); FIGO III + IV, 83.6% (confidence interval, 100-100); P = 0.03]. The histological subtype correlated with the expressions of LRP, Pgp, MRP1, and MRP3. Relapse of disease during the next 24 months occurred more often among patients with higher Pgp and MRP1 than among patients with lower Pgp and MRP1 expressions. FIGO stage, histological type, debulking efficiency, strong Pgp expression, and strong MRP1 expression correlated significantly with shorter progression-free survival (log-rank test, P = 0.001, P = 0.004, P = 0.001, P = 0.051, and P = 0.046, respectively). FIGO stage, histological type, debulking efficiency, and strong MRP1 expression correlated with poor patient survival (log-rank test, P = 0.001, P = 0.042, P = 0.005, and P = 0.018, respectively). CONCLUSIONS Pgp and MRP1 expressions were clinically significant in patients with ovarian cancer. Pgp and MRP1 may be reliable, independent predictive and prognostic factors regarding the clinical outcome of ovarian cancer. MRP3 is less important as a predictive and prognostic factor than MRP1 expression. MRP5 and LRP expressions were not applicable prognostic parameters regarding ovarian cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Drug Resistance, Neoplasm
- Female
- Humans
- Middle Aged
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/mortality
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Prognosis
- Survival Analysis
- Vault Ribonucleoprotein Particles/metabolism
Collapse
Affiliation(s)
- Iva Sedláková
- *Department of Gynecology and Obstetrics, University Hospital Hradec Králové and Medical Faculty; †Fingerland Department of Pathology, University Hospital Hradec Králové; and ‡Department of Medical Biology and Genetics, Medical Faculty Hradec Králové, Hradec Králové, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
36
|
Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J Adv Res 2014; 6:45-62. [PMID: 25685543 PMCID: PMC4293676 DOI: 10.1016/j.jare.2014.11.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 01/10/2023] Open
Abstract
Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. P-glycoprotein (P-gp) is a member of the ATP-dependent membrane transport proteins; it is known to pump substrates out of cells in ATP-dependent mechanism. The over-expression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the cytotoxicity of a broad spectrum of antitumor drugs. Accordingly, P-gp inhibitors/blockers are potential enhancer for the cellular bioavailability of several clinically important anticancer drugs such as, anthracyclines, taxanes, vinca alkaloids, and podophyllotoxins. Besides several chemically synthesized P-gp inhibitors/blockers, some naturally occurring compounds and plant extracts were reported for their modulation of multidrug resistance; however, this review will focus only on major classes of naturally occurring inhibitors viz., flavonoids, coumarins, terpenoids, alkaloids and saponins.
Collapse
Affiliation(s)
- Hossam M Abdallah
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia ; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed M Al-Abd
- Pharmacology Department, Medical Division, National Research Center, Giza, Egypt ; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riham Salah El-Dine
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ali M El-Halawany
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia ; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
37
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
38
|
P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:25-44. [PMID: 25307213 DOI: 10.1016/bs.apha.2014.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription.
Collapse
|
39
|
Khurana V, Kwatra D, Pal D, Mitra AK. Molecular expression and functional activity of vitamin C specific transport system (SVCT2) in human breast cancer cells. Int J Pharm 2014; 474:14-24. [PMID: 25102111 DOI: 10.1016/j.ijpharm.2014.07.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/01/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022]
Abstract
The main goal of this study is to investigate the expression of sodium dependent vitamin C transport system (SVCT2). Moreover, this investigation has been carried out to define uptake mechanism and intracellular regulation of ascorbic acid (AA) in human breast cancer cells (MDA-MB231, T47D and ZR-75-1). Uptake of [(14)C] AA was studied in MDA-MB231, T47D and ZR-75-1 cells. Functional parameters of [(14)C] AA uptake were delineated in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was carried out with reverse transcription-polymerase chain reaction (RT-PCR). Uptake of [(14)C] AA was studied and found to be sodium, chloride, temperature, pH and energy dependent in all breast cancer cell lines. [(14)C] AA uptake was found to be saturable, with Km values of 53.85 ± 6.24, 49.69 ± 2.83 and 45.44 ± 3.16 μM and Vmax values of 18.45 ± 0.50, 32.50 ± 0.43 and 33.25 ± 0.53 pmol/min/mg protein, across MDA-MB231, T47D and ZR-75-1, respectively. The process is inhibited by structural analogs (l-AA and d-iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca(++)/calmodulin and protein kinase pathways appeared to play a crucial role in modulating AA uptake. A 626 bp band corresponding to a vitamin C transporter (SVCT2) based on the primer design was detected by RT-PCR analysis in all breast cancer cell lines. This research article describes AA uptake mechanism, kinetics, and regulation by sodium dependent vitamin C transporter (SVCT2) in MDA-MB231, T47D and ZR-75-1 cells. Also, MDA-MB231, T47D and ZR-75-1 cell lines can be utilized as a valuable in vitro model to investigate absorption and permeability of AA-conjugated chemotherapeutics.
Collapse
Affiliation(s)
- Varun Khurana
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA; INSYS Therapeutics Inc., 444 South Ellis Road, Chandler, AZ 85224, USA
| | - Deep Kwatra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA.
| |
Collapse
|
40
|
Shing JC, Choi JW, Chapman R, Schroeder MA, Sarkaria JN, Fauq A, Bram RJ. A novel synthetic 1,3-phenyl bis-thiourea compound targets microtubule polymerization to cause cancer cell death. Cancer Biol Ther 2014; 15:895-905. [PMID: 24755487 DOI: 10.4161/cbt.28881] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microtubules are essential cytoskeletal components with a central role in mitosis and have been particularly useful as a cancer chemotherapy target. We synthesized a small molecule derivative of a symmetrical 1,3-phenyl bis-thiourea, (1,1'-[1,3-phenylene]bis[3-(3,5-dimethylphenyl)thiourea], named "41J"), and identified a potent effect of the compound on cancer cell survival. 41J is cytotoxic to multiple cancer cell lines at nanomolar concentrations. Cell death occurred by apoptosis and was preceded by mitotic arrest in prometaphase. Prometaphase arrest induced by 41J treatment was accompanied by dissociation of cyclin B1 levels from the apparent mitotic stage and by major spindle abnormalities. Polymerization of purified tubulin in vitro was directly inhibited by 41J, suggesting that the compound works by directly interfering with microtubule function. Compound 41J arrested the growth of glioblastoma multiforme xenografts in nude mice at doses that were well-tolerated, demonstrating a relatively specific antitumor effect. Importantly, 41J overcame drug resistance due to β-tubulin mutation and P-glycoprotein overexpression. Compound 41J may serve as a useful new lead compound for anticancer therapy development.
Collapse
Affiliation(s)
- Jennifer C Shing
- Department of Molecular Pharmacology and Experimental Therapeutics; Mayo Clinic College of Medicine; Rochester, MN USA
| | - Jae Won Choi
- Department of Pharmacology; Case Western Reserve University School of Medicine; Cleveland, OH USA
| | - Robert Chapman
- Department of Chemistry; University of Georgia; Athens, GA USA
| | - Mark A Schroeder
- Department of Radiation Oncology; Mayo Clinic College of Medicine; Rochester, MN USA
| | - Jann N Sarkaria
- Department of Radiation Oncology; Mayo Clinic College of Medicine; Rochester, MN USA
| | - Abdul Fauq
- Department of Chemistry; University of North Florida; Jacksonville, FL USA
| | - Richard J Bram
- Department of Pediatric and Adolescent Medicine; Mayo Clinic College of Medicine; Rochester, MN USA; Department of Immunology; Mayo Clinic College of Medicine; Rochester, MN USA
| |
Collapse
|
41
|
Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. Multidrug resistance: Physiological principles and nanomedical solutions. Adv Drug Deliv Rev 2013; 65:1852-1865. [PMID: 24120954 DOI: 10.1016/j.addr.2013.09.018] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 01/08/2023]
Abstract
Multidrug resistance (MDR) is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies.
Collapse
Affiliation(s)
- Sijumon Kunjachan
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Gert Storm
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
42
|
Kuczynski EA, Sargent DJ, Grothey A, Kerbel RS. Drug rechallenge and treatment beyond progression--implications for drug resistance. Nat Rev Clin Oncol 2013; 10:571-87. [PMID: 23999218 PMCID: PMC4540602 DOI: 10.1038/nrclinonc.2013.158] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The established dogma in oncology for managing recurrent or refractory disease dictates that therapy is changed at disease progression, because the cancer is assumed to have become drug-resistant. Drug resistance, whether pre-existing or acquired, is largely thought to be a stable and heritable process; thus, reuse of therapeutic agents that have failed is generally contraindicated. Over the past few decades, clinical evidence has suggested a role for unstable, non-heritable mechanisms of acquired drug resistance pertaining to chemotherapy and targeted agents. There are many examples of circumstances where patients respond to reintroduction of the same therapy (drug rechallenge) after a drug holiday following disease relapse or progression during therapy. Additional, albeit limited, evidence suggests that, in certain circumstances, continuing a therapy beyond disease progression can also have antitumour activity. In this Review, we describe the anticancer agents used in these treatment strategies and discuss the potential mechanisms explaining the apparent tumour re-sensitization with reintroduced or continued therapy. The extensive number of malignancies and drugs that challenge the custom of permanently switching to different drugs at each line of therapy warrants a more in-depth examination of the definitions of disease progression and drug resistance and the resulting implications for patient care.
Collapse
Affiliation(s)
- Elizabeth A Kuczynski
- Department of Medical Biophysics, University of Toronto, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | | | | | | |
Collapse
|
43
|
Ganapathi RN, Ganapathi MK. Mechanisms regulating resistance to inhibitors of topoisomerase II. Front Pharmacol 2013; 4:89. [PMID: 23914174 PMCID: PMC3729981 DOI: 10.3389/fphar.2013.00089] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/24/2013] [Indexed: 11/13/2022] Open
Abstract
Inhibitors of topoisomerase II (topo II) are clinically effective in the management of hematological malignancies and solid tumors. The efficacy of anti-tumor drugs targeting topo II is often limited by resistance and studies with in vitro cell culture models have provided several insights on potential mechanisms. Multidrug transporters that are involved in the efflux and consequently reduced cytotoxicity of diverse anti-tumor agents suggest that they play an important role in resistance to clinically active drugs. However, in clinical trials, modulating the multidrug-resistant phenotype with agents that inhibit the efflux pump has not had an impact. Since reduced drug accumulation per se is insufficient to explain tumor cell resistance to topo II inhibitors several studies have focused on characterizing mechanisms that impact on DNA damage mediated by drugs that target the enzyme. Mammalian topo IIα and topo IIβ isozymes exhibit similar catalytic, but different biologic, activities. Whereas topo IIα is associated with cell division, topo IIβ is involved in differentiation. In addition to site specific mutations that can affect drug-induced topo II-mediated DNA damage, post-translation modification of topo II primarily by phosphorylation can potentially affect enzyme-mediated DNA damage and the downstream cytotoxic response of drugs targeting topo II. Signaling pathways that can affect phosphorylation and changes in intracellular calcium levels/calcium dependent signaling that can regulate site-specific phosphorylation of topoisomerase have an impact on downstream cytotoxic effects of topo II inhibitors. Overall, tumor cell resistance to inhibitors of topo II is a complex process that is orchestrated not only by cellular pharmacokinetics but more importantly by enzymatic alterations that govern the intrinsic drug sensitivity.
Collapse
Affiliation(s)
- Ram N Ganapathi
- Levine Cancer Institute, Carolinas HealthCare System Charlotte, NC, USA
| | | |
Collapse
|
44
|
Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Biotin uptake by T47D breast cancer cells: Functional and molecular evidence of sodium-dependent multivitamin transporter (SMVT). Int J Pharm 2013; 441:535-43. [DOI: 10.1016/j.ijpharm.2012.10.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/25/2012] [Accepted: 10/31/2012] [Indexed: 11/27/2022]
|
45
|
Lloberas M, Alvarez L, Entrocasso C, Virkel G, Ballent M, Mate L, Lanusse C, Lifschitz A. Comparative tissue pharmacokinetics and efficacy of moxidectin, abamectin and ivermectin in lambs infected with resistant nematodes: Impact of drug treatments on parasite P-glycoprotein expression. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 3:20-7. [PMID: 24533290 PMCID: PMC3862411 DOI: 10.1016/j.ijpddr.2012.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 12/03/2022]
Abstract
The high level of resistance to the macrocyclic lactones has encouraged the search for strategies to optimize their potential as antiparasitic agents. There is a need for pharmaco-parasitological studies addressing the kinetic-dynamic differences between various macrocyclic lactones under standardized in vivo conditions. The current work evaluated the relationship among systemic drug exposure, target tissue availabilities and the pattern of drug accumulation within resistant Haemonchus contortus for moxidectin, abamectin and ivermectin. Drug concentrations in plasma, target tissues and parasites were measured by high performance liquid chromatography. Additionally, the efficacy of the three molecules was evaluated in lambs infected with resistant nematodes by classical parasitological methods. Furthermore, the comparative determination of the level of expression of P-glycoprotein (P-gp2) in H. contortus recovered from lambs treated with each drug was performed by real time PCR. A longer persistence of moxidectin (P < 0.05) concentrations in plasma was observed. The concentrations of the three compounds in the mucosal tissue and digestive contents were significant higher than those measured in plasma. Drug concentrations were in a range between 452 ng/g (0.5 day post-treatment) and 32 ng/g (2 days post-treatment) in the gastrointestinal (GI) contents (abomasal and intestinal). Concentrations of the three compounds in H. contortus were in a similar range to those observed in the abomasal contents (positive correlation P = 0.0002). Lower moxidectin concentrations were recovered within adult H. contortus compared to abamectin and ivermectin at day 2 post-treatment. However, the efficacy against H. contortus was 20.1% (ivermectin), 39.7% (abamectin) and 89.6% (moxidectin). Only the ivermectin treatment induced an enhancement on the expression of P-gp2 in the recovered adult H. contortus, reaching higher values at 12 and 24 h post-administration compared to control (untreated) worms. This comparative pharmacological evaluation of three of the most used macrocyclic lactones compounds provides new insights into the action of these drugs.
Collapse
Affiliation(s)
- Mercedes Lloberas
- Laboratorio de Parasitología, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Balcarce, Balcarce 7620, Argentina
| | - Luis Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| | - Carlos Entrocasso
- Laboratorio de Parasitología, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Balcarce, Balcarce 7620, Argentina
| | - Guillermo Virkel
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| | - Mariana Ballent
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| | - Laura Mate
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| | - Adrian Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| |
Collapse
|
46
|
Choi RJ, Ngoc TM, Bae K, Cho HJ, Kim DD, Chun J, Khan S, Kim YS. Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression. Eur J Pharm Sci 2012; 48:272-81. [PMID: 23174748 DOI: 10.1016/j.ejps.2012.10.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/11/2012] [Accepted: 10/26/2012] [Indexed: 11/25/2022]
Abstract
There is a growing interest in natural products that potentially have anti-inflammatory properties and inhibit P-glycoprotein (P-gp) function. In this report, we assessed the effects of anthraquinone derivatives from rhubarb on LPS-induced RAW 264.7 macrophages to determine their anti-inflammatory potential. The derivatives were also tested in Caco-2 cell lines to evaluate the inhibition of the drug efflux function of P-gp. The transport abilities were examined and the cellular accumulation of rhodamine-123 (R-123) was also measured. Electorphoretic mobility shift assay (EMSA) was performed to check the activator protein-1 (AP-1) DNA binding affinity. Five anthraquinones were tested to determine their inhibitory activities on NO production and the protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the level of prostaglandin E(2) (PGE(2)) was determined in LPS-induced RAW264.7 macrophages. Emodin was found to be the most potent inhibitor, and it also reduced paw swelling in the mouse model of carrageenan-induced paw edema. In Caco-2 cells, emodin elevated the accumulation of R-123 and decreased the efflux ratio of R-123, which indicates the inhibition of P-gp function. The inhibition of COX-2 protein by emodin paralleled the decrease in P-gp expression. In addition, mitogen-activated protein kinase (MAPK) expression was decreased through the prevention of AP-1 DNA binding, which leads to downregulation in the expression of P-gp. Our data indicate that the decrease of P-gp expression is caused by the decreased expression of COX-2 through the MAPK/AP-1 pathway. Based on our results, we suggest that anti-inflammatory drugs with COX-2 inhibitory activity might be used to modulate P-gp function and expression.
Collapse
Affiliation(s)
- Ran Joo Choi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Thompson LH. Losing and finding myself in DNA repair. DNA Repair (Amst) 2012; 11:637-48. [PMID: 23012750 DOI: 10.1016/j.dnarep.2011.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA.
| |
Collapse
|
48
|
Xue X, Liang XJ. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. CHINESE JOURNAL OF CANCER 2012; 31:100-9. [PMID: 22237039 PMCID: PMC3777470 DOI: 10.5732/cjc.011.10326] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multidrug resistance (MDR), which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence, has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades. Several mechanisms of overcoming drug resistance have been postulated. Well known P-glycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure. Innovative theranostic (therapeutic and diagnostic) strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits. In this review, we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.
Collapse
Affiliation(s)
- Xue Xue
- National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | | |
Collapse
|
49
|
Derakhshandeh K, Hosseinalizadeh A, Nikmohammadi M. The effects of PLGA microparticles on intestinal absorption of p-glycoprotein substrate using the everted rat intestinal sac model. Arch Pharm Res 2011; 34:1989-97. [DOI: 10.1007/s12272-011-1120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/09/2011] [Accepted: 08/01/2011] [Indexed: 10/14/2022]
|
50
|
Wu CP, Hsieh CH, Wu YS. The Emergence of Drug Transporter-Mediated Multidrug Resistance to Cancer Chemotherapy. Mol Pharm 2011; 8:1996-2011. [DOI: 10.1021/mp200261n] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chung-Pu Wu
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| |
Collapse
|