1
|
Samih N, Hovsepian S, Notel F, Prorok M, Zattara-Cannoni H, Mathieu S, Lombardo D, Fayet G, El-Battari A. The impact of N- and O-glycosylation on the functions of Glut-1 transporter in human thyroid anaplastic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1621:92-101. [PMID: 12667615 DOI: 10.1016/s0304-4165(03)00050-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been previously shown that glucose transporter Glut-1 expression was detectable by immunostaining in tissue sections from anaplastic carcinoma, but not in normal thyroid tissue. Using human thyroid anaplastic carcinoma cells, we studied the mechanism by which Glut-1 molecules are translocated from the endoplasmic reticulum to the cell surface. The contribution of N- and O-linked glycans for the translocation and activity of Glut-1 transporter is emphasized. The inhibition of N-glycosylation with tunicamycin (TM) led to a 50% decrease in glucose transport while glycosylated and unglycosylated forms of Glut-1 were found at the cell surface. However, the inhibition of N-linked oligosaccharide processing with deoxymannojirimycin (dMJ) and swainsonine (SW) influenced neither the intracellular trafficking nor the activity of the transporter. On the other hand, Glut-1 bound to the O-linked glycan-specific lectin jacalin and the O-glycosylation inhibitor benzyl-N-acetylgalactosamine dramatically inhibited glucose transport. These results show that O- and N-linked oligosaccharides arbored by Glut-1 are essential for glucose transport in anaplastic carcinoma cells. The quantitative and qualitative alterations of Glut-1 glycosylation and the increase in glucose transport are associated with the anaplastic phenotype of human thyroid cells.
Collapse
Affiliation(s)
- Nezha Samih
- INSERM U-559, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Cedex 5, Marseilles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Samih N, Hovsepian S, Aouani A, Lombardo D, Fayet G. Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation. Endocrinology 2000; 141:4146-55. [PMID: 11089547 DOI: 10.1210/endo.141.11.7793] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It was previously demonstrated that insulin or TSH treatment of FRTL-5 cells resulted in an elevation of glucose transport and in an increase of cell surface expression of the glucose transporter Glut-1. However, the signaling mechanisms leading to the insulin or TSH-induced increase in the cell surface expression of Glut-1 were not investigated. In the present study, we demonstrated that wortmannin and LY294002, two specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), interfere both in the signaling pathways of insulin and TSH leading to glucose consumption enhancement and Glut-1 translocation. Two hours after insulin treatment, TSH or cAMP analog (Bu)2cAMP stimulation, glucose transport was increased and most of the intracellular Glut-1 pool was translocated to plasma membranes. Wortmannin or LY294002 blocked the insulin, (Bu)2cAMP, and the TSH-induced translocation of Glut-1. Wortmannin or LY294002 alone did not alter the basal ratio between intracellular and cell surface Glut-1 molecules. These results suggest that in FRTL-5 cells wortmannin and LY294002 inhibited the insulin, (Bu)2cAMP and TSH events leading to Glut-1 translocation from an intracellular compartment to the plasma membrane. Likewise, (Bu)2cAMP effects on glucose transport and Glut-1 translocation to plasma membrane were repressed by PI3-kinase inhibitors but not by the protein kinase A (PKA) inhibitor H89. We suggest that (Bu)2cAMP stimulates Glut-1 translocation to plasma membrane through PI3-kinase-dependent and PKA-independent signaling pathways. To further elucidate mechanisms that regulate the translocation of Glut-1 to cell membrane, we extended this study to the role played by the N-glycosylation in the translocation and in the biological activity of Glut-1 in FRTL-5 cells. For this purpose we used tunicamycin, an inhibitor of the N-glycosylation. Our experiments with tunicamycin clearly showed that both the glycosylated and unglycosylated forms of the transporter reached the cell surface. Likewise, a decrease in glucose consumption (-50%) after treatment of cells with tunicamycin was accompanied by a decrease (-70% vs. control) in the membrane expression of a 50-kDa form of Glut-1 and an increase in its unglycosylated 41-kDa form. These results suggest that carbohydrate moiety is essential for the biological activity of glucose transport but is not required for the translocation of Glut-1 from the intracellular membrane pool to the plasma membrane.
Collapse
Affiliation(s)
- N Samih
- INSERM Unité 260, Faculté de Médecine, Université de la Mediterranée, Marseille, France
| | | | | | | | | |
Collapse
|
3
|
McMahon RJ, Hwang JB, Frost SC. Glucose deprivation does not affect GLUT1 targeting in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2000; 273:859-64. [PMID: 10891337 DOI: 10.1006/bbrc.2000.2985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that glucose deprivation alters the glycosylation of the GLUT1 glucose transporter in 3T3-L1 adipocytes. Many aberrantly glycosylated proteins are retained in the endoplasmic reticulum by interaction with chaperones. Herein, we use three independent procedures to show that GLUT1 is targeted to the plasma membrane, despite alterations in glycosylation. While earlier experiments revealed that plasma membrane targeting of aglyco GLUT 1 transporter was significantly reduced, our data show for the first time that altered glycosylation provides sufficient information to drive appropriate trafficking.
Collapse
Affiliation(s)
- R J McMahon
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
4
|
Ahmed N, Berridge MV. N-glycosylation of glucose transporter-1 (Glut-1) is associated with increased transporter affinity for glucose in human leukemic cells. Leuk Res 1999; 23:395-401. [PMID: 10229326 DOI: 10.1016/s0145-2126(98)00179-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To elucidate the role of N-glycosylation in the functional activity of the universal glucose transporter, Glut-1, we investigated effects of the N-glycosylation inhibitor, tunicamycin, on glucose transport by human leukemic cell lines K562, U937 and HL60. Treatment with tunicamycin produced a 40-50% inhibition of 2-deoxyglucose uptake and this was associated with a 2-2.5-fold decrease in transporter affinity for glucose (Km) without a change in Vmax. Leukemic K562, U937 and HL60 cells expressed Glut-1 transporter protein. With K562 cells Glut-1 appeared as a broad band of 50-60 kDa, whereas with U937 and HL60 cells a diffuse band was observed at approximately 55 kDa. Treatment of K562 cells with tunicamycin for 18 h, resulted in extensive loss of the 50-60 kDa glycoprotein, appearance of a 30-40 kDa band and increased staining of a 45 kDa band. With U937 cells, tunicamycin treatment resulted in the appearance of a 30-40 kDa band and increased staining of a 45 kDa band. With HL60 cells loss of the 55 kDa Glut-1 band was observed and a band of 45 kDa appeared. Tunicamycin-treatment resulted in 75-90% inhibition in [3H]mannose incorporation but only 20-25% inhibition in [3H]thymidine and [3H]leucine incorporation. In contrast, tunicamycin had little effect on the viability and MTT responses of the cells used. These results suggest that in leukemic cells N-glycosylation of Glut-1 plays an important role in maintaining its structure and functional integration.
Collapse
Affiliation(s)
- N Ahmed
- Malaghan Institute of Medical Research, Wellington School of Medicine, Wellington South, New Zealand.
| | | |
Collapse
|
5
|
McMahon RJ, Frost SC. Nutrient control of GLUT1 processing and turnover in 3T3-L1 adipocytes. J Biol Chem 1995; 270:12094-9. [PMID: 7744857 DOI: 10.1074/jbc.270.20.12094] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Metabolic labeling and immunoprecipitation were used to analyze the glucose-dependent regulation of GLUT1 synthesis, processing, and turnover in a murine adipocyte cell line. Metabolically labeled GLUT1 from control cells migrated as a 46-kDa protein, while GLUT1 from cells deprived of glucose for more than 12 h migrated as a 37-kDa protein. On the basis of tunicamycin sensitivity, both GLUT1 species arose from a common protein migrating at 36 kDa. In addition, the rate of synthesis of GLUT1 in control and glucose-deprived cells was similar. In short pulse-chase experiments, we distinguished two species arising from the core GLUT1 protein in control cells; an intermediate and the mature 46-kDa species. In contrast, only one glycoform, the 37-kDa species, arose from the core protein in glucose-deprived cells, which was not further processed in either the presence or absence of glucose. Although 12-18 h of glucose deprivation were required to affect GLUT1 glycosylation, glucose-deprived cells quickly recovered the ability to correctly glycosylate GLUT1 upon the readdition of glucose (t1/2 < 1 h). GLUT1 in control adipocytes exhibited a half-life of approximately 14 h, while that in glucose-deprived adipocytes was greater than 50 h. This effect was readily reversed upon the readdition of glucose. In total, these data show that glucose deprivation alters both the processing (glycosylation) and turnover (degradation) of GLUT1. These results are discussed in light of transport function.
Collapse
Affiliation(s)
- R J McMahon
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610, USA
| | | |
Collapse
|
6
|
Ortiz PA, Haspel HC. Differential control of the functional cell surface expression and content of hexose transporter GLUT-1 by glucose and glucose metabolism in murine fibroblasts. Biochem J 1993; 295 ( Pt 1):67-72. [PMID: 8216241 PMCID: PMC1134821 DOI: 10.1042/bj2950067] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present paper evaluates the contributions of glucose and its metabolites to the post-translational regulation of hexose transport and GLUT-1 content in murine fibroblasts. The effects of 3-O-methylglucose, a nearly non-metabolizable glucose analogue, on 2-deoxyglucose-uptake, cell-surface expression and content of GLUT-1, glucose 6-phosphate levels, and phosphoglucose isomerase (PGI) and hexokinase activities of murine fibroblasts were compared with those of glucose and fructose. Glucose (EC50 approximately 6 mM) or 3-O-methylglucose (EC50 approximately 12 mM), which are substrates of GLUT-1, but not fructose, which is not transported by GLUT-1, are able to prevent the glucose-deprivation-induced increases in both hexose transport and cell-surface expression of GLUT-1. In contrast, glucose (EC50 approximately 6 mM), but not 3-O-methylglucose or fructose, prevents the glucose-deprivation-induced accumulation of total GLUT-1 polypeptides. Glucose (> or = 5 mM), but not fructose or 3-O-methylglucose, leads to significant glucose 6-phosphate accumulation. Although 3-O-methylglucose is weakly phosphorylated by fibroblasts, accumulation of phosphorylated product does not correlate with hexose-transport regulation. The activities of hexokinase and PGI are not altered by glucose, fructose or 3-O-methylglucose. We suggest that, in murine fibroblasts: (i) hexose transport and GLUT-1 content are differentially regulated; (ii) substrates of GLUT-1 and/or their immediate metabolites regulate the cell-surface expression of functional GLUT-1; and (iii) glucose metabolism is required for the regulation of GLUT-1 content.
Collapse
Affiliation(s)
- P A Ortiz
- Department of Physiology and Biophysics, State University of New York, Stony Brook 11794-8661
| | | |
Collapse
|
7
|
Abstract
Transport of sugars is a fundamental property of all eukaryotic cells. Of particular importance is the uptake of glucose, a preferred carbon and energy source. The rate of glucose utilization in yeast is often dictated by the activity and concentration of glucose transporters in the plasma membrane. Given the importance of transport as a site of control of glycolytic flux, the regulation of glucose transporters is necessarily complex. The molecular analysis of these transporters in Saccharomyces has revealed the existence of a multigene family of sugar carriers. Recent data have raised the question of the actual role of all of these proteins in sugar catabolism, as some appear to be lowly expressed, and point mutations of these genes may confer pleiotropic phenotypes, inconsistent with a simple role as catabolic transporters. The transporters themselves appear to be intimately involved in the process of sensing glucose, a model for which there is growing support.
Collapse
Affiliation(s)
- L F Bisson
- Department of Viticulture and Enology, University of California, Davis 95616-8749
| | | | | | | |
Collapse
|
8
|
Ortiz PA, Honkanen RA, Klingman DE, Haspel HC. Regulation of the functional expression of hexose transporter GLUT-1 by glucose in murine fibroblasts: role of lysosomal degradation. Biochemistry 1992; 31:5386-93. [PMID: 1606164 DOI: 10.1021/bi00138a021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nature of the membrane compartments involved in the regulation by glucose of hexose transport is not well defined. The effect of inhibitors of lysosomal protein degradation on hexose transport (i.e., uptake of [3H]-2-deoxy-D-glucose) and hexose transporter protein GLUT-1 (i.e., immunoblotting with antipeptide serum) in glucose-fed and -deprived cultured murine fibroblasts (3T3-C2 cells) was studied. The acidotropic amines chloroquine (20 microM) and ammonium chloride (10 mM) cause accumulation (both approximately 4-fold) of GLUT-1 protein and a small increase (both approximately 25%) in hexose transport in glucose-fed fibroblasts (24 h). The endopeptidase inhibitor, leupeptin (100 microM) causes accumulation (approximately 4-fold) of GLUT-1 protein in glucose-fed fibroblasts (24 h) without changing hexose transport (less than or equal to 5%). These agents do not greatly alter the electrophoretic mobility of GLUT-1. Neither chloroquine nor leupeptin augment the glucose deprivation (24 h) induced increases in hexose transport (approximately 4-fold) and GLUT-1 content (approximately 7-fold). In contrast, chloroquine or leupeptin diminish the reversal by glucose refeeding of the glucose deprivation induced accumulation of GLUT-1 protein but fail to alter the return of hexose transport to control levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P A Ortiz
- Department of Physiology and Biophysics, State University of New York, Stony Brook 11794
| | | | | | | |
Collapse
|
9
|
|
10
|
Maher F, Harrison LC. Stimulation of glucose transporter (GLUT1) mRNA and protein expression by inhibitors of glycosylation. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1089:27-32. [PMID: 2025645 DOI: 10.1016/0167-4781(91)90080-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucose deprivation increases the steady-state levels of mRNA for the rat brain/HepG2-type glucose transporter (GLUT1) in L6 myocytes. Glucose deprivation also inhibits N-linked glycosylation. We therefore investigated a possible relationship between inhibition of glycosylation and GLUT1 expression in cultured L6 myocytes by determining the effects on GLUT1 expression of known inhibitors of glycosylation, namely tunicamycin, 2-deoxyglucose and glucosamine. All conditions prevented incorporation of [3H]mannose into TCA-precipitable myocyte protein and resulted in a 2- to 5-fold increase in the level of GLUT1 mRNA detected on Northern blots. Glucose deprivation and tunicamycin treatment caused an approx. 2-fold increase in GLUT1 mRNA half-life. GLUT1 protein, detected on immunoblots, accumulated 10- to 20-fold in response to all glycosylation inhibitors, with apparent molecular masses of 40 kDa after glucose deprivation, 42 kDa after 2-deoxyglucose and 38 kDa after glucosamine or tunicamycin treatments, compared to 45-50 kDa in glucose-fed cells. However, glucose deprivation was the only condition in which the rate of 2-deoxy-[3H]glucose uptake increased (3- to 5-fold). These results demonstrate a direct correlation between inhibition of glycosylation and the induction of GLUT1 mRNA and protein expression and suggest that the stability of GLUT1 mRNA is controlled by a signal associated with glycosylation.
Collapse
Affiliation(s)
- F Maher
- Burnet Clinical Research Unit, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
11
|
Welply JK. Protein glycosylation: function and factors that regulate oligosaccharide structure. BIOTECHNOLOGY (READING, MASS.) 1991; 17:59-72. [PMID: 2049551 DOI: 10.1016/b978-0-409-90123-8.50009-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Feugeas JP, Néel D, Pavia AA, Laham A, Goussault Y, Derappe C. Glycosylation of the human erythrocyte glucose transporter is essential for glucose transport activity. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1030:60-4. [PMID: 2265193 DOI: 10.1016/0005-2736(90)90238-j] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human erythrocyte glucose transporter is a fully integrated membrane glycoprotein having only one N-linked carbohydrate chain on the extracellular part of the molecule. Several authors have suggested the involvement of the carbohydrate moiety in glucose transport, but not definitive results have been published to date. Using transport glycoproteins reconstituted in proteoliposomes, kinetic studies of zero-trans influx were performed before and after N-glycanase treatment of the proteoliposomes: this enzymatic treatment results in a 50% decrease of the Vmax. The orientation of transport glycoproteins in the lipid bilayer of liposomes was investigated and it appears that about half of the reconstituted transporter molecules are oriented properly. Finally, it could be concluded that the release of the carbohydrate moiety from the transport glycoproteins leads to the loss of their transport activity.
Collapse
|
13
|
Maher F, Harrison LC. Hexose specificity for downregulation of HepG2/brain-type glucose transporter gene expression in L6 myocytes. Diabetologia 1990; 33:641-8. [PMID: 2076796 DOI: 10.1007/bf00400564] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glucose deprivation of L6 myocytes results in the upregulation of glucose transporter activity, protein and mRNA. We have investigated the downregulation of transporter gene expression by glucose and other hexoses in glucose-deprived L6 myocytes. Glucose transport activity was measured as the uptake of 3H-2-deoxyglucose. Transporter protein and mRNA were detected by immunoblot and Northern blot analysis, respectively, with probes to the rat brain glucose transporter. Glucose deprivation of myocytes, in the absence and presence of insulin, increased 3H-2-deoxyglucose uptake, transporter protein and mRNA levels. Refeeding with glucose reversed the glucose deprivation effects on transport activity and mRNA within 12 h, with half-maximal effects at 1-2 mmol/l glucose. Mannose fully substituted for glucose. Refeeding with the non-metabolisable glucose analogues 2-deoxyglucose and 3-0-methylglucose, or with glucosamine or mannitol, downregulated 3H-2-deoxyglucose uptake but had little or no effect on transporter protein and mRNA expression. In contrast, glucose-6-phosphate markedly increased 3H-2-deoxyglucose uptake but partly downregulated transporter mRNA levels, whereas galactose had a small stimulatory effect on both 3H-2-deoxyglucose uptake and transporter mRNA; neither affected transporter protein levels. The transporter mRNA level was not affected by several metabolites (pyruvate, glyceraldehyde, glycerol) and amino acids (alanine, glutamine). These findings indicate that (i) there are independent pathways for hexose regulation of transport activity, protein and mRNA and (ii) down-regulation of transporter mRNA requires metabolism beyond hexose phosphate whereas glucose uptake may be regulated by direct interaction of hexoses with the transporter.
Collapse
Affiliation(s)
- F Maher
- Burnet Clinical Research Unit, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
14
|
N�el D, Feugeas JP, Beaudry P, Goussault Y, Derappe C. Microheterogeneity of the carbohydrate moiety of the human erythrocyte glucose transporter. Glycoconj J 1990. [DOI: 10.1007/bf01050376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 1989. [PMID: 2710109 DOI: 10.1128/mcb.9.2.377] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of glycoproteins with carbohydrates of defined structure and minimal heterogeneity is important for functional studies of mammalian carbohydrates. To facilitate such studies, several Chinese hamster ovary mutants that carry between two and four glycosylation mutations were developed. All of the lines grew readily in culture despite the drastic simplification of their surface carbohydrates. Therefore, both endogenous glycoproteins and those introduced by transfection can be obtained with specifically tailored carbohydrates. The lectin resistance properties of the mutants showed that each line expresses a novel array of cell surface carbohydrates useful for identifying specific roles for carbohydrates in cellular interactions. In addition, they showed that the epistatic relationships among different glycosylation mutations are not entirely predictable, providing insight into the complexity of the carbohydrate structures at the Chinese hamster ovary cell surface.
Collapse
|
16
|
Stanley P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 1989; 9:377-83. [PMID: 2710109 PMCID: PMC362611 DOI: 10.1128/mcb.9.2.377-383.1989] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The production of glycoproteins with carbohydrates of defined structure and minimal heterogeneity is important for functional studies of mammalian carbohydrates. To facilitate such studies, several Chinese hamster ovary mutants that carry between two and four glycosylation mutations were developed. All of the lines grew readily in culture despite the drastic simplification of their surface carbohydrates. Therefore, both endogenous glycoproteins and those introduced by transfection can be obtained with specifically tailored carbohydrates. The lectin resistance properties of the mutants showed that each line expresses a novel array of cell surface carbohydrates useful for identifying specific roles for carbohydrates in cellular interactions. In addition, they showed that the epistatic relationships among different glycosylation mutations are not entirely predictable, providing insight into the complexity of the carbohydrate structures at the Chinese hamster ovary cell surface.
Collapse
Affiliation(s)
- P Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|