1
|
Interdigitated aluminium and titanium sensors for assessing epithelial barrier functionality by electric cell-substrate impedance spectroscopy (ECIS). Biomed Microdevices 2020; 22:30. [PMID: 32328801 PMCID: PMC7181462 DOI: 10.1007/s10544-020-00486-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electric cell-substrate impedance spectroscopy (ECIS) enables non-invasive and continuous read-out of electrical parameters of living tissue. The aim of the current study was to investigate the performance of interdigitated sensors with 50 μm electrode width and 50 μm inter-electrode distance made of gold, aluminium, and titanium for monitoring the barrier properties of epithelial cells in tissue culture. At first, the measurement performance of the photolithographic fabricated sensors was characterized by defined reference electrolytes. The sensors were used to monitor the electrical properties of two adherent epithelial barrier tissue models: renal proximal tubular LLC-PK1 cells, representing a normal functional transporting epithelium, and human cervical cancer-derived HeLa cells, forming non-transporting cancerous epithelial tissue. Then, the impedance spectra obtained were analysed by numerically fitting the parameters of the two different models to the measured impedance spectrum. Aluminium sensors proved to be as sensitive and consistent in repeated online-recordings for continuous cell growth and differentiation monitoring as sensors made of gold, the standard electrode material. Titanium electrodes exhibited an elevated intrinsic ohmic resistance in comparison to gold reflecting its lower electric conductivity. Analysis of impedance spectra through applying models and numerical data fitting enabled the detailed investigation of the development and properties of a functional transporting epithelial tissue using either gold or aluminium sensors. The result of the data obtained, supports the consideration of aluminium and titanium sensor materials as potential alternatives to gold sensors for advanced application of ECIS spectroscopy.
Collapse
|
2
|
Induction of accelerated senescence by the microtubule-stabilizing agent peloruside A. Invest New Drugs 2017; 35:706-717. [PMID: 28733703 DOI: 10.1007/s10637-017-0493-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Chemotherapeutic agents can induce accelerated senescence in tumor cells, an irreversible state of cell cycle arrest. Paclitaxel, a microtubule-stabilizing agent used to treat solid tumors of the breast, ovary, and lung and discodermolide, another stabilizing agent from a marine sponge, induce senescence in cultured cancer cells. The aim of this study was to determine if the microtubule-stabilizing agent peloruside A, a polyketide natural product from a marine sponge, can induce accelerated senescence in a breast cancer cell line MCF7. Doxorubicin, a DNA-damaging agent, paclitaxel, and discodermolide were used as positive controls. Senescence-associated-β-galactosidase activity was increased by peloruside A, similar to paclitaxel, discodermolde, and doxorubicin, with a potency heirarchy of doxorubicin > paclitaxel > discodermolide > peloruside, based on IC25 concentrations that inhibit proliferation. Clonogenic survival was significantly decreased by peloruside A, similar to doxorubicin and the two other microtubule-stabilizing agents. The tumor suppressor protein p53 increased after treatment, whereas pRb decreased in response to all four compounds. It was concluded that in addition to apoptosis, peloruside A causes accelerated senescence in a subpopulation of MCF7 cells that contributes to its potential anticancer activity in a breast cancer cell line.
Collapse
|
3
|
Wilmes A, Jennings P. The Use of Renal Cell Culture for Nephrotoxicity Investigations. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527674183.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Curthoys NP, Gstraunthaler G. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 2014; 307:F1-F11. [PMID: 24808535 DOI: 10.1152/ajprenal.00067.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase(+) cells, was isolated. LLC-PK1-FBPase(+) cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase(+) cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3 (-), pH 6.9), the LLC-PK1-FBPase(+) cells exhibit a gradual increase in NH4 (+) ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase(+) cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase(+) cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase(+) cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells.
Collapse
Affiliation(s)
- Norman P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and
| | | |
Collapse
|
5
|
Jennings P, Aschauer L, Wilmes A, Gstraunthaler G. Renal Cell Culture. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Delineation of the key aspects in the regulation of epithelial monolayer formation. Mol Cell Biol 2013; 33:2535-50. [PMID: 23608536 DOI: 10.1128/mcb.01435-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation, maintenance, and repair of epithelial barriers are of critical importance for whole-body homeostasis. However, the molecular events involved in epithelial tissue maturation are not fully established. To this end, we investigated the molecular processes involved in renal epithelial proximal-tubule monolayer maturation utilizing transcriptomic, metabolomic, and functional parameters. We uncovered profound dynamic alterations in transcriptional regulation, energy metabolism, and nutrient utilization over the maturation process. Proliferating cells exhibited high glycolytic rates and high transcript levels for fatty acid synthesis genes (FASN), whereas matured cells had low glycolytic rates, increased oxidative capacity, and preferentially expressed genes for beta oxidation. There were dynamic alterations in the expression and localization of several adherens (CDH1, -4, and -16) and tight junction (TJP3 and CLDN2 and -10) proteins. Genes involved in differentiated proximal-tubule function, cilium biogenesis (BBS1), and transport (ATP1A1 and ATP1B1) exhibited increased expression during epithelial maturation. Using TransAM transcription factor activity assays, we could demonstrate that p53 and FOXO1 were highly active in matured cells, whereas HIF1A and c-MYC were highly active in proliferating cells. The data presented here will be invaluable in the further delineation of the complex dynamic cellular processes involved in epithelial cell regulation.
Collapse
|
7
|
Abou El-Magd RM, Park HK, Kawazoe T, Iwana S, Ono K, Chung SP, Miyano M, Yorita K, Sakai T, Fukui K. The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psychopharmacol 2010; 24:1055-67. [PMID: 19329549 DOI: 10.1177/0269881109102644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
D-Amino acid oxidase (DAO) has been established to be involved in the oxidation of D-serine, an allosteric activator of the N-methyl-D-aspartate-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The effect of risperidone, a benzisoxazole derivative, atypical antischizophrenic drug, on the activity of human DAO was tested using an in-vitro oxygraph system and rat C6, stable C6 transformant cells overexpressing mouse DAO (designated as C6/DAO) and pig kidney epithelial cells (LLC-PK(1)). Risperidone has a hyperbolic mixed-type inhibition, designated as 'partial uncompetitive inhibition effect', with K(i) value of 41 microM on human DAO. Risperidone exhibited a protective effect from D-amino acid induced cell death in both C6/DAO and LLC-PK(1) cells with 10% increase in viability. These data indicate the involvement of DAO activity in D-serine metabolism and also suggest a new mechanism of action to risperidone as antischizophrenic drug.
Collapse
Affiliation(s)
- R M Abou El-Magd
- Division of Enzyme Pathophysiology, The Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G. Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 2010; 24:1053-63. [PMID: 20362047 DOI: 10.1016/j.tiv.2010.03.016] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 12/13/2022]
Abstract
Quality assurance is becoming increasingly important. Good laboratory practice (GLP) and good manufacturing practice (GMP) are now established standards. The biomedical field aims at an increasing reliance on the use of in vitro methods. Cell and tissue culture methods are generally fast, cheap, reproducible and reduce the use of experimental animals. Good cell culture practice (GCCP) is an attempt to develop a common standard for in vitro methods. The implementation of the use of chemically defined media is part of the GCCP. This will decrease the dependence on animal serum, a supplement with an undefined and variable composition. Defined media supplements are commercially available for some cell types. However, information on the formulation by the companies is often limited and such supplements can therefore not be regarded as completely defined. The development of defined media is difficult and often takes place in isolation. A workshop was organised in 2009 in Copenhagen to discuss strategies to improve the development and use of serum-free defined media. In this report, the results from the meeting are discussed and the formulation of a basic serum-free medium is suggested. Furthermore, recommendations are provided to improve information exchange on newly developed serum-free media.
Collapse
Affiliation(s)
- J van der Valk
- Fac. Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hoque MT, Conseil G, Cole SPC. Involvement of NHERF1 in apical membrane localization of MRP4 in polarized kidney cells. Biochem Biophys Res Commun 2008; 379:60-4. [PMID: 19073137 DOI: 10.1016/j.bbrc.2008.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette protein superfamily, confers resistance to nucleoside and nucleotide analogs as well as camptothecin derivatives. MRP4 also mediates the efflux of certain cyclic nucleotides, eicosanoids, conjugated steroids, and uric acid. Depending on the cell type, MRP4 may localize to either apical or basolateral membranes in polarized cells. The adaptor protein NHERF1 has previously been implicated in MRP4 internalization in non-polarized cells. We have now found that NHERF1 levels are very low in polarized MDCKI cells which express MRP4 on basolateral membranes relative to polarized LLC-PK1 cells which express MRP4 on apical membranes. Furthermore, ectopic expression of FLAG-tagged NHERF1 in MDCKI cells and in MDCKI cells stably expressing eGFP-tagged MRP4 causes endogenous MRP4 and eGFP-MRP4, respectively, to traffic to the apical membranes. These data establish NHERF1 as a major determinant of MRP4 trafficking to apical membranes of mammalian kidney cells.
Collapse
Affiliation(s)
- Md Tozammel Hoque
- Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
10
|
Bai X, Chen X, Feng Z, Hou K, Zhang P, Fu B, Shi S. Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3. J Cell Physiol 2006; 206:821-30. [PMID: 16331647 DOI: 10.1002/jcp.20553] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sodium-dependent dicarboxylate transporters (NaDC) include low-affinity NaDC1 and high-affinity NaDC3. Despite high similarities structurally and functionally, both are localized to opposite surfaces of renal tubular cells. The molecular mechanisms and localization signals leading to this polarized distribution remain unknown. In this study, distribution of NaDC3 in human kidney tissue was firstly observed by immunohistochemistry and immunofluorescence. Then, EGFP-fused wild-type, NH2- and COOH-terminal deletion and point mutants of NaDC3, and chimera between NaDC3 and NaDC1, were generated and transfected into polarized renal cells lines, LLC-PK1 and MDCK. Their subcellular localizations were analyzed by laser confocal microscopy. Immunolocalization results revealed that NaDC3 was expressed at basolateral membrane of human renal proximal tubular epithelia. Confocal examinations showed that wild-type NaDC3 was targeted to the basolateral membrane of MDCK and LLC-PK1. Deletion mutations indicated that the basolateral targeting signal of NaDC3 located within a short sequence AKKVWSARR of its amino-terminal cytoplasmic domain. Addition of this sequence could redirect apical NaDC1 to the basolateral membrane of LLC-PK1. Point mutagenesis revealed that mutation of either of two hydrophobic amino acids V and W in this short sequence largely redirected NaDC3 to both apical and basolateral surfaces of LLC-PK, indicating that the two hydrophobic amino acids are critical for the basolateral targeting of NaDC3. Our studies provide direct evidence of the localization of NaDC3 at the basolateral membrane of human renal proximal tubule cells and identify a di-hydrophobic amino acid motif VW as basolateral localization signal in the N-terminal cytoplasmic domain of NaDC3.
Collapse
Affiliation(s)
- Xueyuan Bai
- Chinese PLA Kidney Center & Key Lab of Nephrology, Chinese PLA General Hospital & Medical Postgraduate College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Bouley R, Sun TX, Chenard M, McLaughlin M, McKee M, Lin HY, Brown D, Ausiello DA. Functional role of the NPxxY motif in internalization of the type 2 vasopressin receptor in LLC-PK1 cells. Am J Physiol Cell Physiol 2003; 285:C750-62. [PMID: 12801889 DOI: 10.1152/ajpcell.00477.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interaction of the type 2 vasopressin receptor (V2R) with hormone causes desensitization and internalization. To study the role of the V2R NPxxY motif (which is involved in the clathrin-mediated endocytosis of several other receptors) in this process, we expressed FLAG-tagged wild-type V2R and a Y325F mutant V2R in LLC-PK1a epithelial cells that have low levels of endogenous V2R. Both proteins had a similar apical (35%) and basolateral (65%) membrane distribution. Substitution of Tyr325 with Phe325 prevented ligand-induced internalization of V2R determined by [3H]AVP binding and immunofluorescence but did not prevent ligand binding or signal transduction via adenylyl cyclase. Desensitization and resensitization of the V2R-Y325F mutation occurred independently of internalization. The involvement of clathrin in V2R downregulation was also shown by immunogold electron microscopy. We conclude that the NPxxY motif of the V2R is critically involved in receptor downregulation via clathrin-mediated internalization. However, this motif is not essential for the apical/basolateral sorting and polarized distribution of the V2R in LLC-PK1a cells or for adenylyl cyclase-mediated signal transduction.
Collapse
Affiliation(s)
- Richard Bouley
- Program in Membrane Biology and Renal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tampal NM, Robertson LW, Srinivasan C, Ludewig G. Polychlorinated biphenyls are not substrates for the multidrug resistance transporter-1. Toxicol Appl Pharmacol 2003; 187:168-77. [PMID: 12662900 DOI: 10.1016/s0041-008x(02)00069-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The multidrug resistance (MDR) transporter is a phosphorylated glycoprotein (P-gp) that has been implicated in the efflux of a large variety of xenobiotics, thereby protecting vital organs. This study examines the hypothesis that the multidrug resistance transporter is involved in restricting the entry of polychlorinated biphenyls (PCBs) into the brain. Three test systems were used. First, the ATPase activity of the human P-gp was measured as an indicator of the interaction of PCBs with the MDR transporter. PCB congeners and metabolites included in the study were PCB 153, PCB 169, PCB 77, and the 4-hydroxy and 4,4'-dihydroxy metabolites of PCB 77. An increase in ATPase activity was observed for all the PCBs tested except the 4-hydroxy metabolite of PCB 77. Second, we studied the transport of (14)C-PCB 77 and (14)C-PCB153 in a cell-culture model using porcine kidney cells expressing the human MDR1 or the mouse mdr1a gene and compared it to the transport in control cells. No difference in directional transport due to P-gp was observed with either of the congeners in any of the cell lines. Finally, the distribution pattern of (14)C-PCB 77 in mdr1a knockout mice and genetically matched wild-type mice was measured. No significant differences in tissue distribution, especially in the brain tissue, were observed between wild-type and mdr1a knockout mice. These results suggest that some PCB congeners can bind to the MDR1 transporter; however, they may not be transported by it.
Collapse
Affiliation(s)
- Nilufer M Tampal
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | | | |
Collapse
|
13
|
Simonovic I, Arpin M, Koutsouris A, Falk-Krzesinski HJ, Hecht G. Enteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function. Infect Immun 2001; 69:5679-88. [PMID: 11500444 PMCID: PMC98684 DOI: 10.1128/iai.69.9.5679-5688.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important human intestinal pathogen, especially in infants. EPEC adherence to intestinal epithelial cells induces the accumulation of a number of cytoskeletal proteins beneath the bacteria, including the membrane-cytoskeleton linker ezrin. Evidence suggests that ezrin can participate in signal transduction. The aim of this study was to determine whether ezrin is activated following EPEC infection and if it is involved in the cross talk with host intestinal epithelial cells. We show here that following EPEC attachment to intestinal epithelial cells there was significant phosphorylation of ezrin, first on threonine and later on tyrosine residues. A significant increase in cytoskeleton-associated ezrin occurred following phosphorylation, suggesting activation of this molecule. Nonpathogenic E. coli and EPEC strains harboring mutations in type III secretion failed to elicit this response. Expression of dominant-negative ezrin significantly decreased the EPEC-elicited association of ezrin with the cytoskeleton and attenuated the disruption of intestinal epithelial tight junctions. These results suggest that ezrin is involved in transducing EPEC-initiated signals that ultimately affect host physiological functions.
Collapse
Affiliation(s)
- I Simonovic
- Department of Medicine, Section of Digestive and Liver Diseases, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
14
|
Temm-Grove CJ, Jockusch BM, Weinberger RP, Schevzov G, Helfman DM. Distinct localizations of tropomyosin isoforms in LLC-PK1 epithelial cells suggests specialized function at cell-cell adhesions. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:393-407. [PMID: 9712268 DOI: 10.1002/(sici)1097-0169(1998)40:4<393::aid-cm7>3.0.co;2-c] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
At least eight nonmuscle, nonbrain tropomyosin isoforms have been described. We used antibodies, microinjection, and transfection to characterize their expression and localization in LLC-PK1 kidney epithelial cells and compared them with other cells. Similar to primary enterocytes, LLC-PK1 cells exhibited predominantly TM-1 and TM-3 of the high-molecular-weight (HMW) isoforms; TM-5 and TM-5b of the low-molecular-weight (LMW) isoforms. Neither TM-4 nor TM-5a was detectable in the LLC-PKI cells. Immunofluorescence studies revealed that HMW isoforms were localized only on stress fibers, not adhesion belts, whereas the adhesion belts were stained by LMW isoform antibodies. When exogenous proteins are introduced either by transfection or microinjection, the HMW isoforms do not incorporate into the adhesion belt, whereas the LMW isoforms can incorporate into the stress fibers, thus indicating there are different mechanisms at work for the selective localization. Temporal changes in the microfilament system of the LLC-PK1 cells were studied during differentiation in culture as defined by spectrin expression and F-actin architecture. Western blot analysis indicated that TM-5b is only expressed in the LLC-PK1 cells after a certain degree of maturation in culture, which suggests isoform switching after the cell-cell contacts are developed. Collectively these results demonstrate that epithelial cells express a complex pattern of TM isoforms, which exhibit differential localizations within the cells and different patterns of expression depending on their origin and stage of differentiation. The implication of differential localization of TM isoforms on their specific functions is discussed.
Collapse
|
15
|
Meijer DK, Smit JW, Hooiveld GJ, van Montfoort JE, Jansen PL, Müller M. The molecular basis for hepatobiliary transport of organic cations and organic anions. PHARMACEUTICAL BIOTECHNOLOGY 2000; 12:89-157. [PMID: 10742973 DOI: 10.1007/0-306-46812-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D K Meijer
- Department of Pharmacokinetics and Drug Delivery, Groningen University Institute for Drug Exploration (GUIDE), The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Skoudy A, Nhieu GT, Mantis N, Arpin M, Mounier J, Gounon P, Sansonetti P. A functional role for ezrin during Shigella flexneri entry into epithelial cells. J Cell Sci 1999; 112 ( Pt 13):2059-68. [PMID: 10362536 DOI: 10.1242/jcs.112.13.2059] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri is an enteroinvasive bacterium responsible for bacillary dysentery in humans. Bacterial entry into epithelial cells is a crucial step for the establishment of the infection. It is characterized by a transient reorganization of the host cell cytoskeleton at the site of bacterial interaction with the cell membrane, which leads to bacterial engulfment by a macropinocytic process. We show in this study that the membrane-cytoskeleton linker, ezrin, a member of the ERM (ezrin, radixin, moesin) family, plays an active role in the process of Shigella uptake. Ezrin is highly enriched in cellular protrusions induced by the bacterium and is found in close association with the plasma membrane. In addition, Shigella entry is significantly reduced in cells transfected with a dominant negative allele of ezrin with entry foci showing much shorter cellular protrusions. These results indicate that ezrin not only acts as a membrane-cytoskeleton linker, but may also mediate extension of cellular projections in the presence of signals such as those elicited by invading microorganisms.
Collapse
Affiliation(s)
- A Skoudy
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Doctor RB, Dahl RH, Salter KD, Fitz JG. Reorganization of cholangiocyte membrane domains represents an early event in rat liver ischemia. Hepatology 1999; 29:1364-74. [PMID: 10216117 DOI: 10.1002/hep.510290514] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cholangiocytes contribute significantly to bile formation through the vectorial secretion of water and electrolytes and are a focal site of injury in a number of diseases including liver ischemia and post-transplantation liver failure. Using ischemia in intact liver and adenosine triphosphate (ATP) depletion in cultured cells to model cholangiocyte injury, these studies examined the effects of metabolic inhibition on cholangiocyte viability and structure. During 120 minutes of ischemia or ATP depletion, cell viability and tight junctional integrity in cholangiocytes were maintained. However, both the in vivo and in vitro models displayed striking alterations in the secondary structure of the plasma membrane. After 120 minutes, the basolateral (BL) interdigitations were diminished and the apical (Ap) microvilli were significantly decreased in number. The BL and Ap membrane surface areas decreased by 42 +/- 8% and 63 +/- 2%, respectively. Despite these changes, F-actin remained predominantly localized to the membrane domains. In contrast, in a time course that paralleled the loss of microvilli, the actin-membrane linking protein ezrin progressively dissociated from the cytoskeleton. These studies indicate that cholangiocyte ATP depletion induces characteristic, domain-specific changes in the plasma membrane and implicate alterations in the membrane-cytoskeletal interactions in the initiation of the changes. Pending the re-establishment of the differentiated domains, the loss of specific secondary structures may contribute to impaired vectorial bile duct secretion and postischemic cholestasis.
Collapse
Affiliation(s)
- R B Doctor
- University of Colorado Health Sciences Center, Division of Gastroenterology and Hepatology, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
18
|
Roush DL, Gottardi CJ, Naim HY, Roth MG, Caplan MJ. Tyrosine-based membrane protein sorting signals are differentially interpreted by polarized Madin-Darby canine kidney and LLC-PK1 epithelial cells. J Biol Chem 1998; 273:26862-9. [PMID: 9756932 DOI: 10.1074/jbc.273.41.26862] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine-dependent sequence motifs are implicated in sorting membrane proteins to the basolateral domain of Madin-Darby canine kidney (MDCK) cells. We find that these motifs are interpreted differentially in various polarized epithelial cell types. The H, K-ATPase beta subunit, which contains a tyrosine-based motif in its cytoplasmic tail, was expressed in MDCK and LLC-PK1 cells. This protein was restricted to the basolateral membrane in MDCK cells, but was localized to the apical membrane in LLC-PK1 cells. Similarly, HA-Y543, a construct in which a tyrosine-based motif was introduced into the cytoplasmic tail of influenza hemagglutinin, was sorted to the basolateral membrane of MDCK cells and retained at the apical membrane of LLC-PK1 cells. A chimera in which the cytoplasmic tail of the H,K-ATPase beta subunit protein was replaced with the analogous region of the Na,K-ATPase beta subunit polypeptide was localized to both surface domains of MDCK cells. Mutation of tyrosine-20 of the H,K-ATPase beta subunit cytoplasmic sequence to an alanine was sufficient to disrupt basolateral localization of this polypeptide. In contrast, these constructs all remain localized to the apical membrane in LLC-PK1 cells. The FcRII-B2 protein bears a di-leucine motif and is found at the basolateral membrane of both MDCK and LLC-PK1 cells. These results demonstrate that polarized epithelia are able to discriminate between different classes of specifically defined membrane protein sorting signals.
Collapse
Affiliation(s)
- D L Roush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
19
|
Bebök Z, Venglarik CJ, Pánczél Z, Jilling T, Kirk KL, Sorscher EJ. Activation of DeltaF508 CFTR in an epithelial monolayer. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C599-607. [PMID: 9688615 DOI: 10.1152/ajpcell.1998.275.2.c599] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The DeltaF508 mutation leads to retention of cystic fibrosis transmembrane conductance regulator (CFTR) in the endoplasmic reticulum and rapid degradation by the proteasome and other proteolytic systems. In stably transfected LLC-PK1 (porcine kidney) epithelial cells, DeltaF508 CFTR conforms to this paradigm and is not present at the plasma membrane. When LLC-PK1 cells or human nasal polyp cells derived from a DeltaF508 homozygous patient are grown on plastic dishes and treated with an epithelial differentiating agent (DMSO, 2% for 4 days) or when LLC-PK1 cells are grown as polarized monolayers on permeable supports, plasma membrane DeltaF508 CFTR is significantly increased. Moreover, when confluent LLC-PK1 cells expressing DeltaF508 CFTR were treated with DMSO and mounted in an Ussing chamber, a further increase in cAMP-activated short-circuit current (i.e., approximately 7 microA/cm2; P < 0.00025 compared with untreated controls) was observed. No plasma membrane CFTR was detected after DMSO treatment in nonepithelial cells (mouse L cells) expressing DeltaF508 CFTR. The experiments describe a way to augment DeltaF508 CFTR maturation in epithelial cells that appears to act through a novel mechanism and allows insertion of functional DeltaF508 CFTR in the plasma membranes of transporting cell monolayers. The results raise the possibility that increased epithelial differentiation might increase the delivery of DeltaF508 CFTR from the endoplasmic reticulum to the Golgi, where the DeltaF508 protein is shielded from degradative pathways such as the proteasome and allowed to mature.
Collapse
Affiliation(s)
- Z Bebök
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zimmerhackl LB, Momm F, Wiegele G, Brandis M. Cadmium is more toxic to LLC-PK1 cells than to MDCK cells acting on the cadherin-catenin complex. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F143-53. [PMID: 9689016 DOI: 10.1152/ajprenal.1998.275.1.f143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cadmium toxicity to renal cells was investigated in Madin-Darby canine kidney (MDCK) and LLC-PK1 cells as models of the distal tubule/collecting duct and proximal tubule, respectively. Cells were grown on two-compartment filters and exposed to 0.1-50 microM Cd2+. In MDCK cells, Cd2+ was more toxic from the basolateral than from the apical side and dependent on the extracellular Ca2+ concentration. Toxicity was evident within 24 h, as shown by a decrease in transepithelial resistance (TER), reduced proliferation (bromodeoxyuridine incorporation), reduction in ATP concentration, and morphological changes. On confocal microscopy, E-cadherin and alpha-catenin staining patterns indicated interference with the cadherin-catenin complex. LLC-PK1 cells showed a similar toxicity pattern, which was evident at lower Cd2+ concentrations. An increase of E-cadherin and alpha-catenin molecules in the Triton X-100-insoluble fraction was detectable at high Cd2+ concentrations in LLC-PK1 cells but not in MDCK cells. Lactate dehydrogenase release indicated membrane leakage in LLC-PK1 cells. Rhodamine-phalloidin staining, a probe for F-actin filaments, demonstrated alterations of the actin cytoskeleton in both cell lines. In conclusion, cadmium caused ATP depletion and interfered with the cadherin-catenin complex and probably the tight junctions changing renal cell morphology and function.
Collapse
Affiliation(s)
- L B Zimmerhackl
- Department of Pediatrics, Albert-Ludwigs-University, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|
21
|
Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Biophys Biochem Cytol 1997; 138:423-34. [PMID: 9230083 PMCID: PMC2138186 DOI: 10.1083/jcb.138.2.423] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The dissociation, migration, and remodeling of epithelial monolayers induced by hepatocyte growth factor (HGF) entail modifications in cell adhesion and in the actin cytoskeleton through unknown mechanisms. Here we report that ezrin, a membrane-cytoskeleton linker, is crucial to HGF-mediated morphogenesis in a polarized kidney-derived epithelial cell line, LLC-PK1. Ezrin is a substrate for the tyrosine kinase HGF receptor both in vitro and in vivo. HGF stimulation causes enrichment of ezrin recovered in the detergent-insoluble cytoskeleton fraction. Overproduction of wild-type ezrin, by stable transfection in LLC-PK1 cells, enhances cell migration and tubulogenesis induced by HGF stimulation. Overproduction of a truncated variant of ezrin causes mislocalization of endogenous ezrin from microvilli into lateral surfaces. This is concomitant with altered cell shape, characterized by loss of microvilli and cell flattening. Moreover, the truncated variant of ezrin impairs the morphogenic and motogenic response to HGF, thus suggesting a dominant-negative mechanism of action. Site-directed mutagenesis of ezrin codons Y145 and Y353 to phenylalanine does not affect the localization of ezrin at microvilli, but perturbs the motogenic and morphogenic responses to HGF. These results provide evidence that ezrin displays activities that can control cell shape and signaling.
Collapse
Affiliation(s)
- T Crepaldi
- Institut Curie-UMR 144 Centre National de la Recherche Scientifique, Laboratoire de Morphogenèse et Signalisation Cellulaires, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
22
|
Gründemann D, Babin-Ebell J, Martel F, Ording N, Schmidt A, Schömig E. Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem 1997; 272:10408-13. [PMID: 9099681 DOI: 10.1074/jbc.272.16.10408] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Renal secretion of organic cations involves at least two distinct transporters, located in the basolateral and apical membranes of proximal tubule cells. Whereas the basolateral transporter has recently been cloned, sequence information about the apical type was not yet available. An organic cation transporter, OCT2p, was cloned from LLC-PK1 cells, a porcine cell line with properties of proximal tubular epithelial cells. OCT2p was heterologously expressed and characterized in human embryonic kidney 293 cells. OCT2p-mediated uptake of the prototypical organic cation [14C]tetraethylammonium ([14C]TEA) into 293 cells was saturable. There was a highly significant correlation between the Ki values for the inhibition of apical [14C]TEA uptake into LLC-PK1 cells and 293 cells transfected with OCT2p (r = 0.995; p < 0.001; n = 6). Although OCT2p is structurally related to OCT1r, the basolateral organic cation transporter from rat kidney, the transporters could be clearly discriminated pharmacologically with corticosterone, decynium22, and O-methylisoprenaline. The findings at hand suggest that OCT2 corresponds to the apical type of organic cation transporter. Reverse transcriptase-polymerase chain reaction indicates that mRNA of OCT1r is limited to non-neuronal tissue, whereas OCT2r, the OCT2p homologue from rat, was found in both the kidney and central nervous regions known to be rich in the monoamine transmitter dopamine.
Collapse
Affiliation(s)
- D Gründemann
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Schramek H, Schumacher M, Wilflingseder D, Oberleithner H, Pfaller W. Differential expression and activation of MAP kinases in dedifferentiated MDCK-focus cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C383-91. [PMID: 9124279 DOI: 10.1152/ajpcell.1997.272.2.c383] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitogen-activated protein kinases (MAPK) play a key role in the regulation of cellular processes such as cell growth, cell differentiation, and apoptosis. However, the specific function of single isoforms of the MAPK family in renal epithelial cell differentiation and/or proliferation has not been investigated so far. We now report stable reduction of extracellular signal-regulated kinase 1 (ERK1) protein expression and lack of serum-induced ERK1 activation in alkali-dedifferentiated Madin-Darby canine kidney-C7 focus (MDCK-C7F) cells compared with their parental epithelial MDCK-C7 cells. The changes in ERK1 protein expression and activation were accompanied by a small rise in c-jun NH2-terminal kinase 1 (JNK1) protein expression but slightly decreased basal and anisomycin-stimulated JNK1 activity. In contrast, ERK2 phosphorylation, as assessed by using an antibody which detects phosphorylated tyrosine 204 of both ERK1 and ERK2, as well as enzymatic ERK2 activity, was substantially increased in untreated and fetal calf serum-treated MDCK-C7F cells, although ERK2 protein expression remained unchanged. Differential expression and activation of ERK1, ERK2, and JNK1 were accompanied by an inhibition of serum-induced MDCK-C7F cell proliferation. Together, our results demonstrate an association between changes in the activation of certain MAPK and alkali-induced stable MDCK-C7 cell dedifferentiation. Moreover, these data provide evidence for distinct signaling functions of ERK1 and ERK2 in these cells.
Collapse
Affiliation(s)
- H Schramek
- Department of Physiology, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
24
|
Kleta R, Mohrmann M, Schlatter E. Effects of cell differentiation on ion conductances and membrane voltage in LLC-PK1 cells. Pflugers Arch 1995; 429:370-7. [PMID: 7539126 DOI: 10.1007/bf00374152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
LLC-PK1 cells serve as a widely used model for the renal proximal tubule. Until now, little has been found out about their membrane voltage (Vm) and ionic conductances (g). Several studies have shown changes in cell properties during differentiation and ageing. The aim of this study was to examine the relationship between Vm or g and the age of these cells. Therefore, we investigated single cells, subconfluent and confluent monolayers of LLC-PK1 cells aged 1-8 days with the slow-whole-cell patch-clamp technique. The Vm of all cells was -34 +/- 2 mV (n = 75) and the membrane conductance (gm) was 2.3 +/- 0.3 nS (n = 30). Vm in cells aged up to 2 days was -24 +/- 3 mV (n = 22) whereas Vm in cells aged 5-8 days was -50 +/- 3 mV (n = 15). An increase of extracellular K+ from 3.6 to 18.6 mmol/l led to a depolarization in all cells of 4 +/- 1 mV (n = 31) and an increase of gm by 17 +/- 13% (n = 15). Complete replacement of extracellular Na+ by N-methyl-D-glucamine (NMDG) led to a hyperpolarization of 19 +/- 2 mV (n = 38) and gm was lowered by 27 +/- 14% (n = 17). A reduction in extracellular Cl- from 147 to 32 mmol/l showed no significant effect on Vm (n = 16) or gm (n = 11).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Kleta
- Westfälische Wilhelms-Universität Münster, Medizinische Poliklinik D, Experimentelle Nephrologie, Germany
| | | | | |
Collapse
|
25
|
Hasson T, Mooseker MS. Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Biophys Biochem Cytol 1994; 127:425-40. [PMID: 7929586 PMCID: PMC2120210 DOI: 10.1083/jcb.127.2.425] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have cloned a new mammalian unconventional myosin, porcine myosin-VI from the proximal tubule cell line, LLC-PK1 (CL4). Porcine myosin-VI is highly homologous to Drosophila 95F myosin heavy chain, and together these two myosins comprise a sixth class of myosin motors. Myosin-VI exhibits ATP-sensitive actin-binding activities characteristic of myosins, and it is associated with a calmodulin light chain. Within LLC-PK1 cells, myosin-VI is soluble and does not associate with the major actin-containing domains. Within the kidney, however, myosin-VI is associated with sedimentable structures and specifically locates to the actin- and membrane-rich apical brush border domain of the proximal tubule cells. This motor was not enriched within the glomerulus, capillaries, or distal tubules. Myosin-VI associates with the proximal tubule cytoskeleton in an ATP-sensitive fashion, suggesting that this motor is associated with the actin cytoskeleton within the proximal tubule cells. Given the difference in association of myosin-VI with the apical cytoskeleton between LLC-PK1 cells and adult kidney, it is likely that this cell line does not fully differentiate to form functional proximal tubule cells. Myosin-VI may require the presence of additional elements, only found in vivo in proximal tubule cells, to properly locate to the apical domain.
Collapse
Affiliation(s)
- T Hasson
- Department of Biology, Yale University, New Haven, Connecticut 06520
| | | |
Collapse
|
26
|
Roush DL, Gottardi CJ, Caplan MJ. Sorting of the gastric H,K-ATPase in endocrine and epithelial cells. Ann N Y Acad Sci 1994; 733:212-22. [PMID: 7978870 DOI: 10.1111/j.1749-6632.1994.tb17271.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D L Roush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
27
|
Chakraborty M, Chatterjee D, Gorelick FS, Baron R. Cell cycle-dependent and kinase-specific regulation of the apical Na/H exchanger and the Na,K-ATPase in the kidney cell line LLC-PK1 by calcitonin. Proc Natl Acad Sci U S A 1994; 91:2115-9. [PMID: 8134357 PMCID: PMC43320 DOI: 10.1073/pnas.91.6.2115] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Calcitonin (CT), which regulates serum calcium through its actions in bone and the kidney tubule, also has a potent natriuretic effect in vivo. Na reabsorption in the proximal kidney tubule is mostly dependent on the activity of the Na,K-ATPase and the apical Na/H exchanger. We have previously shown that CT regulates the activity of the Na,K-ATPase in the proximal kidney tubule cell line LLC-PK1 in a cell cycle-dependent manner. We report here that, in the same cells, CT also regulates the Na/H exchanger through a cell cycle-specific activation of the Ca/calmodulin-dependent protein kinase II. In G2 phase, no changes in ethylisopropyl amiloride-sensitive 22Na uptake is observed, despite an increase in cAMP. In contrast, the hormone inhibits the apical exchanger when the cells are in S phase, resulting in an 80% inhibition of 22Na uptake. These results demonstrate that CT affects the activity of the two major proximal tubule Na transport systems and may help clarify the mechanisms by which CT regulates Na+ reabsorption.
Collapse
Affiliation(s)
- M Chakraborty
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | |
Collapse
|
28
|
Madsen KL, Porter VM, Fedorak RN. Vanadate reduces sodium-dependent glucose transport and increases glycolytic activity in LLC-PK1 epithelia. J Cell Physiol 1994; 158:459-66. [PMID: 8126069 DOI: 10.1002/jcp.1041580310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of vanadate pentoxide on apical sodium-dependent glucose transport in LLC-PK1 epithelia was examined. Epithelia grown in the presence or absence of 1 microM vanadate formed confluent monolayers and exhibited no differences in DNA, protein, or ultrastructure. Vanadate-supplemented epithelia demonstrated a lower steady-state alpha-methyl-D-glucopyranoside (AMG) concentrating capacity and a twofold reduction in apical AMG uptake Jmax. This decreased AMG transport occurred as a consequence of a reduction in the number of transport carriers and was not associated with a change in the sodium electrochemical gradient. The vanadate-induced reduction in apical glucose carrier functional activity and expression was accompanied by a stimulation of intracellular glycolytic flux activity, as evidenced by increased glucose consumption, lactate production, PFK-1 activity, and intracellular ATP. There was no difference in intracellular cAMP levels between vanadate-supplemented and non-supplemented epithelia. These results demonstrate an association between stimulation of glycolytic pathway activity and an adaptive response in the form of a reduction in the function and expression of the sodium-dependent apical glucose transporter in LLC-PK1 epithelia.
Collapse
Affiliation(s)
- K L Madsen
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
29
|
Pietrini G, Suh Y, Edelmann L, Rudnick G, Caplan M. The axonal gamma-aminobutyric acid transporter GAT-1 is sorted to the apical membranes of polarized epithelial cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41828-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Amsler K. cAMP-dependent protein kinase modulates expression and subcellular localization of Dolichos biflorus agglutinin binding sites in renal epithelial cells. J Cell Biochem 1993; 52:486-95. [PMID: 7693730 DOI: 10.1002/jcb.240520412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies demonstrated that, upon attaining confluence, a clone of the renal epithelial cell, LLC-PK1, expressed progressively binding sites for the lectin Dolichos biflorus agglutinin (DBA) at the apical cell surface. Activation of cAMP-dependent protein kinase enhanced surface expression dramatically. The goal of this study was to define the process leading to surface expression of DBA binding sites and to investigate further the role of cAMP-dependent protein kinase in modulating surface expression. Both subconfluent and confluent cells exhibited intracellular DBA binding sites (50-70% of total cellular binding sites) in a perinuclear vesicular compartment which was disrupted by Brefeldin A treatment. Both total cellular content and the proportion of DBA binding sites at the cell surface increased modestly after confluence was attained. A 48 h treatment of cells with 1-methyl-3-isobutyl xanthine, a phosphodiesterase inhibitor, dramatically increased the level of cellular DBA binding sites as well as the proportion of DBA binding sites at the cell surface. Analysis of two mutants of this cell line suggests that the effect of 1-methyl-3-isobutyl xanthine requires cAMP-dependent protein kinase activity but is not due to cAMP-dependent protein kinase-mediated activation of gene transcription.
Collapse
Affiliation(s)
- K Amsler
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854
| |
Collapse
|
31
|
Gottardi CJ, Caplan MJ. An ion-transporting ATPase encodes multiple apical localization signals. J Biophys Biochem Cytol 1993; 121:283-93. [PMID: 8385670 PMCID: PMC2200096 DOI: 10.1083/jcb.121.2.283] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epithelial cells accumulate distinct populations of membrane proteins at their two plasmalemmal domains. We have examined the molecular signals which specify the differential subcellular distributions of two closely related ion pumps. The Na,K-ATPase is normally restricted to the basolateral membranes of numerous epithelial cell types, whereas the H,K-ATPase is a component of the apical surfaces of the parietal cells of the gastric epithelium. We have expressed full length and chimeric H,K-ATPase/Na,K-ATPase cDNAs in polarized renal proximal tubular epithelial cells (LLC-PK1). We find that both the alpha and beta subunits of the H,K-ATPase encode independent signals that specify apical localization. Furthermore, the H,K-ATPase beta-subunit possesses a sequence which mediates its participation in the endocytic pathway. The interrelationship between epithelial sorting and endocytosis signals suggested by these studies supports the redefinition of apical and basolateral as functional, rather than simply topographic domains.
Collapse
Affiliation(s)
- C J Gottardi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
32
|
Eberharter A, Grabher A, Gstraunthaler G, Loidl P. Nuclear matrix of the lower eukaryote Physarum polycephalum and the mammalian epithelial LLC-PK1 cell line. A comprehensive investigation of different preparation procedures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:573-80. [PMID: 7680312 DOI: 10.1111/j.1432-1033.1993.tb17695.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Agarose-encapsulated nuclear matrix preparations of the lower eukaryote Physarum polycephalum and the mammalian renal epithelial LLC-PK1 cell line were analyzed after various experimental protocols with respect to the protein composition. The effect of the mode of deproteinization (2 M NaCl, 0.25 M ammonium sulfate or 25 mM lithium diiodosalicylate), presence of 2-mercaptoethanol, Ca2+, Cu2+, chelating agents, the sequence of protein extraction and nuclease digestion, the use of RNase, the temperature at which the experimental manipulations were performed and the use of hypotonic or isotonic conditions was investigated. No significant differences in the final nuclear matrix composition could be observed, regardless of the experimental procedure applied. In Physarum, the major nuclear matrix proteins range over 12-70 kDa with prominent bands at 24, 31, 37 and 45 kDa; the proteins of the matrix in LLC-PK1 cells extend predominantly over 40-80 kDa. Furthermore, no essential differences in the protein composition could be observed when type I and type II nuclear matrices from the highly differentiated LLC-PK1 cell line were compared. The same was found for analogous matrix preparations of Physarum. Therefore, in both systems a distinction between type I/II matrix is questionable. Immunoblotting of the matrix preparations with a variety of antibodies against intermediate filament proteins and with antinuclear autoantibodies revealed the presence of intermediate filament proteins as components of the nuclear matrix. We conclude that the nuclear matrix represents a much more stable and reproducible structure than has been proposed so far, largely independent of changes in the preparation protocol.
Collapse
Affiliation(s)
- A Eberharter
- Department of Microbiology, University of Innsbruck, School of Medicine, Austria
| | | | | | | |
Collapse
|
33
|
LeVier DG, McCoy DE, Spielman WS. Functional localization of adenosine receptor-mediated pathways in the LLC-PK1 renal cell line. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C729-35. [PMID: 1329540 DOI: 10.1152/ajpcell.1992.263.4.c729] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The functional localization of three adenosine receptor-mediated signal transduction pathways in the LLC-PK1 renal cell line was investigated. LLC-PK1 cells were grown on Millicell-CM filter inserts, which allow for the independent exposure of the apical or basolateral side of a confluent cell monolayer to hormones. Adenosine stimulated inositol phosphate turnover, inhibition of adenosine 3',5'-cyclic monophosphate (cAMP) accumulation (A1 receptor), and stimulation of cAMP accumulation (A2 receptor). Adenosine (10 microM) selectively applied to the basolateral side induced a significant (P < 0.05) increase in inositol phosphates, whereas apical exposure did not. The adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (1 microM), blocked the stimulation of inositol phosphate production in LLC-PK1 cells, provided support for an adenosine receptor-mediated event. When adenosine (30 nM) was selectively applied to the apical side, forskolin-stimulated cAMP levels were not significantly decreased (approximately 8%, P > 0.05). However, adenosine (30 nM) presented to the basolateral side produced a significant decrease (approximately 23%, P < 0.05) in forskolin-stimulated cAMP levels. A high dose (100 microM) of adenosine elicited a significant increase (P < 0.05) in cAMP levels when presented to either the apical or the basolateral cell surface. Adenosine (100 microM) applied to the apical side elicited significantly higher cAMP levels (P < 0.05) than the same dose applied basolaterally. LLC-PK1 cells grown on permeable supports exhibit a polarity of functional responses following activation by adenosine. These data support a topographic separation of the multiple adenosine signaling systems in a renal epithelial cell line.
Collapse
Affiliation(s)
- D G LeVier
- Department of Physiology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
34
|
Gstraunthaler G, Landauer F, Pfaller W. Ammoniagenesis in LLC-PK1 cultures: role of transamination. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C47-54. [PMID: 1636683 DOI: 10.1152/ajpcell.1992.263.1.c47] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The LLC-PK1 renal epithelial cell line has been used as a model system to study renal ammoniagenesis and its regulation by metabolic acidosis in vitro. Experiments were performed on confluent LLC-PK1 epithelia grown for 10-14 days in conventional monolayer technique. After the medium pH was changed from 7.6 to 7.0 for 24-72 h by lowering the bicarbonate concentration in culture medium, LLC-PK1 cells responded with an adaptive increase in glutamine consumption and ammonia production. The rates of glutamine uptake and ammonia generation displayed a ratio of 1:1, i.e., 1 mol ammonia was produced per mole of glutamine consumed. Glutamine consumption and ammonia formation were paralleled by an equimolar production of L-alanine, indicating that transamination appears to be the main ammoniagenic pathway in LLC-PK1 cells. Analysis of the key enzymes of renal ammoniagenesis, phosphate-dependent glutaminase (PDG) and glutamate dehydrogenase (GDH), revealed no changes in enzyme activities up to 72 h of adaptation. Alanine aminotransferase (ALT) activity in LLC-PK1 cells also remained unchanged during the adaptation period. Because transamination seems to play a crucial role in channeling the metabolic flux in LLC-PK1 ammoniagenesis, experiments were performed in which transamination was inhibited by (aminooxy)acetate (AOA). After incubation of control and pH 7.0-adapted LLC-PK1 cultures for 24-72 h in 0.2 mM AOA, no alanine production was found, but 2 mol of ammonia were formed per mole of glutamine consumed, again, without adaptive changes in PDG and GDH activities.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
35
|
Robinson PS, Goochee CF. Kidney-specific enzyme expression by human kidney cell lines generated through oncogene transfection. J Cell Physiol 1991; 148:54-9. [PMID: 1677645 DOI: 10.1002/jcp.1041480107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human kidney cell line 293 was generated by transfection of adenovirus DNA into normal human embryonic kidney (HEK) cells (Graham et al., 1977), whereas the human kidney cell lines ST-1i and STt-4i were generated by transfection of HEK cells with plasmids encoding SV40 viral oncogenes (Abcouwer et al., 1989). In this study, we examined kidney-specific enzyme activity levels in 293, ST-1i, and STt-4i cells to determine their ability to exhibit kidney-specific gene expression. Enzymes examined were leucine aminopeptidase (LAP), gamma-glutamyl transpeptidase (gamma-GTP), and the disaccharidases trehalase and maltase. Enzymatic activity levels were compared to three other kidney cell lines (MDCK, OK, and LLC-PK1) as well as to normal human embryonic kidney (HEK) cells and the human hepatoma cell line, Hep G2. Modulation of kidney-specific enzyme activities was assessed in response to several differentiation-inducing agents (adenosine, n-butyric acid, hexamethylene bisacetamide (HMBA), dimethyl sulfoxide (DMSO), N,N'-dimethylformamide (DMF), isobutyl methyl xanthine (IBMX), di butyryl cAMP, and retinoic acid). ST-1i and STt-4i exhibit elevated levels of LAP, gamma-GTP, trehalase, and maltase, consistent with their kidney cell origin, whereas 293 cells exhibit elevated levels of just gamma-GTP and maltase. Maltase and gamma-GTP enzyme activities in ST-1i and STt-4i cells were very responsive to the various inducing agents; 293 cells were less responsive at the inducer concentrations examined. None of the three human cell lines formed domes under any of the experimental conditions. In summary, ST-1i and STt-4i are comparable to normal HEK cells in expression of kidney-specific enzymes and in responsiveness to differentiation-inducing agents, in spite of continued expression of SV40 oncogenes.
Collapse
Affiliation(s)
- P S Robinson
- Department of Chemical Engineering, University of Houston, Texas 77004
| | | |
Collapse
|
36
|
Amsler K, Ghatani S, Hemmings BA. cAMP-dependent protein kinase regulates renal epithelial cell properties. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C1290-9. [PMID: 1711777 DOI: 10.1152/ajpcell.1991.260.6.c1290] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies have implicated adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) in regulation of both growth and expression of differentiated function in the pig renal epithelial cell, LLC-PK1. To investigate this possible regulatory mechanism, we compared growth behavior, morphology, and appearance of two differentiated functions, Na-hexose symport (SYMP) and gamma-glutamyl transpeptidase (gamma-GT), in the LLC-PK1 line and two PKA-deficient mutants (FIB4 and FIB6). Compared with the wild-type cell line, the mutant lines continued to proliferate at higher population densities and exhibited altered cell morphology, poorer formation of the brush-border structure, and decreased or lack of expression of SYMP and gamma-GT activities. Wild-type and mutant cells exhibit an identical logarithmic growth rate. Both lines form cell-cell junctions and exhibit identical kinetic properties of expressed SYMP activity. These results strongly support the hypothesis that PKA modulates a defined subset of cellular processes, including aspects of growth control and expression of the differentiated phenotype, in this renal epithelial cell line.
Collapse
Affiliation(s)
- K Amsler
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854
| | | | | |
Collapse
|
37
|
Gstraunthaler G, Steinmassl D, Pfaller W. Renal cell cultures: a tool for studying tubular function and nephrotoxicity. Toxicol Lett 1990; 53:1-7. [PMID: 2219147 DOI: 10.1016/0378-4274(90)90085-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|