1
|
Pandian K, van Zonneveld AJ, Harms A, Hankemeier T. Metabolic alterations of endothelial cells under transient and persistent hypoxia: study using a 3D microvessels-on-chip model. Tissue Barriers 2024:2431416. [PMID: 39584359 DOI: 10.1080/21688370.2024.2431416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Numerous signaling pathways are activated during hypoxia to facilitate angiogenesis, promoting interactions among endothelial cells and initiating downstream signaling cascades. Although the pivotal role of the nitric oxide (NO) response pathway is well-established, the involvement of arginine-specific metabolism and bioactive lipid mechanisms in 3D flow-activated in vitro models remains less understood. In this study, we explored the levels of arginine-specific metabolites and bioactive lipids in human coronary artery endothelial cells (HCAECs) under both transient and persistent hypoxia. We compared targeted metabolite levels between a 2D static culture model and a 3D microvessels-on-chip model. Notably, we observed robust regulation of NO metabolites in both transient and persistent hypoxic conditions. In the 2D model under transient hypoxia, metabolic readouts of bioactive lipids revealed increased oxidative stress markers, a phenomenon not observed in the 3D microvessels. Furthermore, we made a novel discovery that the responses of bioactive lipids were regulated by hypoxia inducible factor-1α (HIF-1α) in the 2D cell culture model and partially by HIF-1α and flow-induced shear stress in the 3D microvessels. Immunostaining confirmed the HIF-1α-induced regulation under both hypoxic conditions. Real-time oxygen measurements in the 3D microvessels using an oxygen probe validated that oxygen levels were maintained in the 3D model. Overall, our findings underscore the critical regulatory roles of HIF-1α and shear stress in NO metabolites and bioactive lipids in both 2D and 3D cell culture models.
Collapse
Affiliation(s)
- Kanchana Pandian
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Amy Harms
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
|
3
|
Akarsu S, Arslan FN, Erol D. Endothelıal nıtrıc oxide synthase Glu298asp gene polymorphism in the cases of idiopathic thrombocytopenic purpura. Blood Res 2022; 57:223-228. [PMID: 35920090 PMCID: PMC9492527 DOI: 10.5045/br.2022.2022014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/23/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Nitric oxide (NO) can induce apoptosis in megakaryocytes. Stimulatory function of NO on platelet production may be important in the pathophysiology of idiopathic thrombocytopenic purpura (ITP). NO is produced by three isoforms of NO synthase (NOS). The endothelial nitric oxide synthase (eNOS) isoform has been detected in platelets. Polymorphism of the eNOS gene, which supplies NO synthesis, changes the functions of this enzyme. In this study, the role of eNOS Glu298Asp gene polymorphism in etiopathogenesis, its course, and treatment of ITP was investigated. Methods Sixty-six patients [51 newly diagnosed ITP (ND-ITP), 15 chronic ITP (CH-ITP), and 60 healthy controls (HC)] were enrolled in this study. Results In all patients, the frequency of the GT genotype was 48.5%. The frequency of the GG genotype was determined to be 40.9% and the TT genotype was 10.6%. The most common allele in all patients was the G allele. eNOS Glu298Asp gene polymorphism might be a risk factor in the etiopathogenesis of ITP. Patients with the GG genotype were thought to have a high intention for CH-ITP. Patients with the GG genotype responded effectively to medical treatment using IVIG therapy. The presence of the G allele was observed to have a positive effect on the medical treatment of patients with CH-ITP, whereas the T allele exhibited a negative effect. Conclusion In the present study, a significant correlation was found between ITP and eNOS Glu298Asp gene polymorphism. This correlation suggested that eNOS Glu298Asp gene polymorphism might be a risk factor in the ethiopathogenesis of ITP.
Collapse
Affiliation(s)
- Saadet Akarsu
- Division of Pediatric Hematology/Oncology, Firat University Faculty of Medicine, Elazig, Turkey
| | - F Necati Arslan
- Department of Pediatrics, Kahramanmaraş State Hospital, Kahramanmaraş, Turkey
| | - Deniz Erol
- Medical Genetic, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
4
|
Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules 2021; 11:biom11070982. [PMID: 34356605 PMCID: PMC8301841 DOI: 10.3390/biom11070982] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The initial stage of CVDs is characterized by endothelial dysfunction, defined as the limited bioavailability of nitric oxide (NO). Thus, any factors that interfere with the synthesis or metabolism of NO in endothelial cells are involved in CVD pathogenesis. It is well established that hypoxia is both the triggering factor as well as the accompanying factor in cardiovascular disease, and diminished tissue oxygen levels have been reported to influence endothelial NO bioavailability. In endothelial cells, NO is produced by endothelial nitric oxide synthase (eNOS) from L-Arg, with tetrahydrobiopterin (BH4) as an essential cofactor. Here, we discuss the mechanisms by which hypoxia affects NO bioavailability, including regulation of eNOS expression and activity. What is particularly important is the fact that hypoxia contributes to the depletion of cofactor BH4 and deficiency of substrate L-Arg, and thus elicits eNOS uncoupling-a state in which the enzyme produces superoxide instead of NO. eNOS uncoupling and the resulting oxidative stress is the major driver of endothelial dysfunction and atherogenesis. Moreover, hypoxia induces impairment in mitochondrial respiration and endothelial cell activation; thus, oxidative stress and inflammation, along with the hypoxic response, contribute to the development of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Laboratory of Trace Elements Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
- Correspondence:
| |
Collapse
|
5
|
Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021; 34:1319-1354. [PMID: 33899493 PMCID: PMC8418449 DOI: 10.1089/ars.2020.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sheela Nagarkoti
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
6
|
Sljivancanin Jakovljevic T, Kontic-Vucinic O, Nikolic N, Carkic J, Stamenkovic J, Soldatovic I, Milasin J. Association Between Endothelial Nitric Oxide Synthase (eNOS) -786 T/C and 27-bp VNTR 4b/a Polymorphisms and Preeclampsia Development. Reprod Sci 2021; 28:3529-3539. [PMID: 34046868 DOI: 10.1007/s43032-021-00632-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to analyze the distribution of genotypes and haplotypes of functional eNOS gene polymorphisms in the promoter (-786 T/C), intron 4 (VNTR4b/a) and exon 7 (894 G/T), in Serbian population of pregnant women, and establish a possible association between these polymorphisms and preeclampsia development. DNA was isolated from venous blood samples of 50 heathy pregnant women and 50 preeclampsia patients. Polymerase Chain Reaction/Restriction Fragment Length Polymorphism (PCR/RFLP) technique, with appropriate sets of primers and specific restriction enzymes, was used to determine polymorphisms in eNOS gene. Statistical analysis was done using the SPSS and HAPLOVIEW software packages. eNOS -786 T/C polymorphism was significantly associated with preeclampsia (P = 0.006). Homozygotes for the VNTR polymorphism had also an elevated risk of developing preeclampsia (OR=7.68, 95%CI (0.89-65.98)), especially the mild (OR=9.33, 95%CI (0.98-88.57)) and late form (OR=8.52, 95%CI (0.90-80.58)). The 894 G/T polymorphism was not associated with preeclampsia. "G-C-b" and "T-4a-T" haplotypes were more frequent in preeclampsia, though without reaching statistical significance. -786 T/C and VNTR 4b/a eNOS gene polymorphisms were associated with preeclampsia risk in Serbian patients.
Collapse
Affiliation(s)
| | - Olivera Kontic-Vucinic
- Department of Human Reproduction, The Clinic for Obstetrics and Gynecology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Stamenkovic
- Department of Human Reproduction, The Clinic for Obstetrics and Gynecology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Soldatovic
- Institute of Medical Statistics and Informatics, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021; 56:525-538. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a comprehensive regulator of vascular and airway tone. Endogenous NO produced by nitric oxide synthases regulates multiple signaling cascades, including activation of soluble guanylate cyclase to generate cGMP, relaxing smooth muscle cells. Inhaled NO is an established therapy for pulmonary hypertension in neonates, and has been recently proposed for the treatment of hypoxic respiratory failure and acute respiratory distress syndrome due to COVID-19. In this review, we summarize the effects of endogenous and exogenous NO on protein S-nitrosylation, which is the selective and reversible covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine. This posttranslational modification targets specific cysteines based on the acid/base sequence of surrounding residues, with significant impacts on protein interactions and function. S-nitrosothiol (SNO) formation is tightly compartmentalized and enzymatically controlled, but also propagated by nonenzymatic transnitrosylation of downstream protein targets. Redox-based nitrosylation and denitrosylation pathways dynamically regulate the equilibrium of SNO-proteins. We review the physiological roles of SNO proteins, including nitrosohemoglobin and autoregulation of blood flow through hypoxic vasodilation, and pathological effects of nitrosylation including inhibition of critical vasodilator enzymes; and discuss the intersection of NO source and dose with redox environment, in determining the effects of protein nitrosylation.
Collapse
Affiliation(s)
- Vikram Bhatia
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Lara Elnagary
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.,Section of Neonatology, Departments of Pediatrics and Physiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Lin Z, Cao Y, Zou J, Zhu F, Gao Y, Zheng X, Wang H, Zhang T, Wu T. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111032. [PMID: 32993975 DOI: 10.1016/j.msec.2020.111032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
Improving the angio1genesis potential of bone-repairing materials is vital for the repair of cancerous bone defects. It can further facilitate the delivery of active substances with osteogenesis and anti-tumor functions, ultimately promoting the formation of new bone tissues. Copper ions (Cu2+) have been proved to be beneficial to angiogenesis. This study developed a new type of Cu-containing calcium phosphate cement (Cu-CPC) by incorporating with copper phosphate (CuP) nanoparticles with a photothermal anti-tumor effect. The results revealed that the main phases of all hydrated CPCs were hydroxyapatite, unreacted tricalcium phosphate and calcium carbonate. But the hydration products of CPC became thinner after the incorporation of Cu2+. With the increase of CuP concentration, the setting time of CPC was prolonged while the injectability and the compressive strength were increased. The release concentration of Cu2+in vitro was among 0.01 to 0.74 mg/mL, which showed a positive relation with CuP content. Mouse bone marrow stromal cells (mBMSCs) displayed higher adhesion activity, proliferation performance and expression of osteogenic genes and proteins on CPC with 0.01 wt% CuP (0.01Cu-CPC) and 0.05 wt% CuP (0.05Cu-CPC). When human umbilical vein endothelial cells were co-cultured with 0.01Cu-CPC and 0.05Cu-CPC extracts, the proliferation and angiogenesis-related gene and protein expression were significantly increased, and the in vitro tube formation capacity was promoted. However, higher CuP content inhibited the proliferation of mBMSCs. In conclusion, CPC with 0.01 wt% and 0.05 wt% CuP nanoparticles has the potential to promote bone formation around cancerous bone defects, which would be promising for bone regeneration and treatment of bone tumors.
Collapse
Affiliation(s)
- Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Yannan Cao
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Jianming Zou
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Fangyong Zhu
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Yufeng Gao
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Huajun Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China.
| | - Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Parks SK, Mueller-Klieser W, Pouysségur J. Lactate and Acidity in the Cancer Microenvironment. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033556] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentative glycolysis, an ancient evolved metabolic pathway, is exploited by rapidly growing tissues and tumors but also occurs in response to the nutritional and energetic demands of differentiated tissues. The lactic acid it produces is transported across cell membranes through reversible H+/lactate−symporters (MCT1 and MCT4) and is recycled in organs as a major metabolic precursor of gluconeogenesis and an energy source. Concentrations of lactate in the tumor environment, investigated utilizing an induced metabolic bioluminescence imaging (imBI) technique, appear to be dominant biomarkers of tumor response to irradiation and resistance to treatment. Suppression of lactic acid formation by genetic disruption of lactate dehydrogenases A and B in aggressive tumors reactivated OXPHOS (oxidative phosphorylation) to maintain xenograft tumor growth at a halved rate. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Furthermore, the global reduction of tumor acidity contributes to activation of the antitumor immune responses, offering hope for future clinical applications.
Collapse
Affiliation(s)
- Scott K. Parks
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| | - Wolfgang Mueller-Klieser
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Pouysségur
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre A. Lacassagne, University Côte d'Azur, 06189 Nice, France
| |
Collapse
|
10
|
Cutini PH, Massheimer VL. In vitro effects of progesterone and the synthetic progestin medroxyprogesterone acetate on vascular remodeling. Mol Cell Endocrinol 2019; 498:110543. [PMID: 31421164 DOI: 10.1016/j.mce.2019.110543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023]
Abstract
In this work we tested the hypothesis whether progesterone (Pg) or the synthetic progestin medroxyprogesterone acetate (MPA) could be involved in the regulation of events involved in vascular remodeling. Results revealed an enhancement in the capillary-like tubes formation induced by both progestogens. Unlike MPA, Pg acts through VEGF, nitric oxide, PI3K and ERK1/2 signaling pathways. However, the MPA effect depends on platelet activation. Under stress conditions, the proangiogenic action of Pg and MPA was sustained. The progestogens exhibit the ability to prevent vascular smooth muscle cells (VSMC) osteogenic transdifferentiation. Besides this antiosteogenic action, on bone cells the progestogens induced osteoblast maturation and mineralization. The mechanism of action of both steroids on vascular and bone cells involves the participation of progesterone receptor. The data presented in this work provide evidence that the progestogens reduce osteogenic-like transdifferentiation of VSMC and promote angiogenesis with a slight different mechanism of action elicited by each steroid.
Collapse
Affiliation(s)
- Pablo H Cutini
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| | - Virginia L Massheimer
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| |
Collapse
|
11
|
Shao J, Xu Y, Fang M. BRG1 deficiency in endothelial cells alleviates thioacetamide induced liver fibrosis in mice. Biochem Biophys Res Commun 2019; 521:212-219. [PMID: 31635808 DOI: 10.1016/j.bbrc.2019.10.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022]
Abstract
Liver sinusoidal endothelial cells play a key role maintaining the hepatic homeostasis, the disruption of which is associated with such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. In the present study we investigated the role of brahma-related gene 1 (BRG1), a chromatin remodeling protein, in regulating endothelial transcription and the implication in liver fibrosis. We report that endothelial-specific deletion of BRG1 in mice attenuated liver fibrosis induced by injection with thioacetamide (TAA). Coincidently, alleviation of liver fibrosis as a result of endothelial BRG1 deletion was accompanied by an up-regulation of eNOS activity and NO bioavailability. In cultured endothelial cells, exposure to lipopolysaccharide (LPS) suppressed eNOS activity whereas BRG1 depletion with small interfering RNA restored eNOS-dependent NO production. Further analysis revealed that BRG1 was recruited to the caveolin-1 (CAV1) promoter by Sp1 and activated transcription of CAV1, which in turn inhibited eNOS activity. Mechanistically, BRG1 interacted with the H3K4 trimethyltransferase MLL1 to modulate H3K4 trimethylation surrounding the CAV1 promoter thereby contributing to LPS-induced CAV1 activation. In conclusion, our data unveil a novel role for BRG1 in the regulation of endothelial function and liver fibrosis.
Collapse
Affiliation(s)
- Jing Shao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Mingming Fang
- Department of Clinical Medicine and Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
12
|
Hypoxia Regulation of Phosphokinases and the Prognostic Value of pAKT in Breast Cancer. Int J Biol Markers 2018; 28:151-60. [DOI: 10.5301/jbm.5000008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/20/2022]
Abstract
Tumor hypoxia results in poor treatment response and is an indicator of poor outcome in cancer patients. TRIB3 is a hypoxia-upregulated protein involved in the ability of breast cancer cells to survive in hypoxic conditions. It is also involved in the prognosis of cancer patients, possibly by affecting several kinase-signaling pathways. We set out to establish which kinase-signaling pathways are regulated by hypoxia and whether these kinases are relevant for breast cancer prognosis. Using a phosphokinase antibody array comparing cells cultured under hypoxic conditions with those cultured during normoxia, we found that the phosphorylation status of ERK1/2, AKT, p70 S6 kinase, Lck and STAT3 was altered in both MCF7 and MDA-MB-231 breast cancer cells. Using Western blotting, we found that phosphorylated AKT (pAKT) increased in hypoxic conditions. Knockdown of TRIB3 attenuated this effect of hypoxia on AKT activation. Both pAKT and TRIB3 were expressed in pimonidazole-positive, hypoxic areas of human breast cancer tumors. In breast cancer patients significantly lower 5-year disease-free survival was observed for the pAKT-positive compared to the pAKT-negative group (64.6% vs 86.1%, p=0.03). In conclusion, the phosphorylation status of AKT is increased in hypoxic conditions and TRIB3 knockdown attenuates this response. Furthermore, pAKT expression denotes a worse prognosis in breast cancer patients. The hypoxia-related activation of AKT could explain the resistance to various treatments including chemotherapy and radiotherapy.
Collapse
|
13
|
Gielis JF, Beckers PAJ, Briedé JJ, Cos P, Van Schil PE. Oxidative and nitrosative stress during pulmonary ischemia-reperfusion injury: from the lab to the OR. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:131. [PMID: 28462211 DOI: 10.21037/atm.2017.03.32] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative and nitrosative stress are an umbrella term for pathophysiological processes that involve free radical generation during inflammation. In this review, the involvement of reactive oxygen and nitrogen species is evaluated during lung ischemia-reperfusion injury (LIRI) from a surgical point of view. The main biochemical and cellular mechanisms behind free radical generation are discussed, together with surgical procedures that may cause reperfusion injury. Finally, different therapeutic strategies are further explored. A literature search was performed, searching for "lung ischemia reperfusion injury", "reperfusion injury", "large animal model" and different search terms for each section: "surgery", "treatment", "cellular mechanism", or "enzyme". Although reperfusion injury is not an uncommon entity and there is a lot of evidence concerning myocardial ischemia-reperfusion injury, in the lung this phenomenon is less extensively described and studies in large animals are not easy to come by. With increasing number of patients on waiting lists for lung transplant, awareness for this entity should all but rise.
Collapse
Affiliation(s)
- Jan F Gielis
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium.,Laboratory for Microbiology, Parasitology and Hygiene, Antwerp University, Antwerp, Belgium
| | - Paul A J Beckers
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Jacco J Briedé
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, Antwerp University, Antwerp, Belgium
| | - Paul E Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
14
|
Manukhina EB, Downey HF, Mallet RT. Role of Nitric Oxide in Cardiovascular Adaptation to Intermittent Hypoxia. Exp Biol Med (Maywood) 2016; 231:343-65. [PMID: 16565431 DOI: 10.1177/153537020623100401] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is one of the most frequently encountered stresses in health and disease. The duration, frequency, and severity of hypoxic episodes are critical factors determining whether hypoxia is beneficial or harmful. Adaptation to intermittent hypoxia has been demonstrated to confer cardiovascular protection against more severe and sustained hypoxia, and, moreover, to protect against other stresses, including ischemia. Thus, the direct and cross protective effects of adaptation to intermittent hypoxia have been used for treatment and prevention of a variety of diseases and to increase efficiency of exercise training. Evidence is mounting that nitric oxide (NO) plays a central role in these adaptive mechanisms. NO-dependent protective mechanisms activated by intermittent hypoxia include stimulation of NO synthesis as well as restriction of NO overproduction. In addition, alternative, nonenzymic sources of NO and negative feedback of NO synthesis are important factors in optimizing NO concentrations. The adaptive enhancement of NO synthesis and/or availability activates or increases expression of other protective factors, including heat shock proteins, antioxidants and prostaglandins, making the protection more robust and sustained. Understanding the role of NO in mechanisms of adaptation to hypoxia will support development of therapies to prevent and treat hypoxic or ischemic damage to organs and cells and to increase adaptive capabilities of the organism.
Collapse
|
15
|
Kalinowski L, Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S, Woźniak M, Lejnowski D, Collawn JF, Bartoszewski R. Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs. Cell Mol Biol Lett 2016; 21:16. [PMID: 28536619 PMCID: PMC5415778 DOI: 10.1186/s11658-016-0017-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Understanding the cellular pathways that regulate endothelial nitric oxide (eNOS, NOS3) expression and consequently nitric oxide (NO) bioavailability during hypoxia is a necessary aspect in the development of novel treatments for cardiovascular disorders. eNOS expression and eNOS-dependent NO cellular signaling during hypoxia promote an equilibrium of transcriptional and posttranscriptional molecular mechanisms that belong to both proapoptotic and survival pathways. Furthermore, NO bioavailability results not only from eNOS levels, but also relies on the presence of eNOS substrate and cofactors, the phosphorylation status of eNOS, and the presence of reactive oxygen species (ROS) that can inactivate eNOS. Since both NOS3 levels and these signaling pathways can also be a subject of posttranscriptional modulation by microRNAs (miRNAs), this class of short noncoding RNAs contribute another level of regulation for NO bioavailability. As miRNA antagomirs or specific target protectors could be used in therapeutic approaches to regulate NO levels, either by changing NOS3 mRNA stability or through factors governing eNOS activity, it is critical to understand their role in governing eNOS activity during hypoxa. In contrast to a large number of miRNAs reported to the change eNOS expression during hypoxia, only a few miRNAs modulate eNOS activity. Furthermore, impaired miRNA biogenesis leads to NOS3 mRNA stabilization under hypoxia. Here we discuss the recent studies that define miRNAs’ role in maintaining endothelial NO bioavailability emphasizing those miRNAs that directly modulate NOS3 expression or eNOS activity.
Collapse
Affiliation(s)
- Leszek Kalinowski
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Woźniak
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Dawid Lejnowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - James F Collawn
- Department of Cell Biology, Developmental, and Integrative, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
16
|
AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression. PLoS One 2016; 11:e0160525. [PMID: 27490694 PMCID: PMC4973998 DOI: 10.1371/journal.pone.0160525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/20/2016] [Indexed: 12/27/2022] Open
Abstract
The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3.
Collapse
|
17
|
Green MP, Harvey AJ, Spate LD, Kimura K, Thompson JG, Roberts RM. The effects of 2,4-dinitrophenol and d
-glucose concentration on the development, sex ratio, and interferon-tau (IFNT) production of bovine blastocysts. Mol Reprod Dev 2015; 83:50-60. [DOI: 10.1002/mrd.22590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Green
- Division of Animal Sciences; University of Missouri, Columbia; Missouri
| | - Alexandra J. Harvey
- School of BioSciences, University of Melbourne, Parkville; Melbourne Australia
| | - Lee D. Spate
- Division of Animal Sciences; University of Missouri, Columbia; Missouri
| | - Koji Kimura
- Division of Animal Sciences; University of Missouri, Columbia; Missouri
- Reproductive Physiology Laboratory, National Institute of Livestock and Grassland Science; 768 Senbonmatsu Nishinasuno Tochigi Japan
| | - Jeremy G. Thompson
- Robinson Research Institute, University of Adelaide and ARC Centre of Excellence for Nanoscale BioPhotonics; Adelaide Australia
| | - R. Michael Roberts
- Division of Animal Sciences; University of Missouri, Columbia; Missouri
- 240b Christopher S. Bond Life Sciences Center, Columbia; Missouri
| |
Collapse
|
18
|
Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol 2015; 309:C350-60. [PMID: 26179603 DOI: 10.1152/ajpcell.00191.2015] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, the intestinal mucosa has proven to be an intriguing organ to study tissue oxygenation. The highly vascularized lamina propria juxtaposed to an anaerobic lumen containing trillions of metabolically active microbes results in one of the most austere tissue microenvironments in the body. Studies to date have determined that a healthy mucosa contains a steep oxygen gradient along the length of the intestine and from the lumen to the serosa. Advances in technology have allowed multiple independent measures and indicate that, in the healthy mucosa of the small and large intestine, the lumen-apposed epithelia experience Po2 conditions of <10 mmHg, so-called physiologic hypoxia. This unique physiology results from a combination of factors, including countercurrent exchange blood flow, fluctuating oxygen demands, epithelial metabolism, and oxygen diffusion into the lumen. Such conditions result in the activation of a number of hypoxia-related signaling processes, including stabilization of the transcription factor hypoxia-inducible factor. Here, we review the principles of mucosal oxygen delivery, metabolism, and end-point functional responses that result from this unique oxygenation profile.
Collapse
Affiliation(s)
- Leon Zheng
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Caleb J Kelly
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean P Colgan
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
19
|
Wang L, Bhatta A, Toque HA, Rojas M, Yao L, Xu Z, Patel C, Caldwell RB, Caldwell RW. Arginase inhibition enhances angiogenesis in endothelial cells exposed to hypoxia. Microvasc Res 2014; 98:1-8. [PMID: 25445030 DOI: 10.1016/j.mvr.2014.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/29/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
Abstract
Hypoxia-induced arginase elevation plays an essential role in several vascular diseases but influence of arginase on hypoxia-mediated angiogenesis is completely unknown. In this study, in vitro network formation in bovine aortic endothelial cells (BAEC) was examined after exposure to hypoxia for 24h with or without arginase inhibition. Arginase activity, protein levels of the two arginase isoforms, eNOS, and VEGF as well as production of NO and ROS were examined to determine the involvement of arginase in hypoxia-mediated angiogenesis. Hypoxia elevated arginase activity and arginase 2 expression but reduced active p-eNOS(Ser1177) and NO levels in BAEC. In addition, both VEGF protein levels and endothelial elongation and network formation were reduced with continued hypoxia, whereas ROS levels increased and NO levels decreased. Arginase inhibition limited ROS, restored NO formation and VEGF expression, and prevented the reduction of angiogenesis. These results suggest a fundamental role of arginase activity in regulating angiogenic function.
Collapse
Affiliation(s)
- Lin Wang
- Department of Plastic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Anil Bhatta
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Modesto Rojas
- Vascular Biology Center, Georgia Regents University, Charlie Norwood VA Medical Center, Augusta GA, 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Zhimin Xu
- Vascular Biology Center, Georgia Regents University, Charlie Norwood VA Medical Center, Augusta GA, 30912, USA
| | - Chintan Patel
- Vascular Biology Center, Georgia Regents University, Charlie Norwood VA Medical Center, Augusta GA, 30912, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Georgia Regents University, Charlie Norwood VA Medical Center, Augusta GA, 30912, USA
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
20
|
De Pascali F, Hemann C, Samons K, Chen CA, Zweier JL. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 2014; 53:3679-88. [PMID: 24758136 PMCID: PMC4053070 DOI: 10.1021/bi500076r] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/18/2014] [Indexed: 01/09/2023]
Abstract
Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal restoration of eNOS function and NO generation.
Collapse
Affiliation(s)
- Francesco De Pascali
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig Hemann
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kindra Samons
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chun-An Chen
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- The
Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jay L. Zweier
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Yang Y, Liu S, Fan Z, Li Z, Liu J, Xing F. Sp1 modification of human endothelial nitric oxide synthase promoter increases the hypoxia-stimulated activity. Microvasc Res 2014; 93:80-6. [PMID: 24681424 DOI: 10.1016/j.mvr.2014.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 01/10/2023]
Abstract
Human endothelial nitric oxide synthase (eNOS) gene has a TATA-less weak promoter with a low activity. The aim of this study was to increase eNOS promoter activity by modification. Human eNOS promoter was modified by inserting a Sp1 element at a -74 bp site and function of the modified promoter was investigated via a hypoxia model induced by cobalt chloride in human umbilical vein endothelial cells. The results demonstrated that the Sp1-modified promoter resulted in a significant increase of normalized luciferase activity in the presence of hypoxia. There was a correlation between the transcriptional activity of the Sp1-modified promoter and the level of eNOS expression with enhancement of nitric oxide production. Together, these data indicate that human eNOS promoter activity is increased by inserting Sp1 binding site into the GC-rich region of the promoter in response to hypoxia, suggesting that this provides an approach to ameliorate microcirculation barrier of some cardiovascular disease and to study its mechanistic process.
Collapse
Affiliation(s)
- Yunhua Yang
- Department of Immunobiology, Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Song Liu
- Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Zhenhua Fan
- Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Zhuo Li
- Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jing Liu
- Department of Stomatology, Jinan University School of Medicine, Guangzhou 510632, China.
| | - Feiyue Xing
- Department of Immunobiology, Jinan University, Guangzhou 510632, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
p38α subtype is a potential target to inhibit eNOS activity and NO production in human endothelial cells. Microvasc Res 2014; 91:58-65. [DOI: 10.1016/j.mvr.2013.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/06/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
|
23
|
Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS One 2013; 8:e78935. [PMID: 24223867 PMCID: PMC3815307 DOI: 10.1371/journal.pone.0078935] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/17/2013] [Indexed: 01/11/2023] Open
Abstract
Background An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein. Methods Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. Results Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. Conclusion We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.
Collapse
|
24
|
Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res 2013; 1526:102-22. [PMID: 23830852 DOI: 10.1016/j.brainres.2013.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
Abstract
This review summarizes data regarding the brain expression of the orexin (hypocretin) system including: prepro-orexin (PPO), orexin A (OxA), orexin B (OxB) and the two orexin receptors 1 and 2 (OxR1, OxR2). Clinical data is limited to OxA and OxB in cerebral spinal fluid and serum/plasma, thus necessitating the development of animal models to undertake mechanistic studies. We focus on changes in animal models that were either exposed to a regime of altered sleep, metabolic energy homeostasis, exposed to drugs and noxious insults. Many more expressional studies are available for PPO, OxA and OxB levels, compared to studies of the receptors. Interestingly, the direction and pattern of change for PPO, OxA and OxB is inconsistent amongst studies, whereas for the receptors, there tends to be increased expression for both OxR1 and OxR2 after alterations in energy homeostasis, and an increased expression after noxious insults or exposure to some drugs. The clinical implications of these results from animal models are discussed in light of the findings from human studies, and future research directions are suggested to fill knowledge gaps with regard to the orexin system, particularly during early brain development.
Collapse
Affiliation(s)
- Rita Machaalani
- Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
25
|
Fraisl P. Crosstalk between oxygen- and nitric oxide-dependent signaling pathways in angiogenesis. Exp Cell Res 2013; 319:1331-9. [PMID: 23485765 DOI: 10.1016/j.yexcr.2013.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
With every heart beat blood rushes through a complex network of tubes to deliver essential ingredients of life, oxygen and nutrients. Consequently, this network of blood vessels is an indispensable part of vertebrate physiology. Its organization and architecture is highly dynamic in its form and function. Understanding how blood vessels develop, a process referred to as angiogenesis, is equally important as to know how they function considering that failure or misalignment of this process results in disorder and disease, in many cases of which death is inevitable. Much has been learned about the angiogenic process and the critical contributors of blood vessel function. A central determinant is oxygen, an evident contributor given the fact that oxygen delivery is a primary feature of blood vessel function. Not only is oxygen however essential for mitochondrial energy production, it also serves as a key molecule in various biochemical reactions, such as the formation of nitric oxide (NO), on its part a critical regulator of vascular tone and vessel homeostasis. Hence, oxygen abundance relates to the production of NO, and NO in turn regulates oxygen delivery and consumption. Given the importance of the intrinsic link these two molecules exert on angiogenesis and vessel function; this review shall highlight our current understanding on how these two molecules cooperate to form blood vessels.
Collapse
Affiliation(s)
- Peter Fraisl
- Cell Metabolism and Proliferation Laboratory, Vesalius Research Center (VRC), VIB, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Zhu CT, Rand DM. A hydrazine coupled cycling assay validates the decrease in redox ratio under starvation in Drosophila. PLoS One 2012; 7:e47584. [PMID: 23082179 PMCID: PMC3474733 DOI: 10.1371/journal.pone.0047584] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/13/2012] [Indexed: 12/02/2022] Open
Abstract
A commonly used enzymatic recycling assay for pyridine nucleotides has been adapted to directly measure the NAD+/NADH redox ratio in Drosophila melanogaster. This method is also suitable for quantification of NADP+ and NADPH. The addition of a coupling reaction removing acetaldehyde produced from the alcohol dehydrogenase (ADH) reaction was shown to improve the linearity of NAD(H) assay. The advantages of this assay method are that it allows the determination of both NAD+ and NADH simultaneously while keeping enzymatic degradation of pyridine nucleotides minimal and also achieving better sensitivity. This method was used to determine the redox ratio of D. melanogaster and validated substantial decrease of redox ratio during starvation.
Collapse
Affiliation(s)
- Chen-Tseh Zhu
- Department of Ecology and Evolution Biology, Brown University, Providence, Rhode Island, USA.
| | | |
Collapse
|
27
|
Leidi M, Mariotti M, Maier JA. EDF-1 contributes to the regulation of nitric oxide release in VEGF-treated human endothelial cells. Eur J Cell Biol 2010; 89:654-60. [DOI: 10.1016/j.ejcb.2010.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 04/16/2010] [Accepted: 05/25/2010] [Indexed: 11/29/2022] Open
|
28
|
Prieto D, Kaminski PM, Bagi Z, Ahmad M, Wolin MS. Hypoxic relaxation of penile arteries: involvement of endothelial nitric oxide and modulation by reactive oxygen species. Am J Physiol Heart Circ Physiol 2010; 299:H915-24. [PMID: 20581086 DOI: 10.1152/ajpheart.00382.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although obesity-related cardiovascular disease and hypoxia are associated with erectile dysfunction, little is known about the direct effects of hypoxia on penile arteries. In the present study, the effects of acute hypoxia (Po(2) = approximately 10 Torr, 20 min) were investigated in isolated penile arteries to determine the influence of endothelium removal, nitric oxide (NO) synthase (NOS), cyclooxygenase (COX), NADPH oxidase, changes in reactive oxygen species (ROS), and a high-fat diet. Hypoxia-relaxed penile arteries contracted with phenylephrine by approximately 50%. Relaxation to hypoxia and acetylcholine was reduced by endothelium removal and by inhibition of NOS (N(omega)-nitro-l-arginine) and COX (indomethacin) but was enhanced by Tempol and by NADPH oxidase inhibition with apocynin and gp91ds-tat. Basal superoxide levels detected by lucigenin chemiluminescence were reduced by Tempol and gp91ds-tat and were enhanced by NOS blockade. Hypoxic relaxant responses were enhanced by catalase and ebselen. Exogenous peroxide evoked relaxations of penile arteries, which were partially inhibited by endothelium removal and by the inhibition of COX and extracellular signal-regulated mitogen-activated protein kinase (MAPK) but enhanced by p38 MAPK blockade. The NO-dependent component of relaxation to hypoxia was impaired in penile arteries from high-fat diet-fed, obese rats associated with increased superoxide production. Thus hypoxic relaxation of penile arteries is partially mediated by endothelial NO in a manner that is normally attenuated by endogenous ROS production. Obesity further increases superoxide production and impairs the influence of NO. Therefore, cardiovascular disease involving decreased NO bioavailability and/or enhanced ROS generation may contribute to erectile dysfunction through impairing the relaxation of penile arteries to hypoxia.
Collapse
Affiliation(s)
- Dolores Prieto
- Dept. of Physiology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| | | | | | | | | |
Collapse
|
29
|
Mata-Greenwood E, Liao WX, Wang W, Zheng J, Chen DB. Activation of AP-1 transcription factors differentiates FGF2 and vascular endothelial growth factor regulation of endothelial nitric-oxide synthase expression in placental artery endothelial cells. J Biol Chem 2010; 285:17348-58. [PMID: 20371606 DOI: 10.1074/jbc.m109.092791] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FGF2 (fibroblast growth factor 2), but not vascular endothelial growth factor (VEGF), stimulates sustained activation of ERK2/1 for endothelial NOS3 (nitric-oxide synthase 3) protein expression in ovine fetoplacental artery endothelial cells (oFPAEC). We deciphered herein the downstream signaling of ERK2/1 responsible for NOS3 expression by FGF2 in oFPAEC. FGF2, but not VEGF, increased NOS3 mRNA levels without altering its degradation. FGF2, but not VEGF, trans-activated sheep NOS3 promoter, and this was dependent on ERK2/1 activation. FGF2 did not trans-activate NOS3 promoters with deletions upstream of the consensus AP-1 site (TGAGTC A, -678 to -685). Trans-activation of wild-type NOS3 promoter by FGF2 was significantly inhibited when either the AP-1 or the cAMP-response element (CRE)-like sequence (TGCGTCA, -752 to -758) was mutated and was completely blocked when both were mutated. EMSA analyses showed that FGF2, but not VEGF, stimulated AP-1 and CRE DNA-protein complexes primarily composed of JunB and Fra1. Chromatin immunoprecipitation assays confirmed JunB/Fra1 binding to NOS3 promoter AP-1 and CRE elements in intact cells. FGF2, but not VEGF, stimulated JunB and Fra1 expressions; all preceded NOS3 up-regulation and were inhibited by PD98059. Down-regulation of JunB or Fra-1, but not c-Jun, blocked FGF2 stimulation of NOS3 expression and NO production. AP-1 inhibition suppressed FGF2 stimulation of NOS3 expression in human umbilical vein EC and uterine artery endothelial cells. Thus, FGF2 induction of NOS3 expression is mainly mediated by AP-1-dependent transcription involving JunB and Fra1 up-regulation via sustained ERK2/1 activation in endothelial cells.
Collapse
Affiliation(s)
- Eugenia Mata-Greenwood
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
30
|
Activating transcription factor 2 increases transactivation and protein stability of hypoxia-inducible factor 1alpha in hepatocytes. Biochem J 2009; 424:285-96. [PMID: 19712049 DOI: 10.1042/bj20090371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
HIF-1 (hypoxia inducible factor 1) performs a crucial role in mediating the response to hypoxia. However, other transcription factors are also capable of regulating hypoxia-induced target-gene transcription. In a previous report, we demonstrated that the transcription factor ATF-2 (activating transcription factor 2) regulates hypoxia-induced gene transcription, along with HIF-1alpha. In the present study, we show that the protein stability of ATF-2 is induced by hypoxia and the hypoxia-mimic CoCl2 (cobalt chloride), and that ATF-2 induction enhances HIF-1alpha protein stability via direct protein interaction. The knockdown of ATF-2 using small interfering RNA and translation-inhibition experiments demonstrated that ATF-2 plays a key role in the maintenance of the expression level and transcriptional activity of HIF-1alpha. Furthermore, we determined that ATF-2 interacts directly with HIF-1alpha both in vivo and in vitro and competes with the tumour suppressor protein p53 for HIF-1alpha binding. Collectively, these results show that protein stabilization of ATF-2 under hypoxic conditions is required for the induction of the protein stability and transactivation activity of HIF-1alpha for efficient hypoxia-associated gene expression.
Collapse
|
31
|
Sattler UGA, Mueller-Klieser W. The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 2009; 85:963-71. [DOI: 10.3109/09553000903258889] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway. J Cell Mol Med 2008; 13:1136-48. [PMID: 18624763 PMCID: PMC4496109 DOI: 10.1111/j.1582-4934.2008.00394.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway.
Collapse
|
33
|
Kumar S, Sun X, Wedgwood S, Black SM. Hydrogen peroxide decreases endothelial nitric oxide synthase promoter activity through the inhibition of AP-1 activity. Am J Physiol Lung Cell Mol Physiol 2008; 295:L370-7. [PMID: 18556800 DOI: 10.1152/ajplung.90205.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we have reported that endothelial nitric oxide synthase (eNOS) promoter activity is decreased in pulmonary arterial endothelial cells (PAECs) in response to hydrogen peroxide (H(2)O(2)). Thus the objective of this study was to identify the cis-element(s) and transcription factor(s) responsible for oxidant-mediated downregulation of the eNOS gene. Initial promoter experiments in PAECs treated with H(2)O(2) revealed a significant decrease in activity of a promoter fragment containing 840 bp of upstream sequence of the human eNOS gene fused to a luciferase reporter. However, a promoter construct containing only 640 bp of upstream sequence had a significantly attenuated response to H(2)O(2) challenge. As the 840-bp promoter construct had a putative binding site for the transcription factor activator protein-1 (AP-1) that was lacking in the 640-bp construct, we evaluated the effect of H(2)O(2) on promoter activity after mutation of the AP-1 binding sequence (TGAGTCA at -661 to TGAGTtg in the 840-bp construct). Similar to the results seen with the 640 bp, the AP-1 mutant promoter had a significantly attenuated response to H(2)O(2). EMSA revealed decreased binding of AP-1 during H(2)O(2) treatment. Supershift analysis indicated that the AP-1 complex consisted of a c-Jun and FosB heterodimer. Furthermore, in vitro EMSA analysis indicated the c-Jun binding was significantly decreased after H(2)O(2) exposure. Using chromatin immunoprecipitation analysis, we demonstrated decreased binding of AP-1 to the eNOS promoter in vivo in response to H(2)O(2). These data suggest a role of decreased AP-1 binding likely through c-Jun in the H(2)O(2)-mediated decrease in eNOS promoter activity.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd., CB 3210-B, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
34
|
Leung TM, Tipoe GL, Liong EC, Lau TYH, Fung ML, Nanji AA. Endothelial nitric oxide synthase is a critical factor in experimental liver fibrosis. Int J Exp Pathol 2008; 89:241-50. [PMID: 18429990 DOI: 10.1111/j.1365-2613.2008.00590.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Reduced expression of endothelial nitric oxide synthase (eNOS) in chronic liver disease can reduce hepatic perfusion and accelerate fibrosis. The relationship between eNOS expression and liver fibrogenesis remains unclear. We investigated whether L-arginine attenuated chronic liver fibrosis through eNOS expression. Chronic liver injury was induced by administration of carbon tetrachloride (CCl(4)) to mice for 8 weeks. 5-Methylisothiourea hemisulphate (SMT), an iNOS inhibitor, or L-arginine, a NOS substrate were injected subcutaneously. CCl(4)-induced hepatotoxicity, oxidative stress and accumulation of collagen were detected in the liver. The expression levels of inducible NOS (iNOS) and nuclear factor kappa-B (NF-kappaB) activity in the liver after CCl(4) treatment were increased but eNOS expression and activator protein-1 (AP-1) activity were decreased. Both SMT and L-arginine effectively reduced CCl(4) induced oxidative stress and collagen formation, but L-arginine showed a significantly greater suppression of collagen formation, iNOS expression and NF-kappaB activity. L-arginine also restored the level of eNOS and AP-1 activity. L-arginine was more effective than SMT in suppressing liver fibrosis. L-arginine might improve NO production which facilitates hepatic blood flow and thus retards liver fibrogenesis. Our results showed that the reduced eNOS expression in CCl(4)-treated mice was reversed by L-arginine. Furthermore, L-arginine also reversed the reduced AP-1 activity, an eNOS promoter.
Collapse
Affiliation(s)
- Tung-Ming Leung
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Kumar S, Wedgwood S, Black SM. Nordihydroguaiaretic acid increases endothelial nitric oxide synthase expression via the transcription factor AP-1. DNA Cell Biol 2008; 26:853-62. [PMID: 17919072 DOI: 10.1089/dna.2007.0614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
It has been previously reported that the antioxidant compound nordihydroguaiaretic acid (NDGA) increases endothelial nitric oxide synthase (eNOS) expression in cultured bovine aortic endothelial cells. However, the exact mechanism for this effect was unresolved. Thus, the purpose of this study was to further elucidate the effect of NDGA on eNOS protein expression and enzymatic activity in fetal pulmonary arterial endothelial cells (FPAECs), and to identify the transcription factors involved in this regulation. Following overnight exposure to 0-32 microM NDGA, we observed a 2- to 2.5-fold increase in eNOS protein expression in FPAECs, with a similar increase observed in eNOS activity. For eNOS gene promoter analysis, we initially used two promoter-reporter constructs: a 1.6 kb promoter fragment and an 840 bp construct, both of which include an AP-1-specific binding site. NDGA exposure induced a significant increase in eNOS promoter activity in both constructs. However, the NDGA-mediated increase was abolished when we used either a truncated promoter construct lacking the AP-1 element or a construct in which the AP-1 binding site was mutated. AP-1 binding efficiency was also determined by electrophoretic mobility shift assay, where we observed an increase in AP-1 binding in FPAECs treated with NDGA while the binding of AP-1 was found to be decreased when a mutated AP-1 consensus sequence was used. Further, supershift analyses indicated that the AP-1 complex consisted of c-Jun and FosB. We therefore conclude that NDGA antioxidant activity regulates eNOS expression via AP-1 and that antioxidant therapy could potentially be used to increase eNOS expression in diseases, such as persistent pulmonary hypertension of the newborn, where eNOS expression and activity are known to be reduced.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
36
|
Siddiq A, Aminova LR, Ratan RR. Prolyl 4-hydroxylase activity-responsive transcription factors: from hydroxylation to gene expression and neuroprotection. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:2875-87. [PMID: 17981760 PMCID: PMC2570096 DOI: 10.2741/2892] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most homeostatic processes including gene transcription occur as a result of deviations in physiological tone that threatens the survival of the organism. A prototypical homeostatic stress response includes changes in gene expression following alterations in oxygen, iron or 2-oxoglutarate levels. Each of these cofactors plays an important role in cellular metabolism. Accordingly, a family of enzymes known as the Prolyl 4-hydroxylase (PHD) enzymes are a group of dioxygenases that have evolved to sense changes in 2-oxoglutarate, oxygen and iron via changes in enzyme activity. Indeed, PHDs are a part of an established oxygen sensor system that regulates transcriptional regulation of hypoxia/stress-regulated genes and thus are an important component of events leading to cellular rescue from oxygen, iron or 2-oxoglutarate deprivations. The ability of PHD activity to regulate homeostatic responses to oxygen, iron or 2-oxoglutarate metabolism has led to the development of small molecule inhibitors of the PHDs as a strategy for activating or augmenting cellular stress responses. These small molecules are proving effective in preclinical models of stroke and Parkinson's disease. However the precise protective pathways engaged by PHD inhibition are only beginning to be defined. In the current review, we summarize the role of iron, 2-oxoglutarate and oxygen in the PHD catalyzed hydroxylation reaction and provide a brief discussion of some of the transcription factors that play an effective role in neuroprotection against oxidative stress as a result of changes in PHD activity.
Collapse
Affiliation(s)
- Ambreena Siddiq
- Burke Medical Research Institute, White Plains, New York 10605, USA.
| | | | | |
Collapse
|
37
|
Abstract
This article summarizes data from experimental and clinical oncology which are indicative of a pivotal role of tumor carbohydrate metabolism in malignant behavior and outcome of treatment. In primary tumors, such as cervix carcinomas, head and neck squamous cell carcinomas or rectum adenocarcinomas, elevated lactate levels as a mirror of a high glycolytic activity, are correlated even at the initial diagnosis with a high level of malignancy as indicated by increased formation of metastases or an elevated radiotherapy resistance. The relationship between therapeutic resistance and glycolysis may at least partially be due to the radical scavenging potential of glycolytic intermediates, mainly pyruvate and lactate and to the link between these metabolites and the cellular redox status. On the basis of these data and other considerations, a novel technique has been developed for imaging the lactate/pyruvate ratio in tumor biopsies using quantitative bioluminescence. More research effort should, therefore, be focussed on the redox status of tumors in oncological studies in the future.
Collapse
Affiliation(s)
- U G A Sattler
- Institut für Physiologie und Pathophysiologie, Johannes Gutenberg-Universität, Duesbergweg 6, 55099 Mainz, Deutschland
| | | | | |
Collapse
|
38
|
Krötz F, Keller M, Derflinger S, Schmid H, Gloe T, Bassermann F, Duyster J, Cohen CD, Schuhmann C, Klauss V, Pohl U, Stempfle HU, Sohn HY. Mycophenolate Acid Inhibits Endothelial NAD(P)H Oxidase Activity and Superoxide Formation by a Rac1-Dependent Mechanism. Hypertension 2007; 49:201-8. [PMID: 17101842 DOI: 10.1161/01.hyp.0000251162.14782.d4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial dysfunction precedes hypertension and atherosclerosis and predicts cardiac allograft vasculopathy and death in heart transplant recipients. Endothelial overproduction of reactive oxygen species, such as superoxide anions produced by NAD(P)H oxidase, induces endothelial dysfunction. Because immunosuppressive drugs have been associated with increased reactive oxygen species production and endothelial dysfunction, we sought to elucidate the underlying mechanisms. Reactive oxygen species, release of superoxide anions, and NAD(P)H oxidase activity were studied in human umbilical vein endothelial cells and in polymorphonuclear neutrophils. Gp91ds-
tat
was used to specifically block NAD(P)H oxidase. Transcriptional activation of different subunits of NAD(P)H oxidase was assessed by real-time RT-PCR. Rac1 subunit translocation and activation were studied by membrane fractionation and pull-down assays. Calcineurin inhibitors significantly increased endothelial superoxide anions production because of NAD(P)H oxidase, whereas mycophenolate acid (MPA) blocked it. MPA also attenuated the respiratory burst induced by neutrophil NAD(P)H oxidase. Because transcriptional activation of NAD(P)H oxidase was not affected, but addition of guanosine restored endothelial superoxide anions formation after MPA treatment, we speculate that the inhibitory effect of MPA was mediated by depletion of cellular guanosine triphosphate content. This prevented activation of Rac1 and, thus, of endothelial NAD(P)H oxidase. Because all heart transplant recipients are at risk for cardiac allograft vasculopathy development, these differential effects of immunosuppressants on endothelial oxidative stress should be considered in the choice of immunosuppressive drugs.
Collapse
Affiliation(s)
- Florian Krötz
- Institute of Physiology, Medical Policlinic, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Searles CD. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol 2006; 291:C803-16. [PMID: 16738003 DOI: 10.1152/ajpcell.00457.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability of the endothelium to produce nitric oxide is essential to maintenance of vascular homeostasis; disturbance of this ability is a major contributor to the pathogenesis of vascular disease. In vivo studies have demonstrated that expression of endothelial nitric oxide synthase (eNOS) is vital to endothelial function and have led to the understanding that eNOS expression is subject to modest but significant degrees of regulation. Subsequently, numerous physiological and pathophysiological stimuli have been identified that modulate eNOS expression via mechanisms that alter steady-state eNOS mRNA levels. These mechanisms involve changes in the rate of eNOS gene transcription (transcriptional regulation) and alteration of eNOS mRNA processing and stability (posttranscriptional regulation). In cultured endothelial cells, shear stress, transforming growth factor-beta1, lysophosphatidylcholine, cell growth, oxidized linoleic acid, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, and hydrogen peroxide have been shown to increase eNOS expression. In contrast, tumor necrosis factor-alpha, hypoxia, lipopolysaccaride, thrombin, and oxidized LDL can decrease eNOS mRNA levels. For many of these stimuli, both transcriptional and posttranscriptional mechanisms contribute to regulation of eNOS expression. Recent studies have begun to further define signaling pathways responsible for changes in eNOS expression and have characterized cis- and trans-acting regulatory elements. In addition, a role has been identified for epigenetic control of eNOS mRNA levels. This review will discuss transcriptional and posttranscriptional regulation of eNOS with emphasis on the molecular mechanisms that have been identified for these processes.
Collapse
Affiliation(s)
- Charles D Searles
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
40
|
Min J, Jin YM, Moon JS, Sung MS, Jo SA, Jo I. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells. Hypertension 2006; 47:1189-96. [PMID: 16651461 DOI: 10.1161/01.hyp.0000222892.37375.4d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression.
Collapse
Affiliation(s)
- Jiho Min
- Department of Biomedical Sciences, National Institute of Health, 194 Tongilo, Eunpyeong-gu, Seoul 122-701, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Guix FX, Uribesalgo I, Coma M, Muñoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76:126-52. [PMID: 16115721 DOI: 10.1016/j.pneurobio.2005.06.001] [Citation(s) in RCA: 480] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is a molecule with pleiotropic effects in different tissues. NO is synthesized by NO synthases (NOS), a family with four major types: endothelial, neuronal, inducible and mitochondrial. They can be found in almost all the tissues and they can even co-exist in the same tissue. NO is a well-known vasorelaxant agent, but it works as a neurotransmitter when produced by neurons and is also involved in defense functions when it is produced by immune and glial cells. NO is thermodynamically unstable and tends to react with other molecules, resulting in the oxidation, nitrosylation or nitration of proteins, with the concomitant effects on many cellular mechanisms. NO intracellular signaling involves the activation of guanylate cyclase but it also interacts with MAPKs, apoptosis-related proteins, and mitochondrial respiratory chain or anti-proliferative molecules. It also plays a role in post-translational modification of proteins and protein degradation by the proteasome. However, under pathophysiological conditions NO has damaging effects. In disorders involving oxidative stress, such as Alzheimer's disease, stroke and Parkinson's disease, NO increases cell damage through the formation of highly reactive peroxynitrite. The paradox of beneficial and damaging effects of NO will be discussed in this review.
Collapse
Affiliation(s)
- F X Guix
- Laboratori de Fisiologia Molecular, Unitat de Senyalització Cellular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Carrer Dr. Aiguader, 80, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
42
|
Rui T, Kvietys PR. NFkappaB and AP-1 differentially contribute to the induction of Mn-SOD and eNOS during the development of oxidant tolerance. FASEB J 2005; 19:1908-10. [PMID: 16157693 DOI: 10.1096/fj.05-4028fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure of cardiac myocytes to anoxia/reoxygenation (A/R) increases myocyte oxidant stress and converts the myocytes to a proinflammatory phenotype. These oxidant-induced effects are prevented by pretreatment of the myocytes with an oxidant stress (A/R or H2O2) 24 h earlier (oxidant tolerance). Although NF-kappaB and AP-1 (nuclear signaling) and Mn-SOD and eNOS (effector enzymes) have been implicated in the development oxidant tolerance, the precise relationship between the nuclear transcription factors and the effector enzymes in the development of oxidant tolerance has not been defined. Herein, we show that an initial A/R challenge results in nuclear accumulation of both NF-kappaB and AP-1 (EMSA). In addition, blockade of nuclear translocation of NF-kappaB (SN50) or AP-1 (decoy oligonucleotide) prevents the development of oxidant tolerance, i.e., the second A/R challenge produces the same quantitative effects as the initial A/R challenge. In this model, nuclear translocation of both NF-kappaB and AP-1 is required for induction of Mn-SOD, while nuclear translocation of AP-1, but not NF-kappaB, is a prerequisite for induction of eNOS. Collectively, our findings indicate that NF-kappaB and AP-1 work in concert to ensure the induction eNOS and Mn-SOD, which in turn are important for the development of oxidant tolerance.
Collapse
Affiliation(s)
- Tao Rui
- Vascular Cell Biology Laboratory, Centre for Critical Illness Research, Lawson Health Research Institute and Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
43
|
Ilan E, Tirosh O, Madar Z. Triacylglycerol-mediated oxidative stress inhibits nitric oxide production in rat isolated hepatocytes. J Nutr 2005; 135:2090-5. [PMID: 16140881 DOI: 10.1093/jn/135.9.2090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to evaluate the effects of triacylglycerol (TG) on nitric oxide (NO) production, expression of endothelial (e) and inducible (i) nitric oxide synthase (NOS) and variables related to oxidative stress in rat isolated hepatocytes. Hepatocytes were isolated and exposed to TG in the form of a lipid emulsion (0.01-0.1% LE). Exposure to LE dose dependently decreased nitrite levels. Nitrite levels were inhibited 67% and intracellular reactive oxygen species (ROS) levels were increased 250% at 0.1% LE. The decline in nitrite levels was accompanied by 37 and 67% reductions in iNOS and eNOS expressions, respectively. To evaluate whether the increased oxidative stress inhibited NOS synthesis, cells were treated for 48 h with rotenone (a mitochondrial complex 1 inhibitor) or buthionine sulfoximine (a glutathione synthesis inhibitor). Both compounds elevated ROS production, which was followed by inhibition of nitrite production. To determine whether there is an association between LE-mediated ROS production and the inhibition of NO synthesis by the LE, hepatocytes were treated with antioxidants. N-Acetyl-l-cysteine (NAC), ascorbate, and resveratrol attenuated the reduction of nitrite levels due to LE alone. NAC inhibited the reductions in eNOS and iNOS transcription and protein levels. Nuclear factor-kappaB (NF-kappaB), one of the transcription factors involved in eNOS and iNOS transcriptional regulation, was decreased 15% in the nucleus by LE treatment. These results suggest that TG reduces nitrite production by elevating intracellular ROS levels (prolonged oxidative stress), and the downregulation of NOS enzymes may occur at least in part via the NFkappaB pathway.
Collapse
Affiliation(s)
- Erez Ilan
- The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Institute of Biochemistry, Food Science and Nutrition, Rehovot 76100, Israel
| | | | | |
Collapse
|
44
|
Cummins EP, Taylor CT. Hypoxia-responsive transcription factors. Pflugers Arch 2005; 450:363-71. [PMID: 16007431 DOI: 10.1007/s00424-005-1413-7] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 01/11/2005] [Indexed: 01/25/2023]
Abstract
Hypoxia is a common pathophysiological occurrence with a profound impact on the cellular transcriptome. The consequences of hypoxia-induced or hypoxia-repressed gene expression have important implications in disease processes as diverse as tumour development and chronic inflammation. While the hypoxia-inducible factor (HIF-1) plays a major role in controlling the ubiquitous transcriptional response to hypoxia, it is clear that a number of other transcription factors are also activated either directly or indirectly. In this review, we comprehensively discuss the transcription factors that have been reported to be hypoxia-responsive and the signalling mechanisms leading to their activation. Understanding such events will enhance our understanding of cellular oxygen sensing.
Collapse
Affiliation(s)
- Eoin P Cummins
- Department of Medicine and Therapeutics, The Conway Institute for Biomolecular and Biomedical Research and the Dublin Molecular Medicine Centre, University College Dublin, Belfield, Dublin, 4, Ireland
| | | |
Collapse
|
45
|
Muzaffar S, Shukla N, Angelini GD, Jeremy JY. Acute hypoxia simultaneously induces the expression of gp91phox and endothelial nitric oxide synthase in the porcine pulmonary artery. Thorax 2005; 60:305-13. [PMID: 15790986 PMCID: PMC1747371 DOI: 10.1136/thx.2003.018796] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The effect of hypoxia on the formation of superoxide (O2-), the expression of gp91phox and endothelial NO synthase (eNOS) were studied in pig intact pulmonary artery (PA) segments and PA vascular smooth muscle cells (PAVSMCs) and PA endothelial cells (PAECs). METHODS Segments and cells were incubated under hypoxic conditions for 2 hours (with or without enzyme inhibitors) and the formation of O2- measured spectrophotometrically. Protein expression was assessed using Western blotting and immunocytochemistry. RESULTS Hypoxia promoted the formation of O2- in PA segments, PAVSMCs and PAECs, an effect inhibited by diphenylene iodonium and apocynin (NAD[P]H oxidase inhibitors). Hypoxia induced O2- formation was enhanced by inhibition of eNOS and augmented by endotoxin and cytokines and re-oxygenation. Hypoxia also promoted the expression of gp91phox and eNOS. In intact PA segments hypoxia induced the expression of nitrotyrosine and eNOS in the endothelium. CONCLUSIONS The simultaneous upregulation of NAD[P]H oxidase and eNOS in response to hypoxia in the PA results in the simultaneous formation of O2-, NO, and ONOO-. This may represent either a protective mechanism designed to counter the pro-oxidant effect of hypoxia or a novel pathological mechanism underlying the progression of acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- S Muzaffar
- Bristol Heart Institute, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | | | | | |
Collapse
|
46
|
Laderoute KR. The interaction between HIF-1 and AP-1 transcription factors in response to low oxygen. Semin Cell Dev Biol 2005; 16:502-13. [PMID: 16144688 DOI: 10.1016/j.semcdb.2005.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a critical regulator of the transcriptional response to low oxygen conditions (hypoxia/anoxia) experienced by mammalian cells in both physiological and pathophysiological circumstances. As our understanding of the biology and biochemistry of HIF-1 has grown, it has become apparent that cells adapt to signals generated by low oxygen through a network of stress responsive transcription factors or complexes, which are influenced by HIF-1 activity. This review summarizes our current understanding of the interaction of HIF-1 with AP-1, a classic example of a family of pleiotropic transcription factors that impact on diverse cellular processes and phenotypes, including the adaptation to low oxygen stress. The review focuses on experimental studies involving cultured cells exposed to hypoxia/anoxia, and describes both established and possible interactions between HIF-1 and AP-1 at different levels of cellular organization.
Collapse
Affiliation(s)
- Keith R Laderoute
- Biosciences Division, SRI International, Bldg. L, Rm. A258, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
47
|
Damelin LH, Coward S, Choudhury SF, Chalmers SA, Cox IJ, Robertson NJ, Revial G, Miles M, Tootle R, Hodgson HJF, Selden C. Altered mitochondrial function and cholesterol synthesis influences protein synthesis in extended HepG2 spheroid cultures. Arch Biochem Biophys 2004; 432:167-77. [PMID: 15542055 DOI: 10.1016/j.abb.2004.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/22/2004] [Indexed: 11/26/2022]
Abstract
Cultures of hepatocytes and HepG2 cells provide useful in vitro models of liver specific function. In this study, we investigated metabolic and biosynthetic function in 3-D HepG2 spheroid cultures, in particular to characterise changes on prolonged culture. We show that HepG2 cells cultured in spheroids demonstrate a reduction in mitochondrial membrane potential and respiration following 10 days of culture. This coincides with a modest reduction in glycolysis but an increase in glucose uptake where increased glycogen synthesis occurs at the expense of the intracellular ATP pool. Lowered biosynthesis coincides with and is linked to mitochondrial functional decline since low glucose-adapted spheroids, which exhibit extended mitochondrial function, have stable biosynthetic activity during extended culture although biosynthetic function is lower. This indicates that glucose is required for biosynthetic output but sustained mitochondrial function is required for the maintenance of biosynthetic function. Furthermore, we show that cholesterol synthesis is markedly increased in spheroids cf. monolayer culture and that inhibition of cholesterol synthesis by lovastatin extends mitochondrial and biosynthetic function. Therefore, increased cholesterol synthesis and/or its derivatives contributes to mitochondrial functional decline in extended HepG2 spheroid cultures.
Collapse
Affiliation(s)
- Leonard H Damelin
- Department of Medicine, Royal Free Campus, Royal Free and UCL Medical School, Rowland Hill Street, Hampstead, London, NW3 2PF, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
A number of studies have shown that malignant transformation is associated with an increase in glycolytic flux and in anaerobic and aerobic cellular lactate excretion. Using quantitative bioluminescence imaging in various primary carcinomas in patients (uterine cervix, head and neck, colorectal region) at first diagnosis of the disease, we showed that lactate concentrations in tumors in vivo can be relatively low or extremely high (up to 40 micromol/g) in different individual tumors or within the same lesion. In all tumor entities investigated, high concentrations of lactate were correlated with a high incidence of distant metastasis already in an early stage of the disease. Low lactate tumors (8 micromol/g). Lactate dehydrogenase was found to be upregulated in most of these tumors compared with surrounding normal tissue. Numerous recent reports support these data by showing various biological activities of lactate that can enhance the malignant behavior of cancer cells. These mechanisms include the activation of hyaluronan synthesis by tumor-associated fibroblasts, upregulation of vascular endothelial growth factor and of hypoxia-inducible factor 1alpha, and direct enhancement of cellular motility that generates favorable conditions for metastatic spread. Thus, lactate accumulation not only mirrors but also actively enhances the degree of tumor malignancy. We propose that determination of lactate in primary tumors may serve as a basis of a novel metabolic classification, which can lead to an improvement of prognosis and therapy in clinical oncology.
Collapse
Affiliation(s)
- Stefan Walenta
- Institute of Physiology and Pathophysiology, University of Mainz, Germany
| | | |
Collapse
|
49
|
Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, Hedrick CC. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia 2004; 47:1727-34. [PMID: 15490108 DOI: 10.1007/s00125-004-1525-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 06/01/2004] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS Hyperglycaemia is a primary cause of vascular complications in diabetes. A hallmark of these vascular complications is endothelial cell dysfunction, which is partly due to the reduced production of nitric oxide. The aim of this study was to investigate the regulation of endothelial nitric oxide synthase (eNOS) activity by acute and chronic elevated glucose. METHODS Human aortic endothelial cells were cultured in 5.5 mmol/l (NG) or 25 mmol/l glucose (HG) for 4 h, 1 day, 3 days or 7 days. Mouse aortic endothelial cells were freshly isolated from C57BL/6J control and diabetic db/db mice. The expression and activity of eNOS were measured using quantitative PCR and nitrite measurements respectively. The binding of activator protein-1 (AP-1) to DNA in nuclear extracts was determined using electrophoretic mobility-shift assays. RESULTS Acute exposure (4 h) of human aortic endothelial cells to 25 mmol/l glucose moderately increased eNOS activity and eNOS mRNA and protein expression. In contrast, chronic exposure to elevated glucose (25 mmol/l for 7 days) reduced total nitrite levels (46% reduction), levels of eNOS mRNA (46% reduction) and eNOS protein (65% reduction). In addition, AP-1 DNA binding activity was increased in chronic HG-cultured human aortic endothelial cells, and this effect was reduced by the specific inhibition of reactive oxygen species production through the mitochondrial electron transport chain. Mutation of AP-1 sites in the human eNOS promoter reversed the effects of HG. Compared with C57BL/6J control mice, eNOS mRNA levels in diabetic db/db mouse aortic endothelial cells were reduced by 60%. This decrease was reversed by the overexpression of manganese superoxide dismutase using an adenoviral construct. CONCLUSIONS/INTERPRETATION In diabetes, the expression and activity of eNOS is regulated through glucose-mediated mitochondrial production of reactive oxygen species and activation of the oxidative stress transcription factor AP-1.
Collapse
Affiliation(s)
- S Srinivasan
- Division of Endocrinology and Metabolism, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Suliman HB, Ali M, Piantadosi CA. Superoxide dismutase-3 promotes full expression of the EPO response to hypoxia. Blood 2004; 104:43-50. [PMID: 15016652 DOI: 10.1182/blood-2003-07-2240] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractExtracellular superoxide dismutase (SOD3) is the primary extracellular enzymatic scavenger of superoxide (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(^{{\cdot}}\mathrm{O}_{2}^{-}\) \end{document}). SOD3's expression is highest in the kidney, but its distribution and biologic functions there are unknown. To investigate the function of renal SOD3, we colocalized it with erythropoietin (EPO) to proximal tubules using in situ hybridization and immunohistochemistry. We then exposed wild-type (Wt) and SOD3 knock-out (KO) mice to hypoxia and found a late hematocrit response in the KO strain. EPO mRNA expression was attenuated in KO mice during the first 6 hours of hypoxia preceded at 2 hours by less accumulation of nuclear hypoxia-inducible transcription factor 1 α (HIF-1α) protein. Meanwhile KO mice exposed to hypoxia showed increases in renal mRNA for superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX4) and early significant increases in glutathione disulfide (GSSG)/glutathione (GSH), a marker of oxidative stress, compared with Wt mice. Plasma nitrite/nitrate and renal 3-nitrotyrosine (3-NTyr), indicating peroxynitrite formation, increased later in hypoxia, and renal endothelial nitric oxide synthase protein induction was similar in both strains. These data show that hypoxic activation of HIF-1α and its target gene EPO in mouse kidney is regulated closely by the oxidant/antioxidant equilibrium involving SOD3, thus identifying renal SOD3 as a regulatory element in the body's innate adaptation to hypoxia.
Collapse
Affiliation(s)
- Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|