1
|
Leung AOW, Poon ACH, Wang X, Feng C, Chen P, Zheng Z, To MK, Chan WCW, Cheung M, Chan D. Suppression of apoptosis impairs phalangeal joint formation in the pathogenesis of brachydactyly type A1. Nat Commun 2024; 15:2229. [PMID: 38472182 PMCID: PMC10933404 DOI: 10.1038/s41467-024-45053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined. Here, we use a mouse model of brachydactyly type A1 (BDA1) with an IhhE95K mutation, to show that a missing middle phalangeal bone is due to the failure of the developing joint to cavitate, associated with reduced apoptosis, and a joint is not formed. We showed an intricate relationship between IHH and interacting partners, CDON and GAS1, in the interzone that regulates apoptosis. We propose a model in which CDON/GAS1 may act as dependence receptors in this context. Normally, the IHH level is low at the center of the interzone, enabling the "ligand-free" CDON/GAS1 to activate cell death for cavitation. In BDA1, a high concentration of IHH suppresses apoptosis. Our findings provided new insights into the role of IHH and CDON in joint formation, with relevance to hedgehog signaling in developmental biology and diseases.
Collapse
Affiliation(s)
- Adrian On Wah Leung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew Chung Hin Poon
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xue Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chen Feng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Zhengfan Zheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Michael KaiTsun To
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China.
| | - Martin Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
2
|
Xue M, Huang N, Luo Y, Yang X, Wang Y, Fang M. Combined Transcriptomics and Metabolomics Identify Regulatory Mechanisms of Porcine Vertebral Chondrocyte Development In Vitro. Int J Mol Sci 2024; 25:1189. [PMID: 38256262 PMCID: PMC10816887 DOI: 10.3390/ijms25021189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine body length is closely related to meat production, growth, and reproductive performance, thus playing a key role in the profitability of the pork industry. Cartilage development is critical to longitudinal elongation of individual vertebrae. This study isolated primary porcine vertebral chondrocytes (PVCs) to clarify the complex mechanisms of elongation. We used transcriptome and target energy metabolome technologies to confirm crucial genes and metabolites in primary PVCs at different differentiation stages (0, 4, 8, and 12 days). Pairwise comparisons of the four stages identified 4566 differentially expressed genes (DEGs). Time-series gene cluster and functional analyses of these DEGs revealed four clusters related to metabolic processes, cartilage development, vascular development, and cell cycle regulation. We constructed a transcriptional regulatory network determining chondrocyte maturation. The network indicated that significantly enriched transcription factor (TF) families, including zf-C2H2, homeobox, TF_bZIP, and RHD, are important in cell cycle and differentiation processes. Further, dynamic network biomarker (DNB) analysis revealed that day 4 was the tipping point for chondrocyte development, consistent with morphological and metabolic changes. We found 24 DNB DEGs, including the TFs NFATC2 and SP7. Targeted energy metabolome analysis showed that most metabolites were elevated throughout chondrocyte development; notably, 16 differentially regulated metabolites (DRMs) were increased at three time points after cell differentiation. In conclusion, integrated metabolome and transcriptome analyses highlighted the importance of amino acid biosynthesis in chondrocyte development, with coordinated regulation of DEGs and DRMs promoting PVC differentiation via glucose oxidation. These findings reveal the regulatory mechanisms underlying PVC development and provide an important theoretical reference for improving pork production.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Ning Huang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Yubei Wang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| |
Collapse
|
3
|
Pogoda HM, Riedl-Quinkertz I, Hammerschmidt M. Direct BMP signaling to chordoblasts is required for the initiation of segmented notochord sheath mineralization in zebrafish vertebral column development. Front Endocrinol (Lausanne) 2023; 14:1107339. [PMID: 37223044 PMCID: PMC10200950 DOI: 10.3389/fendo.2023.1107339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/15/2023] [Indexed: 05/25/2023] Open
Abstract
The vertebral column, with the centra as its iteratively arranged building blocks, represents the anatomical key feature of the vertebrate phylum. In contrast to amniotes, where vertebrae are formed from chondrocytes and osteoblasts deriving from the segmentally organized neural crest or paraxial sclerotome, teleost vertebral column development is initiated by chordoblasts of the primarily unsegmented axial notochord, while sclerotomal cells only contribute to later steps of vertebrae formation. Yet, for both mammalian and teleostean model systems, unrestricted signaling by Bone Morphogenetic Proteins (BMPs) or retinoic acid (RA) has been reported to cause fusions of vertebral elements, while the interplay of the two signaling processes and their exact cellular targets remain largely unknown. Here, we address this interplay in zebrafish, identifying BMPs as potent and indispensable factors that, as formerly shown for RA, directly signal to notochord epithelial cells/chordoblasts to promote entpd5a expression and thereby metameric notochord sheath mineralization. In contrast to RA, however, which promotes sheath mineralization at the expense of further collagen secretion and sheath formation, BMP defines an earlier transitory stage of chordoblasts, characterized by sustained matrix production/col2a1 expression and concomitant matrix mineralization/entpd5a expression. BMP-RA epistasis analyses further indicate that RA can only affect chordoblasts and their further progression to merely mineralizing cells after they have received BMP signals to enter the transitory col2a1/entpd5a double-positive stage. This way, both signals ensure consecutively for proper mineralization of the notochord sheath within segmented sections along its anteroposterior axis. Our work sheds further light onto the molecular mechanisms that orchestrate early steps of vertebral column segmentation in teleosts. Similarities and differences to BMP's working mechanisms during mammalian vertebral column formation and the pathomechanisms underlying human bone diseases such as Fibrodysplasia Ossificans Progressiva (FOP) caused by constitutively active BMP signaling are discussed.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
| | - Iris Riedl-Quinkertz
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
- Cluster of Excellence, Cellular Stress Responses in Aging-Associated Diseases (CECAD) Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Wang F, Rummukainen P, Pehkonen M, Säämänen AM, Heino TJ, Kiviranta R. Mesenchymal cell-derived Wnt1 signaling regulates subchondral bone remodeling but has no effects on the development of growth plate or articular cartilage in mice. Bone 2022; 163:116497. [PMID: 35863746 DOI: 10.1016/j.bone.2022.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022]
Abstract
Chondrocyte differentiation is a principal progress in endochondral ossification and in the formation of secondary ossification center (SOC) during the long bone development. We have previously reported that targeted deletion of Wnt1 in mesenchymal progenitors (Wnt1Prrx-/-) leads to spontaneous fractures and severe osteopenia in mouse long bones, suggesting that Wnt1 is a key regulator of bone metabolism. However, the effect of Wnt1 on the regulation of cartilage development and chondrocyte differentiation remained unknown. In this study, WNT1 protein expression was observed in lateral superficial cartilage and growth plate pre-hypertrophic chondrocytes in mice. Wnt1 mRNA expression was detected in epiphyseal cartilage from E16.5 to 3 month-old mice. Detailed histological analyses revealed that the average thickness and chondrocyte density of proximal tibial articular cartilage and growth plate were unchanged between Wnt1Prrx-/- and control mice. However, μCT analysis of tibial epiphyses showed that the subchondral bone mass was reduced in Wnt1Prrx-/- mice compared to control mice, as demonstrated by decreased bone volume, trabecular number, trabecular thickness, and increased trabecular separation in Wnt1Prrx-/- mice. Mechanistically, histomorphometric analyses showed that the reduced subchondral bone mass in Wnt1Prrx-/- mice was due to impaired bone formation and enhanced bone resorption. In vitro, exogenous Wnt1 inhibited chondrogenesis and chondrocyte hypertrophy in both cell autonomous and juxtacrine manners, while matrix mineralization and the expression of Mmp13, Mmp9 and Opn were induced in a juxtacrine manner. Taken together, mesenchymal cell-derived Wnt1 is an important regulator of subchondral bone remodeling, although it has no effect on the regulation of growth plate or articular cartilage.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | | | - Matias Pehkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Terhi J Heino
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Endocrinology, Division of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis. Cell Death Differ 2022; 29:874-887. [PMID: 35094018 PMCID: PMC8991200 DOI: 10.1038/s41418-021-00919-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022] Open
Abstract
The circadian clock is a master regulator in coordinating daily oscillations of physiology and behaviors. Nevertheless, how the circadian rhythm affects endochondral ossification is poorly understood. Here we showed that endochondral bone formation exhibits circadian rhythms, manifested as fast DNA replication in the daytime, active cell mitosis, and matrix synthesis at night. Circadian rhythm disruption led to endochondral ossification deformities. The mechanistic dissection revealed that melatonin receptor 1 (MTR1) periodically activates the AMPKβ1 phosphorylation, which then orchestrates the rhythms of cell proliferation and matrix synthesis via destabilizing the clock component CRY1 and triggering BMAL1 expression. Accordingly, the AMPKβ1 agonist is capable of alleviating the abnormity of endochondral ossification caused by circadian dysrhythmias. Taken together, these findings indicated that the central circadian clock could control endochondral bone formation via the MTR1/AMPKβ1/BMAL1 signaling axis in chondrocytes. Also, our results suggested that the AMPKβ1 signaling activators are promising medications toward endochondral ossification deformities.
Collapse
|
6
|
Zhang D, Li Q, Zhang D, Yang X, Wang C, Zhang R, Yang X, Li Z, Xiong Y. An eQTL variant of ALDH1A2 is associated with Kashin-Beck disease in Chinese population. J Bone Miner Metab 2022; 40:317-326. [PMID: 35059888 DOI: 10.1007/s00774-021-01287-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The aims of the study were to investigate the relationship between aldehyde dehydrogenase 1 family member A2 (ALDH1A2) and Kashin-Beck disease (KBD), explore the effects of the rs3204689 polymorphism and methylation status on the expression levels of ALDH1A2, and further clarify the pathogenesis of KBD. MATERIALS AND METHODS The genotype of ALDH1A2 rs3204689 was detected by PCR-RFLP in 103 KBD patients and 109 healthy controls in the whole blood. The mRNA level of ALDH1A2 was measured by qRT-PCR, and the protein expression was detected using IHC staining and Western blotting. The MSP-PCR was used to identify the ALDH1A2 methylation level. RESULTS There were significant differences in G/G, G/C, and C/C frequencies of ALDH1A2 rs3204689 between the KBD and control groups (χ2 = 7.113, P = 0.029); the minor allele G of ALDH1A2 was associated with the risk of KBD (χ2 = 5.984, P = 0.014). The mRNA and protein levels of ALDH1A2 were increased in the whole blood and cartilage of KBD patients compared with the controls (P = 0.049, P < 0.0001, P = 0.019). Meanwhile, a statistically significant difference was observed between G/G, G/C and C/C genotype on mRNA expression (P = 0.039). The methylation level of the ALDH1A2 gene promoter region showed no significant difference between the KBD and control groups (χ2 = 0.317, P = 0.573). CONCLUSION Our case-control study indicates that the common variant rs3204689 near ALDH1A2 is associated with KBD in Chinese population. The risk allele G of rs3204689 is statistically linked to the high expression of ALDH1A2, which is up-regulated in the cartilage and whole blood of KBD patients. Our findings suggest a potential role of ALDH1A2 in the pathogenesis of KBD.
Collapse
Affiliation(s)
- Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiaoli Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Rongqiang Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
- Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| | - Xuena Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhaofang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yongmin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Fuente R, García-Bengoa M, Fernández-Iglesias Á, Gil-Peña H, Santos F, López JM. Cellular and Molecular Alterations Underlying Abnormal Bone Growth in X-Linked Hypophosphatemia. Int J Mol Sci 2022; 23:ijms23020934. [PMID: 35055123 PMCID: PMC8778463 DOI: 10.3390/ijms23020934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Physiology, Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - José Manuel López
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Correspondence:
| |
Collapse
|
8
|
Tamiasso NV, Silva CMO, Reis AMS, Ocarino NM, Serakides R. Ethanol Alters Phenotype and Synthesis Activity of Rat Neonatal Articular Chondrocytes Grown in 2- and 3-Dimensional Culture. Cartilage 2021; 13:839S-846S. [PMID: 31441318 PMCID: PMC8804855 DOI: 10.1177/1947603519870862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We sought to evaluate the effect of different concentrations of ethanol on phenotype and activity of articular chondrocyte synthesis of neonatal rats in 2-dimensional (2D) and 3-dimensional (3D) culture. METHODS Chondrocytes were cultured in chondrogenic medium with different concentrations of ethanol: 0.0% v/v (control); 0.05% v/v (8.6 mM); 0.25% v/v (42.9 mM), and 0.5% v/v (85.7 mM). Chondrocytes under 2D culture were subjected to MTT assay, while chondrocytes under 3D culture were processed for paraffin inclusion and stained by periodic acid Schiff (PAS) to evaluate mean chondrocyte diameter and percentages of cells, nucleus, cytoplasm, well-differentiated matrix, and PAS+ areas. The expression of gene transcripts for aggrecan, Sox9, and type II collagen was evaluated by real-time quantitative polymerase chain reaction. RESULTS There was no difference between groups by the MTT assay. PAS staining revealed that chondrocytes treated with 0.5% v/v ethanol had higher percentages of cytoplasm and nuclear areas, but with a reduction in PAS+ matrix area. The mean diameter of chondrocytes was similar between groups. The expression of aggrecan in the group treated with 0.5% v/v ethanol was lower in comparison to that in the control. In the groups treated with 0.25% v/v and 0.5% v/v ethanol, the percentage of differentiated cartilage was lower in comparison with that in the control. The group treated with 0.05% v/v ethanol was similar to the control in all parameters. CONCLUSIONS Ethanol acted directly on in vitro cultured articular chondrocytes of newborn rats, altering the chondrocyte phenotype and its synthesis activity, and these effects were dose dependent.
Collapse
Affiliation(s)
- Natalia Viana Tamiasso
- Núcleo de Células Tronco e Terapia
Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas
Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Carla Maria Osório Silva
- Núcleo de Células Tronco e Terapia
Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas
Gerais Belo Horizonte, Minas Gerais, Brazil
| | | | - Natália Melo Ocarino
- Núcleo de Células Tronco e Terapia
Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas
Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Núcleo de Células Tronco e Terapia
Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas
Gerais Belo Horizonte, Minas Gerais, Brazil,Rogéria Serakides, Núcleo de Células Tronco
e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade
Federal de Minas Gerais Belo Horizonte, Av. Antônio Carlos 6627, Caixa Postal
567, campus Pampulha da UFMG, Belo Horizonte, MG CEP 30123-970, Brazil.
| |
Collapse
|
9
|
Li XJ, Zhu F, Li B, Zhang D, Liang CW. Recombinant human regenerating gene 4 attenuates the severity of osteoarthritis by promoting the proliferation of articular chondrocyte in an animal model. Curr Mol Pharmacol 2021; 15:693-699. [PMID: 34488597 DOI: 10.2174/1874467214666210901163144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a dominant cause of morbidity and disability. As a chronic disease, its etiological risk factors and most therapies at present, are empirical and symptomatic. Regenerating gene 4 (Reg4) is involved in cell growth, survival, regeneration, adhesion, and resistance to apoptosis, which are partially thought to be the pathogenic mechanisms of OA. However, the proper role of Reg4 in OA is still unknown. METHODS In this study, a consecutive administration of rhReg4 was applied to normal Sprague-Dawley rats or rats after OA induction. Histological changes and chondrocyte proliferation in the articular cartilage were measured. RESULTS We found that RhReg4 promotes chondrocyte proliferation in normal rats, and RhReg4 attenuated the severity of OA in rats by promoting chondrocytes' proliferation in OA rats. CONCLUSION In conclusion, recombinant human regenerating gene 4 (rhReg4) attenuates the severity of osteoarthritis in OA animal models and may be used as a new method for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Xue-Jia Li
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Fei Zhu
- Department of Orthopaedics, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Bo Li
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Dong Zhang
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Cheng-Wei Liang
- Department of Orthopaedics, Huadong Hospital Affiliated to Fudan University, Shanghai. China
| |
Collapse
|
10
|
Basudan AM, Aziz MA, Yang Y. Implications of zonal architecture on differential gene expression profiling and altered pathway expressions in mandibular condylar cartilage. Sci Rep 2021; 11:16915. [PMID: 34413358 PMCID: PMC8376865 DOI: 10.1038/s41598-021-96071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Mandibular condylar cartilage (MCC) is a multi-zonal heterogeneous fibrocartilage containing different types of cells, but the factors/mechanisms governing the phenotypic transition across the zones have not been fully understood. The reliability of molecular studies heavily rely on the procurement of pure cell populations from the heterogeneous tissue. We used a combined laser-capture microdissection and microarray analysis approach which allowed identification of differential zone-specific gene expression profiling and altered pathways in the MCC of 5-week-old rats. The bioinformatics analysis demonstrated that the MCC cells clearly exhibited distinguishable phenotypes from the articular chondrocytes. Additionally, a set of genes has been determined as potential markers to identify each MCC zone individually; Crab1 gene showed the highest enrichment while Clec3a was the most downregulated gene at the superficial layer, which consists of fibrous (FZ) and proliferative zones (PZ). Ingenuity Pathway Analysis revealed numerous altered signaling pathways; Leukocyte extravasation signaling pathway was predicted to be activated at all MCC zones, in particular mature and hypertrophic chondrocytes zones (MZ&HZ), when compared with femoral condylar cartilage (FCC). Whereas Superpathway of Cholesterol Biosynthesis showed predicted activation in both FZ and PZ as compared with deep MCC zones and FCC. Determining novel zone-specific differences of large group of potential genes, upstream regulators and pathways in healthy MCC would improve our understanding of molecular mechanisms on regional (zonal) basis, and provide new insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Aisha M Basudan
- Division of Orthodontics, Dental Services Department, KAMC/KAIMRC/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 11426, Saudi Arabia.
| | - Mohammad Azhar Aziz
- King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Colorectal Cancer Research Program, MNGHA, Riyadh, 11426, Saudi Arabia
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, SAR, China
| |
Collapse
|
11
|
Li D, Zhang R, Sun Q, Guo X. Involvement of Bmal1 and circadian clock signaling in chondrogenic differentiation of ATDC5 cells by fluoride. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111058. [PMID: 32739676 DOI: 10.1016/j.ecoenv.2020.111058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/13/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Skeletal fluorosis causes growth plate impairment and growth retardation during bone development. However, the mechanism of how fluoride impairs chondrocyte is unclear. To explore the effect of fluoride on chondrocyte differentiation and the regulation of circadian clock signaling pathway during chondrogenesis, we treated ATDC5 cells with fluoride and carried out a series of experiments. 10-3 M fluoride inhibited cell viability and significantly decreased the expression of Sox9 and Col2a1 (P < 0.05). Fluoride inhibited proteoglycan synthesis and decreased significantly the expression of Aggrecan, Ihh and Col10a1 (P < 0.05). Meanwhile, fluoride significantly inhibited the expression of Bmal1 and disrupted circadian clock signaling pathway (P < 0.05). Furthermore, fluoride disrupted the time-dependent expression of circadian clock molecules and stage-specific differentiation markers. Overexpression of Bmal1 by lentivirus reversed the adverse effects of fluoride on chondrogenesis. These results suggested that fluoride inhibited chondrocyte viability and delayed chondrocyte differentiation. Fluoride delayed chondrogenesis partly via interfering with Bmal1 and circadian clock signaling pathway. Nevertheless, the specific mechanism of circadian clock in fluoride-induced cartilage damage needs to be further studied.
Collapse
Affiliation(s)
- Demin Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Ruixue Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Qinyuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Xiaoying Guo
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
12
|
Chen WX, Liu HH, Li RX, Mammadov G, Wang JJ, Liu FF, Samadli S, Wu YF, Zhang DD, Luo HH, Hu P. C-type natriuretic peptide stimulates osteoblastic proliferation and collagen-X expression but suppresses fibroblast growth factor-23 expression in vitro. Pediatr Rheumatol Online J 2020; 18:46. [PMID: 32517762 PMCID: PMC7285564 DOI: 10.1186/s12969-020-00441-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The effects of C-type natriuretic peptide (CNP) and fibroblast growth factor (FGF)-23 appear to oppose each other during the process of bone formation, whereas few studies exist on the interaction between CNP and FGF-23. The main objective of the present study is to probe whether CNP is directly responsible for the regulation of osteoblast or via antagonizing FGF-23. METHODS Osteoblasts were cultured in the absence or presence of CNP (0, 10, and 100 pmol/L) for 24 h, 48 h and 72 h, respectively. RESULTS The findings of the present study indicated that: (1) CNP significantly stimulated osteoblastic proliferation and collagen (Col)-X expression; (2) both osteoblastic (osteocalcin, procollagen type I carboxy-terminal propeptide, total alkaline phosphatase and bone-specific alkaline phosphatase) and osteolytic (tartrate-resistant acid phosphatase and cross-linked carboxyterminal telopeptide of type I collagen) bone turnover biomarkers were up-regulated by CNP in osteoblasts; (3) FGF-23 mRNA and protein were significantly down-regulated at 24 h by CNP in osteoblasts, but the expression of FGF receptor-1/Klotho had no significant change. CONCLUSIONS CNP stimulates osteoblastic proliferation and Col-X expression via the down-regulation of FGF-23 possibly in vitro. However, the specific mechanisms of the interaction between CNP and FGF-23 in osteoblasts are still unclear according to our findings. A further study on osteoblasts cultured with CNP and FGF-23 inhibitor will be undertaken in our laboratory.
Collapse
Affiliation(s)
- Wei Xia Chen
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Hui Hui Liu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Rui Xue Li
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Goshgar Mammadov
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Jing Jing Wang
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Fei Fei Liu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Sama Samadli
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Yang Fang Wu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Dong Dong Zhang
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Huang Huang Luo
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province, 230032, PR China.
| |
Collapse
|
13
|
Mizuno S, Yoda M, Kimura T, Shimoda M, Akiyama H, Chiba K, Nakamura M, Horiuchi K. ADAM10 is indispensable for longitudinal bone growth in mice. Bone 2020; 134:115273. [PMID: 32062003 DOI: 10.1016/j.bone.2020.115273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Skeletal development is a highly sophisticated process in which the expression of a variety of growth factors, signaling molecules, and extracellular matrix proteins is spatially and temporally orchestrated. In the present study, we show that ADAM10, a transmembrane protease that is critically involved in the functional regulation of various membrane-bound molecules, plays an essential role in the longitudinal growth of long bones and in skeletal development. We found that mutant mice lacking ADAM10 in osteochondroprogenitors exhibited marked growth retardation and had shorter long bones than the control mice. Histomorphometric analysis revealed that the mutant mice had a shorter hypertrophic zone and that their hypertrophic chondrocytes were smaller in size than those of the control mice. Unexpectedly, we found that the mRNA expression of the chemokine CXCL12 and its receptor CXCR4 were significantly reduced in cartilage tissues lacking ADAM10. Further, exogenous supplementation of recombinant CXCL12 rescued the defect in the ADAM10-deficient growth plate in an ex vivo culture model. Taken together, our data show a previously unknown role for ADAM10 in skeletal development that involves its regulation of the CXCL12 and CXCR4 signaling pathway.
Collapse
Affiliation(s)
- Sakiko Mizuno
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Orthopedics, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa City, Chiba 272-8513, Japan.
| | - Masaki Yoda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tokuhiro Kimura
- Department of Diagnostic Pathology, Saiseikai Yokohama Tobu Hospital, 3-6-1 Shimosueyoshi, Tsurumi Ward, Yokohama, Kanagawa 230-8765, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu, Gifu 501-1194, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
14
|
Chen D, Kim DJ, Shen J, Zou Z, O'Keefe RJ. Runx2 plays a central role in Osteoarthritis development. J Orthop Translat 2019; 23:132-139. [PMID: 32913706 PMCID: PMC7452174 DOI: 10.1016/j.jot.2019.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, is the leading cause of impaired mobility in the elderly, and accounts for more than a third of chronic moderate to severe pain. As a degenerative joint disorder, OA affects the whole joint and results in synovial hyperplasia, degradation of articular cartilage, subchondral sclerosis, osteophyte formation, and chronic pain. Currently, there is no effective drug to decelerate OA progression and molecular targets for drug development have been insufficiently investigated. Anti-OA drug development can benefit from more and precise knowledge of molecular targets for drug development. Runt-related transcription factor 2 (Runx2) is a key transcription factor controlling osteoblast and chondrocyte differentiation and is among the most promising potential therapeutic targets. Notably, Runx2 expression is upregulated in several murine OA models, suggesting a role in disease pathogenesis. In this review article, we summarized recent findings on Runx2 related to OA development and evaluated its potential as a therapeutic target. The translational potential of this article A better understanding of the role of Runx2 in osteoarthritis pathogenesis will contribute to the development of novel intervention of osteoarthritis disease.
Collapse
Affiliation(s)
- Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongyeon J Kim
- Department of Orthopedic Surgery, Washington University at St. Louis, MO, USA
| | - Jie Shen
- Department of Orthopedic Surgery, Washington University at St. Louis, MO, USA
| | - Zhen Zou
- Department of Orthopedic Surgery, Washington University at St. Louis, MO, USA
| | - Regis J O'Keefe
- Department of Orthopedic Surgery, Washington University at St. Louis, MO, USA
| |
Collapse
|
15
|
Draut H, Liebenstein T, Begemann G. New Insights into the Control of Cell Fate Choices and Differentiation by Retinoic Acid in Cranial, Axial and Caudal Structures. Biomolecules 2019; 9:E860. [PMID: 31835881 PMCID: PMC6995509 DOI: 10.3390/biom9120860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is an important regulator of chordate development. RA binds to nuclear RA receptors that control the transcriptional activity of target genes. Controlled local degradation of RA by enzymes of the Cyp26a gene family contributes to the establishment of transient RA signaling gradients that control patterning, cell fate decisions and differentiation. Several steps in the lineage leading to the induction and differentiation of neuromesodermal progenitors and bone-producing osteogenic cells are controlled by RA. Changes to RA signaling activity have effects on the formation of the bones of the skull, the vertebrae and the development of teeth and regeneration of fin rays in fish. This review focuses on recent advances in these areas, with predominant emphasis on zebrafish, and highlights previously unknown roles for RA signaling in developmental processes.
Collapse
|
16
|
Xing W, Godwin C, Pourteymoor S, Mohan S. Conditional disruption of the osterix gene in chondrocytes during early postnatal growth impairs secondary ossification in the mouse tibial epiphysis. Bone Res 2019; 7:24. [PMID: 31646014 PMCID: PMC6804621 DOI: 10.1038/s41413-019-0064-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
In our previous studies, we have found that the prepubertal increase in thyroid hormone levels induces osterix (Osx) signaling in hypertrophic chondrocytes to transdifferentiate them into osteoblasts. To test if Osx expressed in chondrocytes directly contributes to transdifferentiation and secondary ossification, we generated Osx flox/flox ; Col2-Cre-ERT2 mice and knocked out Osx with a single injection of tamoxifen at postnatal day (P) 3 prior to evaluation of the epiphyseal bone phenotype by µCT, histology, and immunohistochemistry (IHC) at P21. Vehicle (oil)-treated Osx flox/flox ; Col2-Cre-ERT2 and tamoxifen-treated, Cre-negative Osx flox/flox mice were used as controls. µCT analysis of tibial epiphyses revealed that trabecular bone mass was reduced by 23% in the Osx conditional knockout (cKO) compared with control mice. Trabecular number and thickness were reduced by 28% and 8%, respectively, while trabecular separation was increased by 24% in the cKO mice. Trichrome staining of longitudinal sections of tibial epiphyses showed that bone area and bone area adjusted for total area were decreased by 22% and 18%, respectively. IHC studies revealed the presence of abundant Osx-expressing prehypertrophic chondrocytes in the epiphyses of control mice at P10, but not in the cKO mice. Furthermore, expression levels of MMP13, COL10, ALP, and BSP were considerably reduced in the epiphyses of cKO mice. We also found that Osx overexpression in ATDC5 chondrocytes increased expression of Col10, Mmp13, Alp, and Bsp. Our data indicate that Osx expressed in chondrocytes plays a significant role in secondary ossification by regulating expression of genes involved in chondrocyte hypertrophy and osteoblast transdifferentiation.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92357 USA
| | - Catrina Godwin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92357 USA
- Department of Orthopedics, Loma Linda University, Loma Linda, CA 92357 USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92357 USA
| |
Collapse
|
17
|
Ranjbar Z, Torki M, Karimi Torshizi AA. In ovo injection of flavanone on bone quality characteristics, biochemical parameters and antioxidant enzyme status of blood in daily chicks. J Anim Physiol Anim Nutr (Berl) 2019; 103:1418-1426. [PMID: 31149762 DOI: 10.1111/jpn.13132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022]
Abstract
In ovo injection (IOI) of Naringin (N), flavanone was examined on post-hatch blood biochemical parameters, antioxidant status and bone characteristics. Fertile eggs (n = 700) were distributed in seven groups with 100 eggs. On 14th and 17.5th days of incubation, four groups were injected using 15 or 30 mg active ingredient levels of naringin/0.5 ml saline/egg, low and high level, into amnion sac. Controls include sham (injected normal saline, 0.5 ml/egg on day 14 and 17.5th) and un-injected group. IOI of high naringin and saline on 14th day of incubation resulted in lower hatchability and then higher mortality in last week of embryonic life. On day hatch, high levels of injected groups more body weight compared to the control. Chick length was increased at high levels of naringin on day 17.5th compared to control and saline injected. Quality traits of bones were improved in naringin-injected groups compared to control. IOI of naringin influenced thyroid hormones on 14th day of incubation. Naringin groups influenced the Alkaline phosphatase (ALP), Calcium (Ca), superoxide dismutase (SOD), blood biochemical and lipids. Totally, amniotic IOI of naringin in last days of developing embryo may be useful for hatched chick, development of leg long bone or effect on biochemical metabolites by levels of flavanone that it needs more research.
Collapse
Affiliation(s)
- Zahra Ranjbar
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Mehran Torki
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | | |
Collapse
|
18
|
Reis A, Oliveira K, Paula I, Silva A, Tarragô J, Ocarino N, Serakides R. Direct inhibitory effect of caffeine on viability, synthesis activity and gene expression in cultures of chondrocytes extracted from the articular cartilage of rats. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-9905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The aim of this study was to evaluate the effect of concentrations of caffeine on the viability, synthesis activity and gene expression in cultures of chondrocytes. Extracted articular cartilage from the femurs and tibias of 15 Wistar rats at three days old to isolate chondrocytes. Chondrocytes were cultured in chondrogenic medium (control) or supplemented with caffeine (0.5, 1.0, 2.0mM). Cell viability, alkaline phosphatase activity and collagen synthesis were assessed using colorimetric assays at 7, 14, 21 days. The chondrocyte cultures of all groups grown under coverslips were stained with hematoxylin-eosin to determine the percentage of cells/field and with PAS, safranin O, alcian blue to determine the percentage of matrix chondrogenic/field at 21 days. The expressions of gene transcripts for aggrecan, collagen-II, Sox-9, Runx-2 and alkaline phosphatase were also evaluated by RT-PCR at 21 days. The means were compared using Student-Newman-Keuls. Caffeine significantly reduced the conversion of MTT to formazan, percentage of cells/field, collagen synthesis, alkaline phosphatase activity, synthesis of PAS+, safranin O+ and alcian blue+ chondrogenic matrix, and the expression of aggrecan, Sox-9 and II collagen. It is concluded that caffeine at concentrations of 0.5, 1.0, 2.0mM has a direct inhibitory effect on chondrogenesis in cultures of chondrocytes from rats.
Collapse
Affiliation(s)
- A.M.S. Reis
- Universidade Federal de Minas Gerais, Brazil
| | | | | | - A.P. Silva
- Universidade Federal de Minas Gerais, Brazil
| | | | | | | |
Collapse
|
19
|
Chen Z, Zhao Z, Li Y, Zhang X, Li B, Chen L, Wang H. Course-, dose-, and stage-dependent toxic effects of prenatal dexamethasone exposure on fetal articular cartilage development. Toxicol Lett 2018; 286:1-9. [PMID: 29329878 DOI: 10.1016/j.toxlet.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
|
20
|
Li H, Guan S, Lu Y, Wang F, Liu Y, Liu Q. Retracted
: Genetic deletion of GIT2 prolongs functional recovery and suppresses chondrocyte differentiation in rats with rheumatoid arthritis. J Cell Biochem 2017; 119:1538-1547. [DOI: 10.1002/jcb.26313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Hui Li
- Department of Hand and Foot SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanP. R. China
| | - Shi‐Bing Guan
- Department of Hand and Foot SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanP. R. China
| | - Yi Lu
- Department of Anesthesiology SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanP. R. China
| | - Fei Wang
- Department of Joint SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangP. R. China
| | - Yu‐Hong Liu
- Department of RheumatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanP. R. China
| | - Qi‐Yun Liu
- Department of RheumatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanP. R. China
| |
Collapse
|
21
|
Chen Y, Chen Y, Zhang S, Du X, Bai B. Parathyroid Hormone-Induced Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation and its Repair of Articular Cartilage Injury in Rabbits. Med Sci Monit Basic Res 2016; 22:132-145. [PMID: 27847384 PMCID: PMC5115215 DOI: 10.12659/msmbr.900242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background We explored the effect of parathyroid hormone (PTH)-induced bone marrow stem cells (BMSCs) complexed with fibrin glue (FG) in the repair of articular cartilage injury in rabbits. Material/Methods Forty-eight rabbits randomized into four groups were subjected to articular surgery (cartilage loss). The PTH and non-PTH intervention groups included transplantation with PTH/BMSC/FG xenogeneic and BMSC/FG xenogeneic complexes, respectively, into the injured area. The injured group contained no transplant while the control group comprised rabbits without any articular injury. Samples were monitored for cartilage repair up to three months post-surgery. Immunohistochemistry as well as real-time fluorescent quantitative PCR and Western blot were used to analyze the expression of type II collagen and aggrecan in the repaired tissue. Results At 12 weeks post-surgery, the loss of articular cartilage in the PTH group was fully repaired by hyaline tissue. Typical cartilage lacunae and intact subchondral bone were found. The boundary separating the surrounding normal cartilage tissue disappeared. The gross and International Cartilage Repair Society (ICRS) histological ranking of the repaired tissue was significantly higher in the PTH intervention group than in the non-PTH intervention and injury groups (p<0.05) without any significant difference compared to the control group (p>0.05). Type II collagen and aggrecan stained positive and the average optical density, relative mRNA expression and protein-integrated optical density in the PTH group were higher than in non-PTH and injured groups (p<0.05) but not significantly different from the control group (p>0.05). Conclusions PTH/BMSC/FG xenogeneic complexes effectively repaired the loss of cartilage in rabbit knee injury.
Collapse
Affiliation(s)
- Yushu Chen
- Department of Orthopedic Surgery, Orthopedics Implantation Key Lab of Guangdong Province, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yi Chen
- Department of Orthopedic Surgery, Orthopedics Implantation Key Lab of Guangdong Province, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shujiang Zhang
- Department of Orthopedic Surgery, Orthopedics Implantation Key Lab of Guangdong Province, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xiufan Du
- Department of Orthopedic Surgery, Orthopedics Implantation Key Lab of Guangdong Province, First Affiliated Hospital of Guangzhou Medical University,, Guangzhou, Guangdong, China (mainland)
| | - Bo Bai
- Department of Orthopedic Surgery, Orthopedics Implantation Key Lab of Guangdong Province, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
22
|
Abstract
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
|
23
|
Xing W, Aghajanian P, Goodluck H, Kesavan C, Cheng S, Pourteymoor S, Watt H, Alarcon C, Mohan S. Thyroid hormone receptor-β1 signaling is critically involved in regulating secondary ossification via promoting transcription of the Ihh gene in the epiphysis. Am J Physiol Endocrinol Metab 2016; 310:E846-54. [PMID: 27026086 PMCID: PMC4895449 DOI: 10.1152/ajpendo.00541.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) action is mediated through two nuclear TH receptors, THRα and THRβ. Although the role of THRα is well established in bone, less is known about the relevance of THRβ-mediated signaling in bone development. On ther basis of our recent finding that TH signaling is essential for initiation and formation of secondary ossification center, we evaluated the role of THRs in mediating TH effects on epiphysial bone formation. Two-day treatment of TH-deficient Tshr(-/-) mice with TH increased THRβ1 mRNA level 3.4-fold at day 7 but had no effect on THRα1 mRNA level at the proximal tibia epiphysis. Treatment of serum-free cultures of tibias from 3-day-old mice with T3 increased THRβ1 expression 2.1- and 13-fold, respectively, at 24 and 72 h. Ten-day treatment of Tshr(-/-) newborns (days 5-14) with THRβ1 agonist GC1 at 0.2 or 2.0 μg/day increased BV/TV at day 21 by 225 and 263%, respectively, compared with vehicle treatment. Two-day treatment with GC1 (0.2 μg/day) increased expression levels of Indian hedgehog (Ihh) 100-fold, osterix 15-fold, and osteocalcin 59-fold compared with vehicle at day 7 in the proximal tibia epiphysis. Gel mobility shift assay demonstrated that a putative TH response element in the distal promoter of mouse Ihh gene interacted with THRβ1. GC1 treatment (1 nM) increased Ihh distal promoter activity 20-fold after 48 h in chondroctyes. Our data suggest a novel role for THRβ1 in secondary ossification at the epiphysis that involves transcriptional upregulation of Ihh gene.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Helen Goodluck
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Heather Watt
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California; Department of Orthopedics, Loma Linda University, Loma Linda, California; and Department of Biochemistry, Loma Linda University, Loma Linda, California
| |
Collapse
|
24
|
Suijker J, Oosting J, Koornneef A, Struys EA, Salomons GS, Schaap FG, Waaijer CJF, Wijers-Koster PM, Briaire-de Bruijn IH, Haazen L, Riester SM, Dudakovic A, Danen E, Cleton-Jansen AM, van Wijnen AJ, Bovée JVMG. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines. Oncotarget 2016; 6:12505-19. [PMID: 25895133 PMCID: PMC4494954 DOI: 10.18632/oncotarget.3723] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/05/2015] [Indexed: 01/29/2023] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability , while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients.
Collapse
Affiliation(s)
- Johnny Suijker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie Koornneef
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eduard A Struys
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Frank G Schaap
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Lizette Haazen
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, NY, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, NY, USA
| | - Erik Danen
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Abstract
Apophyses are growth zones attached to the shaft (corpus) of larger bones. They vary in size and develop their own ossification centres or form as part of an usually fibrocartilaginous tendon or ligament insertion. The structure of the cartilaginous apophyseal plate is very similar to that of an epiphyseal growth plate and like these they are adapted to withstand perpendicular compressive forces without becoming harmed. This is best highlighted by the fact that their mineralized borders always orient themselves perpendicular to the overall resulting force vector. The edges of the apophyseal plates are characteristically bent which allows them to resist moderate shear forces. Like the epiphyseal plates the apophyseal plates exhibit a zonal organization which is not very well adapted to permanently withstand shear forces, especially if they occur under dynamic conditions. In these situations the tendinous insertions with their collagen fibre anchoring system have to provide compensation when balancing the load transmitted across the system.
Collapse
Affiliation(s)
- R Putz
- Anatomische Anstalt, Ludwig-Maximilians-Universität München, Pettenkoferstraße 11, 80336, München, Deutschland.
| | - S Milz
- Anatomische Anstalt, Ludwig-Maximilians-Universität München, Pettenkoferstraße 11, 80336, München, Deutschland
| |
Collapse
|
26
|
Wnt signaling in cartilage development and diseases: lessons from animal studies. J Transl Med 2016; 96:186-96. [PMID: 26641070 PMCID: PMC4838282 DOI: 10.1038/labinvest.2015.142] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Cartilage not only plays essential roles in skeletal development and growth during pre- and postnatal stages but also serves to provide smooth movement of skeletons throughout life. Thus, dysfunction of cartilage causes a variety of skeletal disorders. Results from animal studies reveal that β-catenin-dependent canonical and independent non-canonical Wnt signaling pathways have multiple roles in regulation of cartilage development, growth, and maintenance. β-Catenin-dependent signaling is required for progression of endochondral ossification and growth of axial and appendicular skeletons, while excessive activation of this signaling can cause severe inhibition of initial cartilage formation and growth plate organization and function in mice. In contrast, non-canonical Wnt signaling is important in columnar organization of growth plate chondrocytes. Manipulation of Wnt signaling causes or ameliorates articular cartilage degeneration in rodent osteoarthritis models. Human genetic studies indicate that Wnt/β-catenin signaling is a risk factor for osteoarthritis. Accumulative findings from analysis of expression of Wnt signaling molecules and in vivo and in vitro functional experiments suggest that Wnt signaling is a therapeutic target for osteoarthritis. The target tissues of Wnt signaling may be not only articular cartilage but also synovium and subchondral bone.
Collapse
|
27
|
Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER. Role of IGF-I signaling in muscle bone interactions. Bone 2015; 80:79-88. [PMID: 26453498 PMCID: PMC4600536 DOI: 10.1016/j.bone.2015.04.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/11/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Daniel D Bikle
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Candice Tahimic
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Wenhan Chang
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Yongmei Wang
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Anastassios Philippou
- National and Kapodistrian University of Athens, Department of Physiology, Medical School, Goudi-Athens, Greece
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
28
|
Ohta Y, Okabe T, Larmour C, Di Rocco A, Maijenburg M, Phillips A, Speck NA, Wakitani S, Nakamura T, Yamada Y, Enomoto-Iwamoto M, Pacifici M, Iwamoto M. Articular cartilage endurance and resistance to osteoarthritic changes require transcription factor Erg. Arthritis Rheumatol 2015; 67:2679-90. [PMID: 26097038 PMCID: PMC5568074 DOI: 10.1002/art.39243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 06/09/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine whether and how the transcription factor Erg participates in the genesis, establishment, and maintenance of articular cartilage. METHODS Floxed Erg mice were mated with Gdf5-Cre mice to generate conditional mutants lacking Erg in their joints. Joints of mutant and control mice were subjected to morphologic and molecular characterization and also to experimental surgically induced osteoarthritis (OA). Gene expression, promoter reporter assays, and gain- and loss-of-function in vitro tests were used to characterize molecular mechanisms of Erg action. RESULTS Conditional Erg ablation did not elicit obvious changes in limb joint development and overall phenotype in juvenile mice. However, as mice aged, joints of mutant mice degenerated spontaneously and exhibited clear OA-like phenotypic defects. Joints in juvenile mutant mice were more sensitive to surgically induced OA and became defective sooner than operated joints in control mice. Global gene expression data and other studies identified parathyroid hormone-related protein (PTHrP) and lubricin as possible downstream effectors and mediators of Erg action in articular chondrocytes. Reporter assays using control and mutated promoter-enhancer constructs indicated that Erg acted on Ets DNA binding sites to stimulate PTHrP expression. Erg was up-regulated in severely affected areas in human OA articular cartilage but remained barely appreciable in areas of less affected cartilage. CONCLUSION The study shows for the first time that Erg is a critical molecular regulator of the endurance of articular cartilage during postnatal life and that Erg can mitigate spontaneous and experimental OA. Erg appears to do this through regulating expression of PTHrP and lubricin, factors known for their protective roles in joints.
Collapse
Affiliation(s)
- Yoichi Ohta
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Division of Orthopaedic Surgery, Philadelphia, PA 19104
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Takahiro Okabe
- Department of Orthopedics, Itabashi Chuo General Hospital, Tokyo 173-8606, Japan
| | - Colleen Larmour
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Division of Orthopaedic Surgery, Philadelphia, PA 19104
| | - Agnese Di Rocco
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Division of Orthopaedic Surgery, Philadelphia, PA 19104
| | - Marijke Maijenburg
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Amanda Phillips
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Nancy A. Speck
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Shigeyuki Wakitani
- Department of Artificial Joint and Biomaterials, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8551, Japan
| | - Takashi Nakamura
- Oral Health and Development Science, Tohoku University Graduate school of Dentistry, Sendai 980-0826, Japan
| | - Yoshihiko Yamada
- National Institute of Dental and Craniofacial Research, NIH, MD 20892
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Division of Orthopaedic Surgery, Philadelphia, PA 19104
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Division of Orthopaedic Surgery, Philadelphia, PA 19104
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Division of Orthopaedic Surgery, Philadelphia, PA 19104
| |
Collapse
|
29
|
Blum N, Begemann G. Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration. Development 2015; 142:2894-903. [PMID: 26253409 DOI: 10.1242/dev.120204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 07/27/2015] [Indexed: 12/25/2022]
Abstract
Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible signaling factors that are required for regeneration, raising the question of how cell lineage-specific programs are protected from regenerative crosstalk between neighboring fin tissues. During fin regeneration, osteoblasts revert from a non-cycling, mature state to a cycling, preosteoblastic state to establish a pool of progenitors within the blastema. After several rounds of proliferation, preosteoblasts redifferentiate to produce new bone. Blastema formation and proliferation are driven by the continued synthesis of retinoic acid (RA). Here, we find that osteoblast dedifferentiation and redifferentiation are inhibited by RA signaling, and we uncover how the bone regenerative program is achieved against a background of massive RA synthesis. Stump osteoblasts manage to contribute to the blastema by upregulating expression of the RA-degrading enzyme cyp26b1. Redifferentiation is controlled by a presumptive gradient of RA, in which high RA levels towards the distal tip of the blastema suppress redifferentiation. We show that this might be achieved through a mechanism involving repression of Bmp signaling and promotion of Wnt/β-catenin signaling. In turn, cyp26b1(+) fibroblast-derived blastema cells in the more proximal regenerate serve as a sink to reduce RA levels, thereby allowing differentiation of neighboring preosteoblasts. Our findings reveal a mechanism explaining how the osteoblast regenerative program is protected from adverse crosstalk with neighboring fibroblasts that advances our understanding of the regulation of bone repair by RA.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany RTG1331, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
30
|
Sun MMG, Beier F. Chondrocyte hypertrophy in skeletal development, growth, and disease. ACTA ACUST UNITED AC 2015; 102:74-82. [PMID: 24677724 DOI: 10.1002/bdrc.21062] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/31/2022]
Abstract
Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology.
Collapse
Affiliation(s)
- Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute, London, Ontario, Canada
| | | |
Collapse
|
31
|
Beltrán-Partida E, Moreno-Ulloa A, Valdez-Salas B, Velasquillo C, Carrillo M, Escamilla A, Valdez E, Villarreal F. Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO₂ Nanotubes Using a Super-Oxidative Solution. MATERIALS 2015; 8:867-883. [PMID: 28787976 PMCID: PMC5455429 DOI: 10.3390/ma8030867] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/07/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Av. Zotoluca y Chinampas, s/n, Mexicali C.P. 21040, Baja California, Mexico.
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Instituto Nacional de Rehabilitación, Calz. México Xochimilco, No. 289, Arenal de Guadalupe, México C.P. 14389, D.F., Mexico.
| | - Aldo Moreno-Ulloa
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México C.P. 11340, D.F., Mexico.
| | - Benjamín Valdez-Salas
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Cristina Velasquillo
- Instituto Nacional de Rehabilitación, Calz. México Xochimilco, No. 289, Arenal de Guadalupe, México C.P. 14389, D.F., Mexico.
| | - Monica Carrillo
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Alan Escamilla
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Ernesto Valdez
- Centro Medico Ixchel, Bravo y Obregón, Mexicali C.P. 21000, Baja California, Mexico.
| | - Francisco Villarreal
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Lozito TP, Tuan RS. Lizard tail regeneration: regulation of two distinct cartilage regions by Indian hedgehog. Dev Biol 2015; 399:249-62. [DOI: 10.1016/j.ydbio.2014.12.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/18/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
|
33
|
Cheng X, Chen JL, Ma ZL, Zhang ZL, Lv S, Mai DM, Liu JJ, Chuai M, Lee KKH, Wan C, Yang X. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development. Toxicol Appl Pharmacol 2014; 281:19-29. [DOI: 10.1016/j.taap.2014.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 08/31/2014] [Accepted: 09/26/2014] [Indexed: 12/26/2022]
|
34
|
Mazor M, Lespessailles E, Coursier R, Daniellou R, Best TM, Toumi H. Mesenchymal stem-cell potential in cartilage repair: an update. J Cell Mol Med 2014; 18:2340-50. [PMID: 25353372 PMCID: PMC4302639 DOI: 10.1111/jcmm.12378] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/27/2014] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage damage and subsequent degeneration are a frequent occurrence in synovial joints. Treatment of these lesions is a challenge because this tissue is incapable of quality repair and/or regeneration to its native state. Non-operative treatments endeavour to control symptoms and include anti-inflammatory medications, viscosupplementation, bracing, orthotics and activity modification. Classical surgical techniques for articular cartilage lesions are frequently insufficient in restoring normal anatomy and function and in many cases, it has not been possible to achieve the desired results. Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently, cell-based therapy has become a key focus of tissue engineering research to achieve functional replacement of articular cartilage. The present manuscript is a brief review of stem cells and their potential in the treatment of early OA (i.e. articular cartilage pathology) and recent progress in the field.
Collapse
Affiliation(s)
- M Mazor
- IPROS, CHRO, EA4708 Orleans University, Orleans, France
| | | | | | | | | | | |
Collapse
|
35
|
Xing W, Cheng S, Wergedal J, Mohan S. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling. J Bone Miner Res 2014; 29:2262-75. [PMID: 24753031 PMCID: PMC4487616 DOI: 10.1002/jbmr.2256] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 01/05/2023]
Abstract
Thyroid hormones (THs) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC) because the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, micro-computed tomography (µCT) evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised owing to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that whereas all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of thyroid stimulating hormone receptor mutant (Tshr(-/-) ) mice induced expression of Indian hedgehog (Ihh) and Osx in type 2 collagen (Col2)-expressing chondrocytes in the SOC at day 7, which subsequently differentiate into type 10 collagen (Col10)/osteocalcin-expressing chondro/osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day-old mice with 10 ng/mL TH increased expression of Osx, Col10, alkaline phosphatase (ALP), and osteocalcin in the epiphysis by sixfold to 60-fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral small hairpin RNA (shRNA) significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro/osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix-producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - Jon Wergedal
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
36
|
Effects of parathyroid hormone on calcium ions in rat bone marrow mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:258409. [PMID: 25136569 PMCID: PMC4087274 DOI: 10.1155/2014/258409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
The present study was conducted in order to explore the mechanisms whereby parathyroid hormone (PTH) maintains in vitro proliferation of bone marrow mesenchymal stem cells (BMSCs). Bone marrow was isolated from Sprague Dawley (SD) rat femurs, cultured in vitro, and passaged using a cell adherent culture method. The BMSC proliferation was evaluated by the methyl thiazolyl tetrazolium (MTT) assay and the fluorescence intensity of calcium ions in BMSCs was analyzed by laser scanning confocal microscopy (LSCM). Our results show that BMSC proliferation in the experimental group treated with PTH was more significant than controls. The calcium ion fluorescence intensity in BMSCs was significantly higher for the experimental group as compared to the control group. For each group, there was significant difference in the fluorescence intensity of calcium ions in BMSCs between 7 d and 14 d. In conclusion, parathyroid hormone increased the fluorescence intensity of calcium ions in BMSCs, which might represent a key mechanism whereby BMSC proliferation is maintained.
Collapse
|
37
|
Dittmann K, Wuelling M, Uhmann A, Dullin C, Hahn H, Schweyer S, Vortkamp A, Wienands J. Inactivation of patched1 in murine chondrocytes causes spinal fusion without inflammation. Arthritis Rheumatol 2014; 66:831-40. [PMID: 24757136 DOI: 10.1002/art.38325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 12/12/2013] [Indexed: 02/01/2023]
Abstract
OBJECTIVE During development of the vertebrate skeleton, chondrocytes form a cartilage template that is gradually replaced by bone. Hormones of the Hedgehog (HH) family have been implicated in the ossification process, but their exact relationship to normal or pathogenic bone formation is unclear. This study was undertaken to establish a genetic tool that allows the discrete inactivation of genes in spinal chondrocytes, and to investigate in vivo how chondrocyte-specific ablation of the inhibitory HH receptor Patched 1 (Ptch1) affects skeleton integrity. METHODS A Cre-deleter mouse strain, mb1-Cre, for selective gene recombination in spinal chondrocytes was identified by in situ hybridization and histologic analysis. The mb1-Cre(+/-) animals were crossed with mice that harbor a loxP-flanked Ptch1 gene (Ptch1(flox/flox) ) to abrogate the inhibition of the HH signaling pathway in chondrocytes. The skeletal integrity of F1 mice was characterized by high-resolution flat-panel-based volume computed tomography and histologic staining procedures. RESULTS During the first weeks after birth, all mb1-Cre(+/-) /Ptch1(flox/flox) mice developed progressive spinal fusion with malformation of the vertebrae. This phenotype was caused by aberrant chondrocyte proliferation in the intervertebral discs that blocked endochondral ossification. Importantly, the disease pattern occurred in an inflammation-independent manner. CONCLUSION Our findings indicate that chronic activation of the HH signal pathway in spinal chondrocytes can trigger an ankylosing spine morphology without immune cell contributions. Hence, the destruction of cartilage and loss of axial joint integrity can result from chondrocyte-intrinsic defects of monogenic origin.
Collapse
Affiliation(s)
- Kai Dittmann
- Georg August University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Urosevic J, Garcia-Albéniz X, Planet E, Real S, Céspedes MV, Guiu M, Fernandez E, Bellmunt A, Gawrzak S, Pavlovic M, Mangues R, Dolado I, Barriga FM, Nadal C, Kemeny N, Batlle E, Nebreda AR, Gomis RR. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nat Cell Biol 2014; 16:685-94. [DOI: 10.1038/ncb2977] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 04/28/2014] [Indexed: 01/13/2023]
|
39
|
Li N, Xu Y, Zhang H, Gao L, Li J, Wang Y, Gao Z, Pan X, Liu X, Li X, Yu Z. Excessive Retinoic Acid Impaired Proliferation and Differentiation of Human Fetal Palatal Chondrocytes (hFPCs). ACTA ACUST UNITED AC 2014; 101:276-82. [PMID: 24798219 DOI: 10.1002/bdrb.21110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/25/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Ning Li
- Public Health School; Zhengzhou University; Zhengzhou; China
- Henan Agriculture University; Zhengzhou; China
| | - Yusheng Xu
- The First Affiliated Hospital; Zhengzhou University; Zhengzhou; China
| | - Huanhuan Zhang
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Liyun Gao
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Jue Li
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Yongchao Wang
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Zhan Gao
- The First Affiliated Hospital; Zhengzhou University; Zhengzhou; China
| | - Xinjuan Pan
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Xiaozhuan Liu
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Xing Li
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Zengli Yu
- Public Health School; Zhengzhou University; Zhengzhou; China
| |
Collapse
|
40
|
Patterson SE, Dealy CN. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 2014; 243:875-93. [DOI: 10.1002/dvdy.24131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sara E. Patterson
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
| | - Caroline N. Dealy
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
- Center for Regenerative Medicine and Skeletal Development; Department of Orthopedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|
41
|
Nepal M, Li L, Cho HK, Park JK, Soh Y. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway. Food Chem Toxicol 2013; 62:238-45. [DOI: 10.1016/j.fct.2013.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/31/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022]
|
42
|
Wang Y, Bikle DD, Chang W. Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development. Bone Res 2013; 1:249-59. [PMID: 26273506 DOI: 10.4248/br201303003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) regulates cell growth, survival, and differentiation by acting on the IGF-I receptor, (IGF-IR)-a tyrosine kinase receptor, which elicits diverse intracellular signaling responses. All skeletal cells express IGF-I and IGF-IR. Recent studies using tissue/cell-specific gene knockout mouse models and cell culture techniques have clearly demonstrated that locally produced IGF-I is more critical than the systemic IGF-I in supporting embryonic and postnatal skeletal development and bone remodeling. Local IGF-I/IGF-IR signaling promotes the growth, survival and differentiation of chondrocytes and osteoblasts, directly and indirectly, by altering other autocrine/paracrine signaling pathways in cartilage and bone, and by enhancing interactions among these skeletal cells through hormonal and physical means. Moreover, local IGF-I/IGF-IR signaling is critical for the anabolic bone actions of growth hormone and parathyroid hormone. Herein, we review evidence supporting the actions of local IGF-I/IGF-IR in the above aspects of skeletal development and remodeling.
Collapse
Affiliation(s)
- Yongmei Wang
- Endocrine Unit, University of California, San Francisco, Veterans Affairs Medical Center , San Francisco, CA, USA
| | - Daniel D Bikle
- Endocrine Unit, University of California, San Francisco, Veterans Affairs Medical Center , San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Unit, University of California, San Francisco, Veterans Affairs Medical Center , San Francisco, CA, USA
| |
Collapse
|
43
|
Leijten JCH, Bos SD, Landman EBM, Georgi N, Jahr H, Meulenbelt I, Post JN, van Blitterswijk CA, Karperien M. GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res Ther 2013; 15:R126. [PMID: 24286177 PMCID: PMC3978825 DOI: 10.1186/ar4306] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/23/2013] [Indexed: 12/24/2022] Open
Abstract
Introduction Osteoarthritis is, at least in a subset of patients, associated with hypertrophic differentiation of articular chondrocytes. Recently, we identified the bone morphogenetic protein (BMP) and wingless-type MMTV integration site (WNT) signaling antagonists Gremlin 1 (GREM1), frizzled-related protein (FRZB) and dickkopf 1 homolog (Xenopus laevis) (DKK1) as articular cartilage’s natural brakes of hypertrophic differentiation. In this study, we investigated whether factors implicated in osteoarthritis or regulation of chondrocyte hypertrophy influence GREM1, FRZB and DKK1 expression levels. Methods GREM1, FRZB and DKK1 mRNA levels were studied in articular cartilage from healthy preadolescents and healthy adults as well as in preserved and degrading osteoarthritic cartilage from the same osteoarthritic joint by quantitative PCR. Subsequently, we exposed human articular chondrocytes to WNT, BMP, IL-1β, Indian hedgehog, parathyroid hormone-related peptide, mechanical loading, different medium tonicities or distinct oxygen levels and investigated GREM1, FRZB and DKK1 expression levels using a time-course analysis. Results GREM1, FRZB and DKK1 mRNA expression were strongly decreased in osteoarthritis. Moreover, this downregulation is stronger in degrading cartilage compared with macroscopically preserved cartilage from the same osteoarthritic joint. WNT, BMP, IL-1β signaling and mechanical loading regulated GREM1, FRZB and DKK1 mRNA levels. Indian hedgehog, parathyroid hormone-related peptide and tonicity influenced the mRNA levels of at least one antagonist, while oxygen levels did not demonstrate any statistically significant effect. Interestingly, BMP and WNT signaling upregulated the expression of each other’s antagonists. Conclusions Together, the current study demonstrates an inverse correlation between osteoarthritis and GREM1, FRZB and DKK1 gene expression in cartilage and provides insight into the underlying transcriptional regulation. Furthermore, we show that BMP and WNT signaling are linked in a negative feedback loop, which might prove essential in articular cartilage homeostasis by balancing BMP and WNT activity.
Collapse
|
44
|
The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells. PLoS One 2013; 8:e72973. [PMID: 23977373 PMCID: PMC3745539 DOI: 10.1371/journal.pone.0072973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal differentiation, they can be used to generate a model of endochondral ossification, but this limitation must be kept in mind when using them in cartilage tissue engineering application.
Collapse
|
45
|
Le NQ, Binh NT, Takarada T, Takarada-Iemata M, Hinoi E, Yoneda Y. Negative correlation between Per1 and Sox6 expression during chondrogenic differentiation in pre-chondrocytic ATDC5 cells. J Pharmacol Sci 2013; 122:318-25. [PMID: 23883486 DOI: 10.1254/jphs.13091fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Pre-chondrocytes undergo cellular differentiation stages during chondrogenesis under the influence by different transcription factors such as sry-type high mobility group box-9 (Sox9) and runt-related transcription factor-2 (Runx2). We have shown upregulation by parathyroid hormone (PTH) of the clock gene Period-1 (Per1) through the cAMP/protein kinase A signaling pathway in pre-chondrocytic ATDC5 cells. Here, we investigated the role of Per1 in the suppression of chondrogenic differentiation by PTH. In ATDC5 cells exposed to 10 nM PTH, a drastic but transient increase in Per1 expression was seen only 1 h after addition together with a prolonged decrease in Sox6 levels. However, no significant changes were induced in Sox5 and Runx2 levels in cells exposed to PTH. In stable Per1 transfectants, a significant decrease in Sox6 levels was seen, with no significant changes in Sox5 and Sox9 levels, in addition to the inhibition of gene transactivation by Sox9 allies. Knockdown of Per1 by siRNA significantly increased the Sox6 and type II collagen levels in cells cultured for 24 - 60 h. These results suggest that Per1 plays a role in the suppressed chondrocytic differentiation by PTH through a mechanism relevant to negative regulation of transactivation of the Sox6 gene during chondrogenesis.
Collapse
Affiliation(s)
- Nguyen Quynh Le
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Neonatal mesenchymal-like cells adapt to surrounding cells. Stem Cell Res 2013; 11:634-46. [DOI: 10.1016/j.scr.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 12/17/2022] Open
|
47
|
Zhang Y, Ross AC. Retinoic acid and the transcription factor MafB act together and differentially to regulate aggrecan and matrix metalloproteinase gene expression in neonatal chondrocytes. J Cell Biochem 2013; 114:471-9. [PMID: 22961837 DOI: 10.1002/jcb.24387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/30/2012] [Indexed: 11/11/2022]
Abstract
Vitamin A (VA) and its active form, retinoic acid (RA), are regulators of skeletal development and chondrogenesis. MafB, a transcription factor, has been identified as an important mediator in monocyte and osteoclast differentiation. However, the presence and function of MafB in chondrocytes is not clear. In this study, MafB gene expression was regulated by both the VA status of the mother (VA-marginal, adequate, and supplemented diets) and by direct oral supplementation of the neonates with VARA (VA mixed with 10% RA). Expression was highest in neonates of VA-supplemented versus VA-marginal dams (P < 0.05), and in VARA-treated versus placebo-treated neonates across all diet groups (P < 0.05). To examine cellular changes, primary chondrocytes derived from neonatal rat ribs were cultured in the presence of RA for up to 48 h. MafB mRNA exhibited a time- and dose-dependent increase in response to RA, while the induction of MafB mRNA was attenuated by BMS-493, a pan-RAR inverse agonist, implicating RAR signaling in the regulation of MafB. The genetic knockdown of MafB in chondrocytes using siRNA (MafB(SI) chondrocytes) abrogated the RA-induced increase in MafB expression. MafB(SI) chondrocytes expressed higher levels of aggrecan mRNA. Additionally, the increased matrix metalloproteinase (MMP)3 and MMP13 gene expression due to RA was attenuated in MafB(SI) chondrocytes, while total extracellular matrix staining was increased. These results support a role for MafB as a regulator of chondrocyte gene expression and matrix formation via control of aggrecan, MMP3 and MMP13 expression, and indicate an important role for RA in the regulation of MafB.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
48
|
Hayes AJ, Mitchell RE, Bashford A, Reynolds S, Caterson B, Hammond CL. Expression of glycosaminoglycan epitopes during zebrafish skeletogenesis. Dev Dyn 2013; 242:778-89. [PMID: 23576310 PMCID: PMC3698701 DOI: 10.1002/dvdy.23970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. RESULTS We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. CONCLUSIONS The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton.
Collapse
Affiliation(s)
- Anthony J Hayes
- Connective Tissue Biology Laboratory, Cardiff School of Biosciences and Cardiff Institute of Tissue Engineering and Repair, Cardiff UniversityCardiff, United Kingdom
| | - Ruth E Mitchell
- Departments of Biochemistry and Physiology and Pharmacology, University of BristolBristol, United Kingdom
| | - Andrew Bashford
- Connective Tissue Biology Laboratory, Cardiff School of Biosciences and Cardiff Institute of Tissue Engineering and Repair, Cardiff UniversityCardiff, United Kingdom
| | - Scott Reynolds
- Departments of Biochemistry and Physiology and Pharmacology, University of BristolBristol, United Kingdom
| | - Bruce Caterson
- Connective Tissue Biology Laboratory, Cardiff School of Biosciences and Cardiff Institute of Tissue Engineering and Repair, Cardiff UniversityCardiff, United Kingdom
| | - Chrissy L Hammond
- Departments of Biochemistry and Physiology and Pharmacology, University of BristolBristol, United Kingdom
| |
Collapse
|
49
|
Goldring M. Insight into the function of DIO2, a susceptibility gene in human osteoarthritis, as an inducer of cartilage damage in a rat model: is there a role for chondrocyte hypertrophy? Osteoarthritis Cartilage 2013; 21:643-5. [PMID: 23473975 PMCID: PMC3937864 DOI: 10.1016/j.joca.2013.02.659] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 02/02/2023]
Affiliation(s)
- M.B. Goldring
- Tissue Engineering Repair and Regeneration Program, Hospital for Special Surgery, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
- Address correspondence and reprint requests to: M.B. Goldring, Research Division, Hospital for Special Surgery, Caspary Research Building, 5th Floor, 535 East 70th Street, New York, NY 10021, USA. Tel: 1-212-774-7564; Fax: 1-212-249-2373.
| |
Collapse
|
50
|
Submaximal suppression of parathyroid hormone ameliorates calcitriol-induced aortic calcification and remodeling and myocardial fibrosis in uremic rats. J Hypertens 2013; 30:2182-91. [PMID: 22902873 DOI: 10.1097/hjh.0b013e328357c049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE In subtotally nephrectomized rats, we studied to what extent high-dose calcitriol-induced cardiovascular disease can be modulated by almost complete suppression of parathyroid hormone (PTH), mediated by either cinacalcet (CINA) or parathyroidectomy (PTX). METHODS Five groups were studied: sham-operated controls, uremic (U), uremic with calcitriol (U+1,25D), uremic and calcitriol with CINA (U+1,25D+CINA) and uremic and calcitriol with PTX (U+1,25D+PTX). Treatments lasted 14 weeks. RESULTS Compared with U group animals, PTH was significantly lower with calcitriol treatment and almost completely suppressed in animals treated with either PTX or CINA. Serum calcium and phosphorus levels were similarly elevated in all groups receiving calcitriol. Renal function in uremic animals was significantly more impaired in the U+1,25D group. Aortic calcifications were pronounced in U+1,25D animals and reduced by more than 50% by concomittant treatment with CINA or PTX. Chondrocytes were observed near areas of calcification (>90%) and endochondral bone formation was confirmed by positive immunofluorescence for chondrocytic transcription factor sox9 and matrix protein collagen X. Altered arterial (aneurysmatic) geometry with a significant increase in wall/lumen and lumen/body weight ratio was found only in the U+1,25D group. Myocardial fibrosis was present in all uremic groups with a significant increase in the U+1,25D group. Connective tissue growth factor messenger RNA was significantly upregulated only in the U+1,25D group. CONCLUSION Submaximal suppression of PTH by either CINA or PTX reduced vascular calcifications, arterial remodeling and myocardial fibrosis to a similar degree and independent of the serum calcium and phosphorus levels. These data do not indicate vasculotropic effects of calcimimetics independent of PTH suppression.
Collapse
|