1
|
Oberdier MT, Li J, Ambinder DI, Suzuki M, Tumarkin E, Fink S, Neri L, Zhu X, Justice CN, Vanden Hoek TL, Halperin HR. Survival and Neurologic Outcomes From Pharmacologic Peptide Administration During Cardiopulmonary Resuscitation of Pulseless Electrical Activity. J Am Heart Assoc 2024; 13:e9757. [PMID: 38934857 PMCID: PMC11255698 DOI: 10.1161/jaha.123.033371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Outcomes from cardiopulmonary resuscitation (CPR) following sudden cardiac arrest are suboptimal. Postresuscitation targeted temperature management has been shown to have benefit in subjects with sudden cardiac arrest due to ventricular fibrillation, but there are few data for outcomes from sudden cardiac arrest due to pulseless electrical activity. In addition, intra-CPR cooling is more effective than postresuscitation cooling. Physical cooling is associated with increased protein kinase B activity. Therefore, our group developed a novel peptide, TAT-PHLPP9c, which regulates protein kinase B. We hypothesized that when given during CPR, TAT-PHLPP9c would improve survival and neurologic outcomes following pulseless electrical activity arrest. METHODS AND RESULTS In 24 female pigs, pulseless electrical activity was induced by inflating balloon catheters in the right coronary and left anterior descending arteries for ≈7 minutes. Advanced life support was initiated. In 12 control animals, epinephrine was given after 1 and 3 minutes. In 12 peptide-treated animals, 7.5 mg/kg TAT-PHLPP9c was also administered at 1 and 3 minutes of CPR. The balloons were removed after 2 minutes of support. Animals were recovered and neurologically scored 24 hours after return of spontaneous circulation. Return of spontaneous circulation was more common in the peptide group, but this difference was not significant (8/12 control versus 12/12 peptide; P=0.093), while fully intact neurologic survival was significantly more common in the peptide group (0/12 control versus 11/12 peptide; P<0.00001). TAT-PHLPP9c significantly increased myocardial nicotinamide adenine dinucleotide levels. CONCLUSIONS TAT-PHLPP9c resulted in improved survival with full neurologic function after sudden cardiac arrest in a swine model of pulseless electrical activity, and the peptide shows potential as an intra-CPR pharmacologic agent.
Collapse
Affiliation(s)
| | - Jing Li
- University of Illinois – ChicagoChicagoIL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zanni-Ruiz E, Mayorga L, Pavarotti M. Flow cytometry protocol for GLUT4-myc detection on cell surfaces. Biosci Rep 2024; 44:BSR20231987. [PMID: 38533799 PMCID: PMC11016532 DOI: 10.1042/bsr20231987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024] Open
Abstract
Insulin and muscle contraction trigger GLUT4 translocation to the plasma membrane, which increases glucose uptake by muscle cells. Insulin resistance and Type 2 diabetes are the result of impaired GLUT4 translocation. Quantifying GLUT4 translocation is essential for comprehending the intricacies of both physiological and pathophysiological processes involved in glucose metabolism. The most commonly used methods for measuring GLUT4 translocation are the ELISA-type assay and the immunofluorescence assay. While some reports suggest that flow cytometry could be useful in quantifying GLUT4 translocation, this technique is not frequently used. Much of our current understanding of the regulation of GLUT4 has been based on experiments using the rat myoblast cell line (L6 cell) which expresses GLUT4 with a myc epitope on the exofacial loop. In the present study, we use the L6-GLUT4myc cell line to develop a flow cytometry-based approach to detect GLUT4 translocation. Flow cytometry offers the advantages of both immunofluorescence and ELISA-based assays. It allows easy identification of separate cell populations in the sample, similar to immunofluorescence, while providing results based on a population-level analysis of multiple individual cells, like an ELISA-based assay. Our results demonstrate a 0.6-fold increase with insulin stimulation compared with basal conditions. Finally, flow cytometry consistently yielded results across different experiments and exhibited sensitivity under the tested conditions.
Collapse
Affiliation(s)
- Emilia Zanni-Ruiz
- Laboratorio de Transporte Intracelular, Instituto de Histología y Embriología de Mendoza Dr. Mario H Burgos, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis Segundo Mayorga
- Laboratorio de Transporte Intracelular, Instituto de Histología y Embriología de Mendoza Dr. Mario H Burgos, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Martin Alejandro Pavarotti
- Laboratorio de Transporte Intracelular, Instituto de Histología y Embriología de Mendoza Dr. Mario H Burgos, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Cai L, Xia M, Zhang F. Redox Regulation of Immunometabolism in Microglia Underpinning Diabetic Retinopathy. Antioxidants (Basel) 2024; 13:423. [PMID: 38671871 PMCID: PMC11047590 DOI: 10.3390/antiox13040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness among the working-age population. Microglia, resident immune cells in the retina, are recognized as crucial drivers in the DR process. Microglia activation is a tightly regulated immunometabolic process. In the early stages of DR, the M1 phenotype commonly shifts from oxidative phosphorylation to aerobic glycolysis for energy production. Emerging evidence suggests that microglia in DR not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system. This redox adaptation supports metabolic reprogramming and offers potential therapeutic strategies using antioxidants. Here, we provide an overview of recent insights into the involvement of reactive oxygen species and the distinct roles played by key cellular antioxidant pathways, including the NADPH oxidase 2 system, which promotes glycolysis via enhanced glucose transporter 4 translocation to the cell membrane through the AKT/mTOR pathway, as well as the involvement of the thioredoxin and nuclear factor E2-related factor 2 antioxidant systems, which maintain microglia in an anti-inflammatory state. Therefore, we highlight the potential for targeting the modulation of microglial redox metabolism to offer new concepts for DR treatment.
Collapse
Affiliation(s)
- Luwei Cai
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
4
|
Khozoei S, Mahdavi AH, Rabiee F, Ghaedi K. Synergistic effects of punicic acid and alpha lipoic acid ameliorate inflammatory and metabolic genes expression in C2C12 myoblast cells under oxidative stress condition. Cell Biochem Funct 2023; 41:1403-1411. [PMID: 37987234 DOI: 10.1002/cbf.3875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Inflammation is a reaction of the immune system to infection and injury; in fact, it positioned at the center of metabolic disorders, particularly obesity, type 2 diabetes, and cardiovascular diseases. Thus play a major role not only in their development, but also exerts as a crucial linking factor among those diseases. In this regard, one of the strategies for tackling this problem is application of antioxidants to treat such diseases. The present study was performed to evaluate the synergistic effects of punicic acid (PUA) and alpha-lipoic acid (ALA) as antioxidants and radical scavenging reagents on the expression of some inflammatory and metabolism-related genes under oxidative stress in the muscle cells. The experimental treatments consisted of a range of 20, 40, 80, 160, and 320 µM of PUA, and 5, 25, 50, 100, and 200 µM of ALA with a 200 µM concentration of H2 O2 as an oxidative stress inducer. Accordingly, fatty acid treatments were applied for 24 h, and H2 O2 was treated for 1 h. Our results indicated that the simultaneous treatment of PUA and ALA at optimal concentrations (80 and 50 µM, respectively) decreased the expression of inflammation genes and increased the expression of regulatory genes (Pparγ, Pgc-1α) related to metabolism (p < .05). Unexpectedly, H2 O2 treatment increased the Fndc5 expression (p < .05). Maximal upregulation of Pparγ, Pgc-1α were obtained when fatty acids combination (PUA and ALA) were used in the culture of H2 O2 treated cells (p < .05). Therefore, our findings suggest that the simultaneous use of PUA and ALA fatty acids could reduce oxidative stress, and the expression of inflammatory genes, thereby improving the cell metabolism.
Collapse
Affiliation(s)
- Shiva Khozoei
- Department of Animal Science, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Farzaneh Rabiee
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan (UI), Isfahan, Iran
| |
Collapse
|
5
|
Lin LC, Tu B, Song K, Liu ZY, Sun H, Zhou Y, Sha JM, Yang JJ, Zhang Y, Zhao JY, Tao H. Mitochondrial quality control in cardiac fibrosis: Epigenetic mechanisms and therapeutic strategies. Metabolism 2023:155626. [PMID: 37302693 DOI: 10.1016/j.metabol.2023.155626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis (CF) is considered an ultimate common pathway of a wide variety of heart diseases in response to diverse pathological and pathophysiological stimuli. Mitochondria are characterized as isolated organelles with a double-membrane structure, and they primarily contribute to and maintain highly dynamic energy and metabolic networks whose distribution and structure exert potent support for cellular properties and performance. Because the myocardium is a highly oxidative tissue with high energy demands to continuously pump blood, mitochondria are the most abundant organelles within mature cardiomyocytes, accounting for up to one-third of the total cell volume, and play an essential role in maintaining optimal performance of the heart. Mitochondrial quality control (MQC), including mitochondrial fusion, fission, mitophagy, mitochondrial biogenesis, and mitochondrial metabolism and biosynthesis, is crucial machinery that modulates cardiac cells and heart function by maintaining and regulating the morphological structure, function and lifespan of mitochondria. Certain investigations have focused on mitochondrial dynamics, including manipulating and maintaining the dynamic balance of energy demand and nutrient supply, and the resultant findings suggest that changes in mitochondrial morphology and function may contribute to bioenergetic adaptation during cardiac fibrosis and pathological remodeling. In this review, we discuss the function of epigenetic regulation and molecular mechanisms of MQC in the pathogenesis of CF and provide evidence for targeting MQC for CF. Finally, we discuss how these findings can be applied to improve the treatment and prevention of CF.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Oxidative stress and related metabolic alterations are induced in ex situ perfusion of donated hearts regardless of the ventricular load or leukocyte depletion. Am J Transplant 2023; 23:475-483. [PMID: 36695686 DOI: 10.1016/j.ajt.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 01/05/2023]
Abstract
We sought to determine the role of donor blood circulating leukocytes in mediating oxidative stress and inflammation during normothermic ex situ heart perfusion (ESHP). Normothermic ESHP allows preservation of donated heart in a perfused, dynamic state, preventing ischemia. However, the cardiac function declines during ESHP, limiting the potential of this method for improvement of the outcomes of transplantation and expanding the donor pool. Extracorporeal circulation-related oxidative stress plays a critical role in the functional decline of the donor heart. Hearts from domestic pigs were perfused in working mode (WM, whole blood-based or leukocyte-depleted blood-based perfusate) or nonworking mode. Markers of oxidative stress and responsive glucose anabolic pathways were induced in the myocardium regardless of left ventricular load. Myocardial function during ESHP as well as cardioprotective mechanisms were preserved better in WM. Leukocyte-depleted perfusate did not attenuate tissue oxidative stress or perfusate proinflammatory cytokines and did not improve functional preservation. Although ESHP is associated with ongoing oxidative stress and metabolic alteration in the myocardium, preserved cardioprotective mechanisms in WM may exert beneficial effects. Leukocyte depletion of the perfusate may not attenuate inflammation and oxidative stress effectively or improve the functional preservation of the heart during ESHP.
Collapse
|
7
|
Beghi S, Furmanik M, Jaminon A, Veltrop R, Rapp N, Wichapong K, Bidar E, Buschini A, Schurgers LJ. Calcium Signalling in Heart and Vessels: Role of Calmodulin and Downstream Calmodulin-Dependent Protein Kinases. Int J Mol Sci 2022; 23:ijms232416139. [PMID: 36555778 PMCID: PMC9783221 DOI: 10.3390/ijms232416139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease is the major cause of death worldwide. The success of medication and other preventive measures introduced in the last century have not yet halted the epidemic of cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality. Calcium has important functions in the cardiovascular system. Calcium is involved in the mechanism of excitation-contraction coupling that regulates numerous events, ranging from the production of action potentials to the contraction of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase family, which is involved in the regulation of cardiac functions. In this review, we present the current literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim to summarize our mechanistic understanding of this process and to open novel avenues for research.
Collapse
Affiliation(s)
- Sofia Beghi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-3408473527
| | - Malgorzata Furmanik
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Armand Jaminon
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Rogier Veltrop
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Nikolas Rapp
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
| | - Leon J. Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
8
|
Wen P, Zheng B, Zhang B, Ma T, Hao L, Zhang Y. The role of ageing and oxidative stress in intervertebral disc degeneration. Front Mol Biosci 2022; 9:1052878. [PMID: 36419928 PMCID: PMC9676652 DOI: 10.3389/fmolb.2022.1052878] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 10/10/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary cause of intervertebral disc (IVD) disease. With the increased ageing of society, an increasing number of patients are plagued by intervertebral disc disease. Ageing not only accelerates the decreased vitality and functional loss of intervertebral disc cells but also increases intracellular oxidative stress. Moreover, the speed of intervertebral disc ageing is also linked to high levels of reactive oxygen species (ROS) production. Not only is the production of ROS increased in ageing intervertebral disc cells, but antioxidant levels in degenerative intervertebral discs also decrease. In addition to the intervertebral disc, the structural components of the intervertebral disc matrix are vulnerable to oxidative damage. After chronic mitochondrial dysfunction, ROS can be produced in large quantities, while autophagy can eliminate these impaired mitochondria to reduce the production of ROS. Oxidative stress has a marked impact on the occurrence of IDD. In the future, IDD treatment is aiming to improve oxidative stress by regulating the redox balance in intervertebral disc cells. In summary, ageing and oxidative stress promote the degeneration of IVD, but further basic and clinical trials are needed to determine how to treat oxidative stress. At present, although there are many in-depth studies on the relationship between oxidative stress and degeneration of intervertebral disc cells, the specific mechanism has not been elucidated. In this paper, the main causes of intervertebral disc diseases are studied and summarized, and the impact of oxidative stress on intervertebral disc degeneration is studied.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bolong Zheng
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tao Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yumin Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Molaei A, Molaei E, Sadeghnia H, Hayes AW, Karimi G. LKB1: An emerging therapeutic target for cardiovascular diseases. Life Sci 2022; 306:120844. [PMID: 35907495 DOI: 10.1016/j.lfs.2022.120844] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Cardiovascular diseases (CVDs) are currently the most common cause of morbidity and mortality worldwide. Experimental studies suggest that liver kinase B1 (LKB1) plays an important role in the heart. Several studies have shown that cardiomyocyte-specific LKB1 deletion leads to hypertrophic cardiomyopathy, left ventricular contractile dysfunction, and an increased risk of atrial fibrillation. In addition, the cardioprotective effects of several medicines and natural compounds, including metformin, empagliflozin, bexarotene, and resveratrol, have been reported to be associated with LKB1 activity. LKB1 limits the size of the damaged myocardial area by modifying cellular metabolism, enhancing the antioxidant system, suppressing hypertrophic signals, and inducing mild autophagy, which are all primarily mediated by the AMP-activated protein kinase (AMPK) energy sensor. LKB1 also improves myocardial efficiency by modulating the function of contractile proteins, regulating the expression of electrical channels, and increasing vascular dilatation. Considering these properties, stimulation of LKB1 signaling offers a promising approach in the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamidreza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
10
|
Pérez S, Rius-Pérez S. Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants (Basel) 2022; 11:antiox11071394. [PMID: 35883885 PMCID: PMC9311967 DOI: 10.3390/antiox11071394] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage polarization refers to the process by which macrophages can produce two distinct functional phenotypes: M1 or M2. The balance between both strongly affects the progression of inflammatory disorders. Here, we review how redox signals regulate macrophage polarization and reprogramming during acute inflammation. In M1, macrophages augment NADPH oxidase isoform 2 (NOX2), inducible nitric oxide synthase (iNOS), synaptotagmin-binding cytoplasmic RNA interacting protein (SYNCRIP), and tumor necrosis factor receptor-associated factor 6 increase oxygen and nitrogen reactive species, which triggers inflammatory response, phagocytosis, and cytotoxicity. In M2, macrophages down-regulate NOX2, iNOS, SYNCRIP, and/or up-regulate arginase and superoxide dismutase type 1, counteract oxidative and nitrosative stress, and favor anti-inflammatory and tissue repair responses. M1 and M2 macrophages exhibit different metabolic profiles, which are tightly regulated by redox mechanisms. Oxidative and nitrosative stress sustain the M1 phenotype by activating glycolysis and lipid biosynthesis, but by inhibiting tricarboxylic acid cycle and oxidative phosphorylation. This metabolic profile is reversed in M2 macrophages because of changes in the redox state. Therefore, new therapies based on redox mechanisms have emerged to treat acute inflammation with positive results, which highlights the relevance of redox signaling as a master regulator of macrophage reprogramming.
Collapse
|
11
|
Li J, Chang WT, Qin G, Wojcik KR, Li CQ, Hsu CW, Han M, Zhu X, Vanden Hoek TL, Shao ZH. Baicalein Preconditioning Cardioprotection Involves Pro-Oxidant Signaling and Activation of Pyruvate Dehydrogenase. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1255-1267. [PMID: 35748215 DOI: 10.1142/s0192415x22500513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preconditioning has a powerful protective potential against myocardial ischemia-reperfusion injury (I/R). Our prior work demonstrated that baicalein, a flavonoid derived from the root of Scatellaria baicalensis Georgi (also known as Huangqin), confers this preconditioning protection. This study further explored the mechanisms of baicalein preconditioning (BC-PC) in mouse cardiomyocytes. Cells were treated with baicalein (10 μM) for a brief period of time (10 min) prior to simulated ischemia 90 min/reperfusion for 180 min. Baicalein triggered an induction of a small amount of mitochondrial reactive oxygen species (ROS) prior to the initiation of ischemia, assessed by 6-carboxy-2', 7'-dichlorodihydrofluorescein diacetate (6-carboxy-H2DCFDA). It also significantly increased cell viability measured by propidium iodide (PI) and lactate dehydrogenase and preserved mitochondrial membrane potential assessed by TMRM fluorescence intensity. Myxothiazol, a mitochondrial electron transport chain complex III inhibitor, partially blocked ROS generation induced by BC-PC and reduced cell viability. BC-PC increased phosphorylation of Akt (Thr308 and Ser473) and eNOS Ser1177, and nitric oxide (NO) production measured using 4,5-diaminofluorescein diacetate (DAF-2 DA, 1 μM). Akt inhibitor API-2 abolished Akt phosphorylation and reduced DAF-2 production and cell viability. In addition, BC-PC decreased phosphorylation of pyruvate dehydrogenase (PDH) reflecting upregulated PDH activity, and increased ATP production at 30 min during reperfusion. Taken together, baicalein preconditioning-induced cardioprotection involves pro-oxidant generation, activates survival signaling Akt/eNOS/NO, and improves metabolic recovery after I/R injury. Our work provides new perspectives on the effect of baicalein on cardiac preconditioning against I/R injury.
Collapse
Affiliation(s)
- Jing Li
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Gina Qin
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Kimberly R Wojcik
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Chang-Qing Li
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Chin-Wang Hsu
- Department of Emergency, School of Medicine, College of Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mei Han
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Xiangdong Zhu
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Terry L Vanden Hoek
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Zuo-Hui Shao
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| |
Collapse
|
12
|
Ma L, Chang E, Ruan X, Zhang B, Tang F, Zhang J. The protective effects of Omarigliptin against Lipopolysaccharide (LPS)- induced inflammatory response and expression of mucin 5AC (MUC5AC) in human bronchial epithelial cells. Mol Immunol 2021; 141:108-115. [PMID: 34871838 DOI: 10.1016/j.molimm.2021.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 01/26/2023]
Abstract
The epidemic of chronic inflammatory lung diseases such as asthma, bronchitis, and chronic obstructive pulmonary disease (COPD) has become a global public health problem. Oxidative stress, inflammation, and overproduction of airway mucus play critical roles in the progression of these diseases. Omarigliptin, an oral dipeptidyl peptidase 4 (DPP-4) inhibitor, has been demonstrated to have anti-inflammatory effects in patients with type II diabetes. However, its role in chronic inflammatory lung diseases remains enigmatic. This study is to investigate whether Omarigliptin possesses a beneficial effect against Lipopolysaccharide (LPS)-induced injuries in human BEAS-2B bronchial epithelial cells. Our results show that Omarigliptin suppressed LPS-induced oxidative stress by attenuating the generation of mitochondrial reactive oxygen species (ROS) and decrease in reduced glutathione (GSH) in BEAS-2B cells. Additionally, Omarigliptin mitigated inflammatory response by inhibiting the expression of pro-inflammatory mediators, including interleukin-1β (IL-1β), interleukin-12 (IL-12), and macrophage chemoattractant protein-1 (MCP-1) in LPS-challenged BEAS-2B cells. Moreover, Omarigliptin mitigated the LPS-induced overproduction of MUC5AC by rescuing the expression of the suppressor of cytokine signaling 1(SOCS1). Importantly, we found that this process is mediated by the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Based on these findings, we conclude that Omarigliptin might be a promising agent for the treatment of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Libin Ma
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Enqiang Chang
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Xiaoguo Ruan
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Beibei Zhang
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Fudong Tang
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Jiaqiang Zhang
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
13
|
Cloves Regulate Na +-K +-ATPase to Exert Antioxidant Effect and Inhibit UVB Light-Induced Skin Damage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5197919. [PMID: 34471465 PMCID: PMC8405327 DOI: 10.1155/2021/5197919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to observe the effect of cloves (Syzygium aromaticum (L.) Merr. & L.M. Perry) on the mouse skin using a UVB-induced skin injury mouse model. The serum, liver, and skin indexes of mice were determined by kits, H&E tissue staining, and qPCR assay. The compound composition of cloves was determined by HPLC. The results showed that cloves increased the activity of Na+-K+-ATPase in the skin and then maintained the sodium and potassium pump in the damaged skin muscle membrane. Cloves alleviated the oxidative stress injury induced by UVB irradiation by normalizing the related oxidative stress indexes (T-SOD, CAT, AGEs, and H2O2) in serum and skin. Inhibition of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 and increased activation of anti-inflammatory cytokines IL-4 and IL-10 occurred after treatment with cloves, which ultimately reduced the inflammatory damage to the body. Further results showed that cloves upregulate SOD1, SOD2, CAT, GSH, IL-10, IκB-α, AMPK, SIRT1, LKB1, PGC-1α, APPL1, and FoxO1 and downregulate NF-κB p65, TNF-α, IL-6, and mTOR mRNA expression in the skin tissues of UVB-damaged mice. The results of composition analysis showed that the five most abundant compounds in cloves are rutin, isoquercitrin, ferulic acid, dihydroquercetin, and quercitrin. Cloves regulate the skin sarcomembrane Na+-K+-ATPase through these five compounds, and because they regulate the oxidation, inflammation, and ATP energy consumption of the body, they subsequently protect the skin from UVB damage.
Collapse
|
14
|
Ontawong A, Duangjai A, Srimaroeng C. Coffea arabica bean extract inhibits glucose transport and disaccharidase activity in Caco-2 cells. Biomed Rep 2021; 15:73. [PMID: 34405045 PMCID: PMC8329997 DOI: 10.3892/br.2021.1449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/14/2021] [Indexed: 11/06/2022] Open
Abstract
The major constituents of Coffea arabica (coffee), including caffeine, chlorogenic acid and caffeic acid, exhibit antihyperglycemic properties in in vitro and in vivo models. However, whether Coffea arabica bean extract (CBE) regulates glucose uptake activity and the underlying mechanisms involved remain unclear. The aim of the present study was to examine the effects of CBE on glucose absorption and identify the mechanisms involved using an in vitro model. The uptake of a fluorescent glucose analog into Caco-2 colorectal adenocarcinoma cells was determined. The expression levels of sodium glucose co-transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated. In addition, glycoside hydrolase enzyme activity was investigated. It was observed that CBE inhibited disaccharidase enzyme activity. Furthermore, CBE exerted an inhibitory effect on intestinal glucose absorption by downregulating SGLT1- and GLUT2-mediated 5' AMP-activated protein kinase phosphorylation and suppressing hepatocyte nuclear factor 1α expression. These data suggest that CBE may attenuate glucose absorption and may have potentially beneficial antihyperglycemic effects in the body; however, the mechanisms underlying the effects of CBE must be elucidated through further investigation.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Chutima Srimaroeng
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Nong Khai 52000, Thailand
| |
Collapse
|
15
|
Penugurti V, Khumukcham SS, Padala C, Dwivedi A, Kamireddy KR, Mukta S, Bhopal T, Manavathi B. HPIP protooncogene differentially regulates metabolic adaptation and cell fate in breast cancer cells under glucose stress via AMPK and RNF2 dependent pathways. Cancer Lett 2021; 518:243-255. [PMID: 34302919 DOI: 10.1016/j.canlet.2021.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
While cancer cells rewire metabolic pathways to sustain growth and survival under metabolic stress in solid tumors, the molecular mechanisms underlying these processes remain largely unknown. In this study, cancer cells switched from survival to death during the early to late phases of metabolic stress by employing a novel signaling switch from AMP activated protein kinase (AMPK)-Forkhead box O3 (FOXO3a)-hematopoietic PBX1-interacting protein (HPIP) to the ring finger protein 2 (RNF2)-HPIP-ubiquitin (Ub) pathway. Acute metabolic stress induced proto-oncogene HPIP expression in an AMPK-FOXO3a-dependent manner in breast cancer (BC) cells. HPIP depletion reduced cell survival and tumor formation in mouse xenografts, which was accompanied by diminished intracellular ATP levels and increased apoptosis in BC cells in response to metabolic (glucose) stress. Glutamine flux (13C-labeled) analysis further suggested that HPIP rewired glutamine metabolism by controlling the expression of the solute carrier family 1 member 5 (SLC1A5) and glutaminase (GLS) genes by acting as a coactivator of MYC to ensure cell survival upon glucose deprivation. However, in response to chronic glucose stress, HPIP was ubiquitinated by the E3-Ub ligase, RNF2, and was concomitantly degraded by the proteasome-mediated pathway, ensuring apoptosis. In support of these data, clinical analyses further indicated that elevated levels of HPIP correlated with AMPK activation in BC. Taken together, these data suggest that HPIP is a signal coordinator during metabolic stress and thus serves as a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Saratchandra Singh Khumukcham
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Chiranjeevi Padala
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anju Dwivedi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Karthik Reddy Kamireddy
- Molecular and Cellular Biology Laboratory, Baylor College of Medicine, Houston, TX, United States
| | - Srinivasulu Mukta
- MNJ Institute of Oncology and Regional Cancer Center, Hyderabad, 500004, Telangana, India
| | - Triveni Bhopal
- MNJ Institute of Oncology and Regional Cancer Center, Hyderabad, 500004, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
16
|
Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021; 34:1319-1354. [PMID: 33899493 PMCID: PMC8418449 DOI: 10.1089/ars.2020.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sheela Nagarkoti
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
17
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Ding L, Li S, Wang F, Xu J, Li S, Wang B, Kou J, Wang Y, Cao W. Berberine improves dietary-induced cardiac remodeling by upregulating Kruppel-like factor 4-dependent mitochondrial function. Biol Chem 2021; 402:795-803. [PMID: 33544461 DOI: 10.1515/hsz-2020-0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/06/2021] [Indexed: 11/15/2022]
Abstract
Multiple studies have showed that berberine protects against heart diseases, including obesity-associated cardiomyopathy. However, it is not fully disclosed the potential molecular mechanisms of berberine on controlling cardiac remodeling. Kruppel-like factor (KLF) 4, identified as a critical transcriptional factor, participates in multiple cardiac injuries. The present study was to explore whether KLF4 determined the cardioprotective benefits of berberine in dietary-induced obese mice. High fat diet-induced obese mice were treated with berberine with or without lentivirus encoding Klf4 siRNA, and cardiac parameters were analyzed by multiple biological approaches. In dietary-induced obese mouse model, administration of berberine obviously increased cardiac level of KLF4, which closely correlated with improvement of cardiac functional parameters. Co-treatment of lentivirus encoding Klf4 siRNA abolished cardioprotective benefits of berberine, including induction of cardiac hypertrophy, fibrosis, functional disorders, inflammatory response and oxidative stress. Mechanistically, we found berberine improved cardiac mitochondrial biogenesis and activities, whereas silencing Klf4 decreased berberine-upregulated mitochondrial quality, ATP production and oxygen consumption. Our present study demonstrated that berberine protected against dietary-induced cardiac structural disorders and mitochondrial dysfunction dependent on cardiac KLF4 signaling. Cardiac KLF4 was one of potential therapeutic targets for obesity-induced cardiac injuries.
Collapse
Affiliation(s)
- Laili Ding
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| | - Shufeng Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| | - Fan Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| | - Jian Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| | - Shaojun Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| | - Bo Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| | - Junjie Kou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| | - Yongshun Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| | - Wei Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin150001, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin150086, Heilongjiang Province, China
| |
Collapse
|
19
|
Blackwood SJ, Jude B, Mader T, Lanner JT, Katz A. Role of nitration in control of phosphorylase and glycogenolysis in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E691-E701. [PMID: 33554777 DOI: 10.1152/ajpendo.00506.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylase is one of the most carefully studied proteins in history, but knowledge of its regulation during intense muscle contraction is incomplete. Tyrosine nitration of purified preparations of skeletal muscle phosphorylase results in inactivation of the enzyme and this is prevented by antioxidants. Whether an altered redox state affects phosphorylase activity and glycogenolysis in contracting muscle is not known. Here, we investigate the role of the redox state in control of phosphorylase and glycogenolysis in isolated mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscle preparations during repeated contractions. Exposure of crude muscle extracts to H2O2 had little effect on phosphorylase activity. However, exposure of extracts to peroxynitrite (ONOO-), a nitrating/oxidizing agent, resulted in complete inactivation of phosphorylase (half-maximal inhibition at ∼200 µM ONOO-), which was fully reversed by the presence of an ONOO- scavanger, dithiothreitol (DTT). Incubation of isolated muscles with ONOO- resulted in nitration of phosphorylase and marked inhibition of glycogenolysis during repeated contractions. ONOO- also resulted in large decreases in high-energy phosphates (ATP and phosphocreatine) in the rested state and following repeated contractions. These metabolic changes were associated with decreased force production during repeated contractions (to ∼60% of control). In contrast, repeated contractions did not result in nitration of phosphorylase, nor did DTT or the general antioxidant N-acetylcysteine alter glycogenolysis during repeated contractions. These findings demonstrate that ONOO- inhibits phosphorylase and glycogenolysis in living muscle under extreme conditions. However, nitration does not play a significant role in control of phosphorylase and glycogenolysis during repeated contractions.NEW & NOTEWORTHY Here we show that exogenous peroxynitrite results in nitration of phosphorylase as well as inhibition of glycogenolysis in isolated intact mouse skeletal muscle during short-term repeated contractions. However, repeated contractions in the absence of exogenous peroxynitrite do not result in nitration of phosphorylase or affect glycogenolysis, nor does the addition of antioxidants alter glycogenolysis during repeated contractions. Thus phosphorylase is not subject to redox control during repeated contractions.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Baptiste Jude
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Theresa Mader
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
20
|
Lee EH, Baek SY, Park JY, Kim YW. Emodin in Rheum undulatum inhibits oxidative stress in the liver via AMPK with Hippo/Yap signalling pathway. PHARMACEUTICAL BIOLOGY 2020; 58:333-341. [PMID: 32306810 PMCID: PMC7191907 DOI: 10.1080/13880209.2020.1750658] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/17/2020] [Accepted: 03/28/2020] [Indexed: 05/31/2023]
Abstract
Context: Emodin is a compound in Rheum undulatum Linne (Polygonaceae) that has been reported to exert anti-inflammatory, antibacterial, and antiallergic effects.Objective: Oxidative stress is a causative agent of liver inflammation that may lead to fibrosis and hepato-carcinoma. In this study, we investigated the antioxidant effects of emodin and its mechanism.Materials and methods: We used the hepatocyte stimulated by arachidonic acid (AA) + iron cotreatment and the C57B/6 mice orally injected with acetaminophen (APAP, 500 mg/kg, 6 h), as assessed by immunoblot and next generation sequencing (NGS). Emodin was pre-treated in hepatocyte (3 ∼ 30 μM) for 1 h before AA + iron, and in mice (10 and 30 m/kg, P.O.) for 3 days before APAP.Results: In vitro, emodin treatment inhibited the cell death induced by AA + iron maximally at a dose of 10 μM (EC50 > 3 μM). In addition, emodin attenuated the decrease of anti-apoptotic proteins, and restored mitochondria membrane potential as mediated by the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. LKB1 mediated AMPK activation was verified using the LKB1 deficient cell line, HeLa. Emodin (10 μM; after 10 min) also induced the phosphorylation of Yes-associated protein 1 (YAP1), the main downstream target of the Hippo signalling pathway that mediated oxidative stress or the ROS-initiated signalling pathway. In vivo, the oral treatment of emodin (10 and 30 m/kg, 3 days) decreased APAP-induced hepatic damage, as indicated by decreases in antioxidant genes as well as tissue damage.Conclusion: Our results show that emodin inhibits oxidative liver injury via the AMPK/YAP mediated pathway.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| | - Su Youn Baek
- Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Korea
| | - Ji Young Park
- Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju, Korea
| |
Collapse
|
21
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
22
|
Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020; 157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Oxidative stress is defined as an imbalance between the levels of reactive oxygen species (ROS) and antioxidant defences. The view of oxidative stress as a cause of cell damage has evolved over the past few decades to a much more nuanced view of the role of oxidative changes in cell physiology. This is no more evident than in the field of immunity, where oxidative changes are now known to regulate many aspects of the immune response, and inflammatory pathways in particular. Our understanding of redox regulation of immunity now encompasses not only increases in reactive oxygen and nitrogen species, but also changes in the activities of oxidoreductase enzymes. These enzymes are important regulators of immune pathways both via changes in their redox activity, but also via other more recently identified cytokine-like functions. The emerging picture of redox regulation of immune pathways is one of increasing complexity and while therapeutic targeting of the redox environment to treat inflammatory disease is a possibility, any such strategy is likely to be more nuanced than simply inhibiting ROS production.
Collapse
Affiliation(s)
- Lisa Mullen
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Ben Alberts
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, Brighton, UK.
| |
Collapse
|
23
|
Abstract
The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease. In this article, we give an overview of the importance of skeletal muscle in metabolism, describing its role in glucose uptake and the diseases that are associated with skeletal muscle metabolic dysregulation. We focus on the role of skeletal muscle in peripheral insulin resistance and the potential for skeletal muscle-targeted therapeutics to combat insulin resistance and diabetes, as well as other metabolic diseases like aging and obesity. In particular, we outline the possibilities and pitfalls of the quest for exercise mimetics, which are intended to target the molecular mechanisms underlying the beneficial effects of exercise on metabolic disease. We also provide a description of the molecular mechanisms that regulate skeletal muscle glucose uptake, including a focus on the SNARE proteins, which are essential regulators of glucose transport into the skeletal muscle. © 2020 American Physiological Society. Compr Physiol 10:785-809, 2020.
Collapse
Affiliation(s)
- Karla E. Merz
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
24
|
Dhanya R, Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem Funct 2020; 38:419-427. [PMID: 31926116 DOI: 10.1002/cbf.3478] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/12/2019] [Accepted: 12/15/2019] [Indexed: 11/11/2022]
Abstract
The present study investigates the in vitro antidiabetic and antioxidant potential of hesperidin and hesperetin under oxidative stress induced in L6 myotubes. Also, the study attempts to reveal the effect of glycosylation (hesperetin) on the biological activities of hesperidin. Oxidative stress is the leading cause of complications associated with diabetes. Both hesperidin and hesperetin reduce oxidative stress directly by scavenging intracellular reactive oxygen species (ROS) and by up-regulating natural antioxidant defence system like glutathione. Hesperidin and hesperetin at 10μM inhibited the non-enzymatic glycation of proteins (65.57% and 35.6%, respectively), the critical reaction involved in the formation of advanced glycation end products (AGEs) which has a significant role in the pathogenesis of diabetes. Additionally, these compounds induced glucose uptake in L6 myotubes following acute and chronic treatment. The percentage 2-NBDG uptake shown by both the compounds was comparable with that of the antidiabetic drug, rosiglitazone (30.4%). Both the compounds downregulated PI3 kinase activity whereas GLUT4, IRS, and AKT were upregulated in L6 myotubes pointing to the possible overlapping with the insulin signalling pathway. SIGNIFICANCE OF THE STUDY: Evidence suggest that oxidative stress occurs in diabetes and could have a role in the development of insulin resistance. Oral hypoglycaemic agents which target on increasing insulin levels and improving insulin sensitivity or that reduce the rate of carbohydrate absorption from the gastrointestinal tract are used to manage type 2 diabetes. But these therapies rarely target the real cause of type 2 diabetes and have severe adverse effects. The observations from the present study provide significant evidence for hesperidin and hesperetin, to be considered as a dietary supplement to manage type 2 diabetes and to suppress oxidative stress mediated diabetic pathophysiology.
Collapse
Affiliation(s)
- R Dhanya
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, India
| | - P Jayamurthy
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, India
| |
Collapse
|
25
|
Chase LA, VerHeulen Kleyn M, Schiller N, King AG, Flores G, Engelsman SB, Bowles C, Smith SL, Robinson AE, Rothstein J. Hydrogen peroxide triggers an increase in cell surface expression of system x c- in cultured human glioma cells. Neurochem Int 2019; 134:104648. [PMID: 31874187 DOI: 10.1016/j.neuint.2019.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
System xc- exchanges extracellular cystine for intracellular glutamate across the plasma membrane of many cell types. One of the physiological roles of System xc- is to provide cystine for synthesis of the antioxidant glutathione. Here we report that hydrogen peroxide (H2O2) triggers the translocation of System xc- to the plasma membrane within 10 min of the initial exposure. Specifically, we observed a three-fold increase in 35S-l-cystine uptake following a 10 min exposure to 0.3 mM H2O2. This effect was dose-dependent with an EC50 for H2O2 of 65 μM. We then used cell surface biotinylation analysis to test the hypothesis that the increase in activity is due to an increased number of transporters on the plasma membrane. We demonstrated that the amount of transporter protein, xCT, localized to the plasma membrane doubles within 10 min of H2O2 exposure as a result of an increase in its delivery rate and a reduction in its internalization rate. In addition, we demonstrated that H2O2 triggered a rapid decrease in total cellular glutathione which recovered within 2 h of the oxidative insult. The kinetics of glutathione recovery matched the time course for the recovery of xCT cell surface expression and System xc- activity following removal of the oxidative insult. Collectively, these results suggest that oxidants acutely modulate the activity of System xc- by increasing its cell surface expression, and that this process may serve as an important mechanism to increase de novo glutathione synthesis during periods of oxidative stress.
Collapse
Affiliation(s)
- Leah A Chase
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA.
| | | | - NaTasha Schiller
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Abby Goltz King
- Department of Chemistry, Hope College, Holland, MI, 49423, USA
| | - Guillermo Flores
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | | | | | - Sara Lang Smith
- Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Anne E Robinson
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Jeffrey Rothstein
- Department of Neurology, Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21287, USA
| |
Collapse
|
26
|
Yang H, Song Z, Hong D. CRBN knockdown mitigates lipopolysaccharide-induced acute lung injury by suppression of oxidative stress and endoplasmic reticulum (ER) stress associated NF-κB signaling. Biomed Pharmacother 2019; 123:109761. [PMID: 31865141 DOI: 10.1016/j.biopha.2019.109761] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/17/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury (ALI) is a common clinical disorder, resulting in substantial health problems in the world. However, the molecular mechanism that contributes to ALI is still unclear. Cereblon (CRBN) has recently been identified as a target for immunomodulatory drugs, playing a critical role in regulating various cellular processes. In the study, we attempted to explore the effects of CRBN on the progression of lipopolysaccharide (LPS)-induced ALI. First, we found that CRBN expression was markedly up-regulated in lung tissues of LPS-challenged mice. Our results suggested that CRBN knockdown mice exhibited better survival rate after LPS challenge, accompanied with improved histological alterations. Further, CRBN decrease effectively ameliorated pulmonary injury by reducing lung wet/dry (W/D) ratio and protein levels, neutrophil infiltration, myeloperoxidase (MPO) and lactate dehydrogenase (LDH) levels. In addition, LPS-triggered inflammation in lung tissues was markedly alleviated in CRBN knockdown mice by reducing the pro-inflammatory cytokines through the inactivation of nuclear factor-κB (NF-κB) signaling. Moreover, CRBN knockdown mice exhibited alleviated oxidative stress by promoting nuclear factor-erythroid 2 related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) signaling. ER stress stimulated by LPS in pulmonary tissues was significantly alleviated by CRBN knockdown through reducing the expression of ER stress associated signals, including CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP), glucose-regulated protein 78 (GRP78), XBP-1, activating transcription factor (ATF)-4, ATF-6 and phosphorylated eukaryotic initiation factor 2 on Ser51 of the α subunit (eIF2α). The protective effects of CRBN knockdown against ALI were verified in LPS-incubated human pulmonary epithelial cells. Importantly, we found that CRBN knockdown-ameliorated inflammatory response was markedly abrogated by the pre-treatment of Nrf-2 inhibitor and ER stress activator, suggesting that CRBN-regulated inflammation in ALI was partly through the meditation of reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress. In conclusion, our study firstly provided a support that CRBN decrease effectively protected LPS-induced ALI against inflammatory response mainly through the repression of oxidative stress and ER stress.
Collapse
Affiliation(s)
- Huobao Yang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital , Fuzhou, Fujian 350001, China
| | - Zhen Song
- Department of Critical Care Medicine, Shandong Yuncheng County Chinese Medicine Hospital, Yuncheng County, Shandong Province, 274700, China
| | - Donghuang Hong
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital , Fuzhou, Fujian 350001, China.
| |
Collapse
|
27
|
Dietz KJ, Wesemann C, Wegener M, Seidel T. Toward an Integrated Understanding of Retrograde Control of Photosynthesis. Antioxid Redox Signal 2019; 30:1186-1205. [PMID: 29463103 DOI: 10.1089/ars.2018.7519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Photosynthesis takes place in the chloroplast of eukaryotes, which occupies a large portion of the photosynthetic cell. The chloroplast function and integrity depend on intensive material and signal exchange between all genetic compartments and conditionally secure efficient photosynthesis and high fitness. Recent Advances: During the last two decades, the concept of mutual control of plastid performance by extraplastidic anterograde signals acting on the chloroplast and the feedback from the chloroplast to the extraplastidic space by retrograde signals has been profoundly revised and expanded. It has become clear that a complex set of diverse signals is released from the chloroplast and exceeds the historically proposed small number of information signals. Thus, it is also recognized that redox compounds and reactive oxygen species play a decisive role in retrograde signaling. CRITICAL ISSUES The diversity of processes controlled or modulated by the retrograde network covers all molecular levels, including RNA fate and translation, and also includes subcellular heterogeneity, indirect gating of other organelles' metabolism, and specific signaling routes and pathways, previously not considered. All these processes must be integrated for optimal adjustment of the chloroplast processes. Thus, evidence is presented suggesting that retrograde signaling affects translation, stress granule, and processing body (P-body) dynamics. FUTURE DIRECTIONS Redundancy of signal transduction elements, parallelisms of pathways, and conditionally alternative mechanisms generate a robust network and system that only tentatively can be assessed by use of single-site mutants.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Corinna Wesemann
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Melanie Wegener
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Thorsten Seidel
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
28
|
Schneider SM, Sridhar V, Bettis AK, Heath-Barnett H, Balog-Alvarez CJ, Guo LJ, Johnson R, Jaques S, Vitha S, Glowcwski AC, Kornegay JN, Nghiem PP. Glucose Metabolism as a Pre-clinical Biomarker for the Golden Retriever Model of Duchenne Muscular Dystrophy. Mol Imaging Biol 2019; 20:780-788. [PMID: 29508262 PMCID: PMC6153676 DOI: 10.1007/s11307-018-1174-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose Metabolic dysfunction in Duchenne muscular dystrophy (DMD) is characterized by reduced glycolytic and oxidative enzymes, decreased and abnormal mitochondria, decreased ATP, and increased oxidative stress. We analyzed glucose metabolism as a potential disease biomarker in the genetically homologous golden retriever muscular dystrophy (GRMD) dog with molecular, biochemical, and in vivo imaging. Procedures Pelvic limb skeletal muscle and left ventricle tissue from the heart were analyzed by mRNA profiling, qPCR, western blotting, and immunofluorescence microscopy for the primary glucose transporter (GLUT4). Physiologic glucose handling was measured by fasting glucose tolerance test (GTT), insulin levels, and skeletal and cardiac positron emission tomography/X-ray computed tomography (PET/CT) using the glucose analog 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Results MRNA profiles showed decreased GLUT4 in the cranial sartorius (CS), vastus lateralis (VL), and long digital extensor (LDE) of GRMD vs. normal dogs. QPCR confirmed GLUT4 downregulation but increased hexokinase-1. GLUT4 protein levels were not different in the CS, VL, or left ventricle but increased in the LDE of GRMD vs. normal. Microscopy revealed diffuse membrane expression of GLUT4 in GRMD skeletal but not cardiac muscle. GTT showed higher basal glucose and insulin in GRMD but rapid tissue glucose uptake at 5 min post-dextrose injection in GRMD vs. normal/carrier dogs. PET/ CT with [18F]FDG and simultaneous insulin stimulation showed a significant increase (p = 0.03) in mean standard uptake values (SUV) in GRMD skeletal muscle but not pelvic fat at 5 min post-[18F]FDG /insulin injection. Conversely, mean cardiac SUV was lower in GRMD than carrier/normal (p < 0.01). Conclusions Altered glucose metabolism in skeletal and cardiac muscle of GRMD dogs can be monitored with molecular, biochemical, and in vivo imaging studies and potentially utilized as a biomarker for disease progression and therapeutic response. Electronic supplementary material The online version of this article (10.1007/s11307-018-1174-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Morar Schneider
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Vidya Sridhar
- Texas A&M Institute for Preclinical Studies, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Amanda K Bettis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA
| | - Heather Heath-Barnett
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA
| | - Lee-Jae Guo
- Texas A&M Institute for Preclinical Studies, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA
| | - Rachel Johnson
- Texas A&M Institute for Preclinical Studies, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Scott Jaques
- Texas A&M Veterinary Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Stanislav Vitha
- Microscopy Imaging Center, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Alan C Glowcwski
- Texas A&M Institute for Preclinical Studies, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA
| | - Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA.
| |
Collapse
|
29
|
Mitochondrial dynamics in exercise physiology. Pflugers Arch 2019; 472:137-153. [DOI: 10.1007/s00424-019-02258-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
30
|
Gu C, Li T, Jiang S, Yang Z, Lv J, Yi W, Yang Y, Fang M. AMP-activated protein kinase sparks the fire of cardioprotection against myocardial ischemia and cardiac ageing. Ageing Res Rev 2018; 47:168-175. [PMID: 30110651 DOI: 10.1016/j.arr.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/28/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is a pivotal regulator of some endogenous defensive molecules in various pathological processes, particularly myocardial ischemia (MI), a high risk of myocardial infarction. Thereby it is of great significance to explore the inherent mechanism between AMPK and myocardial infarction. In this review, we first introduce the structure and role of AMPK in the heart. Next, we introduce the mechanisms of AMPK in the heart; followed by the energy regulation of AMPK in MI. Lastly, the attention will be expanded to some potential directions and further perspectives. The information compiled here will be helpful for further research and drug design in the future before AMPK might be considered as a therapeutic target of MI.
Collapse
|
31
|
|
32
|
Abstract
PURPOSE OF REVIEW Insight into the metabolic changes in cancer has become so important that cancer is regarded as a disease entity full of metabolic implications. We summarize the recent findings pertaining to cancer cell-derived metabolic changes that regulate the function of macrophages to favor cancer cell survival, and the reported approaches to reverse these changes. RECENT FINDINGS Since the observation and dramatic revitalization of the Warburg effect, metabolic changes were thought to be confined in cancer cells. However, the Warburg effect has recently been proven to exist in various types of immune cells in tumor tissue. A growing number of publications now indicate that cancer cells interact with other cells in the tumor microenvironment, not only through traditional inflammatory mediators, but also through oncometabolites, and that metabolic changes in immune cells by oncometabolites are the key factors favoring the survival of cancer cells and pro-tumoral function of immune cells. Notably, these metabolic changes do not occur uniformly in tumor progression. SUMMARY Understanding of the complex metabolic interactions in the tumor microenvironment can not only set a new paradigm for tumor progression, but also provide new breakthroughs to control cancer by modulation of function in tumor-associated macrophages.
Collapse
|
33
|
Lee H, Lim Y. Tocotrienol-rich fraction supplementation reduces hyperglycemia-induced skeletal muscle damage through regulation of insulin signaling and oxidative stress in type 2 diabetic mice. J Nutr Biochem 2018; 57:77-85. [DOI: 10.1016/j.jnutbio.2018.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
|
34
|
Ko JR, Seo DY, Park SH, Kwak HB, Kim M, Ko KS, Rhee BD, Han J. Aerobic exercise training decreases cereblon and increases AMPK signaling in the skeletal muscle of STZ-induced diabetic rats. Biochem Biophys Res Commun 2018; 501:448-453. [PMID: 29730289 DOI: 10.1016/j.bbrc.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Cereblon (CRBN) has been reported as a negative regulator of adenosine monophosphate-activated protein kinase (AMPK). Aerobic exercise training has been shown to increase AMPK, which resulted in glucose regulation in skeletal muscle. However, the expression level of CRBN and its association with the physiological modulation of glucose are still unclear. Male Sprague-Dawley rats (5-week-old, n = 18) were assigned to control, streptozotocin (STZ, 65 mg/kg)-induced diabetic group, and STZ + exercise (STZ + EXE) group with six rats in each group. Rats in the STZ + EXE group exercised by treadmill running (20 m/min, 60 min, 4 times/week) for 8 weeks. Compared with the STZ group, blood glucose was significantly decreased in the STZ + EXE group. The skeletal muscle of rats in the STZ + EXE group showed a significant decrease in CRBN levels and an increase in AMPK, protein kinase B, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, fibronectin type III domain-containing protein 5, glucose transporter type 4, superoxide dismutase 1, and uncoupling protein 3 levels. These results suggest that CRBN is a potential regulator of glucose homeostasis in the skeletal muscle. Moreover, our results suggest that aerobic exercise training may provide an important physiological treatment for type 1 diabetes by decreasing CRBN and increasing AMPK signaling in skeletal muscle.
Collapse
Affiliation(s)
- Jeong Rim Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Se Hwan Park
- Department of Physical Education, Korea National University of Education, Cheongju, Republic of Korea
| | - Hyo Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Min Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
35
|
Sulforaphane attenuates bisphenol A-induced 3T3-L1 adipocyte differentiation through cell cycle arrest. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
36
|
Le Guillou D, Bucher S, Begriche K, Hoët D, Lombès A, Labbe G, Fromenty B. Drug-Induced Alterations of Mitochondrial DNA Homeostasis in Steatotic and Nonsteatotic HepaRG Cells. J Pharmacol Exp Ther 2018; 365:711-726. [PMID: 29669730 DOI: 10.1124/jpet.117.246751] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/06/2018] [Indexed: 12/19/2022] Open
Abstract
Although mitochondriotoxicity plays a major role in drug-induced hepatotoxicity, alteration of mitochondrial DNA (mtDNA) homeostasis has been described only with a few drugs. Because it requires long drug exposure, this mechanism of toxicity cannot be detected with investigations performed in isolated liver mitochondria or cultured cells exposed to drugs for several hours or a few days. Thus, a first aim of this study was to determine whether a 2-week treatment with nine hepatotoxic drugs could affect mtDNA homeostasis in HepaRG cells. Previous investigations with these drugs showed rapid toxicity on oxidative phosphorylation but did not address the possibility of delayed toxicity secondary to mtDNA homeostasis impairment. The maximal concentration used for each drug induced about 10% cytotoxicity. Two other drugs, zalcitabine and linezolid, were used as positive controls for their respective effects on mtDNA replication and translation. Another goal was to determine whether drug-induced mitochondriotoxicity could be modulated by lipid overload mimicking nonalcoholic fatty liver. Among the nine drugs, imipramine and ritonavir induced mitochondrial effects suggesting alteration of mtDNA translation. Ritonavir toxicity was stronger in nonsteatotic cells. None of the nine drugs decreased mtDNA levels. However, increased mtDNA was observed with five drugs, especially in nonsteatotic cells. The mtDNA levels could not be correlated with the expression of key factors involved in mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), PGC1β, and AMP-activated protein kinase α-subunit. Hence, drug-induced impairment of mtDNA translation might not be rare, and increased mtDNA levels could be a frequent adaptive response to slight energy shortage. Nevertheless, this adaptation could be impaired by lipid overload.
Collapse
Affiliation(s)
- Dounia Le Guillou
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Simon Bucher
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Karima Begriche
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Delphine Hoët
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Anne Lombès
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Gilles Labbe
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Bernard Fromenty
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| |
Collapse
|
37
|
Wang JP, Chi RF, Liu J, Deng YZ, Han XB, Qin FZ, Li B. The role of endogenous reactive oxygen species in cardiac myocyte autophagy. Physiol Res 2017; 67:31-40. [PMID: 29137484 DOI: 10.33549/physiolres.933653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autophagy is implicated in the maintenance of cardiac homeostasis. Autophagy is activated in heart failure, in which reactive oxygen species (ROS) are increased. Exogenous ROS have been shown to induce cardiomyocyte autophagy alterations. However, little is known about the influences of physiological levels of endogenous ROS on cardiomyocyte autophagy. In the present study, we tested the hypothesis that endogenous ROS in cardiomyocytes play an important role in inducing autophagy. Cultured H9C2 cardiomyocytes or Sprague-Dawley rats were treated with the antioxidant N-acetyl-cysteine (NAC) or the superoxide dismutase mimic tempol under the basal or nutrient deprivation conditions. The autophagic flux was assessed by the lysosomal inhibitor chloroquine. In H9C2 cardiomyocytes, under a basal condition, NAC or tempol increased the ratio of LC3 II/I proteins and reduced LC3 II autophagic flux. Under nutrient deprivation, NAC increased the LC3 II/I ratio and reduced LC3 II autophagic flux. In vivo studies in rats, NAC treatment increased the LC3 II/I ratio and p-Akt protein expression in myocardium. We concluded that the antioxidants reduced autophagic flux in cardiomyocytes under the basal or nutrient deprivation conditions, suggesting that endogenous ROS promote autophagy flux under physiological conditions, and this effect is mediated, at least in part, through Akt inhibition.
Collapse
Affiliation(s)
- Jia-Pu Wang
- Shanxi Medical University, Taiyuan, Shanxi, China; The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Yue X, Acun A, Zorlutuna P. Transcriptome profiling of 3D co-cultured cardiomyocytes and endothelial cells under oxidative stress using a photocrosslinkable hydrogel system. Acta Biomater 2017. [PMID: 28648749 DOI: 10.1016/j.actbio.2017.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myocardial infarction (MI) is one of the most common among cardiovascular diseases. Endothelial cells (ECs) are considered to have protective effects on cardiomyocytes (CMs) under stress conditions such as MI; however, the paracrine CM-EC crosstalk and the resulting endogenous cellular responses that could contribute to this protective effect are not thoroughly investigated. Here we created biomimetic synthetic tissues containing CMs and human induced pluripotent stem cell (hiPSC)-derived ECs (iECs), which showed improved cell survival compared to single cultures under conditions mimicking the aftermath of MI, and performed high-throughput RNA-sequencing to identify target pathways that could govern CM-iEC crosstalk and the resulting improvement in cell viability. Our results showed that single cultured CMs had different gene expression profiles compared to CMs co-cultured with iECs. More importantly, this gene expression profile was preserved in response to oxidative stress in co-cultured CMs while single cultured CMs showed a significantly different gene expression pattern under stress, suggesting a stabilizing effect of iECs on CMs under oxidative stress conditions. Furthermore, we have validated the in vivo relevance of our engineered model tissues by comparing the changes in the expression levels of several key genes of the encapsulated CMs and iECs with in vivo rat MI model data and clinical data, respectively. We conclude that iECs have protective effects on CMs under oxidative stress through stabilizing mitochondrial complexes, suppressing oxidative phosphorylation pathway and activating pathways such as the drug metabolism-cytochrome P450 pathway, Rap1 signaling pathway, and adrenergic signaling in cardiomyocytes pathway. STATEMENT OF SIGNIFICANCE Heart diseases are the leading cause of death worldwide. Oxidative stress is a common unwanted outcome that especially occurs due to the reperfusion following heart attack or heart surgery. Standard methods of in vivo analysis do not allow dissecting various intermingled parameters, while regular 2D cell culture approaches often fail to provide a biomimetic environment for the physiologically relevant cellular phenotypes. In this research, a systematic genome-wide transcriptome profiling was performed on myocardial cells in a biomimetic 3D hydrogel-based synthetic model tissue, for identifying possible target genes and pathways as protecting regulators against oxidative stress. Identification of such pathways would be very valuable for new strategies during heart disease treatment by reducing the cellular damage due to reperfusion injury.
Collapse
Affiliation(s)
- Xiaoshan Yue
- University of Notre Dame, Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, United States
| | - Aylin Acun
- University of Notre Dame, Bioengineering Graduate Program, United States
| | - Pinar Zorlutuna
- University of Notre Dame, Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, United States; University of Notre Dame, Bioengineering Graduate Program, United States.
| |
Collapse
|
39
|
Griffiths HR, Gao D, Pararasa C. Redox regulation in metabolic programming and inflammation. Redox Biol 2017; 12:50-57. [PMID: 28212523 PMCID: PMC5312548 DOI: 10.1016/j.redox.2017.01.023] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
Energy metabolism and redox state are intrinsically linked. In order to mount an adequate immune response, cells must have an adequate and rapidly available energy resource to migrate to the inflammatory site, to generate reactive oxygen species using NADPH as a cofactor and to engulf bacteria or damaged tissue. The first responder cells of the innate immune response, neutrophils, are largely dependent on glycolysis. Neutrophils are relatively short-lived, dying via apoptosis in the process of bacterial killing through production of hypochlorous acid and release of extracellular NETs. Later on, the most prevalent recruited innate immune cells are monocytes. Their role is to complete a damage limitation exercise initiated by neutrophils and then, as re-programmed M2 macrophages, to resolve the inflammatory event. Almost twenty five years ago, it was noted that macrophages lose their glycolytic capacity and become anti-inflammatory after treatment with corticosteroids. In support of this we now understand that, in contrast to early responders, M2 macrophages are predominantly dependent on oxidative phosphorylation for energy. During early inflammation, polarisation towards M1 macrophages is dependent on NOX2 activation which, via protein tyrosine phosphatase oxidation and AKT activation, increases trafficking of glucose transporters to the membrane and consequently increases glucose uptake for glycolysis. In parallel, mitochondrial efficiency is likely to be compromised via nitrosylation of the electron transport chain. Resolution of inflammation is triggered by encounter with apoptotic membranes exposing oxidised phosphatidylserine that interact with the scavenger receptor, CD36. Downstream of CD36, activation of AMPK and PPARγ elicits mitochondrial biogenesis, arginase expression and a switch towards oxidative phosphorylation in the M2 macrophage. Proinflammatory cytokine production by M2 cells decreases, but anti-inflammatory and wound healing growth factor production is maintained to support restoration of normal function.
Collapse
Affiliation(s)
- Helen R Griffiths
- Departments of Biochemical and Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Dan Gao
- Life Sciences, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chathyan Pararasa
- Life & Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
40
|
Intracellular Accumulation of Methylglyoxal by Glyoxalase 1 Knock Down Alters Collagen Homoeostasis in L6 Myoblasts. Int J Mol Sci 2017; 18:ijms18030480. [PMID: 28241483 PMCID: PMC5372496 DOI: 10.3390/ijms18030480] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Hyperglycemia results in accumulation of the reactive dicarbonyl methylglyoxal (MG). Methylglyoxal is detoxified by the glyoxalase system (glyoxalase 1 and 2). The influence of glyoxalase 1 knockdown on expression of collagens 1, 3, 4, and 5 in L6 myoblasts under hyperglycemic conditions was investigated. Increased biosynthesis of collagens 1, 3, 4, and 5 was detected at mRNA-level following knockdown of glyoxalase 1 (GLO1). At the protein level a significant elevation of the concentration of collagen 1 and 4 was shown, whereas no increase of collagen 5 and a non-significant increase in collagen 3 were detectable. These results could partially explain MG-induced changes in the extracellular matrix (ECM) which account for increased fibrosis and impaired function in myocytes. The mechanisms by which reactive glucose metabolites influence ECM composition deserve further investigation.
Collapse
|
41
|
Ma X, Bai G, Lu D, Huang L, Zhang J, Deng R, Ding S, Gu N, Guo X. Association between STK11 Gene Polymorphisms and Coronary Artery Disease in Type 2 Diabetes in Han Population in China. J Diabetes Res 2017; 2017:6297087. [PMID: 28349069 PMCID: PMC5350304 DOI: 10.1155/2017/6297087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/24/2017] [Indexed: 11/18/2022] Open
Abstract
Background. Recent studies indicated that the Serine threonine kinase 11 (STK11), which is a key regulator of the AMP-activated protein kinase (AMPK), plays a crucial role in cardiovascular system. This study aimed to investigate whether genetic variations in the STK11 gene affect the risk of coronary artery disease (CAD) in Chinese type 2 diabetics. Methods. 5 haplotype-tagging single nucleotide polymorphisms (SNPs) were selected, and 288 CAD-positive cases and 159 CAD-negative controls with type 2 diabetes were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Results. The carriers of minor allele A at rs12977689 had a higher risk of CAD compared to the homozygotes of CC (OR = 1.572, 95% CI = 1.039-2.376, p = 0.035), and the difference was still significant after adjustment for the other known CAD risk factors (OR' = 1.184, 95% CI' = 1.036-1.353, p' = 0.013). Conclusion. Genetic variability at STK11 locus is associated with CAD risk in type 2 diabetes in the Chinese population.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- *Xiaowei Ma:
| | - Ge Bai
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Difei Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Linjuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jianwei Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ruifen Deng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Shan Ding
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
42
|
Dong K, Wu M, Liu X, Huang Y, Zhang D, Wang Y, Yan LJ, Shi D. Glutaredoxins concomitant with optimal ROS activate AMPK through S-glutathionylation to improve glucose metabolism in type 2 diabetes. Free Radic Biol Med 2016; 101:334-347. [PMID: 27743883 DOI: 10.1016/j.freeradbiomed.2016.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
AMPK dysregulation contributes to the onset and development of type 2 diabetes (T2DM). AMPK is known to be activated by reactive oxygen species (ROS) and antioxidant interference. However the mechanism by which redox state mediates such contradictory result remains largely unknown. Here we used streptozotocin-high fat diet (STZ-HFD) induced-type 2 diabetic rats and cells lines (L02 and HEK 293) to explore the mechanism of redox-mediated AMPK activation. We show glutaredoxins (Grxs) concomitant with optimal ROS act as an essential mediator for AMPK activation. ROS level results in different mechanisms for AMPK activation. Under low ROS microenvironment, Grxs-mediated S-glutathionylation on AMPK-α catalytic subunit activates AMPK to improve glucose transportation and degradation while inhibiting glycogen synthesis and keeping redox balance. While, under high ROS microenvironment, AMPK is activated by an AMP-dependent mechanism, however sustained high level ROS also causes loss of AMPK protein. This finding provides evidence for a new approach to diabetes treatment by individual doses of ROS or antioxidant calibrated against the actual redox level in vivo. Moreover, the novel function of Grxs in promoting glucose metabolism may provide new target for T2DM treatment.
Collapse
Affiliation(s)
- Kelei Dong
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Meiling Wu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Xiaomin Liu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Yanjie Huang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Dongyang Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Yiting Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, People's Republic of China.
| |
Collapse
|
43
|
Hirose-Yotsuya L, Okamoto F, Yamakawa T, Whitson RH, Fujita-Yamaguchi Y, Itakura K. Knockdown of AT-rich interaction domain (ARID) 5B gene expression induced AMPKα2 activation in cardiac myocytes. Biosci Trends 2016; 9:377-85. [PMID: 26781795 DOI: 10.5582/bst.2015.01159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study demonstrated that ARID5B mRNA is present in mouse cardiomyocyte HL-1 cells, and that ARID5B siRNA constantly knocked down ARID5B gene expression to the 40% level of control. AMPKα2 protein was elevated in such ARID5B knockdown HL-1 cells, and this was accompanied by an increase in the level of phosphorylated AMPKα. Since AMPKα2 mRNA levels did not change in ARID5B knockdown cells, the stability of AMPKα2 protein was investigated using inhibitors for protein synthesis and proteasomal degradation. Treatment of HL-1 cells with either cycloheximide or MG132 caused an appreciable increase in the amount of AMPKα2 protein in ARID5B knockdown cells, which suggests that knockdown of ARID5B mRNA extends the half-life of AMPKα2 protein in HL-1 cells via yet unidentified mechanisms. As for the expected downstream consequences of AMPKα2 activation, we found thus far that glucose uptake, fatty acid uptake, or fatty acid oxidation remained unchanged in HL-1 cells after knockdown of ARID5B. Further studies are required to understand the mechanisms for ARID5B knockdown and resulting AMPKα2 activation, and also to identify which metabolic pathways are affected by AMPKα2 activation in these cells. In summary, this study provided the foundation for an in vitro cell culture system to study possible roles of ARID5B in cardiomyocytes.
Collapse
Affiliation(s)
- Lisa Hirose-Yotsuya
- Department of Molecular & Cellular Biology, Beckman Research Institute of City of Hope
| | | | | | | | | | | |
Collapse
|
44
|
Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur J Pharmacol 2015; 769:55-63. [PMID: 26522928 DOI: 10.1016/j.ejphar.2015.10.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023]
Abstract
Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.
Collapse
|
45
|
Liu YJ, Chern Y. AMPK-mediated regulation of neuronal metabolism and function in brain diseases. J Neurogenet 2015; 29:50-8. [DOI: 10.3109/01677063.2015.1067203] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Zheng YS, Zhang JY, Zhang DH. Fatsioside A‑induced apoptotic death of HepG2 cells requires activation of AMP‑activated protein kinase. Mol Med Rep 2015; 12:5679-84. [PMID: 26252753 PMCID: PMC4581823 DOI: 10.3892/mmr.2015.4194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/25/2015] [Indexed: 01/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant types of human primary tumor and has a poor prognosis, therefore, the development of novel therapeutic modalities is necessary. Fatsioside A is a novel baccharane-type triterpenoid glycoside, which is extracted from the fruits of Fatsia japonica. Previous data has revealed that fatsioside A can exert growth inhibition, cell cycle arrest and induce apoptosis in human glioma cells. However, no detailed investigations have been performed to determine its action on human hepatocellular cells, and the exact mechanisms underlying the induction of apoptosis remain to be elucidated. The aim of the present study was to investigate the anticancer effect of fatsioside A in the HepG2 human HCC cell line, and to investigate the underlying mechanisms by focusing on the AMP-activated protein kinase (AMPK) signaling cascade. The results of the present study demonstrated that fatsioside A induced apoptotic death of the human HepG2 HCC cells, which was associated with a marked activation of AMPK and increased expression of the downstream acetyl-CoA carboxylase carboxylase. Inhibition of AMPK by RNA interference or by its inhibitor, compound C, suppressed fatsioside A-induced caspase-3 cleavage and apoptosis in the HepG2 cells, while AICAR, the AMPK activator, elicited marked cytotoxic effects. Together, these results suggested that fatsioside A-induced apoptotic death requires AMPK activation in HepG2 cells.
Collapse
Affiliation(s)
- Yu-Shan Zheng
- Department of Liver Diseases, Hospital for Infectious Diseases of Jining, Jining, Shandong 272031, P.R. China
| | - Jian-You Zhang
- Department of Radiology, The First People's Hospital of Jining, Jining, Shandong 272031, P.R. China
| | - Dong-Hui Zhang
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
47
|
Li J, Wang H, Zhong Q, Zhu X, Chen SJ, Qian Y, Costakis J, Bunney G, Beiser DG, Leff AR, Lewandowski ED, ÓDonnell JM, Vanden Hoek TL. A novel pharmacological strategy by PTEN inhibition for improving metabolic resuscitation and survival after mouse cardiac arrest. Am J Physiol Heart Circ Physiol 2015; 308:H1414-22. [PMID: 25795713 DOI: 10.1152/ajpheart.00748.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/17/2015] [Indexed: 01/04/2023]
Abstract
Sudden cardiac arrest (SCA) is a leading cause of death in the United States. Despite return of spontaneous circulation, patients die due to post-SCA syndrome that includes myocardial dysfunction, brain injury, impaired metabolism, and inflammation. No medications improve SCA survival. Our prior work suggests that optimal Akt activation is critical for cooling protection and SCA recovery. Here, we investigate a small inhibitor of PTEN, an Akt-related phosphatase present in heart and brain, as a potential therapy in improving cardiac and neurological recovery after SCA. Anesthetized adult female wild-type C57BL/6 mice were randomized to pretreatment of VO-OHpic (VO) 30 min before SCA or vehicle control. Mice underwent 8 min of KCl-induced asystolic arrest followed by CPR. Resuscitated animals were hemodynamically monitored for 2 h and observed for 72 h. Outcomes included heart pressure-volume loops, energetics (phosphocreatine and ATP from (31)P NMR), protein phosphorylation of Akt, GSK3β, pyruvate dehydrogenase (PDH) and phospholamban, circulating inflammatory cytokines, plasma lactate, and glucose as measures of systemic metabolic recovery. VO reduced deterioration of left ventricular maximum pressure, maximum rate of change in the left ventricular pressure, and Petco2 and improved 72 h neurological intact survival (50% vs. 10%; P < 0.05). It reduced plasma lactate, glucose, IL-1β, and Pre-B cell colony enhancing factor, while increasing IL-10. VO increased phosphorylation of Akt and GSK3β in both heart and brain, and cardiac phospholamban phosphorylation while reducing p-PDH. Moreover, VO improved cardiac bioenergetic recovery. We concluded that pharmacologic PTEN inhibition enhances Akt activation, improving metabolic, cardiovascular, and neurologic recovery with increased survival after SCA. PTEN inhibitors may be a novel pharmacologic strategy for treating SCA.
Collapse
Affiliation(s)
- Jing Li
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Huashan Wang
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Qiang Zhong
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois; Department of Emergency Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, China
| | - Xiangdong Zhu
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Sy-Jou Chen
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois; Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Yuanyu Qian
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois; Emergency Department, Chinese PLA General Hospital, Beijing, China
| | - Jim Costakis
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Gabrielle Bunney
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - David G Beiser
- Section of Emergency Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alan R Leff
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - E Douglas Lewandowski
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, and Department of Physiology and Biophysics, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - J Michael ÓDonnell
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, and Department of Physiology and Biophysics, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Terry L Vanden Hoek
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois;
| |
Collapse
|
48
|
Hong SW, Lee J, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Activation of AMP-Activated Protein Kinase Attenuates Tumor Necrosis Factor-α-Induced Lipolysis via Protection of Perilipin in 3T3-L1 Adipocytes. Endocrinol Metab (Seoul) 2014; 29:553-60. [PMID: 25325265 PMCID: PMC4285046 DOI: 10.3803/enm.2014.29.4.553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/11/2014] [Accepted: 04/24/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF)-α and AMP-activated protein kinase (AMPK) are known to stimulate and repress lipolysis in adipocytes, respectively; however, the mechanisms regulating these processes have not been completely elucidated. METHODS The key factors and mechanism of action of TNF-α and AMPK in lipolysis were investigated by evaluating perilipin expression and activity of protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 α (eIF2α) by Western blot and an immunofluorescence assay in 24-hour TNF-α-treated 3T3-L1 adipocytes with artificial manipulation of AMPK activation. RESULTS Enhancement of AMPK activity by the addition of activator minoimidazole carboxamide ribonucleotide (AICAR) suppressed TNF-α-induced lipolysis, whereas the addition of compound C, an inhibitor of AMPK phosphorylation, enhanced lipolysis. Perilipin, a lipid droplet-associated protein, was decreased by TNF-α and recovered following treatment with AICAR, showing a correlation with the antilipolytic effect of AICAR. Significant activation of PERK/eIF2α, a component of the unfolded protein response signaling pathway, was observed in TNF-α or vesicle-treated 3T3-L1 adipocytes. The antilipolytic effect and recovery of perilipin expression by AICAR in TNF-α-treated 3T3-L1 adipocytes were significantly diminished by treatment with 2-aminopurine, a specific inhibitor of eIF2α. CONCLUSION These data indicated that AICAR-induced AMPK activation attenuates TNF-α-induced lipolysis via preservation of perilipin in 3T3-L1 adipocytes. In addition, PERK/eIF2α activity is a novel mechanism of the anti-lipolytic effect of AICAR.
Collapse
Affiliation(s)
- Seok Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
49
|
Park DW, Jiang S, Liu Y, Siegal GP, Inoki K, Abraham E, Zmijewski JW. GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L735-45. [PMID: 25239914 PMCID: PMC4233296 DOI: 10.1152/ajplung.00165.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although AMP-activated protein kinase (AMPK) is involved in regulating carbohydrate and lipid metabolism, activated AMPK also plays an anti-inflammatory role in many cell populations. However, despite the ability of AMPK activation to diminish the severity of inflammatory responses, previous studies have found that AMPK activity is diminished in LPS-treated neutrophils and also in lungs of mice with LPS-induced acute lung injury (ALI). Since GSK3β participates in regulating AMPK activity, we examined potential roles for GSK3β in modulating LPS-induced activation of neutrophils and macrophages and in influencing severity of ALI. We found that GSK3β-dependent phosphorylation of T479-AMPK was associated with pT172 dephosphorylation and inactivation of AMPK following TLR4 engagement. GSK3β inhibitors BIO (6-bromoindirubin-3'-oxime), SB216763, or siRNA knockdown of GSK3β, but not the PI3K/AKT inhibitor LY294002, prevented Thr172-AMPK dephosphorylation. Exposure to LPS resulted in rapid binding between IKKβ and AMPKα, and phosphorylation of S485-AMPK by IKKβ. These results suggest that IKKβ-dependent phosphorylation of S485-AMPK was an essential step in subsequent phosphorylation and inactivation AMPK by GSK3β. Inhibition of GSK3β activity delayed IκBα degradation and diminished expression of the proinflammatory TNF-α in LPS-stimulated neutrophils and macrophages. In vivo, inhibition of GSK3β decreased the severity of LPS-induced lung injury as assessed by development of pulmonary edema, production of TNF-α and MIP-2, and release of the alarmins HMGB1 and histone 3 in the lungs. These results show that inhibition of AMPK by GSK3β plays an important contributory role in enhancing LPS-induced inflammatory responses, including worsening the severity of ALI.
Collapse
Affiliation(s)
- Dae Won Park
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; ,2Division of Infectious Diseases, Korea University Ansan Hospital, Ansan, Korea;
| | - Shaoning Jiang
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Yanping Liu
- 1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Gene P. Siegal
- 3Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Ken Inoki
- 4University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Edward Abraham
- 5Office of the Dean, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
50
|
Watanabe S, Horie T, Nagao K, Kuwabara Y, Baba O, Nishi H, Sowa N, Narazaki M, Matsuda T, Takemura G, Wada H, Hasegawa K, Kimura T, Ono K. Cardiac-specific inhibition of kinase activity in calcium/calmodulin-dependent protein kinase kinase-β leads to accelerated left ventricular remodeling and heart failure after transverse aortic constriction in mice. PLoS One 2014; 9:e108201. [PMID: 25255457 PMCID: PMC4177887 DOI: 10.1371/journal.pone.0108201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/19/2014] [Indexed: 12/26/2022] Open
Abstract
Background The mechanism of cardiac energy production against sustained pressure overload remains to be elucidated. Methods and Results We generated cardiac-specific kinase-dead (kd) calcium/calmodulin-dependent protein kinase kinase-β (CaMKKβ) transgenic (α-MHC CaMKKβkd TG) mice using α-myosin heavy chain (α-MHC) promoter. Although CaMKKβ activity was significantly reduced, these mice had normal cardiac function and morphology at baseline. Here, we show that transverse aortic binding (TAC) in α-MHC CaMKKβkd TG mice led to accelerated death and left ventricular (LV) dilatation and dysfunction, which was accompanied by significant clinical signs of heart failure. CaMKKβ downstream signaling molecules, including adenosine monophosphate-activated protein kinase (AMPK), were also suppressed in α-MHC CaMKKβkd TG mice compared with wild-type (WT) mice. The expression levels of peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, which is a downstream target of both of CaMKKβ and calcium/calmodulin kinases, were also significantly reduced in α-MHC CaMKKβkd TG mice compared with WT mice after TAC. In accordance with these findings, mitochondrial morphogenesis was damaged and creatine phosphate/β-ATP ratios assessed by magnetic resonance spectroscopy were suppressed in α-MHC CaMKKβkd TG mice compared with WT mice after TAC. Conclusions These data indicate that CaMKKβ exerts protective effects on cardiac adaptive energy pooling against pressure-overload possibly through phosphorylation of AMPK and by upregulation of PGC-1α. Thus, CaMKKβ may be a therapeutic target for the treatment of heart failure.
Collapse
Affiliation(s)
- Shin Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Nagao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitoo Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Sowa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiko Narazaki
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Tetsuya Matsuda
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Genzou Takemura
- Department of Internal Medicine, Asahi University, Gifu, Japan
| | - Hiromichi Wada
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| | - Koji Hasegawa
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|