1
|
Kochumon S, Al-Sayyar A, Jacob T, Arefanian H, Bahman F, Almansour N, Alzaid F, Al-Mulla F, Sindhu S, Ahmad R. IL-1β-Induced CXCL10 Expression in THP-1 Monocytic Cells Involves the JNK/c-Jun and NF-κB-Mediated Signaling. Pharmaceuticals (Basel) 2024; 17:823. [PMID: 39065674 PMCID: PMC11279630 DOI: 10.3390/ph17070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
CXCL10 (IP-10) plays a key role in leukocyte homing to the inflamed tissues and its increased levels are associated with the pathophysiology of various inflammatory diseases including obesity and type 2 diabetes. IL-1β is a key proinflammatory cytokine that is found upregulated in meta-inflammatory conditions and acts as a potent activator, inducing the expression of cytokines/chemokines by immune cells. However, it is unclear whether IL-1β induces the expression of CXCL10 in monocytic cells. We, therefore, determined the CXCL10 induction using IL-1β in THP1 monocytic cells and investigated the mechanisms involved. Monocytes (human monocytic THP-1 cells) were stimulated with IL-1β. CXCL10 gene expression was determined with real-time RT-PCR. CXCL10 protein was determined using ELISA. Signaling pathways were identified by using Western blotting, inhibitors, siRNA transfections, and kinase assay. Our data show that IL-1β induced the CXCL10 expression at both mRNA and protein levels in monocytic cells (p = 0.0001). Notably, only the JNK inhibitor (SP600125) significantly suppressed the IL-1β-induced CXCL10 expression, while the inhibitors of MEK1/2 (U0126), ERK1/2 (PD98059), and p38 MAPK (SB203580) had no significant effect. Furthermore, IL-1β-induced CXCL10 expression was decreased in monocytic cells deficient in JNK/c-Jun. Accordingly, inhibiting the JNK kinase activity markedly reduced the IL-1β-induced JNK/c-Jun phosphorylation in monocytic cells. NF-κB inhibition by Bay-117085 and resveratrol also suppressed the CXCL10 expression. Our findings provide preliminary evidence that IL-1β stimulation induces the expression of CXCL10 in monocytic cells which requires signaling via the JNK/c-Jun/NF-κB axis.
Collapse
Affiliation(s)
- Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Amnah Al-Sayyar
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, 13288 Marseille, France;
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Nourah Almansour
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Fawaz Alzaid
- Bioenergetics & Neurometabolism Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMRS8253, IMMEDIAB, Université deParis Cité, 75015 Paris, France
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| |
Collapse
|
2
|
Bracken RC, Davison LM, Buehler DP, Fulton ME, Carson EE, Sheng Q, Stolze LK, Guillermier C, Steinhauser ML, Brown JD. Transcriptional synergy in human aortic endothelial cells is vulnerable to combination p300/CBP and BET bromodomain inhibition. iScience 2024; 27:110011. [PMID: 38868181 PMCID: PMC11167439 DOI: 10.1016/j.isci.2024.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Combinatorial signaling by proinflammatory cytokines synergizes to exacerbate toxicity to cells and tissue injury during acute infections. To explore synergism at the gene-regulatory level, we investigated the dynamics of transcription and chromatin signaling in response to dual cytokines by integrating nascent RNA imaging mass spectrometry, RNA sequencing, amplification-independent mRNA quantification, assay for transposase-accessible chromatin using sequencing (ATAC-seq), and transcription factor profiling. Costimulation with interferon-gamma (IFNγ) and tumor necrosis factor alpha (TNFα) synergistically induced a small subset of genes, including the chemokines CXCL9, -10, and -11. Gene induction coincided with increased chromatin accessibility at non-coding regions enriched for p65 and STAT1 binding sites. To discover coactivator dependencies, we conducted a targeted chemogenomic screen of transcriptional inhibitors followed by modeling of inhibitor dose-response curves. These results identified high efficacy of either p300/CREB-binding protein (CBP) or bromodomain and extra-terminal (BET) bromodomain inhibitors to disrupt induction of synergy genes. Combination p300/CBP and BET bromodomain inhibition at half-maximal inhibitory concentrations (subIC50) synergistically abrogated IFNγ/TNFα-induced chemokine gene and protein levels.
Collapse
Affiliation(s)
- Ronan C. Bracken
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lindsay M. Davison
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dennis P. Buehler
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maci E. Fulton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily E. Carson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 3723, USA
| | - Lindsey K. Stolze
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 3723, USA
| | - Christelle Guillermier
- Harvard Medical School, Boston, MA 02115, USA
- Center for NanoImaging, Cambridge MA 02115, USA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Meyhöfer S, Steffen A, Plötze-Martin K, Marquardt JU, Meyhöfer SM, Bruchhage KL, Pries R. Obesity-related Plasma CXCL10 Drives CX3CR1-dependent Monocytic Secretion of Macrophage Migration Inhibitory Factor. Immunohorizons 2024; 8:19-28. [PMID: 38175171 PMCID: PMC10835669 DOI: 10.4049/immunohorizons.2300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is characterized by excessive body fat accumulation and comorbidities such as diabetes mellitus, cardiovascular disease, and obstructive sleep apnea syndrome (OSAS). Both obesity and OSAS are associated with immune disturbance, alterations of systemic inflammatory mediators, and immune cell recruitment to metabolic tissues. Chemokine CXCL10 is an important regulator of proinflammatory immune responses and is significantly increased in patients with severe obesity. This research project aims to investigate the impact of CXCL10 on human monocytes in patients with obesity. We studied the distribution of the CD14/CD16 monocyte subsets as well as their CX3CR1 expression patterns in whole-blood measurements from 92 patients with obesity and/or OSAS with regard to plasma CXCL10 values and individual clinical parameters. Furthermore, cytokine secretion by THP-1 monocytes in response to CXCL10 was analyzed. Data revealed significantly elevated plasma CXCL10 in patients with obesity with an additive effect of OSAS. CXCL10 was found to drive monocytic secretion of macrophage migration inhibitory factor via receptor protein CX3CR1, which significantly correlated with the individual body mass index. Our data show, for the first time, to our knowledge, that CX3CR1 is involved in alternative CXCL10 signaling in human monocytes in obesity-related inflammation. Obesity is a multifactorial disease, and further investigations regarding the complex interplay between obesity-related inflammatory mediators and systemic immune balances will help to better understand and improve the individual situation of our patients.
Collapse
Affiliation(s)
- Svenja Meyhöfer
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
- Institute for Endocrinology & Diabetes, Department of Internal Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Armin Steffen
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Kirstin Plötze-Martin
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Jens-Uwe Marquardt
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology & Diabetes, Department of Internal Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
4
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Qiao M, Li S, Yuan J, Ren W, Shang Y, Wang W, Liu R, Zhang F, Li Q, Wu X, Lu J, Gao M, Pang Y. Delamanid suppresses CXCL10 expression via regulation of JAK/STAT1 signaling and correlates with reduced inflammation in tuberculosis patients. Front Immunol 2022; 13:923492. [DOI: 10.3389/fimmu.2022.923492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BackgroundApart from bactericidal effects, anti-tuberculosis drugs can interfere with the host’s immune system. In this study, we analyzed the role of delamanid (DLM), an inhibitor of mycolic acid synthesis of mycobacterial cell wall, on human macrophages.MethodsBased on a cohort of multidrug-resistant tuberculosis (MDR-TB) patients treated with DLM, the levels of C-reaction protein (CRP) and cytokines in the plasma were monitored using immunoturbidimetric assay and flow cytometry, respectively. We investigated the role of DLM on CXCL10 expression in U937 cell model using the following methods: cell viability assay, reverse transcription-quantitative polymerase chain reaction, enzyme linked immunosorbent assay, immunoblot, and transwell co-culture assay.ResultsA total of 23 MDR-TB patients were included, comprising of 13 patients treated with optimized background therapeutic regimen (OBR) plus DLM regimen (OBR+DLM) and 10 patients treated with OBR plus placebo. DLM administration was associated with a significant reduce in circulating CRP level. Correspondingly, after treatment, the level of CXCL10 in patients treated with OBR+DLM was significantly lower than that with control. Using cell model, DLM dramatically suppressed CXCL10 expression, which majorly depended on inhibiting the JAK/STAT pathway, and impaired the migration of PBMCs.ConclusionOur data firstly demonstrate that DLM suppresses CXCL10 expression via regulation of JAK2/STAT1 signaling and correlates with reduced inflammation in MDR-TB patients. DLM could be used as a potential drug for immunotherapy of patients with overactive immune response due to CXCL10.
Collapse
|
6
|
Li C, Lu Y, Han X. Identification of Effective Diagnostic Biomarkers and Immune Cell Infiltration in Atopic Dermatitis by Comprehensive Bioinformatics Analysis. Front Mol Biosci 2022; 9:917077. [PMID: 35911963 PMCID: PMC9330059 DOI: 10.3389/fmolb.2022.917077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Atopic dermatitis (AD) is a dermatological disorder characterized by symptoms such as chronically inflamed skin and frequently intolerable itching. The mechanism underlying AD development is still unclear. Our study aims to identify the diagnostic and therapeutic biomarkers for AD and provide insight into immune mechanisms at the molecular level through bioinformatics analysis.Methods: The GSE6012, GSE32924, and GSE36842 gene expression profiles were obtained for analysis from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were segregated using the “Batch correction” and “RobustRankAggreg” methods. Weighted gene co-expression network analysis (WGCNA) was performed to screen for module genes with AD traits. Then, common DEGs (co-DEGs) were screened out via combined differential expression analysis and WGCNA. Functional enrichment analysis was performed for these co-DEGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), followed by protein-protein interaction network analysis. Candidate hub genes were identified using the “cytoHubba” plugin in Cytoscape, and their value for AD diagnosis was validated using receiver operating characteristic curve analysis in the external database GSE120721. Immunohistochemical staining was performed for further validation. The CIBERSORT algorithm was used to evaluate skin samples obtained from healthy controls (HCs) and lesions of AD patients, to determine the extent of immune cell infiltration. The association between the identified hub genes and significant differential immune cells was analyzed using Pearson correlation analysis.Results: A total of 259 DEGs were acquired from the intersection of DEGs obtained by the two independent procedures, and 331 AD-trait module genes were separated out from the blue module via WGCNA analysis. Then, 169 co-DEGs arising from the intersection of the 259 DEGs and the 331 AD-trait module genes were obtained. We found that co-DEGs were significantly enhanced in the type I interferon and IL-17 signal transduction pathways. Thirteen potential hub genes were identified using Cytoscape. Five hub genes (CCR7, CXCL10, IRF7, MMP1, and RRM2) were identified after screening via external dataset validation and immunohistochemical analysis. We also identified four significant differential immune cells, i.e., activated dendritic cells, plasma cells, resting mast cells, and CD4+ naïve T cells, between AD patients and HCs. Moreover, the relationship between the identified hub genes and significant differential immune cells was analyzed. The results showed that the CCR7 expression level was positively correlated with the number of CD4+ naïve T cells (R = 0.42, p = 0.011).Conclusion: CCR7, CXCL10, IRF7, MMP1, and RRM2 could be potential diagnostic and therapeutic biomarkers for AD. CCR7 expression level was positively correlated with the number of CD4+ naïve T cells in AD. These findings need to be corroborated in future studies.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiuping Han, ; Yongping Lu,
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiuping Han, ; Yongping Lu,
| |
Collapse
|
7
|
The CXCL10/CXCR3 Axis Promotes Disease Pathogenesis in Mice upon CVA2 Infection. Microbiol Spectr 2022; 10:e0230721. [PMID: 35604176 PMCID: PMC9241849 DOI: 10.1128/spectrum.02307-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus A2 (CVA2) is an emerging pathogen that results in hand-foot-and-mouth disease (HFMD) outbreaks. Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD. However, the immunopathogenesis of CVA2 infection is poorly understood. We first detected the transcriptional levels of 81 inflammation-related genes in neonatal mice with CVA2 infection. Remarkably, CVA2 induced higher expression of chemokine (C-X-C motif) ligand 10 (CXCL10) in multiple organs and tissues. CXCL10 acts through its cognate receptor chemokine (C-X-C motif) receptor 3 (CXCR3) and regulates immune responses. CXCL10/CXCR3 activation contributes to the pathogenesis of many inflammatory diseases. Next, we found CXCL10 and CXCR3 expression to be significantly elevated in the organs and tissues from CVA2-infected mice at 5 days postinfection (dpi) using immunohistochemistry (IHC). To further explore the role of CXCL10/CXCR3 in CVA2 pathogenesis, an anti-CXCR3 neutralizing antibody (αCXCR3) or IgG isotype control antibody was used to treat CVA2-infected mice on the same day as infection and every 24 h until 5 dpi. Our results showed that αCXCR3 therapy relieved the clinical manifestations and pathological damage and improved the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α], and IL-1β) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis by inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD. IMPORTANCE Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD cases. We detected the expression of 81 inflammation-related genes and found higher expression of CXCL10 in CVA2-infected mice. Next, we confirmed CXCL10/CXCR3 activation using immunohistochemistry and found that anti-CXCR3 neutralizing antibody (αCXCR3) therapy could relieve the clinical manifestations and pathological damage and improve the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (IL-6, TNF-α, and IL-1β) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents the first evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis via inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD.
Collapse
|
8
|
Sabree SA, Voigt AP, Blackwell SE, Vishwakarma A, Chimenti MS, Salem AK, Weiner GJ. Direct and indirect immune effects of CMP-001, a virus-like particle containing a TLR9 agonist. J Immunother Cancer 2021; 9:jitc-2021-002484. [PMID: 34083419 PMCID: PMC8183212 DOI: 10.1136/jitc-2021-002484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background CMP-001, also known as vidutolimod, is a virus-like particle containing a TLR9 agonist that is showing promise in early clinical trials. Our group previously demonstrated that the immunostimulatory effects of CMP-001 are dependent on an anti-Qβ antibody response which results in opsonization of CMP-001 and uptake by plasmacytoid dendritic cells (pDCs) that then produce interferon (IFN)-α. IFN-α then leads to an antitumor T-cell response that is responsible for the in vivo efficacy of CMP-001. Here, we explore mechanisms by which the initial effects of CMP-001 on pDCs activate other cells that can contribute to development of an antitumor T-cell response. Methods Uptake of CMP-001 by various peripheral blood mononuclear cell (PBMC) populations and response to anti-Qβ-coated CMP-001 were evaluated by flow cytometry and single-cell RNA sequencing. Purified monocytes were treated with anti-Qβ-coated CMP-001 or recombinant IFN-α to evaluate direct and secondary effects of anti-Qβ-coated CMP-001 on monocytes. Results Monocytes had the highest per cell uptake of anti-Qβ-coated CMP-001 with lower levels of uptake by pDCs and other cell types. Treatment of PBMCs with anti-Qβ-coated CMP-001 induced upregulation of IFN-responsive genes including CXCL10, PDL1, and indoleamine-2,3-dioxygenase (IDO) expression by monocytes. Most of the impact of anti-Qβ-coated CMP-001 on monocytes was indirect and mediated by IFN-α, but uptake of anti-Qβ-coated CMP-001 altered the monocytic response to IFN-α and resulted in enhanced expression of PDL1, IDO, and CD80 and suppressed expression of CXCL10. These changes included an enhanced ability to induce autologous CD4 T-cell proliferation. Conclusions Anti-Qβ-coated CMP-001 induces IFN-α production by pDCs which has secondary effects on a variety of cells including monocytes. Uptake of anti-Qβ-coated CMP-001 by monocytes alters their response to IFN-α, resulting in enhanced expression of PDL1, IDO and CD80 and suppressed expression of CXCL10. Despite aspects of an immunosuppressive phenotype, these monocytes demonstrated increased ability to augment autologous CD4 T-cell proliferation. These findings shed light on the complexity of the mechanism of action of anti-Qβ-coated CMP-001 and provide insight into pathways that may be targeted to further enhance the efficacy of this novel approach to immunotherapy.
Collapse
Affiliation(s)
- Shakoora A Sabree
- Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, IA, USA.,Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
| | - Andrew P Voigt
- Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sue E Blackwell
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
| | - Ajaykumar Vishwakarma
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Division of Pharmaceutics and Translational Therapeutics, The University of Iowa College of Pharmacy, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Aliasger K Salem
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Division of Pharmaceutics and Translational Therapeutics, The University of Iowa College of Pharmacy, Iowa City, IA, USA
| | - George J Weiner
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA .,Division of Pharmaceutics and Translational Therapeutics, The University of Iowa College of Pharmacy, Iowa City, IA, USA.,Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
9
|
Alfarouk KO, AlHoufie STS, Ahmed SBM, Shabana M, Ahmed A, Alqahtani SS, Alqahtani AS, Alqahtani AM, Ramadan AM, Ahmed ME, Ali HS, Bashir A, Devesa J, Cardone RA, Ibrahim ME, Schwartz L, Reshkin SJ. Pathogenesis and Management of COVID-19. J Xenobiot 2021; 11:77-93. [PMID: 34063739 PMCID: PMC8163157 DOI: 10.3390/jox11020006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19, occurring due to SARS-COV-2 infection, is the most recent pandemic disease that has led to three million deaths at the time of writing. A great deal of effort has been directed towards altering the virus trajectory and/or managing the interactions of the virus with its subsequent targets in the human body; these interactions can lead to a chain reaction-like state manifested by a cytokine storm and progress to multiple organ failure. During cytokine storms the ratio of pro-inflammatory to anti-inflammatory mediators is generally increased, which contributes to the instigation of hyper-inflammation and confers advantages to the virus. Because cytokine expression patterns fluctuate from one person to another and even within the same person from one time to another, we suggest a road map of COVID-19 management using an individual approach instead of focusing on the blockbuster process (one treatment for most people, if not all). Here, we highlight the biology of the virus, study the interaction between the virus and humans, and present potential pharmacological and non-pharmacological modulators that might contribute to the global war against SARS-COV-2. We suggest an algorithmic roadmap to manage COVID-19.
Collapse
Affiliation(s)
- Khalid O. Alfarouk
- Hala Alfarouk Cancer Center, Department of Evolutionary Pharmacology and Tumor Metabolism, Khartoum 11123, Sudan;
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
| | - Sari T. S. AlHoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina 42353, Saudi Arabia;
| | - Samrein B. M. Ahmed
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mona Shabana
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt;
| | - Ahmed Ahmed
- Department of Oesphogastric and General Surgery, University Hospitals of Leicester, Leicester LE5 4PW, UK;
| | - Saad S. Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali S. Alqahtani
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Najran University, Najran 66446, Saudi Arabia;
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - AbdelRahman M. Ramadan
- Department of Preventive Dental Sciences, Ibn Sina National College, Jeddah 22421, Saudi Arabia;
| | - Mohamed E. Ahmed
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Department of Surgery, Faculty of Medicine Al-Neelain University, Khartoum 11111, Sudan
| | - Heyam S. Ali
- Faculty of Pharmacy, University of Khartoum, P. O. Box 321, Khartoum 11111, Sudan;
| | - Adil Bashir
- Hala Alfarouk Cancer Center, Department of Evolutionary Pharmacology and Tumor Metabolism, Khartoum 11123, Sudan;
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Jesus Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (R.A.C.); (S.J.R.)
| | - Muntaser E. Ibrahim
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | | | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (R.A.C.); (S.J.R.)
| |
Collapse
|
10
|
Kitaura A, Nishinaka T, Hamasaki S, Hatipoglu OF, Wake H, Nishibori M, Mori S, Nakao S, Takahashi H. Advanced glycation end-products reduce lipopolysaccharide uptake by macrophages. PLoS One 2021; 16:e0245957. [PMID: 33493233 PMCID: PMC7833212 DOI: 10.1371/journal.pone.0245957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Hyperglycaemia provides a suitable environment for infections and the mechanisms of glucose toxicity include the formation of advanced glycation end-products (AGEs), which comprise non-enzymatically glycosylated proteins, lipids, and nucleic acid amino groups. Among AGE-associated phenotypes, glycolaldehyde-derived toxic AGE (AGE-3) is involved in the pathogenesis of diabetic complications. Internalisation of endotoxin by various cell types contributes to innate immune responses against bacterial infection. An endotoxin derived from Gram-negative bacteria, lipopolysaccharide (LPS), was reported to enhance its own uptake by RAW264.7 mouse macrophage-like cells, and an LPS binding protein, CD14, was involved in the LPS uptake. The LPS uptake induced the activation of RAW264.7 leading to the production of chemokine CXC motif ligand (CXCL) 10, which promotes T helper cell type 1 responses. Previously, we reported that AGE-3 was internalised into RAW264.7 cells through scavenger receptor-1 Class A. We hypothesized that AGEs uptake interrupt LPS uptake and impair innate immune response to LPS in RAW264.7 cells. In the present study, we found that AGE-3 attenuated CD14 expression, LPS uptake, and CXCL10 production, which was concentration-dependent, whereas LPS did not affect AGE uptake. AGEs were reported to stimulate the receptor for AGEs and Toll-like receptor 4, which cause inflammatory reactions. We found that inhibitors for RAGE, but not Toll-like receptor 4, restored the AGE-induced suppression of CD14 expression, LPS uptake, and CXCL10 production. These results indicate that the receptor for the AGE-initiated pathway partially impairs the immune response in diabetes patients.
Collapse
Affiliation(s)
- Atsuhiro Kitaura
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Shinichi Hamasaki
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Hidenori Wake
- Department of Pharmacology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacy, Shujitsu University, Okayama, Japan
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
11
|
The Role of NF-κB in Uterine Spiral Arteries Remodeling, Insight into the Cornerstone of Preeclampsia. Int J Mol Sci 2021; 22:ijms22020704. [PMID: 33445783 PMCID: PMC7828278 DOI: 10.3390/ijms22020704] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is one of the three leading causes of maternal morbidity and mortality worldwide. It afflicts 2-8% of pregnancies and is the most common cause of gestational hypertension. This article is focused on nuclear factor kappa B (NF-κB), its role in normal and pathological spiral arteries remodelling and development of preeclampsia, with evaluation if it is a promising therapeutic target. NF-κB is a key mediator of placentation. Since insemination, it stimulates production of proinflammatory cytokines by the uterine epithelium, which leads to activation of macrophages, uterine natural killer cells (uNKs), and other leukocytes. The trophoblast/uNK/macrophage crosstalk is crucial for implantation and spiral arteries remodeling, and NF-κB regulates that process through modification of cytokine expression, as well as cell phenotype and function. In the course of preeclampsia, the remodeling processes is disturbed by excessive inflammation and increased NF-κB activation. The pathological remodeling leads to uteroplacental dysfunction, release of proinflammatory cytokines into the maternal circulation, endothelial stress, and development of preeclampsia. The analysis of genetic and environmental inductors of NF-κB helps to distinguish preeclampsia risk groups. Furthermore, a selective inhibition of NF-κB or NF-κB activating pathways alleviates symptoms of preeclampsia in rat models; therefore, this could be an efficient therapeutic option.
Collapse
|
12
|
Wasiak S, Dzobo KE, Rakai BD, Kaiser Y, Versloot M, Bahjat M, Stotz SC, Fu L, Sweeney M, Johansson JO, Wong NCW, Stroes ESG, Kroon J, Kulikowski E. BET protein inhibitor apabetalone (RVX-208) suppresses pro-inflammatory hyper-activation of monocytes from patients with cardiovascular disease and type 2 diabetes. Clin Epigenetics 2020; 12:166. [PMID: 33172487 PMCID: PMC7657365 DOI: 10.1186/s13148-020-00943-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Patients with cardiovascular disease (CVD) and type 2 diabetes (DM2) have a high residual risk for experiencing a major adverse cardiac event. Dysregulation of epigenetic mechanisms of gene transcription in innate immune cells contributes to CVD development but is currently not targeted by therapies. Apabetalone (RVX-208) is a small molecule inhibitor of bromodomain and extra-terminal (BET) proteins—histone acetylation readers that drive pro-inflammatory and pro-atherosclerotic gene transcription. Here, we assess the impact of apabetalone on ex vivo inflammatory responses of monocytes from DM2 + CVD patients. Results Monocytes isolated from DM2 + CVD patients and matched controls were treated ex vivo with apabetalone, interferon γ (IFNγ), IFNγ + apabetalone or vehicle and phenotyped for gene expression and protein secretion. Unstimulated DM2 + CVD monocytes had higher baseline IL-1α, IL-1β and IL-8 cytokine gene expression and Toll-like receptor (TLR) 2 surface abundance than control monocytes, indicating pro-inflammatory activation. Further, DM2 + CVD monocytes were hyper-responsive to stimulation with IFNγ, upregulating genes within cytokine and NF-κB pathways > 30% more than control monocytes (p < 0.05). Ex vivo apabetalone treatment countered cytokine secretion by DM2 + CVD monocytes at baseline (GROα and IL-8) and during IFNγ stimulation (IL-1β and TNFα). Apabetalone abolished pro-inflammatory hyper-activation by reducing TLR and cytokine gene signatures more robustly in DM2 + CVD versus control monocytes. Conclusions Monocytes isolated from DM2 + CVD patients receiving standard of care therapies are in a hyper-inflammatory state and hyperactive upon IFNγ stimulation. Apabetalone treatment diminishes this pro-inflammatory phenotype, providing mechanistic insight into how BET protein inhibition may reduce CVD risk in DM2 patients.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Kim E Dzobo
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Brooke D Rakai
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Miranda Versloot
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Mahnoush Bahjat
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stephanie C Stotz
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Michael Sweeney
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Jan O Johansson
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Norman C W Wong
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ewelina Kulikowski
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada.
| |
Collapse
|
13
|
Zafar S, P Cullinan M, K Drummond B, J Seymour G, E Coates D. Effects of zoledronic acid and geranylgeraniol on angiogenic gene expression in primary human osteoclasts. J Oral Sci 2020; 62:79-83. [PMID: 31996529 DOI: 10.2334/josnusd.19-0130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious complication associated with bisphosphonate treatment. Zoledronic acid (ZA) is a commonly used bisphosphonate due to its effectiveness in increasing bone density and reducing skeletal events, with evidence that it alters angiogenesis. Replacement of the mevalonate pathway using geranylgeraniol (GGOH) was studied to determine the effects of ZA on angiogenic gene expression in primary human osteoclasts. Osteoclast cultures were generated from peripheral blood mononuclear cells of three patients using the peripheral blood mononuclear cell isolation. These cells were phenotyped by phase-contrast microscopy, tartrate-resistant acid phosphatase staining, and pit assays. Primary osteoclasts were found to express a number of key angiogenic molecules at very high levels. Gene expression levels for 84 human angiogenic factors were determined using PCR arrays. Three genes with significant fold regulation (FR) in response to ZA were as follows: tumor necrosis factor (FR = +2.57, P = 0.050), CXCL9 (FR = +39.48, P = 0.028), and CXCL10 (FR = +18.52, P = 0.0009). The co-addition of geranylgeraniol with ZA resulted in the significant down-regulation of these three genes along with CCL2, TGFBR1, ENG, and CXCL1. GGOH reversed the gene changes induced by ZA and may offer a promising treatment for BRONJ.
Collapse
Affiliation(s)
- Sobia Zafar
- Discipline of Paediatric Dentistry, School of Dentistry, The University of Queensland
| | - Mary P Cullinan
- Discipline of Periodontics, School of Dentistry, The University of Queensland
| | | | - Gregory J Seymour
- Discipline of Periodontics, School of Dentistry, The University of Queensland
| | - Dawn E Coates
- Department of Oral Sciences, Faculty of Dentistry, University of Otago
| |
Collapse
|
14
|
Dose dependent acute toxicity of abrin in Balb/c mice after intraperitoneal administration. Toxicon 2019; 167:49-59. [PMID: 31185238 DOI: 10.1016/j.toxicon.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
Abrin toxin is one of the most potent and deadly plant toxin obtained from the seeds of Abrus precatorious. It is more toxic than ricin which is classified as Schedule 1 agent by OPCW and Category B bioterrorism agent by Centre for Disease Control (CDC). Dose dependent acute toxicity of abrin is still a matter of investigation. The present study was carried out to assess the toxicity of abrin from sub lethal to supralethal doses (0.5X, 1X, 2X and 5XLD50) after intraperitoneal administration. After 8 and 24h of abrin exposure, hematological, biochemical, inflammatory and oxidative stress associated parameters were analyzed. Liver histology was also done to analyze the effect of abrin. Abrin exerts its toxicity in a dose and time dependent manner. Increases in neutrophil counts, lipid peroxidation with decreased lymphocyte counts, are the initiating factor irrespective of time and dose. At higher doses of abrin there was a decrease in hemoglobin level and RBC count which is reflected by increased levels of serum ammonia and bilirubin. Neutrophil infiltration in the liver and lipid peroxidation cause liver toxicity (increased production of ALT and ALP); oxidative stress (depletion of GSH and total antioxidant status); inflammation (increased production of TNF-α and IFN-γ). Further, at higher doses of abrin, intensity of oxidative stress, inflammation and liver toxicity are more pronounced which may have been maintained by the self-sustaining loop of toxicity leading to death of the animals.
Collapse
|
15
|
Costa RS, Carvalho LP, Campos TM, Magalhães AS, Passos ST, Schriefer A, Silva JA, Lago E, Paixão CS, Machado P, Scott P, Carvalho EM. Early Cutaneous Leishmaniasis Patients Infected With Leishmania braziliensis Express Increased Inflammatory Responses After Antimony Therapy. J Infect Dis 2019; 217:840-850. [PMID: 29216363 DOI: 10.1093/infdis/jix627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
Background Early cutaneous leishmaniasis (ECL) is characterized by a nonulcerated papular lesion and illness duration less than 30 days. Approximately 4 weeks later, the cutaneous leishmaniasis (CL) ulcers appear. We were surprised to find that failure after antimony therapy (Sb5) is higher in ECL than CL. We hypothesize that the inflammatory response in ECL patients may increase during Sb5 therapy, which leads to treatment failure. Methods A cohort of 44 ECL patients infected by Leishmania braziliensis was established to evaluate the response to Sb5 and to compare immunologic responses in ECL patients with CL and healthy subjects. Results A hierarchical clustering based on cytokine levels showed a weak positive correlation between proinflammatory cytokine levels and those patients that failed Sb5 treatment. Although Sb5 therapy decreased interferon-γ and tumor necrosis factor levels in CL patients, we were surprised to find that an increase in these cytokines was observed in ECL patients. Moreover, interleukin (IL)-10 was less able to down-modulate immune responses in ECL. Conclusions The enhanced production of proinflammatory cytokines, due in part to the decreased ability of IL-10 to down-modulate immune response during therapy in ECL, promotes the development and persistence of leishmania ulcer despite antimony therapy.
Collapse
Affiliation(s)
- Rúbia S Costa
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucas P Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, Fiocruz, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, Brazil
| | - Taís M Campos
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Andréa S Magalhães
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Sara T Passos
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Albert Schriefer
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Juliana A Silva
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Ednaldo Lago
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Camilla S Paixão
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo Machado
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, Fiocruz, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
16
|
Aota K, Kani K, Yamanoi T, Nakashiro KI, Ishimaru N, Azuma M. Distinct Regulation of CXCL10 Production by Cytokines in Human Salivary Gland Ductal and Acinar Cells. Inflammation 2018; 41:1172-1181. [PMID: 29549479 DOI: 10.1007/s10753-018-0764-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
CXCL10, a CXC chemokine induced by interferon-gamma [IFN-γ], has been observed in a wide variety of chronic inflammatory disorders and autoimmune conditions. Although CXCL10 is known to be overexpressed in the salivary glands of individuals with primary Sjögren's syndrome (pSS), it is unclear which cells produce CXCL10 under what types of stimulations. Here, we investigated the precise molecular mechanisms by which CXCL10 was produced in human salivary gland ductal (NS-SV-DC) and acinar (NS-SV-AC) cell lines. Our results demonstrated that NS-SV-DC cells produced higher levels of CXCL10 compared to NS-SV-AC cells. In addition, our findings demonstrated that the regulator of the enhancement of CXCL10 was different between NS-SV-DC and NS-SV-AC cells, i.e., interferon-gamma (IFN-γ) had more potential than interferon-alpha (IFN-α), tumor necrosis factor (TNF)-α, and interleukin (IL)1-β in the induction of CXCL10 production in NS-SV-DC cells, whereas TNF-α had potential to induce CXCL10 production in NS-SV-AC cells. A Western blot analysis demonstrated that IFN-γ enhanced the production of CXCL10 via both the JAK/STAT1 pathway and the NF-κB pathway in NS-SV-DC cells, whereas TNF-α enhanced the production of CXCL10 via the NF-κB pathway in NS-SV-AC cells. The results of study suggest that the CXCL10 overexpression in the salivary glands is caused mainly by IFN-γ-stimulated salivary gland ductal cells. The enhanced production of CXCL10 by IFN-γ from ductal cells may result in the inflammation of pSS lesions.
Collapse
Affiliation(s)
- Keiko Aota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - Koichi Kani
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Tomoko Yamanoi
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Koh-Ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masayuki Azuma
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| |
Collapse
|
17
|
Chen YC, Kuo CH, Tsai YM, Lin YC, Hsiao HP, Chen BH, Chen YT, Wang SL, Hung CH. Suppressive effects of metformin on T-helper 1-related chemokines expression in the human monocytic leukemia cell line THP-1. Endocr Res 2018; 43:228-234. [PMID: 29630425 DOI: 10.1080/07435800.2018.1460605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF THE STUDY Type 1 and type 2 diabetes mellitus (DM) are chronic T-cell-mediated inflammatory diseases. Metformin is a widely used drug for type 2 DM that reduces the need for insulin in type 1 DM. However, whether metformin has an anti-inflammatory effect for treating DM is unknown. We investigated the anti-inflammatory mechanism of metformin in the human monocytic leukemia cell line THP-1. MATERIALS AND METHODS The human monocytic leukemia cell line THP-1 was pretreated with metformin and stimulated with lipopolysaccharide (LPS). The production of T-helper (Th)-1-related chemokines including interferon-γ-induced protein-10 (IP-10) and monocyte chemoattractant protein-1 (MCP-1), Th2-related chemokine macrophage-derived chemokine, and the proinflammatory chemokine tumor necrosis factor-α was measured using enzyme-linked immunosorbent assay. Intracellular signaling pathways were investigated using Western blot analysis and chromatin immunoprecipitation assay. RESULTS Metformin suppressed LPS-induced IP-10 and MCP-1 production as well as LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB). Moreover, metformin suppressed LPS-induced acetylation of histones H3 and H4 at the IP-10 promoter. CONCLUSIONS Metformin suppressed the production of Th1-related chemokines IP-10 and MCP-1 in THP-1 cells. Suppressive effects of metformin on IP-10 production might be attributed at least partially to the JNK, p38, ERK, and NF-κB pathways as well as to epigenetic regulation through the acetylation of histones H3 and H4. These results indicated the therapeutic anti-inflammatory potential of metformin.
Collapse
Affiliation(s)
- Yen-Chun Chen
- a Department of Pediatrics , Kaohsiung Municipal Hsiao-Kang Hospital , Kaohsiung , Taiwan
- b Department of Pediatrics, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Chang-Hung Kuo
- c Ta-Kuo Clinic , Kaohsiung , Taiwan
- d Department of Pediatrics , Kaohsiung Municipal Ta-Tung Hospital , Kaohsiung , Taiwan
| | - Ying-Ming Tsai
- e Department of Internal Medicine , Kaohsiung Municipal Ta-Tung Hospital , Kaohsiung , Taiwan
- f Graduate Institute of Clinical Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yi-Ching Lin
- b Department of Pediatrics, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
- f Graduate Institute of Clinical Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
- g Department of Laboratory Medicine, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Hui-Pin Hsiao
- a Department of Pediatrics , Kaohsiung Municipal Hsiao-Kang Hospital , Kaohsiung , Taiwan
- b Department of Pediatrics, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
- h Department of Pediatrics, Faculty of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Bai-Hsiun Chen
- b Department of Pediatrics, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
- g Department of Laboratory Medicine, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
- h Department of Pediatrics, Faculty of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yi-Ting Chen
- b Department of Pediatrics, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Shih-Ling Wang
- b Department of Pediatrics, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Chih-Hsing Hung
- a Department of Pediatrics , Kaohsiung Municipal Hsiao-Kang Hospital , Kaohsiung , Taiwan
- b Department of Pediatrics, Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
- h Department of Pediatrics, Faculty of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
- i Research Center for Environmental Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
18
|
Aota K, Yamanoi T, Kani K, Azuma M. Cepharanthine Inhibits IFN-γ-Induced CXCL10 by Suppressing the JAK2/STAT1 Signal Pathway in Human Salivary Gland Ductal Cells. Inflammation 2018; 41:50-58. [PMID: 28879548 DOI: 10.1007/s10753-017-0662-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cepharanthine, a biscolaurine alkaloid isolated from the plant Stephania cephalantha Hayata, has been reported to have potent anti-inflammatory properties. Here, we investigated the effects of cepharanthine on the expression of CXCL10 (a CXC chemokine induced by interferon-gamma [IFN-γ] that has been observed in a wide variety of chronic inflammatory disorders and autoimmune conditions) in IFN-γ-treated human salivary gland cell lines. We observed that IFN-γ-induced CXCL10 production in NS-SV-DC cells (a human salivary gland ductal cell line), but not in NS-SV-AC cells (a human salivary gland acinar cell line). Cepharanthine inhibited the IFN-γ-induced CXCL10 production in NS-SV-DC cells. A Western blot analysis showed that cepharanthine prevented the phosphorylation of JAK2 and STAT1, but did not interfere with the NF-κB pathway. Moreover, cepharanthine inhibited the IFN-γ-mediated chemotaxis of Jurkat T cells. These results suggest that cepharanthine suppresses IFN-γ-induced CXCL10 production via the inhibition of the JAK2/STAT1 signaling pathway in human salivary gland ductal cells. Our findings also indicate that cepharanthine could inhibit the chemotaxis of Jurkat T cells by reducing CXCL10 production.
Collapse
Affiliation(s)
- Keiko Aota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - Tomoko Yamanoi
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Koichi Kani
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Masayuki Azuma
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| |
Collapse
|
19
|
Strzadala L, Fiedorowicz A, Wysokinska E, Ziolo E, Grudzień M, Jelen M, Pluta K, Morak-Mlodawska B, Zimecki M, Kalas W. An Anti-Inflammatory Azaphenothiazine Inhibits Interferon β Expression and CXCL10 Production in KERTr Cells. Molecules 2018; 23:molecules23102443. [PMID: 30250011 PMCID: PMC6222831 DOI: 10.3390/molecules23102443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023] Open
Abstract
An azaphenothiazine derivative, 6-chloroethylureidoethyldiquino[3,2-b;2′,3′-e][1,4]thiazine (DQT), has recently been shown to exhibit immunosuppressive activities in mouse models. It also inhibited the expression of CXCL10 at the protein level, at non-toxic concentrations, in the culture of KERTr cells treated with double-stranded RNA, poly(I:C). In this report, we demonstrated that DQT inhibits the transcription of the CXCL10 gene. Although CXCL10 is an IFNγ-inducible protein, we found that the CXCL10 protein was induced without the detectable release of IFNγ or IκB degradation. Hence, we concluded that IFNγ or NFκB was not involved in the regulation of the CXCL10 gene in KERTr cells transfected with poly(I:C), nor in the inhibitory activity of DQT. On the other hand, we found that IFNβ was induced under the same conditions and that its expression was inhibited by DQT. Kinetic analysis showed that an increase in IFNβ concentrations occurred 4–8 h after poly(I:C) treatment, while the concentration of CXCL10 was undetectable at that time and started to increase later, when IFNβ reached high levels. Therefore, DQT may be regarded as a new promising inhibitor of IFNβ expression and IFNβ-dependent downstream genes and proteins, e.g., CXCL10 chemokine, which is implicated in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Leon Strzadala
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Anna Fiedorowicz
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Edyta Wysokinska
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Ewa Ziolo
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Małgorzata Grudzień
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Malgorzata Jelen
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Krystian Pluta
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Beata Morak-Mlodawska
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Michal Zimecki
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Wojciech Kalas
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
20
|
Gpr126 Is Critical for Schwann Cell Function during Peripheral Nerve Regeneration. J Neurosci 2018; 37:3106-3108. [PMID: 28330980 DOI: 10.1523/jneurosci.0127-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/21/2022] Open
|
21
|
Sakowicz A. The role of NFκB in the three stages of pregnancy - implantation, maintenance, and labour: a review article. BJOG 2018; 125:1379-1387. [PMID: 29460466 DOI: 10.1111/1471-0528.15172] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor kappa B (NFκB) controls the expression of over 400 genes, some of which are associated with reproductive events. During implantation, immune cells accumulate in the maternal-fetal interface; they secrete inflammatory mediators under the control of NFĸB, the level of which also rises. NFĸB is then downregulated to maintain gestation, but its level rises again before birth to manage prostaglandin, cytokine, and chemokine synthesis, and to stimulate uterine contraction. This review summarises the current state of knowledge about NFκB and its role in the molecular regulation of processes related to pregnancy development. TWEETABLE ABSTRACT This review examines the current state of knowledge about role of NFκB in the development of pregnancy.
Collapse
Affiliation(s)
- A Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Bradburn S, McPhee J, Bagley L, Carroll M, Slevin M, Al-Shanti N, Barnouin Y, Hogrel JY, Pääsuke M, Gapeyeva H, Maier A, Sipilä S, Narici M, Robinson A, Mann D, Payton A, Pendleton N, Butler-Browne G, Murgatroyd C. Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive performance. Neurobiol Aging 2017; 63:54-64. [PMID: 29223680 PMCID: PMC5805841 DOI: 10.1016/j.neurobiolaging.2017.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/04/2017] [Accepted: 11/17/2017] [Indexed: 01/20/2023]
Abstract
Chronic low-grade inflammation during aging (inflammaging) is associated with cognitive decline and neurodegeneration; however, the mechanisms underlying inflammaging are unclear. We studied a population (n = 361) of healthy young and old adults from the MyoAge cohort. Peripheral levels of C-X-C motif chemokine ligand 10 (CXCL10) was found to be higher in older adults, compared with young, and negatively associated with working memory performance. This coincided with an age-related reduction in blood DNA methylation at specific CpGs within the CXCL10 gene promoter. In vitro analysis supported the role of DNA methylation in regulating CXCL10 transcription. A polymorphism (rs56061981) that altered methylation at one of these CpG sites further associated with working memory performance in 2 independent aging cohorts. Studying prefrontal cortex samples, we found higher CXCL10 protein levels in those with Alzheimer's disease, compared with aged controls. These findings support the association of peripheral inflammation, as demonstrated by CXCL10, in aging and cognitive decline. We reveal age-related epigenetic and genetic factors which contribute to the dysregulation of CXCL10.
Collapse
Affiliation(s)
- Steven Bradburn
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Jamie McPhee
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Liam Bagley
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Michael Carroll
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Mark Slevin
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Nasser Al-Shanti
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Yoann Barnouin
- Institut de Myologie, UPMC UM 76, INSERM U 974, CNRS UMR, Paris, France
| | - Jean-Yves Hogrel
- Institut de Myologie, UPMC UM 76, INSERM U 974, CNRS UMR, Paris, France
| | - Mati Pääsuke
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Helena Gapeyeva
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Andrea Maier
- Department of Human Movement Sciences, MOVE Research Institute, VU University Medical Center, Amsterdam, the Netherlands; Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Sarianna Sipilä
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Marco Narici
- Faculty of Medicine and Health Sciences, University of Nottingham, Derby, UK
| | - Andrew Robinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - David Mann
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Antony Payton
- Centre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester, UK
| | | | - Chris Murgatroyd
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
23
|
Curtale G, Renzi TA, Drufuca L, Rubino M, Locati M. Glucocorticoids downregulate TLR4 signaling activity via its direct targeting by miR-511-5p. Eur J Immunol 2017; 47:2080-2089. [PMID: 28776644 DOI: 10.1002/eji.201747044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 11/05/2022]
Abstract
Endotoxin tolerance assures proper regulation of the TLR4 signaling pathway and avoids uncontrolled inflammation, limiting tissue damage and endotoxin shock development. Though underlying molecular mechanisms are still undefined, evidence indicates the involvement of microRNAs, which represent a new layer of regulation of inflammatory pathways. Here, we report that LPS and other inflammatory stimuli repress miR-511-5p expression in human monocytes, while anti-inflammatory stimuli, such as TGF-β and glucocorticoids, have the opposite effect. MiR-511-5p levels selectively influenced cell activation when endotoxin was used, while biological activity of other TLR agonists was unaffected. Consistent with this, TLR4 was validated as the miR-511-5p direct target responsible for glucocorticoids- and TGF-β-mediated inhibition of pro-inflammatory cytokines production observed in endotoxin tolerant monocytes. MiR-511-5p thus acts as an intracellular mediator of glucocorticoids and TGF-β for the induction of endotoxin tolerance in human monocytes.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Tiziana A Renzi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Lorenzo Drufuca
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
24
|
Pseudomonas aeruginosa increases MUC1 expression in macrophages through the TLR4-p38 pathway. Biochem Biophys Res Commun 2017; 492:231-235. [PMID: 28822766 DOI: 10.1016/j.bbrc.2017.08.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023]
Abstract
Alveolar macrophages (AMs) play a critical role in the clearance of Pseudomonas aeruginosa (Pa) from the airways. However, hyper-activation of macrophages can impair bacterial clearance and contribute to morbidity and mortality. MUC1 mucin is a membrane-tethered, high molecular mass glycoprotein expressed on the apical surface of mucosal epithelial cells and some hematopoietic cells, including macrophages, where it counter-regulates inflammation. We recently reported that Pa up-regulates the expression of MUC1 in primary human AMs and THP-1 macrophages, and that increased MUC1 expression in these cells prevents hyper-activation of macrophages that appears to be important for host defense against severe pathology of Pa lung infection. The aims of this study were to elucidate the mechanism by which Pa increases MUC1 expression in macrophages. The results showed that: (a) Pa stimulation of THP-1 macrophages increased MUC1 expression both at transcriptional and protein levels in a dose-dependent manner; (b) Both Pa- and LPS-induced MUC1 expression in THP-1 cells were significantly diminished by an inhibitory peptide of TLR4; and (c) LPS-stimulated MUC1 expression was diminished at both the mRNA and protein levels by an inhibitor of the p38 mitogen-activated protein kinase, but not by inhibitors of ERK1/2, JNK, or IKK. We conclude that Pa-stimulated MUC1 expression in THP-1 macrophages is regulated mainly through the TLR4-p38 signaling pathway.
Collapse
|
25
|
Villar-Hernández R, Latorre I, Mínguez S, Díaz J, García-García E, Muriel-Moreno B, Lacoma A, Prat C, Olivé A, Ruhwald M, Mateo L, Domínguez J. Use of IFN-γ and IP-10 detection in the diagnosis of latent tuberculosis infection in patients with inflammatory rheumatic diseases. J Infect 2017; 75:315-325. [PMID: 28751171 DOI: 10.1016/j.jinf.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Biologic agents are used against rheumatic diseases, however, they increase the risk of developing severe infections and diseases such as tuberculosis. We aimed to determine the benefits of IP-10 detection to diagnose latent tuberculosis infection (LTBI) in patients with inflammatory rheumatic diseases on different immunosuppressive drug regimens, and compare these results with IFN-γ detection. MATERIALS AND METHODS We included 64 patients with inflammatory rheumatic diseases. We used QuantiFERON Gold In-Tube (QFN-G-IT) and T-SPOT.TB to detect IFN-γ production, and an in-house ELISA for IP-10 detection from the previous QFN-G-IT stimulated samples. We assessed the combined use of IFN-γ release assays (IGRAs) and IP-10 test, and analyzed the influence of immunotherapy on the tests performance. RESULTS We obtained 34.9% positive results by T-SPOT.TB, 25.0% by QFN-G-IT and 31.3% by IP-10 test. The combined use of IGRAs and IP-10 detection increased significantly the amount of positive results (p < 0.0001). Treatment intake had no significant effect on in vitro tests (p > 0.05). CONCLUSIONS IP-10 and IFN-γ detection is comparable and their combined use could increase the number of positive results in the diagnosis of LTBI in rheumatic patients. The tested assays were not influenced by rheumatoid immunosuppressive therapy. Thus, IP-10 could be of use in the development of new and improved LTBI diagnostic tools.
Collapse
Affiliation(s)
- Raquel Villar-Hernández
- Servei de Microbiología, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Irene Latorre
- Servei de Microbiología, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Sonia Mínguez
- Servei de Reumatología, Hospital Germans Trias i Pujol, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Jéssica Díaz
- Servei de Microbiología, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Esther García-García
- Servei de Microbiología, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Beatriz Muriel-Moreno
- Servei de Microbiología, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Alicia Lacoma
- Servei de Microbiología, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Cristina Prat
- Servei de Microbiología, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Alex Olivé
- Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Servei de Reumatología, Hospital Germans Trias i Pujol, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - Morten Ruhwald
- Department of Infectious Disease Immunology Statens Serum Institut, Artillerivej 5, 2300, København S, Copenhagen, Denmark
| | - Lourdes Mateo
- Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Servei de Reumatología, Hospital Germans Trias i Pujol, Carretera del Canyet, 08916, Badalona, Barcelona, Spain
| | - José Domínguez
- Servei de Microbiología, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Carretera del Canyet, 08916, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Carretera del Canyet, 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
26
|
Xu Z, Xu L, Li W, Jin X, Song X, Chen X, Zhu J, Zhou S, Li Y, Zhang W, Dong X, Yang X, Liu F, Bai H, Chen Q, Su C. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection. Nat Commun 2017; 8:16035. [PMID: 28695899 PMCID: PMC5508227 DOI: 10.1038/ncomms16035] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/24/2017] [Indexed: 12/29/2022] Open
Abstract
The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses.
Collapse
Affiliation(s)
- Zhipeng Xu
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lei Xu
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Li
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Jin
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xian Song
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaojun Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jifeng Zhu
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Sha Zhou
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yong Li
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weiwei Zhang
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoxiao Dong
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaowei Yang
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Feng Liu
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Bai
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chuan Su
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
27
|
Mogha A, Harty BL, Carlin D, Joseph J, Sanchez NE, Suter U, Piao X, Cavalli V, Monk KR. Gpr126/Adgrg6 Has Schwann Cell Autonomous and Nonautonomous Functions in Peripheral Nerve Injury and Repair. J Neurosci 2016; 36:12351-12367. [PMID: 27927955 PMCID: PMC5148226 DOI: 10.1523/jneurosci.3854-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, Zurich, ETH Zurich, CH-8093 Zurich, Switzerland, and
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Valeria Cavalli
- Department of Neuroscience, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kelly R Monk
- Department of Developmental Biology,
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
28
|
Pope CA, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O'Toole T. Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation. Circ Res 2016; 119:1204-1214. [PMID: 27780829 DOI: 10.1161/circresaha.116.309279] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/19/2023]
Abstract
RATIONALE Epidemiological evidence indicates that exposures to fine particulate matter air pollution (PM2.5) contribute to global burden of disease, primarily as a result of increased risk of cardiovascular morbidity and mortality. However, mechanisms by which PM2.5 exposure induces cardiovascular injury remain unclear. PM2.5-induced endothelial dysfunction and systemic inflammation have been implicated, but direct evidence is lacking. OBJECTIVE To examine whether acute exposure to PM2.5 is associated with endothelial injury and systemic inflammation. METHODS AND RESULTS Blood was collected from healthy, nonsmoking, young adults during 3 study periods that included episodes of elevated PM2.5 levels. Microparticles and immune cells in blood were measured by flow cytometry, and plasma cytokine/growth factors were measured using multiplexing laser beads. PM2.5 exposure was associated with the elevated levels of endothelial microparticles (annexin V+/CD41-/CD31+), including subtypes expressing arterial-, venous-, and lung-specific markers, but not microparticles expressing CD62+. These changes were accompanied by suppressed circulating levels of proangiogenic growth factors (EGF [epidermal growth factor], sCD40L [soluble CD40 ligand], PDGF [platelet-derived growth factor], RANTES [regulated on activation, normal T-cell-expressed and secreted], GROα [growth-regulated protein α], and VEGF [vascular endothelial growth factor]), and an increase in the levels of antiangiogenic (TNFα [tumor necrosis factor α], IP-10 [interferon γ-induced protein 10]), and proinflammatory cytokines (MCP-1 [monocyte chemoattractant protein 1], MIP-1α/β [macrophage inflammatory protein 1α/β], IL-6 [interleukin 6], and IL-1β [interleukin 1β]), and markers of endothelial adhesion (sICAM-1 [soluble intercellular adhesion molecule 1] and sVCAM-1 [soluble vascular cellular adhesion molecule 1]). PM2.5 exposure was also associated with an inflammatory response characterized by elevated levels of circulating CD14+, CD16+, CD4+, and CD8+, but not CD19+ cells. CONCLUSIONS Episodic PM2.5 exposures are associated with increased endothelial cell apoptosis, an antiangiogenic plasma profile, and elevated levels of circulating monocytes and T, but not B, lymphocytes. These changes could contribute to the pathogenic sequelae of atherogenesis and acute coronary events.
Collapse
Affiliation(s)
- C Arden Pope
- From the Department of Economics, Brigham Young University, Provo, UT (C.A.P.); and Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (A.B., J.P.M., W.A., D.J.C., T.O.).
| | - Aruni Bhatnagar
- From the Department of Economics, Brigham Young University, Provo, UT (C.A.P.); and Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (A.B., J.P.M., W.A., D.J.C., T.O.)
| | - James P McCracken
- From the Department of Economics, Brigham Young University, Provo, UT (C.A.P.); and Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (A.B., J.P.M., W.A., D.J.C., T.O.)
| | - Wesley Abplanalp
- From the Department of Economics, Brigham Young University, Provo, UT (C.A.P.); and Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (A.B., J.P.M., W.A., D.J.C., T.O.)
| | - Daniel J Conklin
- From the Department of Economics, Brigham Young University, Provo, UT (C.A.P.); and Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (A.B., J.P.M., W.A., D.J.C., T.O.)
| | - Timothy O'Toole
- From the Department of Economics, Brigham Young University, Provo, UT (C.A.P.); and Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (A.B., J.P.M., W.A., D.J.C., T.O.)
| |
Collapse
|
29
|
Liang Y, Wang Y, Li H, Yang Y, Liu J, Yu T, Wu X. Evaluation of a whole-blood chemiluminescent immunoassay of IFN-γ, IP-10, and MCP-1 for diagnosis of active pulmonary tuberculosis and tuberculous pleurisy patients. APMIS 2016; 124:856-64. [PMID: 27523388 DOI: 10.1111/apm.12583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/19/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory; Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment; Institute of Tuberculosis Research; the 309th Hospital of PLA; Beijing China
| | - Ying Wang
- Army Tuberculosis Prevention and Control Key Laboratory; Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment; Institute of Tuberculosis Research; the 309th Hospital of PLA; Beijing China
- The Second Hospital of Jilin University; Changchun China
| | - Hang Li
- The Tumor Hospital of Jilin Province; Changchun China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory; Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment; Institute of Tuberculosis Research; the 309th Hospital of PLA; Beijing China
| | - Jianyang Liu
- The Tumor Hospital of Jilin Province; Changchun China
| | - Ting Yu
- The Second Hospital of Jilin University; Changchun China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory; Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment; Institute of Tuberculosis Research; the 309th Hospital of PLA; Beijing China
| |
Collapse
|
30
|
Malmo J, Moe N, Krokstad S, Ryan L, Loevenich S, Johnsen IB, Espevik T, Nordbø SA, Døllner H, Anthonsen MW. Cytokine Profiles in Human Metapneumovirus Infected Children: Identification of Genes Involved in the Antiviral Response and Pathogenesis. PLoS One 2016; 11:e0155484. [PMID: 27171557 PMCID: PMC4865088 DOI: 10.1371/journal.pone.0155484] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022] Open
Abstract
Human metapneumovirus (hMPV) causes severe airway infection in children that may be caused by an unfavorable immune response. The nature of the innate immune response to hMPV in naturally occurring infections in children is largely undescribed, and it is unknown if inflammasome activation is implicated in disease pathogenesis. We examined nasopharynx aspirates and blood samples from hMPV-infected children without detectable co-infections. The expression of inflammatory and antiviral genes were measured in nasal airway secretions by relative mRNA quantification while blood plasma proteins were determined by a multiplex immunoassay. Several genes were significantly up-regulated at mRNA and protein level in the hMPV infected children. Most apparent was the expression of the chemokine IP-10, the pro-inflammatory cytokine IL-18 in addition to the interferon inducible gene ISG54. Interestingly, children experiencing more severe disease, as indicated by a severity index, had significantly more often up-regulation of the inflammasome-associated genes IL-1β and NLRP3. Overall, our data point to cytokines, particularly inflammasome-associated, that might be important in hMPV mediated lung disease and the antiviral response in children with severe infection. Our study is the first to demonstrate that inflammasome components are associated with increased illness severity in hMPV-infected children.
Collapse
Affiliation(s)
- Jostein Malmo
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- * E-mail:
| | - Nina Moe
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Children’s Clinic, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Sidsel Krokstad
- Childhood Airway Infections Research Group, Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Simon Loevenich
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingvild B. Johnsen
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Svein Arne Nordbø
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Henrik Døllner
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Children’s Clinic, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Marit W. Anthonsen
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
31
|
Xia JB, Liu GH, Chen ZY, Mao CZ, Zhou DC, Wu HY, Park KS, Zhao H, Kim SK, Cai DQ, Qi XF. Hypoxia/ischemia promotes CXCL10 expression in cardiac microvascular endothelial cells by NFkB activation. Cytokine 2016; 81:63-70. [PMID: 26891076 DOI: 10.1016/j.cyto.2016.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
CXCL10, the chemokine with potent chemotactic activity on immune cells and other non-immune cells expressing its receptor CXCR3, has been demonstrated to involve in myocardial infarction, which was resulted from hypoxia/ischemia. The cardiac microvascular endothelial cells (CMECs) are the first cell type which is implicated by hypoxia/ischemia. However, the potential molecular mechanism by which hypoxia/ischemia regulates the expression of CXCL10 in CMECs remains unclear. In the present study, the expression of CXCL10 was firstly examined by real-time PCR and ELISA analysis. Several potential binding sites (BS) for transcription factors including NF-kappaB (NFkB), HIF1 alpha (HIF1α) and FoxO3a were identified in the promoter region of CXCL10 gene from -2000 bp to -1 bp using bioinformatics software. Luciferase reporter gene vectors for CXCL10 promoter and for activation of above transcription factors were constructed. The activation of NFkB, hypoxia-inducible transcription factor-1 alpha (HIF-1α) and FoxO3a was also analyzed by Western blotting. It was shown that the production of CXCL10 in CMECs was significantly increased by hypoxia/ischemia treatment, in parallel with the activation of CXCL10 promoter examined by reporter gene vector system. Furthermore, transcription factors including NFkB, HIF1α and FoxO3a were activated by hypoxia/ischemia in CMECs. However, over-expression of NFkB, but not that of HIF1α or FoxO3a, significantly promoted the activation of CXCL10 promoter reporter gene. These findings indicated that CXCL10 production in CMECs was significantly increased by hypoxia/ischemia, at least in part, through activation of NFkB pathway and subsequently binding to CXCL10 promoter, finally promoted the transcription of CXCL10 gene.
Collapse
Affiliation(s)
- Jing-Bo Xia
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Zhuo-Ying Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Cheng-Zhou Mao
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Deng-Cheng Zhou
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Hai-Yan Wu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Soo-Ki Kim
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China.
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China.
| |
Collapse
|
32
|
CXCL10/CXCR3 signaling mediates inhibitory action by interferon-gamma on CRF-stimulated adrenocorticotropic hormone (ACTH) release. Cell Tissue Res 2015; 364:395-404. [PMID: 26572542 DOI: 10.1007/s00441-015-2317-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Secretion of hormones by the anterior pituitary gland can be stimulated or inhibited by paracrine factors that are produced during inflammatory reactions. The inflammation cytokine interferon-gamma (IFN-γ) is known to inhibit corticotropin-releasing factor (CRF)-stimulated adrenocorticotropin (ACTH) release but its signaling mechanism is not yet known. Using rat anterior pituitary, we previously demonstrated that the CXC chemokine ligand 10 (CXCL10), known as interferon-γ (IFN-γ) inducible protein 10 kDa, is expressed in dendritic cell-like S100β protein-positive (DC-like S100β-positive) cells and that its receptor CXCR3 is expressed in ACTH-producing cells. DC-like S100β-positive cells are a subpopulation of folliculo-stellate cells in the anterior pituitary. In the present study, we examine whether CXCL10/CXCR3 signaling between DC-like S100β-positive cells and ACTH-producing cells mediates inhibition of CRF-activated ACTH-release by IFN-γ, using a CXCR3 antagonist in the primary pituitary cell culture. We found that IFN-γ up-regulated Cxcl10 expression via JAK/STAT signaling and proopiomelanocortin (Pomc) expression, while we reconfirmed that IFN-γ inhibits CRF-stimulated ACTH-release. Next, we used a CXCR3 agonist in primary culture to analyze whether CXCL10 induces Pomc-expression and ACTH-release using a CXCR3 agonist in the primary culture. The CXCR3 agonist significantly stimulated Pomc-expression and inhibited CRF-induced ACTH-release, while ACTH-release in the absence of CRF did not change. Thus, the present study leads us to an assumption that CXCL10/CXCR3 signaling mediates inhibition of the CRF-stimulated ACTH-release by IFN-γ. Our findings bring us to an assumption that CXCL10 from DC-like S100β-positive cells acts as a local modulator of ACTH-release during inflammation.
Collapse
|
33
|
Karagoz K, Sinha R, Arga KY. Triple negative breast cancer: a multi-omics network discovery strategy for candidate targets and driving pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:115-30. [PMID: 25611337 DOI: 10.1089/omi.2014.0135] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Triple negative breast cancer (TNBC) represents approximately 15% of breast cancers and is characterized by lack of expression of both estrogen receptor (ER) and progesterone receptor (PR), together with absence of human epidermal growth factor 2 (HER2). TNBC has attracted considerable attention due to its aggressiveness such as large tumor size, high proliferation rate, and metastasis. The absence of clinically efficient molecular targets is of great concern in treatment of patients with TNBC. In light of the complexity of TNBC, we applied a systematic and integrative transcriptomics and interactomics approach utilizing transcriptional regulatory and protein-protein interaction networks to discover putative transcriptional control mechanisms of TNBC. To this end, we identified TNBC-driven molecular pathways such as the Janus kinase-signal transducers, and activators of transcription (JAK-STAT) and tumor necrosis factor (TNF) signaling pathways. The multi-omics molecular target and biomarker discovery approach presented here can offer ways forward on novel diagnostics and potentially help to design personalized therapeutics for TNBC in the future.
Collapse
Affiliation(s)
- Kubra Karagoz
- 1 Department of Bioengineering, Marmara University , Istanbul, Turkey
| | | | | |
Collapse
|
34
|
Angiolilli C, Grabiec AM, Ferguson BS, Ospelt C, Malvar Fernandez B, van Es IE, van Baarsen LGM, Gay S, McKinsey TA, Tak PP, Baeten DL, Reedquist KA. Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Ann Rheum Dis 2014; 75:430-8. [PMID: 25452308 DOI: 10.1136/annrheumdis-2014-205635] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 11/07/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Epigenetic modifications play an important role in the regulation of gene transcription and cellular function. Here, we examined if pro-inflammatory factors present in the inflamed joint of patients with rheumatoid arthritis (RA) could regulate histone deacetylase (HDAC) expression and function in fibroblast-like synoviocytes (FLS). METHODS Protein acetylation in synovial tissue was assessed by immunohistochemistry. The mRNA levels of HDAC family members and inflammatory mediators in the synovial tissue and the changes in HDAC expression in RA FLS were measured by quantitative (q) PCR. FLS were either transfected with HDAC5 siRNA or transduced with adenoviral vector encoding wild-type HDAC5 and the effects of HDAC5 manipulation were examined by qPCR arrays, ELISA and ELISA-based assays. RESULTS Synovial class I HDAC expression was associated with local expression of tumour necrosis factor (TNF) and matrix metalloproteinase-1, while class IIa HDAC5 expression was inversely associated with parameters of disease activity (erythrocyte sedimentation rate, C-reactive protein, Disease Activity Score in 28 Joints). Interleukin (IL)-1β or TNF stimulation selectively suppressed HDAC5 expression in RA FLS, which was sufficient and required for optimal IFNB, CXCL9, CXCL10 and CXCL11 induction by IL-1β, associated with increased nuclear accumulation of the transcription factor, interferon regulatory factor 1(IRF1). CONCLUSIONS Inflammatory cytokines suppress RA FLS HDAC5 expression, promoting nuclear localisation of IRF1 and transcription of a subset of type I interferon response genes. Our results identify HDAC5 as a novel inflammatory mediator in RA, and suggest that strategies rescuing HDAC5 expression in vivo, or the development of HDAC inhibitors not affecting HDAC5 activity, may have therapeutic applications in RA treatment.
Collapse
Affiliation(s)
- Chiara Angiolilli
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aleksander M Grabiec
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bradley S Ferguson
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Caroline Ospelt
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Beatriz Malvar Fernandez
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge E van Es
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa G M van Baarsen
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Paul P Tak
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands GlaxoSmithKline, Stevenage, UK Cambridge University, Cambridge, UK
| | - Dominique L Baeten
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kris A Reedquist
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Sikorski K, Wesoly J, Bluyssen HAR. Data mining of atherosclerotic plaque transcriptomes predicts STAT1-dependent inflammatory signal integration in vascular disease. Int J Mol Sci 2014; 15:14313-31. [PMID: 25196434 PMCID: PMC4159852 DOI: 10.3390/ijms150814313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 01/02/2023] Open
Abstract
Atherosclerotic plaque development involves multiple extra- and intra-cellular signals engaging cells from the immune system and from the vasculature. Pro-inflammatory pathways activated by interferon gamma (IFNγ) and toll-like receptor 4 (TLR4) ligands are profoundly involved in plaque formation and have been shown to involve cross-talk in all atheroma-interacting cell types leading to increased activation of signal transducer and activator of transcription-1 (STAT1) and elevated expression of pro-inflammatory mediators. Here we demonstrate that in Gene Expression Omnibus repository (GEO) deposited microarray datasets, obtained from human coronary and carotid atherosclerotic plaques, a significant increase in expression of pro-inflammatory and immunomodulatory genes can be detected. Moreover, increased expression of multiple chemokines, adhesion molecules and matrix-remodeling molecules was commonly detected in both plaque types and correlated with the presence of putative STAT1 binding sites in their promoters, suggesting strong involvement of STAT1 in plaque development. We also provide evidence to suggest that STAT1-nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) or STAT1-interferon-regulated factor (IRF) regulatory modules are over-represented in the promoters of these inflammatory genes, which points to a possible contribution of IFNγ and TLR4 cross-talk in the process of atherogenesis. Finally, a subset of these genes encodes for secreted proteins that could serve as a basis of a non-invasive diagnostic assay. The results of our in silico analysis in vitro provide potential evidence that STAT1-dependent IFNγ-TLR4 cross-talk plays a crucial role in coronary and carotid artery plaque development and identifies a STAT1-dependent gene signature that could represent a novel diagnostic tool to monitor and diagnose plaque progression in human atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Sikorski
- Department of Human Molecular Genetics, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland.
| | - Joanna Wesoly
- Laboratory of High-Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland.
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland.
| |
Collapse
|
36
|
Talaat RM, Salem TA, El-Masry S, Imbarek A, Mokhles M, Abdel-Aziz A. Circulating pro- and anti-angiogenic mediators in patients infected with hepatitis C at different stages of hepatocellular carcinoma. J Med Virol 2014; 86:1120-9. [DOI: 10.1002/jmv.23932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Roba M. Talaat
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Tarek A. Salem
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Samir El-Masry
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Arafat Imbarek
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| | - Mohamed Mokhles
- Medical Biochemistry Department; Medical Division, National Research Center (NRC); Sadat City Egypt
| | - Amal Abdel-Aziz
- Molecular Biology Department; Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University; Sadat City Egypt
| |
Collapse
|
37
|
Duska-McEwen G, Senft AP, Ruetschilling TL, Barrett EG, Buck RH. Human Milk Oligosaccharides Enhance Innate Immunity to Respiratory Syncytial Virus and Influenza <i>in Vitro</i>. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.514151] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
van Dooren FH, Duijvis NW, te Velde AA. Analysis of cytokines and chemokines produced by whole blood, peripheral mononuclear and polymorphonuclear cells. J Immunol Methods 2013; 396:128-33. [PMID: 23994257 DOI: 10.1016/j.jim.2013.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Cytokines are immunomodulating proteins involved in cellular communication. The levels of different cytokines reflect the immune capabilities of a person. In literature both whole blood and peripheral blood mononuclear cells (PBMCs) are used, which might lead to different results. The choice between these different sources is not always explained. The goal of our experiments is to determine the cytokine response of whole blood, PBMCs and polymorphonuclear cells (PMNs) after stimulation with lipopolysaccharide (LPS). We used a multiplex analysis to determine a difference in cytokine secretion patterns. In general, PBMCs demonstrated the highest cytokine production and PMNs have an overall low cytokine production. CCL11 and interleukin-23 (IL-23) (and IL-12p40) were exclusively expressed in whole blood. IL-20, VEGF and GM-CSF were expressed only by PBMCs. This difference in expression could be explained by the bioactive components in serum, presence and interaction with granulocytes or platelets in whole blood, the anticoagulant heparin in whole blood and others. The expression of cytokines by cells is dependent on the microenvironment. Different conditions lead to different results. We recommend a thorough examination of the conditions before performing experiments.
Collapse
Affiliation(s)
- Faas H van Dooren
- Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
39
|
Qi XF, Li YJ, Chen ZY, Kim SK, Lee KJ, Cai DQ. Involvement of the FoxO3a pathway in the ischemia/reperfusion injury of cardiac microvascular endothelial cells. Exp Mol Pathol 2013; 95:242-7. [PMID: 23948278 DOI: 10.1016/j.yexmp.2013.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
FoxO3a, a member of the forkhead transcription factors, has been demonstrated to be involved in myocardial ischemia/reperfusion (I/R) injury. Cardiac microvascular endothelial cells (CMECs) are some of the predominant cells damaged immediately after myocardial I/R injury. Despite the importance of injured CMECs in an ischemic heart, little is known about the involvement of FoxO3a in regulating CMECs injury. Thus, we used rat CMECs following simulated I/R to examine FoxO3a activation and signaling in relation to survival, the cell cycle and apoptosis in CMECs. We found that Akt negatively regulates activation of the FoxO3a pathway by phosphorylating FoxO3a in CMECs as demonstrated with an Akt inhibitor and activator. Upon I/R injury, the FoxO3a pathway was significantly activated in CMECs, which was accompanied by Akt deactivation. In parallel, the I/R of CMECs induced G1-phase arrest through p27(Kip1) up-regulation and significant activation of caspase-3. Accordingly, inhibition of the FoxO3a pathway by IGF-1, an Akt activator, could significantly block the I/R-enhanced activation of p27(Kip1) and caspase-3 in CMECs. Collectively, our results indicate that the FoxO3a pathway is involved in the I/R injury of CMECs at least in part through the regulation of cell cycle arrest and apoptosis, suggesting that the FoxO3a pathway may be a novel therapeutic target that protects against microvascular endothelial damage in ischemic hearts.
Collapse
Affiliation(s)
- Xu-Feng Qi
- Key Laboratory for Regenerative Medicine of Ministry of Education, Ji Nan University, Guangzhou 510632, China; Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Ji Nan University, Guangzhou 510632, China; International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou 510632, China; Department of Developmental & Regenerative Biology, College of Life Science and Technology, Ji Nan University, Guangzhou 510632, China.
| | | | | | | | | | | |
Collapse
|
40
|
Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A 2013; 110:11499-504. [PMID: 23798430 DOI: 10.1073/pnas.1219852110] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) play key roles in detecting pathogens and initiating inflammatory responses that, subsequently, prime specific adaptive responses. Several mechanisms control TLR activity to avoid excessive inflammation and consequent immunopathology, including the anti-inflammatory cytokine IL-10. Recently, several TLR-responsive microRNAs (miRs) have also been proposed as potential regulators of this signaling pathway, but their functional role during the inflammatory response still is incompletely understood. In this study, we report that, after LPS engagement, monocytes up-regulate miR-146b via an IL-10-mediated STAT3-dependent loop. We show evidence that miR-146b modulates the TLR4 signaling pathway by direct targeting of multiple elements, including the LPS receptor TLR4 and the key adaptor/signaling proteins myeloid differentiation primary response (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK-1), and TNF receptor-associated factor 6 (TRAF6). Furthermore, we demonstrate that the enforced expression of miR-146b in human monocytes led to a significant reduction in the LPS-dependent production of several proinflammatory cytokines and chemokines, including IL-6, TNF-α, IL-8, CCL3, CCL2, CCL7, and CXCL10. Our results thus identify miR-146b as an IL-10-responsive miR with an anti-inflammatory activity based on multiple targeting of components of the TLR4 pathway in monocytes and candidate miR-146b as a molecular effector of the IL-10 anti-inflammatory activity.
Collapse
|
41
|
Aomatsu T, Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Yoden A, Tamai H, Fujiyama Y, Andoh A. Tacrolimus (FK506) suppresses TNF-α-induced CCL2 (MCP-1) and CXCL10 (IP-10) expression via the inhibition of p38 MAP kinase activation in human colonic myofibroblasts. Int J Mol Med 2012; 30:1152-8. [PMID: 22895606 DOI: 10.3892/ijmm.2012.1094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/09/2012] [Indexed: 11/06/2022] Open
Abstract
In order to investigate the molecular mechanisms underlying the immunosuppressive effects of tacrolimus (FK506) on intestinal inflammation, we examined whether FK506 effects cytokine/chemokine secretion in human colonic myofibroblasts. Human colonic myofibroblasts were isolated from normal human colonic tissue. The mRNA and protein expression for human CCL2 and CXCL10 were analyzed by real-time PCR and ELISA, respectively. p38 MAP kinase activation was evaluated by western blotting. Tacrolimus (1 µM) suppressed tumor necrosis factor (TNF)-α-induced CCL2 and CXCL10 mRNA expression, but did not modulate TNF-α-induced interleukin (IL)-6 or CXCL8 mRNA expression. Dose-dependent, inhibitory effects of tacrolimus on CCL2 and CXCL10 expression were observed at the mRNA and protein levels. Significant inhibitory effects of tacrolimus were observed at concentrations as low as 0.5 µM for CCL2 and 0.1 µM for CXCL10, respectively. TNF-α-induced CCL2 and CXCL10 expression depended on p38 MAP kinase activation, and tacrolimus strongly inhibited the TNF-α-induced phosphorylation of p38 MAP kinase. Tacrolimus did not affect interferon (IFN)-γ-induced signaling transducer and activator of transcription (STAT)-1 phosphorylation, nor did it modulate CXCL10 mRNA and protein expression. In conclusion, tacrolimus suppressed CCL2 and CXCL10 expression in human colonic myofibroblasts. These inhibitory effects of tacrolimus may play key roles in the therapeutic effects of colonic inflammation in inflammatory bowel disease (IBD) patients.
Collapse
Affiliation(s)
- Tomoki Aomatsu
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu 520-2192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Aabye MG, Eugen-Olsen J, Werlinrud AM, Holm LL, Tuuminen T, Ravn P, Ruhwald M. A simple method to quantitate IP-10 in dried blood and plasma spots. PLoS One 2012; 7:e39228. [PMID: 22761744 PMCID: PMC3384664 DOI: 10.1371/journal.pone.0039228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/17/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Antigen specific release of IP-10 is an established marker for infection with M.tuberculosis. Compared to IFN-γ, IP-10 is released in 100-fold higher concentrations enabling the development of novel assays for detection. Dried blood spots are a convenient sample for high throughput newborn screening. AIM To develop a robust and sensitive ELISA-based assay for IP-10 detection in plasma, dried blood spots (DBS) and dried plasma spots (DPS); to validate the ELISA in clinically relevant samples; and to assess the performance of the assay for detection of Cytomegalovirus (CMV) and M.tuberculosis specific immune responses. METHOD We raised mice and rat monoclonal antibodies against human IP-10 and developed an ELISA. The assay was validated and applied to the detection of CMV and M.tuberculosis specific responses in 18 patients with immune reactivity towards M.tuberculosis and 32 healthy controls of which 22 had immune reactivity towards CMV and none towards M.tuberculosis. We compared the performance of this new assay to IFN-γ. RESULTS The ELISA was reliable for IP-10 detection in both plasma and filter paper samples. The linear range of the ELISA was 2.5-600 pg/ml. IFN-γ was not readily detectable in DPS samples. IP-10 was stabile in filter paper samples for at least 4 weeks at 37 °C. The correlation between IP-10 detected in plasma, DPS and DBS samples was excellent (r(2)>0.97). CONCLUSIONS This newly developed assay is reliable for IP-10 quantification in plasma, DBS and DPS samples from antigen stimulated and non-stimulated whole blood. The filter paper assays enable easy sample acquisition and transport at ambient temperature e.g. via the postal system. The system can potentially simplify diagnostic assays for M.tuberculosis and CMV infection.
Collapse
Affiliation(s)
- Martine G. Aabye
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jesper Eugen-Olsen
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Anne Marie Werlinrud
- Department of Internal Medicine, Infectious Diseases Unit, Herlev University Hospital, Copenhagen, Denmark
| | - Line Lindebo Holm
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Tamara Tuuminen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Pernille Ravn
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Morten Ruhwald
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- * E-mail:
| |
Collapse
|
43
|
Minogue AM, Barrett JP, Lynch MA. LPS-induced release of IL-6 from glia modulates production of IL-1β in a JAK2-dependent manner. J Neuroinflammation 2012; 9:126. [PMID: 22697788 PMCID: PMC3418561 DOI: 10.1186/1742-2094-9-126] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/14/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Compelling evidence has implicated neuroinflammation in the pathogenesis of a number of neurodegenerative conditions. Chronic activation of both astrocytes and microglia leads to excessive secretion of proinflammatory molecules such as TNF α, IL-6 and IL-1 β with potentially deleterious consequences for neuronal viability. Many signaling pathways involving the mitogen-activated protein kinases (MAPKs), nuclear factor κ B (NF κ B) complex and the Janus kinases (JAKs)/signal transducers and activators of transcription (STAT)-1 have been implicated in the secretion of proinflammatory cytokines from glia. We sought to identify signaling kinases responsible for cytokine production and to delineate the complex interactions which govern time-related responses to lipopolysaccharide (LPS). METHODS We examined the time-related changes in certain signaling events and the release of proinflammatory cytokines from LPS-stimulated co-cultures of astrocytes and microglia isolated from neonatal rats. RESULTS TNF α was detected in the supernatant approximately 1 to 2 hours after LPS treatment while IL-1 β and IL-6 were detected after 2 to 3 and 4 to 6 hours, respectively. Interestingly, activation of NF κ B signaling preceded release of all cytokines while phosphorylation of STAT1 was evident only after 2 hours, indicating that activation of JAK/STAT may be important in the up-regulation of IL-6 production. Additionally, incubation of glia with TNF α induced both phosphorylation of JAK2 and STAT1 and the interaction of JAK2 with the TNF α receptor (TNFR1). Co-treatment of glia with LPS and recombinant IL-6 protein attenuated the LPS-induced release of both TNF α and IL-1 β while potentiating the effect of LPS on suppressor of cytokine signaling (SOCS)3 expression and IL-10 release. CONCLUSIONS These data indicate that TNF α may regulate IL-6 production through activation of JAK/STAT signaling and that the subsequent production of IL-6 may impact on the release of TNF α, IL-1 β and IL-10.
Collapse
Affiliation(s)
- Aedín M Minogue
- Trinity College Institute for Neuroscience, Lloyd building, University of Dublin, Trinity College, College Green, Dublin 2, Ireland.
| | | | | |
Collapse
|
44
|
Subramaniam S, Beura LK, Kwon B, Pattnaik AK, Osorio FA. Amino acid residues in the non-structural protein 1 of porcine reproductive and respiratory syndrome virus involved in down-regulation of TNF-α expression in vitro and attenuation in vivo. Virology 2012; 432:241-9. [PMID: 22699004 DOI: 10.1016/j.virol.2012.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/03/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses tumor necrosis factor-alpha (TNF-α) production at both transcriptional and post-transcriptional levels by its non-structural proteins 1α and 1β (Nsp1α and Nsp1β). To identify the amino acid residues responsible for this activity, we generated several alanine substitution mutants of Nsp1α and Nsp1β. Examination of the mutant proteins revealed that Nsp1α residues Gly90, Asn91, Arg97, Arg100 and Arg124 were necessary for TNF-α promoter suppression, whereas several amino acids spanning the entire Nsp1β were found to be required for this activity. Two mutant viruses, with mutations at Nsp1α Gly90 or Nsp1β residues 70-74, generated from infectious cDNA clones, exhibited attenuated viral replication in vitro and TNF-α was found to be up regulated in infected macrophages. In infected pigs, the Nsp1β mutant virus was attenuated in growth. These studies provide insights into how PRRSV evades the effector mechanisms of innate immunity during infection.
Collapse
Affiliation(s)
- Sakthivel Subramaniam
- School of Veterinary Medicine & Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA
| | | | | | | | | |
Collapse
|
45
|
Ruhwald M, Aabye MG, Ravn P. IP-10 release assays in the diagnosis of tuberculosis infection: current status and future directions. Expert Rev Mol Diagn 2012; 12:175-87. [PMID: 22369377 DOI: 10.1586/erm.11.97] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The current state-of-the-art tests for infection with Mycobacterium tuberculosis - the IFN-γ release assays - rely on accurate measurement of the cytokine IFN-γ. Many other potential biomarkers are expressed in concert with IFN-γ, and IP-10 in particular has shown promising results. IP-10 is produced in large amounts, allowing for the development of new and simplified test platforms, such as lateral flow. In this review, we summarize the results of 22 clinical studies exploring the use of IP-10 as an alternative marker to IFN-γ. The studies report that diagnostic accuracy of IP-10 is on par with IFN-γ, but also that IP-10 may be more robust in young children and in HIV-infected individuals with low CD4 cell counts. We conclude the review by presenting limitations of the published works and outline recent developments and future directions.
Collapse
Affiliation(s)
- Morten Ruhwald
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.
| | | | | |
Collapse
|
46
|
Bastarache JA, Sebag SC, Grove BS, Ware LB. Interferon-γ and tumor necrosis factor-α act synergistically to up-regulate tissue factor in alveolar epithelial cells. Exp Lung Res 2012; 37:509-17. [PMID: 21913843 DOI: 10.3109/01902148.2011.605512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fibrin deposition mediated through activation of tissue factor (TF) in the airspace is central to the pathogenesis of acute lung injury. Defining the mechanisms of TF regulation in the lung is critical to understanding pulmonary fibrin formation. Tumor necrosis factor-α (TNF-α) up-regulates TF in the injured lung, and there is emerging evidence that another cytokine, interferon-γ (IFN-γ), also modulates expression. The effects of TNF-α and IFN-γ on regulation of TF were studied in alveolar epithelial A549 cells. In addition, potential mechanisms of modulation of TF expression by the 2 cytokines were analyzed with the hypothesis that IFN-γ acts synergistically with TNF-α to up-regulate alveolar epithelial TF through modulation of TNF receptor (TNFR) expression. TNF-α but not IFN-γ treatment increased TF mRNA, protein, and cell surface TF activity. The combination of IFN-γ and TNF-α treatment augmented the effects of TNF-α on TF up-regulation and also increased release of procoagulant microparticles (MPs) from A549 cells. IFN-γ modulated expression of both TNF-α receptors. Studies utilizing neutralizing antibodies against the two TNF receptors showed that the TF effects were mediated primarily through augmentation of TNFR1-dependent cellular responses. These findings have important implications for regulation of fibrin formation in the lung in the setting of acute inflammation.
Collapse
Affiliation(s)
- Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
47
|
Kasraie S, Niebuhr M, Kopfnagel V, Dittrich-Breiholz O, Kracht M, Werfel T. Macrophages from patients with atopic dermatitis show a reduced CXCL10 expression in response to staphylococcal α-toxin. Allergy 2012; 67:41-9. [PMID: 21906079 DOI: 10.1111/j.1398-9995.2011.02710.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Patients with atopic dermatitis (AD) are frequently colonized with Staphylococcus aureus (S. aureus), one-third of them producing α-toxin, which is correlated with the severity of eczema in AD. Staphylococcus aureus colonizes in patients with psoriasis as well. Distinct expression of chemokine (C-C motif) ligand (CCL) and chemokine (C-X-C motif) ligand (CXCL) chemokines has been documented in both diseases. In this study, we investigated the effects of sublytic α-toxin concentrations on human macrophages that accumulate in the skin of patients with AD and psoriasis. METHODS IFN-γ-induced protein of 10-kDa (IP-10)/CXCL10 and macrophage-derived chemokine (MDC)/CCL22 production were evaluated at the mRNA or at the protein level using qRT-PCR or ELISA, respectively. Cell surface markers' expression and chemotaxis were determined by flow cytometry and Boyden chamber technique, respectively. RESULTS Sublytic concentrations of α-toxin strongly induced CXCL10 in macrophages at both the mRNA and the protein levels and significantly up-regulated MHC class II expression. Supernatants of α-toxin-stimulated macrophages induced the migration of human CD4+ lymphocytes via the CXCL10 receptor (CXCR3). Macrophages from patients with AD produced lower levels of CXCL10 compared to cells from patients with psoriasis as well as healthy controls in response to α-toxin. α-Toxin did not lead to a large variation in CCL22 production in macrophages from all three groups. CONCLUSIONS Staphylococcal α-toxin contributes to Th1 polarization by induction of CXCL10 in macrophages. Macrophages from patients with AD and psoriasis responded to α-toxin in the induction of Th1-related chemokine CXCL10 diversely, which could favour the recruitment of distinct leucocyte subsets into the skin.
Collapse
Affiliation(s)
- S Kasraie
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuburg-Strasse 1, Hannover,Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Jornot L, Cordey S, Caruso A, Gerber C, Vukicevic M, Tapparel C, Kaiser L, Burger D, Roosnek E, Lacroix JS, Rochat T. T lymphocytes promote the antiviral and inflammatory responses of airway epithelial cells. PLoS One 2011; 6:e26293. [PMID: 22022590 PMCID: PMC3194808 DOI: 10.1371/journal.pone.0026293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/23/2011] [Indexed: 01/19/2023] Open
Abstract
HYPOTHESIS T cells modulate the antiviral and inflammatory responses of airway epithelial cells to human rhinoviruses (HRV). METHODS Differentiated primary human nasal epithelial cells (HNEC) grown on collagen-coated filters were exposed apically to HRV14 for 6 h, washed thoroughly and co-cultured with anti-CD3/CD28 activated T cells added in the basolateral compartment for 40 h. RESULTS HRV14 did not induce IFNγ, NOS2, CXCL8 and IL-6 in HNEC, but enhanced expression of the T cell attractant CXCL10. On the other hand, HNEC co-cultured with activated T cells produced CXCL10 at a level several orders of magnitude higher than that induced by HRV14. Albeit to a much lower degree, activated T cells also induced CXCL8, IL-6 and NOS2. Anti-IFNγ antibodies and TNF soluble receptor completely blocked CXCL10 upregulation. Furthermore, a significant correlation was observed between epithelial CXCL10 mRNA expression and the amounts of IFNγ and TNF secreted by T cells. Likewise, increasing numbers of T cells to a constant number of HNEC in co-cultures resulted in increasing epithelial CXCL10 production, attaining a plateau at high IFNγ and TNF levels. Hence, HNEC activation by T cells is induced mainly by IFNγ and/or TNF. Activated T cells also markedly inhibited viral replication in HNEC, partially through activation of the nitric oxide pathway. CONCLUSION Cross-talk between T cells and HNEC results in activation of the latter and increases their contribution to airway inflammation and virus clearance.
Collapse
Affiliation(s)
- Lan Jornot
- Division of Pulmonary Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hsieh YY, Chang CC, Hsu CM, Wan L, Chen SY, Lin WH, Tsai FJ. JAK-1 rs2780895 C-related genotype and allele but not JAK-1 rs10789166, rs4916008, rs2780885, rs17127114, and rs3806277 are associated with higher susceptibility to asthma. Genet Test Mol Biomarkers 2011; 15:841-7. [PMID: 21827323 DOI: 10.1089/gtmb.2011.0002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Asthma, one major respiratory consequence, might be caused by a complex interaction between multiple candidate genes and environmental factors. Herein, we aimed to investigate whether Janus kinase (JAK)-1 gene polymorphisms are associated with asthma susceptibility. MATERIALS AND METHODS Patients were divided into two groups: (1) asthma (n=117) and (2) nonasthma (n=60). The JAK-1 polymorphisms (rs2780895, rs10789166, rs4916008, rs2780885, rs17127114, and rs3806277) were amplified by polymerase chain reaction and detected by electrophoresis after restriction enzyme (HpyCH4IV, Tsp45I, HpaII, XmnI, MspI, and HpaII) digestions. Genotypes, allelic frequencies, and association of haplotypes in both groups were compared. RESULTS JAK-1 rs2780895 gene polymorphism is associated with susceptibility to asthma. Distributions of JAK-1 rs2780895*CC/CT/TT and C/T allele in both groups are: (1) 80/4/16% and 82/18%; (2) 48/45/7% and 71/29%. Other 5 JAK-1 SNPs (rs10789166, rs4916008, rs2780885, rs17127114, and rs3806277) are not associated with asthma susceptibilities. Distributions of JAK-1 rs10789166*AA/AG/GG, rs4916008*CC/CT/TT, rs2780885*CC/CT/TT, rs17127114*AA/AG/GG, rs3806277*AA/AG/GG in both groups are: (1) 50/40/10%, 42/49/9%, 50/40/10%, 9/37/54%, 8/35/57%; (2) 43/50/7%, 40/50/10%, 50/43/7%, 7/48/45%, 6/42/52%. Haplotype analyses for JAK-1 gene polymorphisms (rs2780895-rs10789166-rs4916008-rs2780885-rs17127114-rs3806277) revealed that JAK-1 haplotypes are not associated with asthma susceptibilities. CONCLUSIONS JAK-1 rs2780895 C-related genotype and allele are associated with higher susceptibility to asthma. JAK-1 rs10789166, rs4916008, rs2780885, rs17127114, and rs3806277 single-nucleotide polymorphisms are not associated with asthma development. Some JAK-related genetic variations might be associated with asthma pathogenesis, which deserve further surveys.
Collapse
Affiliation(s)
- Yao-Yuan Hsieh
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
50
|
El-Asrar AMA, Al-Obeidan SS, Kangave D, Geboes K, Opdenakker G, Van Damme J, Struyf S. CXC chemokine expression profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Immunobiology 2011; 216:1004-9. [PMID: 21531038 DOI: 10.1016/j.imbio.2011.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/30/2011] [Indexed: 01/01/2023]
Abstract
Aqueous humor (AH) samples from patients with Behçet's disease (BD) (n=29), Vogt-Koyanagi-Harada (VKH) disease (n=21), and HLA-B27-associated uveitis (n=8), and 42 control patients were assayed for the neutrophil chemoattractants CXCL1/GRO-α and CXCL8/IL-8 and the lymphocyte chemoattractants CXCL9/MIG, CXCL10/IP-10 and CXCL12/SDF-1 with the use of a multiplex chemokine assay. Chemokine levels except SDF-1 were significantly higher in the 3 disease groups than in normal controls. Considering all patients, mean GRO-α levels were 15-fold higher than IL-8 levels and mean IP-10 levels were 22-fold higher than MIG levels. In patients with the same disease activity, AH levels of GRO-α and IP-10 were significantly higher in patients with BD than in patients with VKH disease and HLA-B27-associated uveitis (p=0.0474; p<0.001, respectively). These data suggest that GRO-α and IP-10 are the predominant CXC chemokines involved in neutrophil and activated T lymphocyte chemoattraction in endogenous uveitis, particularly in BD.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|