1
|
Tessarin GWL, Toro LF, Pereira RF, Dos Santos RM, Azevedo RG. Peri-implantitis with a potential axis to brain inflammation: an inferential review. Odontology 2024; 112:1033-1046. [PMID: 38630323 DOI: 10.1007/s10266-024-00936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 09/21/2024]
Abstract
Peri-implantitis (PI) is a chronic, inflammatory, and infectious disease which affects dental implants and has certain similarities to periodontitis (PD). Evidence has shown that PD may be related to several types of systemic disorders, such as diabetes and insulin resistance, cardiovascular diseases, respiratory tract infections, adverse pregnancy outcomes, and neurological disorders. Furthermore, some types of bacteria in PD can also be found in PI, leading to certain similarities in the immunoinflammatory responses in the host. This review aims to discuss the possible connection between PI and neuroinflammation, using information based on studies about periodontal disorders, a topic whose connection with systemic alterations has been gaining the interest of the scientific community. Literature concerning PI, PD, and systemic disorders, such as neuroinflammation, brain inflammation, and neurological disorder, was searched in the PubMed database using different keyword combinations. All studies found were included in this narrative review. No filters were used. Eligible studies were analyzed and reviewed carefully. This study found similarities between PI and PD development, maintenance, and in the bacterial agents located around the teeth (periodontitis) or dental implants (peri-implantitis). Through the cardiovascular system, these pathologies may also affect blood-brain barrier permeability. Furthermore, scientific evidence has suggested that microorganisms from PI (as in PD) can be recognized by trigeminal fiber endings and start inflammatory responses into the trigeminal ganglion. In addition, bacteria can traverse from the mouth to the brain through the lymphatic system. Consequently, the immune system increases inflammatory mediators in the brain, affecting the homeostasis of the nervous tissue and vice-versa. Based on the interrelation of microbiological, inflammatory, and immunological findings between PD and PI, it is possible to infer that immunoinflammatory changes observed in PD can imply systemic changes in PI. This, as discussed, could lead to the development or intensification of neuroinflammatory changes, contributing to neurodegenerative diseases.
Collapse
Affiliation(s)
- Gestter Willian Lattari Tessarin
- University Center in the North of São Paulo (UNORTE), São José Do Rio Preto, SP, 15020-040, Brazil.
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| | - Luan Felipe Toro
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Marilia Medical School (FAMEMA), Marília, São Paulo, Brazil
| | - Renato Felipe Pereira
- Union of Colleges of the Great Lakes (UNILAGO), São José Do Rio Preto, São Paulo, Brazil
| | - Rodrigo Martins Dos Santos
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Renato Gomes Azevedo
- University Center in the North of São Paulo (UNORTE), São José Do Rio Preto, SP, 15020-040, Brazil
| |
Collapse
|
2
|
Cogill SA, Lee JH, Jeon MT, Kim DG, Chang Y. Hopping the Hurdle: Strategies to Enhance the Molecular Delivery to the Brain through the Blood-Brain Barrier. Cells 2024; 13:789. [PMID: 38786013 PMCID: PMC11119906 DOI: 10.3390/cells13100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Modern medicine has allowed for many advances in neurological and neurodegenerative disease (ND). However, the number of patients suffering from brain diseases is ever increasing and the treatment of brain diseases remains an issue, as drug efficacy is dramatically reduced due to the existence of the unique vascular structure, namely the blood-brain barrier (BBB). Several approaches to enhance drug delivery to the brain have been investigated but many have proven to be unsuccessful due to limited transport or damage induced in the BBB. Alternative approaches to enhance molecular delivery to the brain have been revealed in recent studies through the existence of molecular delivery pathways that regulate the passage of peripheral molecules. In this review, we present recent advancements of the basic research for these delivery pathways as well as examples of promising ventures to overcome the molecular hurdles that will enhance therapeutic interventions in the brain and potentially save the lives of millions of patients.
Collapse
Affiliation(s)
- Sinnead Anne Cogill
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae-Hyeok Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Tae Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Chandra PK, Panner Selvam MK, Castorena-Gonzalez JA, Rutkai I, Sikka SC, Mostany R, Busija DW. Fibrinogen in mice cerebral microvessels induces blood-brain barrier dysregulation with aging via a dynamin-related protein 1-dependent pathway. GeroScience 2024; 46:395-415. [PMID: 37897653 PMCID: PMC10828490 DOI: 10.1007/s11357-023-00988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023] Open
Abstract
We previously reported evidence that oxidative stress during aging leads to adverse protein profile changes of brain cortical microvessels (MVs: end arterioles, capillaries, and venules) that affect mRNA/protein stability, basement membrane integrity, and ATP synthesis capacity in mice. As an extension of our previous study, we also found that proteins which comprise the blood-brain barrier (BBB) and regulate mitochondrial quality control were also significantly decreased in the mice's cortical MVs with aging. Interestingly, the neuroinflammatory protein fibrinogen (Fgn) was increased in mice brain MVs, which corresponds with clinical reports indicating that the plasma Fgn concentration increased progressively with aging. In this study, protein-protein interaction network analysis indicated that high expression of Fgn is linked with downregulated expression of both BBB- and mitochondrial fission/fusion-related proteins in mice cortical MVs with aging. To investigate the mechanism of Fgn action, we observed that 2 mg/mL or higher concentration of human plasma Fgn changed cell morphology, induced cytotoxicity, and increased BBB permeability in primary human brain microvascular endothelial cells (HBMECs). The BBB tight junction proteins were significantly decreased with increasing concentration of human plasma Fgn in primary HBMECs. Similarly, the expression of phosphorylated dynamin-related protein 1 (pDRP1) and other mitochondrial fission/fusion-related proteins were also significantly reduced in Fgn-treated HBMECs. Interestingly, DRP1 knockdown by shRNA(h) resulted in the reduction of both BBB- and mitochondrial fission/fusion-related proteins in HBMECs. Our results suggest that elevated Fgn downregulates DRP1, leading to mitochondrial-dependent endothelial and BBB dysfunction in the brain microvasculature.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA.
| | - Manesh Kumar Panner Selvam
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Jorge A Castorena-Gonzalez
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| |
Collapse
|
4
|
Ilagan FMD, Wu YH. A retrospective study on the direct immunofluorescence findings in pigmented purpuric dermatosis. J Cutan Pathol 2024; 51:63-69. [PMID: 37565512 DOI: 10.1111/cup.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/12/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Pigmented purpuric dermatosis (PPD) is characterized by grouped petechiae, purpuric macules, and pigmentation in the bilateral lower extremities. It runs a chronic and relapsing course. Pathophysiology is poorly understood, but it has been proposed to be an immune-complex disease or capillaritis. This study aimed to determine the incidence and patterns of positive direct immunofluorescence (DIF) findings in patients with clinically and histopathologically confirmed PPD. The association between DIF deposition type and clinical profile was also analyzed. METHODS Patients with a clinical and histopathologic PPD diagnosis who had undergone DIF studies at a tertiary medical center with attached dermatopathology and immunofluorescence diagnostic centers between January 2002 and December 2021 were included in this study. Data on age, sex, disease duration, comorbidities, and drug intake were collected from medical records. RESULTS There were 65 patients who satisfied the inclusion criteria. Among them, 58 (89%) had at least one positive finding and 53 (82%) were vascular deposition of immunoglobulin (Ig), complement, or fibrinogen. The most common vascular deposition was fibrinogen (71%) followed by C3 (62%), IgM (18%), IgA (6%), and IgG (3%). Fibrinogen deposition was associated with hypertension (p < 0.03). There was no association between vascular DIF deposition of IgG, IgA, and C3, with age, sex, comorbidities, disease duration, and drug history. CONCLUSION The most common DIF findings in PPD were vascular deposition of fibrinogen and C3, with or without Ig presence. DIF findings supported a vascular origin in PPD but not an immune complex-mediated disease. Hypertension was associated with fibrinogen deposition and may play a role in its pathophysiology.
Collapse
Affiliation(s)
| | - Yu-Hung Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Sulimai N, Brown J, Lominadze D. Vascular Effects on Cerebrovascular Permeability and Neurodegeneration. Biomolecules 2023; 13:biom13040648. [PMID: 37189395 DOI: 10.3390/biom13040648] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer's disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Berk-Rauch HE, Choudhury A, Richards AT, Singh PK, Chen ZL, Norris EH, Strickland S, Ahn HJ. Striatal fibrinogen extravasation and vascular degeneration correlate with motor dysfunction in an aging mouse model of Alzheimer’s disease. Front Aging Neurosci 2023; 15:1064178. [PMID: 36967821 PMCID: PMC10034037 DOI: 10.3389/fnagi.2023.1064178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Alzheimer’s Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered.Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice.Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.
Collapse
Affiliation(s)
- Hanna E. Berk-Rauch
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Arnab Choudhury
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Allison T. Richards
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Hyung Jin Ahn
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Hyung Jin Ahn,
| |
Collapse
|
7
|
Wan S, Dandu C, Han G, Guo Y, Ding Y, Song H, Meng R. Plasma inflammatory biomarkers in cerebral small vessel disease: A review. CNS Neurosci Ther 2022; 29:498-515. [PMID: 36478511 PMCID: PMC9873530 DOI: 10.1111/cns.14047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a group of pathological processes affecting small arteries, arterioles, capillaries, and small veins of the brain. It is one of the most common subtypes of cerebrovascular diseases, especially highly prevalent in elderly populations, and is associated with stroke occurrence and recurrence, cognitive impairment, gait disorders, psychological disturbance, and dysuria. Its diagnosis mainly depends on MRI, characterized by recent small subcortical infarcts, lacunes, white matter hyperintensities (WMHs), enlarged perivascular spaces (EPVS), cerebral microbleeds (CMBs), and brain atrophy. While the pathophysiological processes of CSVD are not fully understood at present, inflammation is noticed as playing an important role. Herein, we aimed to review the relationship between plasma inflammatory biomarkers and the MRI features of CSVD, to provide background for further research.
Collapse
Affiliation(s)
- Shuling Wan
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Chaitu Dandu
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Guangyu Han
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Yibing Guo
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Haiqing Song
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Ran Meng
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina,Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
8
|
Suda K, Yamada S, Miyahara K, Fujiwara N, Kosaka S, Abe K, Seo S, Nakamura S, Lane GJ, Yamataka A. High intestinal vascular permeability in a murine model for Hirschsprung’s disease: implications for postoperative Hirschsprung-associated enterocolitis. Pediatr Surg Int 2022; 39:15. [PMID: 36449111 PMCID: PMC9713090 DOI: 10.1007/s00383-022-05308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Intestinal vascular permeability (VP) in a murine model for Hirschsprung's disease (HD) and postoperative Hirschsprung-associated enterocolitis (HAEC) were investigated. METHODS Intestinal VP was determined using a Miles assay using 1% Evans blue injected into a superficial temporal vein of newborn endothelin receptor-B KO HD model (KO) and syngeneic wild-type (WT) mice (n = 5, respectively). Extravasated Evans blue in normoganglionic ileum (Ng-I), normoganglionic proximal colon (Ng-PC) and aganglionic distal colon (Ag-DC) was quantified by absorbance at 620 nm. Quantitative polymerase chain reaction (qPCR) for Vascular Endothelial Growth Factor A (VEGF-A), VEGF-B, CDH5, SELE and CD31, and immunofluorescence for CD31 were performed. RESULTS VP was significantly higher in Ng-I, Ng-PC, and Ag-DC from KO than WT (p < 0.01, p < 0.05, and p < 0.05, respectively). qPCR demonstrated upregulated VEGF-A in Ng-I and Ag-DC, VEGF-B in Ng-I, and SELE in Ng-I and Ng-PC (p < 0.05, p < 0.05, p < 0.05, p < 0.01 and p < 0.05, respectively), and downregulated CDH5 in Ng-I and Ng-PC from KO (p < 0.05, respectively). Expression of CD31 mRNA in Ng-I and Ag-DC from KO was significantly higher on qPCR (p < 0.05) but differences on immunofluorescence were not significant. CONCLUSIONS VP may be etiologic for postoperative HAEC throughout the intestinal tract even after excision of aganglionic bowel.
Collapse
Affiliation(s)
- Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Shunsuke Yamada
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Katsumi Miyahara
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Naho Fujiwara
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Seitaro Kosaka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kumpei Abe
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shogo Seo
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, and Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Geoffrey J Lane
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
9
|
Li Q, Ouyang X, Lin J. The impact of periodontitis on vascular endothelial dysfunction. Front Cell Infect Microbiol 2022; 12:998313. [PMID: 36118034 PMCID: PMC9480849 DOI: 10.3389/fcimb.2022.998313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontitis, an oral inflammatory disease, originates from periodontal microbiota dysbiosis which is associated with the dysregulation of host immunoinflammatory response. This chronic infection is not only harmful to oral health but is also a risk factor for the onset and progress of various vascular diseases, such as hypertension, atherosclerosis, and coronary arterial disease. Vascular endothelial dysfunction is the initial key pathological feature of vascular diseases. Clarifying the association between periodontitis and vascular endothelial dysfunction is undoubtedly a key breakthrough for understanding the potential relationship between periodontitis and vascular diseases. However, there is currently a lack of an updated review of their relationship. Therefore, we aim to focus on the implications of periodontitis in vascular endothelial dysfunction in this review.
Collapse
Affiliation(s)
- Qian Li
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| | - Jiang Lin
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| |
Collapse
|
10
|
Sulimai NH, Brown J, Lominadze D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022; 10:1712. [PMID: 35885017 PMCID: PMC9313381 DOI: 10.3390/biomedicines10071712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrinogen (Fg) and its derivatives play a considerable role in many diseases. For example, increased levels of Fg have been found in many inflammatory diseases, such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Although associations of Fg, Fg chains, and its derivatives with various diseases have been established, their specific effects and the mechanisms of actions involved are still unclear. The present review is the first attempt to discuss the role of Fg, Fg chains, its derivatives, and other members of Fg family proteins, such as Fg-like protein 1 and 2, in inflammatory diseases and their effects in immunomodulation.
Collapse
Affiliation(s)
- Nurul H. Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - Jason Brown
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
- Departments of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Kasen A, Houck C, Burmeister AR, Sha Q, Brundin L, Brundin P. Upregulation of α-synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiol Dis 2022; 166:105654. [DOI: 10.1016/j.nbd.2022.105654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
|
13
|
Tezuka K, Suzuki M, Sato R, Kawarada S, Terasaki T, Uchida Y. Activation of Annexin
A2
signaling at the blood‐brain barrier in a mouse model of multiple sclerosis. J Neurochem 2022; 160:662-674. [DOI: 10.1111/jnc.15578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Kenta Tezuka
- Graduate School of Pharmaceutical Sciences Tohoku University Japan
| | - Masayoshi Suzuki
- Graduate School of Pharmaceutical Sciences Tohoku University Japan
| | - Risa Sato
- Graduate School of Pharmaceutical Sciences Tohoku University Japan
| | - Shohei Kawarada
- Graduate School of Pharmaceutical Sciences Tohoku University Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences Tohoku University Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences Tohoku University Japan
| |
Collapse
|
14
|
Cole HA, Moore-Lotridge SN, Hawley GD, Jacobson R, Yuasa M, Gewin L, Nyman JS, Flick MJ, Schoenecker JG. The Deleterious Effects of Impaired Fibrinolysis on Skeletal Development Are Dependent on Fibrin(ogen), but Independent of Interlukin-6. Front Cardiovasc Med 2021; 8:768338. [PMID: 34938785 PMCID: PMC8685342 DOI: 10.3389/fcvm.2021.768338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic diseases in growing children, such as autoimmune disorders, obesity, and cancer, are hallmarked by musculoskeletal growth disturbances and osteoporosis. Many of the skeletal changes in these children are thought to be secondary to chronic inflammation. Recent studies have likewise suggested that changes in coagulation and fibrinolysis may contribute to musculoskeletal growth disturbances. In prior work, we demonstrated that mice deficient in plasminogen, the principal protease of degrading and clearing fibrin matrices, suffer from inflammation-driven systemic osteoporosis and that elimination of fibrinogen resulted in normalization of IL-6 levels and complete rescue of the skeletal phenotype. Given the intimate link between coagulation, fibrinolysis, and inflammation, here we determined if persistent fibrin deposition, elevated IL-6, or both contribute to early skeletal aging and physeal disruption in chronic inflammatory conditions. Skeletal growth as well as bone quality, physeal development, and vascularity were analyzed in C57BL6/J mice with plasminogen deficiency with and without deficiencies of either fibrinogen or IL-6. Elimination of fibrinogen, but not IL-6, rescued the skeletal phenotype and growth disturbances in this model of chronic disease. Furthermore, the skeletal phenotypes directly correlated with both systemic and local vascular changes in the skeletal environment. In conclusion, these results suggest that fibrinolysis through plasmin is essential for skeletal growth and maintenance, and is multifactorial by limiting inflammation and preserving vasculature.
Collapse
Affiliation(s)
- Heather A Cole
- Departments of Nuclear Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephanie N Moore-Lotridge
- Departments of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, United States.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gregory D Hawley
- Departments of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard Jacobson
- Departments of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Masato Yuasa
- Departments of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Leslie Gewin
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Research, Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Jeffry S Nyman
- Departments of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, United States.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Research, Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States.,University of North Carolina Blood Research Center, University of North Carolina, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jonathan G Schoenecker
- Departments of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, United States.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
15
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
16
|
Baker TL, Agoston DV, Brady RD, Major B, McDonald SJ, Mychasiuk R, Wright DK, Yamakawa GR, Sun M, Shultz SR. Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist 2021; 28:594-612. [PMID: 33966527 DOI: 10.1177/10738584211012264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diagnosis, prognosis, and treatment of mild traumatic brain injuries (mTBIs), such as concussions, are significant unmet medical issues. The kinetic forces that occur in mTBI adversely affect the cerebral vasculature, making cerebrovascular injury (CVI) a pathophysiological hallmark of mTBI. Given the importance of a healthy cerebrovascular system in overall brain function, CVI is likely to contribute to neurological dysfunction after mTBI. As such, CVI and related pathomechanisms may provide objective biomarkers and therapeutic targets to improve the clinical management and outcomes of mTBI. Despite this potential, until recently, few studies have focused on the cerebral vasculature in this context. This article will begin by providing a brief overview of the cerebrovascular system followed by a review of the literature regarding how mTBI can affect the integrity and function of the cerebrovascular system, and how this may ultimately contribute to neurological dysfunction and neurodegenerative conditions. We then discuss promising avenues of research related to mTBI biomarkers and interventions that target CVI, and conclude that a clinical approach that takes CVI into account could result in substantial improvements in the care and outcomes of patients with mTBI.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Sulimai N, Lominadze D. Fibrinogen and/or Fibrin as a Cause of Neuroinflammation. ONLINE JOURNAL OF NEUROLOGY AND BRAIN DISORDERS 2021; 5:217. [PMID: 34327331 PMCID: PMC8318361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, University of South Florida Morsani College of Medicine, USA
| | - David Lominadze
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, USA
| |
Collapse
|
18
|
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci 2021; 22:2681. [PMID: 33800954 PMCID: PMC7961671 DOI: 10.3390/ijms22052681] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase viral entry or otherwise damage the brain.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Rachel C. Knopp
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
19
|
Zhong J, Yu R, Zhou Q, Liu P, Liu Z, Bian Y. Naringenin prevents TNF-α-induced gut-vascular barrier disruption associated with inhibiting the NF-κB-mediated MLCK/p-MLC and NLRP3 pathways. Food Funct 2021; 12:2715-2725. [PMID: 33667286 DOI: 10.1039/d1fo00155h] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microvasculature endothelium accurately regulates the passage of molecules across the gut-vascular barrier (GVB), which plays an essential role in intestinal immunity. Naringenin is reported to have therapeutic potential against several intestinal disorders. However, the effect of naringenin on GVB disruption has been rarely studied. This study aims to investigate the effect of naringenin on GVB function and the potential mechanism. In the present study, the in vitro GVB disruption of rat intestinal microvascular endothelial cells (RIMVEC) was induced by 50 ng mL-1 of tumor necrosis factor-α (TNF-α). The integrity of the in vitro GVB was determined by Evans blue (EB)-albumin efflux assay and trans-endothelial electrical resistance (TER). Meanwhile, the expression of tight junction proteins and the related NF-κB, MLCK/p-MLC and NLRP3 pathways were determined using enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence. The results show that naringenin (100 μM) inhibits TNF-α-induced interleukin (IL)-6 hypersecretion, alleviates GVB disruption and mitigates the change in the tight junction protein expression pattern. Naringenin inhibits the GVB-disruption-associated activation of the MLCK/p-MLC system and TLR4/NF-κB/NLRP3 pathways. Furthermore, naringenin shows a similar effect to that of NF-κB inhibitor Bay 11-7082 in reducing the TNF-α-induced activation of NLRP3, p-MLC and secondary GVB disruption. The results suggest that naringenin evidently alleviates TNF-α-induced in vitro GVB disruption via the maintenance of a tight junction protein pattern, partly with the inhibition of the NF-κB-mediated MLCK/p-MLC and NLRP3 pathway activation.
Collapse
Affiliation(s)
- Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| | | | | | | | | | | |
Collapse
|
20
|
Jordan KR, Parra-Izquierdo I, Gruber A, Shatzel JJ, Pham P, Sherman LS, McCarty OJT, Verbout NG. Thrombin generation and activity in multiple sclerosis. Metab Brain Dis 2021; 36:407-420. [PMID: 33411219 PMCID: PMC7864536 DOI: 10.1007/s11011-020-00652-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
The coagulation cascade and immune system are intricately linked, highly regulated and respond cooperatively in response to injury and infection. Increasingly, evidence of hyper-coagulation has been associated with autoimmune disorders, including multiple sclerosis (MS). The pathophysiology of MS includes immune cell activation and recruitment to the central nervous system (CNS) where they degrade myelin sheaths, leaving neuronal axons exposed to damaging inflammatory mediators. Breakdown of the blood-brain barrier (BBB) facilitates the entry of peripheral immune cells. Evidence of thrombin activity has been identified within the CNS of MS patients and studies using animal models of experimental autoimmune encephalomyelitis (EAE), suggest increased thrombin generation and activity may play a role in the pathogenesis of MS as well as inhibit remyelination processes. Thrombin is a serine protease capable of cleaving multiple substrates, including protease activated receptors (PARs), fibrinogen, and protein C. Cleavage of all three of these substrates represent pathways through which thrombin activity may exert immuno-regulatory effects and regulate permeability of the BBB during MS and EAE. In this review, we summarize evidence that thrombin activity directly, through PARs, and indirectly, through fibrin formation and activation of protein C influences neuro-immune responses associated with MS and EAE pathology.
Collapse
Affiliation(s)
- Kelley R Jordan
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA.
| | - Ivan Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - András Gruber
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
- Aronora Inc, Portland, OR, USA
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Peter Pham
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Norah G Verbout
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Aronora Inc, Portland, OR, USA
| |
Collapse
|
21
|
Muradashvili N, Charkviani M, Sulimai N, Tyagi N, Crosby J, Lominadze D. Effects of fibrinogen synthesis inhibition on vascular cognitive impairment during traumatic brain injury in mice. Brain Res 2020; 1751:147208. [PMID: 33248061 DOI: 10.1016/j.brainres.2020.147208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
Traumatic brain injury (TBI) is associated with increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg), which results in enhanced cerebrovascular permeability and leads to short-term memory (STM) reduction. Previously, we showed that extravasated Fg was deposited in the vasculo-astrocyte interface and was co-localized with cellular prion protein (PrPC) during mild-to-moderate TBI in mice. These effects were accompanied by neurodegeneration and STM reduction. However, there was no evidence presented that the described effects were the direct result of the HFg during TBI. We now present data indicating that inhibition of Fg synthesis can ameliorate TBI-induced cerebrovascular permeability and STM reduction. Cortical contusion injury (CCI) was induced in C57BL/6J mice. Then mice were treated with either Fg antisense oligonucleotide (Fg-ASO) or with control-ASO for two weeks. Cerebrovascular permeability to fluorescently labeled bovine serum albumin was assessed in cortical venules following evaluation of STM with memory assessement tests. Separately, brain samples were collected in order to define the expression of PrPC via Western blotting while deposition and co-localization of Fg and PrPC, as well as gene expression of inflammatory marker activating transcription factor 3 (ATF3), were characterized with real-time PCR. Results showed that inhibition of Fg synthesis with Fg-ASO reduced overexpression of AFT3, ameliorated enhanced cerebrovascular permeability, decreased expression of PrPC and Fg deposition, decreased formation of Fg-PrPC complexes in brain, and improved STM. These data provide direct evidence that a CCI-induced inflammation-mediated HFg could be a triggering mechanism involved in vascular cognitive impairment seen previously in our studies during mild-to-moderate TBI.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nurul Sulimai
- Department of Surgery, USF Health-Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Jeff Crosby
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Surgery, USF Health-Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA.
| |
Collapse
|
22
|
Sulimai N, Lominadze D. Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Mol Neurobiol 2020; 57:4692-4703. [PMID: 32776201 DOI: 10.1007/s12035-020-02012-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Many neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis, and traumatic brain injury (TBI) are associated with systemic inflammation. Inflammation itself results in increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg). Fg is not only considered an acute phase protein and a marker of inflammation, but has been shown that it can cause inflammatory responses. Fibrin deposits have been associated with memory reduction in neuroinflammatory diseases such as AD and TBI. Reduction in short-term memory has been seen during the most common form of TBI, mild-to-moderate TBI. Fibrin deposits have been found in brains of patients with mild-to-moderate TBI. The vast majority of the literature emphasizes the role of fibrin-activated microglia as the mediator in the neuroinflammation pathway. However, the recent discovery that astrocytes, which constitute approximately 30% of the cells in the mammalian central nervous system, manifest different reactive states warrants further investigations in the causative role of HFg in astrocyte-mediated neuroinflammation. Our previous study showed that Fg deposited in the vasculo-astrocyte interface-activated astrocytes. However, little is known of how Fg directly affects astrocytes and neurons. In this review, we summarize studies that show the effect of Fg on different types of cells in the vasculo-neuronal unit. We will also discuss the possible mechanism of HFg-induced neuroinflammation during TBI.
Collapse
Affiliation(s)
- Nurul Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
- Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
23
|
Charkviani M, Muradashvili N, Sulimai N, Lominadze D. Fibrinogen-cellular prion protein complex formation on astrocytes. J Neurophysiol 2020; 124:536-543. [PMID: 32697670 DOI: 10.1152/jn.00224.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most common neurological disorders causing memory reduction, particularly short-term memory (STM). We showed that, during TBI-induced inflammation, increased blood content of fibrinogen (Fg) enhanced vascular protein transcytosis and deposition of extravasated Fg in vasculo-astrocyte interfaces. In addition, we found that deposition of cellular prion protein (PrPC) was also increased in the vasculo-astrocyte endfeet interface. However, association of Fg and PrPC was not confirmed. Presently, we aimed to define whether Fg can associate with PrPC on astrocytes and cause their activation. Cultured mouse brain astrocytes were treated with medium alone (control), Fg (2 mg/mL or 4 mg/mL), 4 mg/mL of Fg in the presence of a function-blocking anti-PrPC peptide or anti-mouse IgG, function-blocking anti-PrPC peptide, or anti-mouse IgG alone. After treatment, either cell lysates were collected and analyzed via Western blot or coimmunoprecipitation was performed, or astrocytes were fixed and their activation was assessed with immunohistochemistry. Results showed that Fg dose-dependently activated astrocytes, increased expressions of PrPC and tyrosine (tropomyosin) receptor kinase B (TrkB), and PrP gene. Blocking the function of PrPC reduced these effects. Coimmunoprecipitation demonstrated Fg and PrPC association. Since it is known that prion protein has a greater effect on memory reduction than amyloid beta, and that activation of TrkB is involved in neurodegeneration, our findings confirming the possible formation of Fg-PrPC and Fg-induced overexpression of TrkB on astrocytes suggest a possible triggering mechanism for STM reduction that was seen previously during mild-to-moderate TBI.NEW & NOTEWORTHY For the first time we showed that fibrinogen (Fg) can associate with cellular prion protein (PrPC) on the surface of cultured mouse brain astrocytes. At high levels, Fg causes upregulation of astrocyte PrPC and astrocyte activation accompanied with overexpression of tyrosine receptor kinase B (TrkB), which results in nitric oxide (NO) production and generation of reactive oxygen species (ROS). Fg/PrPC interaction can be a triggering mechanism for TrkB-NO-ROS axis activation and the resultant astrocyte-mediated neurodegeneration.
Collapse
Affiliation(s)
- Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, Kentucky
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, Kentucky.,Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - Nurul Sulimai
- Department of Surgery, USF Health-Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, Kentucky.,Department of Surgery, USF Health-Morsani College of Medicine, University of South Florida, Tampa, Florida.,Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, Kentucky
| |
Collapse
|
24
|
Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci 2020; 21:ijms21145168. [PMID: 32708334 PMCID: PMC7403995 DOI: 10.3390/ijms21145168] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), also known as coronavirus disease 2019 (COVID-19)-induced infection, is strongly associated with various coagulopathies that may result in either bleeding and thrombocytopenia or hypercoagulation and thrombosis. Thrombotic and bleeding or thrombotic pathologies are significant accompaniments to acute respiratory syndrome and lung complications in COVID-19. Thrombotic events and bleeding often occur in subjects with weak constitutions, multiple risk factors and comorbidities. Of particular interest are the various circulating inflammatory coagulation biomarkers involved directly in clotting, with specific focus on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor (VWF). Central to the activity of these biomarkers are their receptors and signalling pathways on endothelial cells, platelets and erythrocytes. In this review, we discuss vascular implications of COVID-19 and relate this to circulating biomarker, endothelial, erythrocyte and platelet dysfunction. During the progression of the disease, these markers may either be within healthy levels, upregulated or eventually depleted. Most significant is that patients need to be treated early in the disease progression, when high levels of VWF, P-selectin and fibrinogen are present, with normal or slightly increased levels of D-dimer (however, D-dimer levels will rapidly increase as the disease progresses). Progression to VWF and fibrinogen depletion with high D-dimer levels and even higher P-selectin levels, followed by the cytokine storm, will be indicative of a poor prognosis. We conclude by looking at point-of-care devices and methodologies in COVID-19 management and suggest that a personalized medicine approach should be considered in the treatment of patients.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Siphosethu C. Maphumulo
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - L. Mireille Grobbelaar
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Jhade C. Bredenkamp
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Gert J. Laubscher
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Petrus J. Lourens
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Janami Steenkamp
- PathCare Laboratories, PathCare Business Centre, Neels Bothma Street, N1 City, Cape Town 7460, South Africa;
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Kemitorve Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (D.B.K.); (E.P.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Correspondence: (D.B.K.); (E.P.)
| |
Collapse
|
25
|
Charkviani M, Muradashvili N, Lominadze D. Vascular and non-vascular contributors to memory reduction during traumatic brain injury. Eur J Neurosci 2019; 50:2860-2876. [PMID: 30793398 PMCID: PMC6703968 DOI: 10.1111/ejn.14390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is an increasing health problem. It is a complex, progressive disease that consists of many factors affecting memory. Studies have shown that increased blood-brain barrier (BBB) permeability initiates pathological changes in neuro-vascular network but the role of cerebrovascular dysfunction and its mediated mechanisms associated with memory reduction during TBI are still not well understood. Changes in BBB, inflammation, extravasation of blood plasma components, activation of neuroglia lead to neurodegeneration. Extravasated proteins such as amyloid-beta, fibrinogen, and cellular prion protein may form degradation resistant complexes that can lead to neuronal dysfunction and degeneration. They also have the ability to activate astrocytes, and thus, can be involved in memory impairment. Understanding the triggering mechanisms and the places they originate in vasculature or in extravascular tissue may help to identify potential therapeutic targets to ameliorate memory reduction during TBI. The goal of this review is to discuss conceptual mechanisms that lead to short-term memory reduction during non-severe TBI considering distinction between vascular and non-vascular effects on neurons. Some aspects of these mechanisms need to be confirmed further. Therefore, we hope that the discussion presented bellow may lead to experiments that may clarify the triggering mechanisms of memory reduction after head trauma.
Collapse
Affiliation(s)
- Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
- Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
26
|
Brown AC, Lavik E, Stabenfeldt SE. Biomimetic Strategies To Treat Traumatic Brain Injury by Leveraging Fibrinogen. Bioconjug Chem 2019; 30:1951-1956. [PMID: 31246419 DOI: 10.1021/acs.bioconjchem.9b00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There were over 27 million new cases of traumatic brain injuries (TBIs) in 2016 across the globe. TBIs are often part of complicated trauma scenarios and may not be diagnosed initially because the primary clinical focus is on stabilizing the patient. Interventions used to stabilize trauma patients may inadvertently impact the outcomes of TBIs. Recently, there has been a strong interest in the trauma community toward administrating fibrinogen-containing solutions intravenously to help stabilize trauma patients. While this interventional shift may benefit general trauma scenarios, fibrinogen is associated with potentially deleterious effects for TBIs. Here, we deconstruct what components of fibrinogen may be beneficial as well as potentially harmful following TBI and extrapolate this to biomimetic approaches to treat bleeding and trauma that may also lead to better outcomes following TBI.
Collapse
Affiliation(s)
- Ashley C Brown
- Joint Department of Biomedical Engineering , North Carolina State University and The University of North Carolina at Chapel Hill , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Erin Lavik
- Chemical, Biochemical, and Environmental Engineering , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
27
|
Li T, Wang F, Peng R, Pei S, Hou Z, Lu B, Cong X, Chen X. Sex-related differences in the association between plasma fibrinogen and non-calcified or mixed coronary atherosclerotic plaques. Biol Sex Differ 2018; 9:51. [PMID: 30518417 PMCID: PMC6282270 DOI: 10.1186/s13293-018-0210-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022] Open
Abstract
Background Plasma fibrinogen (FIB) has been demonstrated to be a risk factor for cardiovascular disease. Patients with non-calcified plaque (NCP) or mix plaque (MP) have a higher risk of poor outcomes. However, the association between FIB and the presence of NCP or MP (NCP/MP) remains unclear, and if present, whether sex has any impact on this association remains unknown. The aim of this study was to investigate the role of FIB in predicting the presence of NCP/MP and evaluate whether sex has any impact on this association. Methods A total of 329 subjects were recruited, and the clinical and laboratory data were collected. Plasma FIB was detected by enzyme-linked immunosorbent assay. According to whether they had coronary atherosclerotic plaques and the characteristics of the most stenotic plaque, we divided them into three groups: no plaque (NP), calcified plaque (CP), and NCP/MP. Results Patients with NCP/MP had significantly higher FIB level in females, but not in males. Multiple logistic regression analysis showed that FIB was an independent risk factor for the presence of NCP/MP (odds ratio [OR] = 3.677, 95% CI 1.539–8.785, P = 0.003) in females. Receiver operating characteristic (ROC) curve analysis showed that the optimal cut-off value FIB for predicting the presence of NCP/MP was 3.41 g/L (area under curve [AUC] = 0.73, 95% CI 0.63–0.82, P < 0.001) in females. Conclusions FIB is independently associated with the presence of NCP/MP in females, but not in males. These results suggest that the potential significance of FIB-lowering regimens in females with NCP/MP.
Collapse
Affiliation(s)
- Tiewei Li
- Department of Clinical Laboratory Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Street, Xi-Cheng District, Beijing, 100037, China
| | - Fang Wang
- Department of Clinical Laboratory Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Street, Xi-Cheng District, Beijing, 100037, China.
| | - Rui Peng
- Department of Clinical Laboratory Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Street, Xi-Cheng District, Beijing, 100037, China
| | - Shengqiang Pei
- Department of Clinical Laboratory Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Street, Xi-Cheng District, Beijing, 100037, China
| | - Zhihui Hou
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiangfeng Cong
- Department of Clinical Laboratory Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Street, Xi-Cheng District, Beijing, 100037, China
| | - Xi Chen
- Department of Clinical Laboratory Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Street, Xi-Cheng District, Beijing, 100037, China.
| |
Collapse
|
28
|
Demers M, Suidan GL, Andrews N, Martinod K, Cabral JE, Wagner DD. Solid peripheral tumor leads to systemic inflammation, astrocyte activation and signs of behavioral despair in mice. PLoS One 2018; 13:e0207241. [PMID: 30439993 PMCID: PMC6237350 DOI: 10.1371/journal.pone.0207241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Prevalence of depression is higher in patients with cancer than in the general population. Sustained systemic inflammation has been associated with depressive behavior and it has been reported that depressed patients commonly display alterations in their immune system. We previously showed that cancer in mice induces a systemic environment that promotes neutrophil activation and leukocytosis. We thus hypothesized that the peripheral systemic response to a solid tumor leads to endothelial activation, which may promote inflammatory changes in the brain with behavioral consequences. Using the Lewis lung carcinoma (LLC) model, we show that tumor growth induces a progressive increase in peripheral inflammation as observed by elevated interleukin-6 (IL-6). In behavioral studies, tumor-bearing mice showed no sign of motor, coordination or short term working memory deficits as assessed by rotarod, balance-beam, and novel object recognition tests. However, there was an impairment in the grip strength test and interestingly, an anxious and despair-like phenotype in the elevated plus-maze, and tail suspension tests, respectively. Immunostaining of perfused brains revealed fibrin accumulation in the vasculature with some leakage into the parenchyma, a process known to activate endothelial cells. Taken together, our results suggest that the inflamed and prothrombotic systemic environment created by the growth of a peripherally-located solid tumor induces endothelial activation, accumulation of fibrin in the brain and astrocyte activation, perhaps leading to depressive-like behavior.
Collapse
Affiliation(s)
- Melanie Demers
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Georgette L. Suidan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GLS); (DDW)
| | - Nick Andrews
- Kirby Neurobiology Center, Boston, Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Graduate Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica E. Cabral
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GLS); (DDW)
| |
Collapse
|
29
|
Wang H, Zheng C, Xu X, Zhao Y, Lu Y, Liu Z. Fibrinogen links podocyte injury with Toll-like receptor 4 and is associated with disease activity in FSGS patients. Nephrology (Carlton) 2018; 23:418-429. [PMID: 28407405 DOI: 10.1111/nep.13046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022]
Abstract
AIM Fibrinogen (Fg) is reported to participate in inflammation through Toll-like receptor 4 (TLR4). However, it remains unknown whether Fg might induce podocyte damage through TLR4 and be related to disease activity in patients with focal segmental glomerulosclerosis (FSGS). METHODS We observed Fg-induced alterations in actin and apoptosis in cultured human podocytes transfected with or without TLR4 siRNA. Expression of TLR4, phospho-p38 MAPK and phospho-NF-κB p65 was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or western blotting, and we analysed urinary Fg levels in adriamycin-treated mice and double immunofluorescence staining for TLR4, Fg and podocin. Urinary Fg changes were also analyzed in FSGS patients under prednisone treatment. RESULTS First, Fg dose-dependently induced actin damage and apoptosis in cultured human podocytes, with an Fg-induced increase in TLR4 expression, and TLR4 siRNA transfection prevented these effects. TLR4 knockdown inhibited activation of p38 MAPK and NF-κB p65 in podocytes. Elevated urinary Fg levels were positively correlated with albuminuria in adriamycin-treated mice, in which Fg and TLR4 colocalized and exhibited increased expression in podocytes. Additionally, elevated urinary Fg levels were positively correlated with 24-h proteinuria and foot process width in FSGS patients. Urinary Fg levels were significantly decreased in patients with complete remission but not in those without remission. CONCLUSIONS Fg induced podocytes injury via the TLR4-p38 MAPK-NF-κB p65 pathway. In FSGS patients, urinary Fg levels reflect therapeutic response to prednisone and disease activity.
Collapse
Affiliation(s)
- Hongtian Wang
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yue Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
30
|
Clark VD, Layson A, Charkviani M, Muradashvili N, Lominadze D. Hyperfibrinogenemia-mediated astrocyte activation. Brain Res 2018; 1699:158-165. [PMID: 30153459 DOI: 10.1016/j.brainres.2018.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022]
Abstract
Fibrinogen (Fg)-containing plaques are associated with memory loss during various inflammatory neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, stroke, and traumatic brain injury. However, mechanisms of its action in neurovascular unit are not clear. As Fg is a high molecular weight blood protein and cannot translocate far from the vessel after extravasation, we hypothesized that it may interact with astrocytes first causing their activation. Cultured mouse cortical astrocytes were treated with Fg in the presence or absence of function-blocking anti-mouse intercellular adhesion molecule 1 (ICAM-1) antibody, or with medium alone (control). Expressions of ICAM-1 and tyrosine receptor kinase B (TrkB) as markers of astrocyte activation, and phosphorylation of TrkB (pTrkB) were assessed. Fg dose-dependently increased activation of astrocytes defined by their shape change, retraction of processes, and enhanced expressions of ICAM-1 and TrkB, and increased pTrkB. Blocking of ICAM-1 function ameliorated these Fg effects. Data suggest that Fg interacts with astrocytes causing overexpression of ICAM-1 and TrkB, and TrkB phosphorylation, and thus, astrocyte activation. Since TrkB is known to be involved in neurodegeneration, interaction of Fg with astrocytes and the resultant activation of TrkB can be a possible mechanism involved in memory reduction, which were observed in previous studies and were associated with formation of complexes of Fg deposited in extravascular space with proteins such as Amyloid beta or prion, the proteins involved in development of dementia.
Collapse
Affiliation(s)
- Vincent D Clark
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Ailey Layson
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA.
| |
Collapse
|
31
|
Wang F, Huang L, Tang H, Li X, Zhu X, Wang X. Significance of glomerular fibrinogen deposition in children with Henoch-Schönlein purpura nephritis. Ital J Pediatr 2018; 44:97. [PMID: 30115075 PMCID: PMC6097424 DOI: 10.1186/s13052-018-0538-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/09/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Henoch-Schönlein purpura nephritis (HSPN) is the most common pediatric secondary glomerular disease. This study aimed to investigate the significance of glomerular fibrinogen (Fib) deposition in children with HSPN. METHODS Eighty-two patients with HSPN were enrolled retrospectively at the Children's Hospital of Soochow University from January 2015 to March 2017. Patients were divided into groups according to the presence or absence and intensity of glomerular Fib deposits, and clinical and pathological features were compared among the groups. RESULTS Glomerular Fib deposition was observed in 64 children (78.05%), including 1 Fib± case (1.22%), 23 Fib+ cases (28.05%), 37 Fib++ cases (45.12%), and 3 Fib+++ cases (3.66%). Significantly different levels of high-sensitivity C-reactive protein (hs-CRP), D-dimer (DD), proportions of CD19 + CD23+ cells and urine microalbumin:creatinine ratios (UMA/Cr) were noted among the different Fib deposition groups (no, mild and severe). Pairwise comparison in multiple groups revealed significantly increased hs-CRP, proportion of CD19 + CD23+ cells and UMA/Cr in the severe deposition group compared with the mild and no deposition groups, and remarkably increased DD levels were noted in the severe and mild deposition groups compared with the no deposition group. The degree of glomerular Fib deposition was positively correlated with the degree of glomerular IgA deposition, and the incidence of glomerular IgG deposition in the severe deposition group was increased compared with the no deposition group. CONCLUSION HSPN children with glomerular Fib deposition, especially those with severe Fib deposition, exhibit more severely disordered immunologic function, inflammatory reactions and hypercoagulability; glomerular damage in these patients may also be more severe.
Collapse
Affiliation(s)
- Fengying Wang
- Department of Pediatrics, Taixing Hospital Affiliated to Yangzhou University, Taixing, Jiangsu, China.,Department of Nephrology and Immunology, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, China
| | - Lusheng Huang
- Department of Pediatrics, Taixing Hospital Affiliated to Yangzhou University, Taixing, Jiangsu, China
| | - Hangyun Tang
- Department of Nephrology and Immunology, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, China.
| | - Xueming Zhu
- Department of Pathology, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, China
| | - Xingdong Wang
- Department of Pathology, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Zhang J, Wang Y, Zhang R, Li H, Han Q, Wu Y, Wang S, Guo R, Wang T, Li L, Liu F. Serum fibrinogen predicts diabetic ESRD in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2018; 141:1-9. [PMID: 29684616 DOI: 10.1016/j.diabres.2018.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 02/05/2023]
Abstract
AIMS Although increased serum fibrinogen level was often observed in patients with diabetic nephropathy (DN), its association with DN severity and progression remains unclear. The aim of this study was to investigate the relationship between the serum fibrinogen levels and clinicopathological features and renal prognosis in Chinese patients with type 2 diabetes mellitus (T2DM) and DN. METHODS A total of 174 patients with T2DM and biopsy-proven DN were enrolled. Patients were stratified by the quartiles of serum fibrinogen levels; Q1: <3.30 g/L; Q2: between 3.30 and 4.00 g/L; Q3: between 4.00 and 4.74 g/L; Q4:≥4.74 g/L. The renal outcomes were defined by reaching end stage renal disease (ESRD). The influence of serum fibrinogen levels on renal outcomes was evaluated using Cox regression analysis. RESULTS The factors associated with higher level of fibrinogen (Q3 and Q4) were diabetic retinopathy, low e-GFR, high proteinuria and severe glomerular and tubulointerstitial lesions. Importantly, in adjusted analysis, higher levels of fibrinogen were independently related with a greater risk of reaching ESRD with a hazard ratio (HR) of 1.64 per standard deviation (SD) of the natural log-transformed fibrinogen concentration (95%CI, 1.22-2.20; p = 0.001). In reference to the Q1, the risk of renal failure increased by quartiles of the serum fibrinogen level: the HRs were 7.12 for the Q2 (95%CI, 2.29-22.16; p = 0.001), 5.77 for Q3 (95%CI, 1.99-16.75; p = 0.001), and 8.81 for Q4 (95%CI, 2.79-27.80; p < 0.001). CONCLUSIONS These findings suggested that the elevated serum levels of fibrinogen were associated with diabetic ESRD in patients with T2DM.
Collapse
Affiliation(s)
- Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hanyu Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qianqian Han
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shanshan Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ruikun Guo
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tingli Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Abdala-Valencia H, Kountz TS, Marchese ME, Cook-Mills JM. VCAM-1 induces signals that stimulate ZO-1 serine phosphorylation and reduces ZO-1 localization at lung endothelial cell junctions. J Leukoc Biol 2018; 104:215-228. [PMID: 29889984 DOI: 10.1002/jlb.2ma1117-427rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
Endothelial cell VCAM-1 regulates recruitment of lymphocytes, eosinophils, mast cells, or dendritic cells during allergic inflammation. In this report, we demonstrated that, during allergic lung responses, there was reduced zonula occludens (ZO)-1 localization in lung endothelial cell junctions, whereas there was increased lung endothelial cell expression of VCAM-1, N-cadherin, and angiomotin. In vitro, leukocyte binding to VCAM-1 reduced ZO-1 in endothelial cell junctions. Using primary human endothelial cells and mouse endothelial cell lines, Ab crosslinking of VCAM-1 increased serine phosphorylation of ZO-1 and induced dissociation of ZO-1 from endothelial cell junctions, demonstrating that VCAM-1 regulates ZO-1. Moreover, VCAM-1 induction of ZO-1 phosphorylation and loss of ZO-1 localization at cell junctions was blocked by inhibition of VCAM-1 intracellular signals that regulate leukocyte transendothelial migration, including NOX2, PKCα, and PTP1B. Furthermore, exogenous addition of the VCAM-1 signaling intermediate H2 O2 (1 μM) stimulated PKCα-dependent and PTP1B-dependent serine phosphorylation of ZO-1 and loss of ZO-1 from junctions. Overexpression of ZO-1 blocked leukocyte transendothelial migration. In summary, leukocyte binding to VCAM-1 induces signals that stimulated ZO-1 serine phosphorylation and reduced ZO-1 localization at endothelial cell junctions during leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Timothy S Kountz
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michelle E Marchese
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
34
|
Jenkins DR, Craner MJ, Esiri MM, DeLuca GC. Contribution of Fibrinogen to Inflammation and Neuronal Density in Human Traumatic Brain Injury. J Neurotrauma 2018; 35:2259-2271. [PMID: 29609523 DOI: 10.1089/neu.2017.5291] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, particularly among the young. Despite this, no disease-specific treatments exist. Recently, blood-brain barrier disruption and parenchymal fibrinogen deposition have been reported in acute traumatic brain injury and in long-term survival; however, their contribution to the neuropathology of TBI remains unknown. The presence of fibrinogen-a well-documented activator of microglia/macrophages-may be associated with neuroinflammation, and neuronal/axonal injury. To test this hypothesis, cases of human TBI with survival times ranging from 12 h to 13 years (survival <2 months, n = 15; survival >1 year, n = 6) were compared with uninjured controls (n = 15). Tissue was selected from the frontal lobe, temporal lobe, corpus callosum, cingulate gyrus, and brainstem, and the extent of plasma protein (fibrinogen and immunoglobulin G [IgG]) deposition, microglial/macrophage activation (CD68 and ionized calcium-binding adapter molecule 1 [Iba-1] immunoreactivity), neuronal density, and axonal transport impairment (β-amyloid precursor protein [βAPP] immunoreactivity) were assessed. Quantitative analysis revealed a significant increase in parenchymal fibrinogen and IgG deposition following acute TBI compared with long-term survival and control. Fibrinogen, but not IgG, was associated with microglial/macrophage activation and a significant reduction in neuronal density. Perivascular fibrinogen deposition also was associated with microglial/macrophage clustering and accrual of βAPP in axonal spheroids, albeit rarely. These findings mandate the future exploration of causal relationships between fibrinogen deposition, microglia/macrophage activation, and potential neuronal loss in acute TBI.
Collapse
Affiliation(s)
- Damian R Jenkins
- Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom
| | - Matthew J Craner
- Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom
| |
Collapse
|
35
|
Bábíčková J, Klinkhammer BM, Buhl EM, Djudjaj S, Hoss M, Heymann F, Tacke F, Floege J, Becker JU, Boor P. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int 2016; 91:70-85. [PMID: 27678159 DOI: 10.1016/j.kint.2016.07.038] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/15/2016] [Accepted: 07/28/2016] [Indexed: 12/28/2022]
Abstract
Progressive renal diseases are associated with rarefaction of peritubular capillaries, but the ultrastructural and functional alterations of the microvasculature are not well described. To study this, we analyzed different time points during progressive kidney damage and fibrosis in 3 murine models of different disease etiologies. These models were unilateral ureteral obstruction, unilateral ischemia-reperfusion injury, and Col4a3-deficient mice, we analyzed ultrastructural alterations in patient biopsy specimens. Compared with kidneys of healthy mice, we found a significant and progressive reduction of peritubular capillaries in all models analyzed. Ultrastructurally, compared with the kidneys of control mice, focal widening of the subendothelial space and higher numbers of endothelial vacuoles and caveolae were found in fibrotic kidneys. Quantitative analysis showed that peritubular capillary endothelial cells in fibrotic kidneys had significantly and progressively reduced numbers of fenestrations and increased thickness of the cell soma and lamina densa of the capillary basement membrane. Similar ultrastructural changes were also observed in patient's kidney biopsy specimens. Compared with healthy murine kidneys, fibrotic kidneys had significantly increased extravasation of Evans blue dye in all 3 models. The extravasation could be visualized using 2-photon microscopy in real time in living animals and was mainly localized to capillary branching points. Finally, fibrotic kidneys in all models exhibited a significantly greater degree of interstitial deposition of fibrinogen. Thus, peritubular capillaries undergo significant ultrastructural and functional alterations during experimental progressive renal diseases, independent of the underlying injury. Analyses of these alterations could provide read-outs for the evaluation of therapeutic approaches targeting the renal microvasculature.
Collapse
Affiliation(s)
- Janka Bábíčková
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute for Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia
| | | | - Eva M Buhl
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany
| | - Mareike Hoss
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany; Electron Microscopy Facility, RWTH University of Aachen, Aachen, Germany
| | - Felix Heymann
- Division of Gastroenterology, RWTH University of Aachen, Aachen, Germany
| | - Frank Tacke
- Division of Gastroenterology, RWTH University of Aachen, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Aachen, Germany.
| |
Collapse
|
36
|
Muradashvili N, Tyagi R, Tyagi N, Tyagi SC, Lominadze D. Cerebrovascular disorders caused by hyperfibrinogenaemia. J Physiol 2016; 594:5941-5957. [PMID: 27121987 DOI: 10.1113/jp272558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS Hyperfibrinogenaemia (HFg) results in vascular remodelling, and fibrinogen (Fg) and amyloid β (Aβ) complex formation is a hallmark of Alzheimer's disease. However, the interconnection of these effects, their mechanisms and implications in cerebrovascular diseases are not known. Using a mouse model of HFg, we showed that at an elevated blood level, Fg increases cerebrovascular permeability via mainly caveolar protein transcytosis. This enhances deposition of Fg in subendothelial matrix and interstitium making the immobilized Fg a readily accessible substrate for binding Aβ and cellular prion protein (PrPC ), the protein that is thought to have a greater effect on memory than Aβ. We showed that enhanced formation of Fg-Aβ and Fg-PrPC complexes are associated with reduction in short-term memory. The present study delineates a new mechanistic pathway for vasculo-neuronal dysfunctions found in inflammatory cardiovascular and cerebrovascular diseases associated with an elevated blood level of Fg. ABSTRACT Many cardiovascular diseases are associated with inflammation and as such are accompanied by an increased blood level of fibrinogen (Fg). Besides its well-known prothrombotic effects Fg seems to have other destructive roles in developing microvascular dysfunction that include changes in vascular reactivity and permeability. Increased permeability of brain microvessels has the most profound effects as it may lead to cerebrovascular remodelling and result in memory reduction. The goal of the present study was to define mechanisms of cerebrovascular permeability and associated reduction in memory induced by elevated blood content of Fg. Genetically modified, transgenic hyperfibrinogenic (HFg) mice were used to study cerebrovascular transcellular and paracellular permeability in vivo. The extent of caveolar formation and the role of caveolin-1 signalling were evaluated by immunohistochemistry (IHC) and Western blot (WB) analysis in brain samples from experimental animals. Formation of Fg complexes with amyloid β (Aβ) and with cellular prion protein (PrPC ) were also assessed with IHC and WB analysis. Short-term memory of mice was assessed by novel object recognition and Y-maze tests. Caveolar protein transcytosis was found to have a prevailing role in overall increased cerebrovascular permeability in HFg mice. These results were associated with enhanced formation of caveolae. Increased formation of Fg-PrPC and Fg-Aβ complexes were correlated with reduction in short-term memory in HFg mice. Using the model of hyperfibrinogenaemia, the present study shows a novel mechanistic pathway of inflammation-induced and Fg-mediated reduction in short-term memory.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Reeta Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA.
| |
Collapse
|
37
|
Haque S, Whittaker MR, McIntosh MP, Pouton CW, Kaminskas LM. Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1703-24. [PMID: 27033834 DOI: 10.1016/j.nano.2016.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The inhaled delivery of nanomedicines can provide a novel, non-invasive therapeutic strategy for the more localised treatment of lung-resident diseases and potentially also enable the systemic delivery of therapeutics that are otherwise administered via injection alone. However, the clinical translation of inhalable nanomedicine is being hampered by our lack of understanding about their disposition and clearance from the lungs. This review provides a comprehensive overview of the biodegradable nanomaterials that are currently being explored as inhalable drug delivery systems and our current understanding of their disposition within, and clearance from the lungs. The safety of biodegradable nanomaterials in the lungs is discussed and latest updates are provided on the impact of inflammation on the pulmonary pharmacokinetics of inhaled nanomaterials. Overall, the review provides an in-depth and critical assessment of the lung clearance mechanisms for inhaled biodegradable nanomedicines and highlights the opportunities and challenges for their translation into the clinic.
Collapse
Affiliation(s)
- Shadabul Haque
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michelle P McIntosh
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Colin W Pouton
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lisa M Kaminskas
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Bardehle S, Rafalski VA, Akassoglou K. Breaking boundaries-coagulation and fibrinolysis at the neurovascular interface. Front Cell Neurosci 2015; 9:354. [PMID: 26441525 PMCID: PMC4584986 DOI: 10.3389/fncel.2015.00354] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022] Open
Abstract
Blood proteins at the neurovascular unit (NVU) are emerging as important molecular determinants of communication between the brain and the immune system. Over the past two decades, roles for the plasminogen activation (PA)/plasmin system in fibrinolysis have been extended from peripheral dissolution of blood clots to the regulation of central nervous system (CNS) functions in physiology and disease. In this review, we discuss how fibrin and its proteolytic degradation affect neuroinflammatory, degenerative and repair processes. In particular, we focus on novel functions of fibrin—the final product of the coagulation cascade and the main substrate of plasmin—in the activation of immune responses and trafficking of immune cells into the brain. We also comment on the suitability of the coagulation and fibrinolytic systems as potential biomarkers and drug targets in diseases, such as multiple sclerosis (MS), Alzheimer’s disease (AD) and stroke. Studying coagulation and fibrinolysis as major molecular pathways that regulate cellular functions at the NVU has the potential to lead to the development of novel strategies for the detection and treatment of neurologic diseases.
Collapse
Affiliation(s)
- Sophia Bardehle
- Gladstone Institute of Neurological Disease, University of California, San Francisco San Francisco, CA, USA
| | - Victoria A Rafalski
- Gladstone Institute of Neurological Disease, University of California, San Francisco San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, University of California, San Francisco San Francisco, CA, USA ; Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
39
|
Lu P, Liu J, Pang X. Pravastatin inhibits fibrinogen- and FDP-induced inflammatory response via reducing the production of IL-6, TNF-α and iNOS in vascular smooth muscle cells. Mol Med Rep 2015; 12:6145-51. [PMID: 26238934 DOI: 10.3892/mmr.2015.4149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 07/10/2015] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory response of the arterial wall to pro‑atherosclerotic factors. As an inflammatory marker, fibrinogen directly participates in the pathogenesis of atherosclerosis. Our previous study demonstrated that fibrinogen and fibrin degradation products (FDP) produce a pro‑inflammatory effect on vascular smooth muscle cells (VSMCs) through inducing the production of interleukin‑6 (IL‑6), tumor necrosis factor‑α (TNF‑α) and inducible nitric oxide synthase (iNOS). In the present study, the effects of pravastatin on fibrinogen‑ and FDP‑induced expression of IL‑6, TNF‑α and iNOS were observed in VSMCs. The results showed that pravastatin dose‑dependently inhibited fibrinogen‑ and FDP‑stimulated expression of IL‑6, TNF‑α and iNOS in VSMCs at the mRNA and protein level. The maximal inhibition of protein expression of IL‑6, TNF‑α and iNOS was 46.9, 42.7 and 49.2% in fibrinogen‑stimulated VSMCs, and 50.2, 49.8 and 53.6% in FDP‑stimulated VSMCs, respectively. This suggests that pravastatin has the ability to relieve vascular inflammation via inhibiting the generation of IL‑6, TNF‑α and iNOS. The results of the present study may aid in further explaining the beneficial effects of pravastatin on atherosclerosis and related cardiovascular diseases. In addition, they suggest that application of pravastatin may be beneficial for prevention of atherosclerosis formation in hyperfibrinogenemia.
Collapse
Affiliation(s)
- Peipei Lu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Juntian Liu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoming Pang
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
40
|
Sarelius IH, Glading AJ. Control of vascular permeability by adhesion molecules. Tissue Barriers 2015; 3:e985954. [PMID: 25838987 DOI: 10.4161/21688370.2014.985954] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022] Open
Abstract
Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion.
Collapse
Key Words
- ICAM-1
- ICAM-1, intercellular adhesion molecule 1
- IgCAM, immunoglobulin superfamily cell adhesion molecule
- JAM, junctional adhesion molecule
- LPS, lipopolysaccharide
- PECAM-1
- PECAM-1, platelet endothelial cell adhesion molecule 1
- PKC, protein kinase C
- RDG, arginine-aspartic acid- glutamine
- S1P, sphingosine 1 phosphate
- SHP-2, Src homology region 2 domain-containing phosphatase
- TGF-β, transforming growth factor-β
- TNF-α, tumor necrosis factor α
- VCAM-1, vascular cell adhesion molecule 1
- VE-PTP, Receptor-type tyrosine-protein phosphatase β
- VE-cadherin
- VEGF, vascular endothelial growth factor
- adhesion
- eNOS, endothelial nitric oxide synthase
- endothelial barrier function
- fMLP, f-Met-Leu-Phe
- iNOS, inducible nitric oxide synthase
- integrins
- permeability
- transendothelial migration
Collapse
Affiliation(s)
- Ingrid H Sarelius
- University of Rochester; Department of Pharmacology and Physiology ; Rochester, NY USA
| | - Angela J Glading
- University of Rochester; Department of Pharmacology and Physiology ; Rochester, NY USA
| |
Collapse
|
41
|
Muradashvili N, Benton RL, Saatman KE, Tyagi SC, Lominadze D. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice. Metab Brain Dis 2015; 30:411-26. [PMID: 24771110 PMCID: PMC4213324 DOI: 10.1007/s11011-014-9550-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is accompanied with enhanced matrix metalloproteinase-9 (MMP-9) activity and elevated levels of plasma fibrinogen (Fg), which is a known inflammatory agent. Activation of MMP-9 and increase in blood content of Fg (i.e. hyperfibrinogenemia, HFg) both contribute to cerebrovascular disorders leading to blood brain barrier disruption. It is well-known that activation of MMP-9 contributes to vascular permeability. It has been shown that at an elevated level (i.e. HFg) Fg disrupts blood brain barrier. However, mechanisms of their actions during TBI are not known. Mild TBI was induced in wild type (WT, C57BL/6 J) and MMP-9 gene knockout (Mmp9(-/-)) homozygous, mice. Pial venular permeability to fluorescein isothiocyanate-conjugated bovine serum albumin in pericontusional area was observed 14 days after injury. Mice memory was tested with a novel object recognition test. Increased expression of Fg endothelial receptor intercellular adhesion protein-1 and formation of caveolae were associated with enhanced activity of MMP-9 causing an increase in pial venular permeability. As a result, an enhanced deposition of Fg and cellular prion protein (PrP(C)) were found in pericontusional area. These changes were attenuated in Mmp9(-/-) mice and were associated with lesser loss of short-term memory in these mice than in WT mice. Our data suggest that mild TBI-induced increased cerebrovascular permeability enhances deposition of Fg-PrP(C) and loss of memory, which is ameliorated in the absence of MMP-9 activity. Thus, targeting MMP-9 activity and blood level of Fg can be a possible therapeutic remedy to diminish vasculo-neuronal damage after TBI.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - Richard L. Benton
- Department of Anatomical Sciences and Neurobiology and Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, School of Medicine, Louisville, KY
| | - Kathryn E. Saatman
- Department of Physiology and Neurosurgery and Spinal Cord & Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, USA
| | - Suresh C. Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - David Lominadze
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
- Corresponding Author: David Lominadze, Ph. D., University of Louisville, Dept. of Physiology & Biophysics, School of Medicine, Bldg. A, Room 1115, 500 South Preston Street, Louisville, KY 40202, Phone (502) 852-4902, Fax (502) 852-6239,
| |
Collapse
|
42
|
Kamat PK, Kalani A, Metreveli N, Tyagi SC, Tyagi N. A possible molecular mechanism of hearing loss during cerebral ischemia in mice. Can J Physiol Pharmacol 2015; 93:505-16. [PMID: 26034997 DOI: 10.1139/cjpp-2014-0489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic brain stroke is a leading cause of disability and includes hearing loss. Clinical reports have also suggested that there is hearing loss in stroke patients but the mechanism was not determined. Therefore, we hypothesized that hearing loss after cerebral ischemia may be associated with changes to the synapse, gap junction, and sodium channel (NaC) proteins. Ischemia-reperfusion injury was induced in wild-type mice (I/R group). The lesion volume was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining of the brain sections. BBB disruption was confirmed by Evans blue staining and leakage of bovine serum albumin labeled with fluorescein isothiocyanate (BSA-FITC). We found that brain edema, infarct size, and permeability were increased in ischemic mice as compared with the sham-operated group. Caspase-3, caspase-9, and TUNEL-positive cells were increased in I/R mice, indicating neuronal apoptosis. Moreover, there were increased expressions of matrix metalloprotease's (MMP-2, -3, -9, and -13), interleukin (IL)-6, and decreased expressions of tight junction proteins (TJP) in the I/R group, as compared with the sham group, which signifies inflammation and BBB disruption. We also observed decreased levels of post-synaptic density protein-95 (PSD-95), synapse-associated protein 97 (SAP-97), connexin-43, NaC-α, and NaC-β, and increased expression of connexin-45, whereas no substantial change was observed in connexin-26 expression in the I/R group. Interestingly, auditory response was reduced in the I/R mice, indicating hearing loss. These data suggest that hearing loss in ischemic mice was primarily due to alterations in connexin, synapses, and NaC channels.
Collapse
Affiliation(s)
- Pradip Kumar Kamat
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA
| | - Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA
| | - Naira Metreveli
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA
| | - Neetu Tyagi
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
43
|
Patibandla PK, Rogers AJ, Giridharan GA, Pallero MA, Murphy-Ullrich JE, Sethu P. Hyperglycemic Arterial Disturbed Flow Niche as an In Vitro Model of Atherosclerosis. Anal Chem 2014; 86:10948-54. [DOI: 10.1021/ac503294p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Phani K. Patibandla
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron J. Rogers
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Guruprasad A. Giridharan
- Department
of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, Kentucky 40292, United States
| | - Manuel A. Pallero
- Departments
of Pathology and Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Joanne E. Murphy-Ullrich
- Departments
of Pathology and Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Palaniappan Sethu
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
44
|
Muradashvili N, Benton RL, Tyagi R, Tyagi SC, Lominadze D. Elevated level of fibrinogen increases caveolae formation; role of matrix metalloproteinase-9. Cell Biochem Biophys 2014; 69:283-94. [PMID: 24307281 PMCID: PMC4020992 DOI: 10.1007/s12013-013-9797-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The role of the inflammatory agent fibrinogen (Fg) in increased pial venular permeability has been shown previously. It was suggested that an activation of matrix metalloproteinase-9 (MMP-9) is involved in Fg-induced enhanced transcytosis through endothelial cells (ECs). However, direct link between Fg, caveolae formation, and MMP-9 activity has never been shown. We hypothesized that at an elevated level, Fg enhances formation of functional caveolae through activation of MMP-9. Male wild-type (WT, C57BL/6J) or MMP-9 gene knockout (MMP9-/-) mice were infused with Fg (4 mg/ml, final blood concentration) or equal volume of phosphate buffered saline (PBS). After 2 h, mice were sacrificed and brains were collected for immunohistochemical analyses. Mouse brain ECs were treated with 4 mg/ml of Fg or PBS in the presence or absence of MMP-9 activity inhibitor, tissue inhibitor of metalloproteinases-4 (TIMP-4, 12 ng/ml). Formation of functional caveolae was assessed by confocal microscopy. Fg-induced increased formation of caveolae, which was defined by an increased co-localization of caveolin-1 (Cav-1) and plasmalemmal vesicle-associated protein-1 and was associated with an increased phosphorylation of Cav-1, was ameliorated in the presence of TIMP-4. These results suggest that at high levels, Fg enhances formation of functional caveolae that may involve Cav-1 signaling and MMP-9 activation.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - Richard L. Benton
- Department of Anatomical Sciences and Neurobiology and Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY
| | - Reeta Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - Suresh C. Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - David Lominadze
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| |
Collapse
|
45
|
Muradashvili N, Khundmiri SJ, Tyagi R, Gartung A, Dean WL, Lee MJ, Lominadze D. Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. Am J Physiol Cell Physiol 2014; 307:C169-79. [PMID: 24829496 DOI: 10.1152/ajpcell.00305.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inflammation-induced vascular endothelial dysfunction can allow plasma proteins to cross the vascular wall, causing edema. Proteins may traverse the vascular wall through two main pathways, the paracellular and transcellular transport pathways. Paracellular transport involves changes in endothelial cell junction proteins, while transcellular transport involves caveolar transcytosis. Since both processes are associated with filamentous actin formation, the two pathways are interconnected. Therefore, it is difficult to differentiate the prevailing role of one or the other pathway during various pathologies causing an increase in vascular permeability. Using a newly developed dual-tracer probing method, we differentiated transcellular from paracellular transport during hyperfibrinogenemia (HFg), an increase in fibrinogen (Fg) content. Roles of cholesterol and sphingolipids in formation of functional caveolae were assessed using a cholesterol chelator, methyl-β-cyclodextrin, and the de novo sphingolipid synthesis inhibitor myriocin. Fg-induced formation of functional caveolae was defined by association and colocalization of Na+-K+-ATPase and plasmalemmal vesicle-associated protein-1 with use of Förster resonance energy transfer and total internal reflection fluorescence microscopy, respectively. HFg increased permeability of the endothelial cell layer mainly through the transcellular pathway. While MβCD blocked Fg-increased transcellular and paracellular transport, myriocin affected only transcellular transport. Less pial venular leakage of albumin was observed in myriocin-treated HFg mice. HFg induced greater formation of functional caveolae, as indicated by colocalization of Na+-K+-ATPase with plasmalemmal vesicle-associated protein-1 by Förster resonance energy transfer and total internal reflection fluorescence microscopy. Our results suggest that elevated blood levels of Fg alter cerebrovascular permeability mainly by affecting caveolae-mediated transcytosis through modulation of de novo sphingolipid synthesis.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Syed Jalal Khundmiri
- Kidney Disease Program, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Reeta Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Allison Gartung
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | - William L Dean
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, Kentucky; and
| | - Menq-Jer Lee
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | - David Lominadze
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
46
|
Hultman K, Cortes-Canteli M, Bounoutas A, Richards AT, Strickland S, Norris EH. Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain. J Thromb Haemost 2014; 12:701-12. [PMID: 24612416 PMCID: PMC4120644 DOI: 10.1111/jth.12553] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Excess fibrin in blood vessels is cleared by plasmin, the key proteolytic enzyme in fibrinolysis. Neurological disorders and head trauma can result in the disruption of the neurovasculature and the entry of fibrin and other blood components into the brain, which may contribute to further neurological dysfunction. OBJECTIVES While chronic fibrin deposition is often implicated in neurological disorders, the pathological contributions attributable specifically to fibrin have been difficult to ascertain. An animal model that spontaneously acquires fibrin deposits could allow researchers to better understand the impact of fibrin in neurological disorders. METHODS Brains of plasminogen (plg)- and tissue plasminogen activator (tPA)-deficient mice were examined and characterized with regard to fibrin accumulation, vascular and neuronal health, and inflammation. Furthermore, the inflammatory response following intrahippocampal lipopolysaccharide (LPS) injection was compared between plg(-/-) and wild type (WT) mice. RESULTS AND CONCLUSIONS Both plg(-/-) and tPA(-/-) mice exhibited brain parenchymal fibrin deposits that appear to result from reduced neurovascular integrity. Markers of neuronal health and inflammation were not significantly affected by proximity to the vascular lesions. A compromised neuroinflammatory response was also observed in plg(-/-) compared to WT mice following intrahippocampal LPS injection. These results demonstrate that fibrin does not affect neuronal health in the absence of inflammation and suggest that plasmin may be necessary for a normal neuroinflammatory response in the mouse CNS.
Collapse
Affiliation(s)
- K Hultman
- The Rockefeller University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Traumatic brain injury (TBI) has been associated with various neurological disorders. However, the role of cerebrovascular dysfunction and its mechanisms associated with TBI are still not well understood. Inflammation is the main cause of vascular dysfunction. It affects properties of blood components and the vascular wall leading to changes in blood flow and in interaction of blood components and vascular endothelium exacerbating microcirculatory complications during inflammatory diseases. One of the markers of inflammation is a plasma adhesion protein, fibrinogen (Fg). At elevated levels, Fg can also cause inflammatory responses. One of the manifestations of inflammatory responses is an increase in microvascular permeability leading to accumulation of plasma proteins in the subendothelial matrix and causing vascular remodelling. This has a most devastating effect on cerebral circulation after TBI that is accompanied with an elevation of plasma level of Fg and with an increased cerebrovascular permeability in injury penumbra impairing the normal healing process. This study reviews cerebrovascular alterations after TBI, considers the consequences of increased blood-brain barrier permeability, defines the role of elevated level of Fg and discusses the potential mechanisms of its action leading to vascular dysfunction, which subsequently can cause impairment in neuronal function. Thus, possible mechanisms of vasculo-neuronal dysfunction after TBI are considered.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine , Louisville, KY , USA
| | | |
Collapse
|
48
|
Cortes-Canteli M, Zamolodchikov D, Ahn HJ, Strickland S, Norris EH. Fibrinogen and altered hemostasis in Alzheimer's disease. J Alzheimers Dis 2013; 32:599-608. [PMID: 22869464 DOI: 10.3233/jad-2012-120820] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaques, tau tangles, brain atrophy, and vascular pathology. Vascular defects include cerebrovascular dysfunction, decreased cerebral blood flow, and blood brain barrier (BBB) disruption, among others. Here, we review the evidence that links Aβ with the vascular pathology present in AD, with a specific focus on the hemostatic system and the clotting protein fibrinogen. Fibrinogen is normally found circulating in blood, but in AD it deposits with Aβ in the brain parenchyma and cerebral blood vessels. We found that Aβ and fibrin(ogen) interact, and their binding leads to increased fibrinogen aggregation, Aβ fibrillization, and the formation of degradation-resistant fibrin clots. Decreasing fibrinogen levels not only lessens cerebral amyloid angiopathy and BBB permeability, but it also reduces microglial activation and improves cognitive performance in AD mouse models. Moreover, a prothrombotic state in AD is evidenced by increased clot formation, decreased fibrinolysis, and elevated levels of coagulation factors and activated platelets. Abnormal deposition and persistence of fibrin(ogen) in AD may result from Aβ-fibrin(ogen) binding and altered hemostasis and could thus contribute to Aβ deposition, decreased cerebral blood flow, exacerbated neuroinflammation, and eventual neurodegeneration. Blocking the interaction between fibrin(ogen) and Aβ may be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Marta Cortes-Canteli
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
49
|
Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience 2013; 252:302-19. [PMID: 23912038 DOI: 10.1016/j.neuroscience.2013.07.051] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
High levels of homocysteine (Hcy), known as hyperhomocysteinemia are associated with neurovascular diseases. H2S, a metabolite of Hcy, has potent anti-oxidant and anti-inflammatory activities; however, the effect of H2S has not been explored in Hcy (IC)-induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy-induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild-type (WT) males ages 8-10 weeks, WT+artificial cerebrospinal fluid (aCSF), WT+Hcy (0.5 μmol/μl) intracerebral injection (IC, one time only prior to NaHS treatment), WT+Hcy+NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected i.p. once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased malondialdehyde, nitrite level, acetylcholinestrase activity, tumor necrosis factor-alpha, interleukin-1 beta, glial fibrillary acidic protein, inducible nitric oxide synthase, endothelial nitric oxide synthase and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF-treated groups. Further, increased expression of neuron-specific enolase, S100B and decreased expression of (post-synaptic density-95, synaptosome-associated protein-97) synaptic protein indicated neurodegeneration. Brain sections of Hcy-treated mice showed damage in the cortical area and periventricular cells. Terminal deoxynucleotidyl transferase-mediated, dUTP nick-end labeling-positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of matrix metalloproteinase (MMP) MMP9, MMP2 and decreased expression of tissue inhibitor of metalloproteinase (TIMP) TIMP-1, TIMP-2, tight junction proteins (zonula occulden 1) in Hcy-treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly attenuated Hcy-induced oxidative stress, memory deficit, neurodegeneration, neuroinflammation and cerebrovascular remodeling. The results indicate that H2S is effective in providing protection against neurodegeneration and neurovascular dysfunction.
Collapse
Affiliation(s)
- P K Kamat
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
50
|
Munjal C, Tyagi N, Lominadze D, Tyagi SC. Matrix metalloproteinase-9 in homocysteine-induced intestinal microvascular endothelial paracellular and transcellular permeability. J Cell Biochem 2012; 113:1159-69. [PMID: 22275073 DOI: 10.1002/jcb.23451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although elevated levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), is associated with inflammatory bowel disease (IBD), the mechanism of Hcy action is unclear. In the present study, we tested the hypothesis that HHcy activates matrix metalloproteinase-9 (MMP-9), which in turn enhances permeability of human intestinal microvascular endothelial cell (HIMEC) layer by decreasing expression of endothelial junction proteins and increasing caveolae formation. HIMECs were grown in Transwells and treated with 500 µM Hcy in the presence or absence of MMP-9 activity inhibitor. Hcy-induced permeability to FITC-conjugated bovine serum albumin (FITC-BSA) was assessed by measuring fluorescence intensity of solutes in the Transwells' lower chambers. The cell-cell interaction and cell barrier function was estimated by measuring trans-endothelial electrical impedance. Confocal microscopy and flow cytometry were used to study cell junction protein expressions. Hcy-induced changes in transcellular transport of HIMECs were estimated by observing formation of functional caveolae defined as caveolae labeled by cholera toxin and antibody against caveolin-1 and one that have taken up FITC-BSA. Hcy instigated HIMEC monolayer permeability through activation of MMP-9. The increased paracellular permeability was associated with degradation of vascular endothelial cadherin and zona occludin-1 and transcellular permeability through increased caveolae formation in HIMECs. Elevation of Hcy content increases permeability of HIMEC layer affecting both paracellular and transcellular transport pathways, and this increased permeability was alleviated by inhibition of MMP-9 activity. These findings contribute to clarification of mechanisms of IBD development.
Collapse
Affiliation(s)
- Charu Munjal
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|