1
|
Cook CE, Keter D, Cade WT, Winkelstein BA, Reed WR. Manual therapy and exercise effects on inflammatory cytokines: a narrative overview. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1305925. [PMID: 38745971 PMCID: PMC11091266 DOI: 10.3389/fresc.2024.1305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Background Matching disease and treatment mechanisms is a goal of the Precision Medicine Initiative. Pro- and anti-inflammatory cytokines (e.g., Tumor Necrosis Factor-alpha, Transforming Growth Factor-beta, and Interleukin-2, 10, and 12) have gained a significant amount of interest in their potential role in persistent pain for musculoskeletal (MSK) conditions. Manual therapy (MT) and exercise are two guideline-recommended approaches for treating MSK conditions. The objective of this narrative overview was to investigate of the effects of MT and exercise on pro- and anti-inflammatory cytokines and determine the factors that lead to variability in results. Methods Two reviewers evaluated the direction and variabilities of MT and exercise literature. A red, yellow, and green light scoring system was used to define consistencies. Results Consistencies in responses were seen with acute and chronic exercise and both pro- and anti-inflammatory cytokines. Chronic exercise is associated with a consistent shift towards a more anti-inflammatory cytokine profile (Transforming Growth Factor-beta, and Interleukin-2 and 13, whereas acute bouts of intense exercise can transiently increase pro-inflammatory cytokine levels. The influence of MT on cytokines was less commonly studied and yielded more variable results. Conclusion Variability in findings is likely related to the subject and their baseline condition or disease, when measurement occurs, and the exercise intensity, duration, and an individual's overall health and fitness.
Collapse
Affiliation(s)
- Chad E. Cook
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
- Department of Population Health Sciences, Duke University, Durham, NC, United States
- Duke Clinical Research Institute, Duke University, Durham, NC, United States
| | - Damian Keter
- Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - William Todd Cade
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
| | - Beth A. Winkelstein
- Departments of Bioengineering & Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Lacerda DR, Nunes-Silva A, Silveira ALM, Costa KA, Rodrigues DF, Moraes MM, Pinho V, Menezes GB, Teixeira MM, Wanner SP, Soares DD, Ferreira AVM. Acute exercise modulates the inflammatory response in adipose tissue in both lean and obese mice. Nutrition 2023; 115:112092. [PMID: 37549454 DOI: 10.1016/j.nut.2023.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES Acute physical exercise acts as a metabolic stressor, promoting activation of the immune system, and this response could be relevant in the adipose tissue remodeling process. In addition, some cytokines have important functions in lipolysis. Because chronic exercise improves obesity-related metabolic and inflammatory dysfunction, herein we investigated the effect of acute exercise on the inflammatory responses in the adipose tissues of lean and obese mice. METHODS Lean mice were fed a standard chow diet, whereas obese mice were fed a high-refined carbohydrate diet for 8 wk. Both groups were subjected to 60 min of moderate-intensity exercise. RESULTS In the epididymal adipose tissue of lean mice, exercise enhanced interleukin (IL)-6 and tumor necrosis factor-α levels, which correlated positively with increased serum free fatty acid concentrations. In vivo confocal imaging of epididymal adipose tissue vessels revealed higher recruitment of neutrophils after exercise. Also, the number of leukocytes expressing CD11b+F480- was elevated 6 h after exercise. Similarly, the chemokine (C-X-C motif) ligand 1 level increased at 6 h and remained high until 24 h after exercise. Myeloperoxidase activity was increased at 6, 12, and 24 h after exercise. Surprisingly, however, no changes were observed in epididymal adipose tissue from obese mice, considering proinflammatory cytokines (IL-6 and tumor necrosis factor-α). On the other hand, IL-13, IL-4, and IL-10 levels were higher in obese mice after exercise. CONCLUSIONS These data suggest that acute exercise promotes an inflammatory response in the adipose tissue of lean mice that is observed as part of its role in adipose tissue remodeling. In contrast, acute exercise promotes an antiinflammatory response in adipose tissue from obese mice, likely as an important tool for restoring homeostasis.
Collapse
Affiliation(s)
- Débora Romualdo Lacerda
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Albená Nunes-Silva
- Department of Physical Education, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | | | - Kátia Anunciação Costa
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora Fernandes Rodrigues
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michele Macedo Moraes
- Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Penna Wanner
- Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danusa Dias Soares
- Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
3
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
4
|
Inflammatory cytokines and metabolic responses to high-intensity intermittent training: effect of the exercise intensity. Biol Sport 2022; 39:263-272. [PMID: 35309531 PMCID: PMC8919870 DOI: 10.5114/biolsport.2022.104914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/22/2020] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
To examine the effects of two high-intensity intermittent training (HIIT) programs of varying intensities (100% vs. 110% of maximal aerobic velocity [MAV]) on metabolic, hormonal and inflammatory markers in young men. Thirty-seven active male volunteers were randomly assigned into: HIIT experimental groups (100% MAV [EG100, n = 9] and 110% MAV [EG110, n = 9]) and a control groups (CG100, n = 9 and CG110, n = 9). Particpants performed high intesity intermittent exercise test (HIIE) at 100% or 110% MAV. Venous blood samples were obtained before, at the end of HIIE and at 15 min of recovery, and before and after 8 weeks of HIIT programs. After training, Glucose was lower (p < 0.01) in EG100 (d = 0.72) and EG110 (d = 1.20) at the end of HIIE, and at 15 min recovery only in EG110 (d = 0.95). After training, Insulin and Cortisol were lower than before training in EG100 and EG110 at the end of HIIE (p < 0.001). After HIIT, IL-6 deceased (p < 0.001) in EG100 (d = 1.43) and EG110 (d = 1.56) at rest, at the end of HIIE (d = 1.03; d = 1.75, respectively) and at 15 min of recovery (d = 0.88;d = 1.7, respectively). This decrease was more robust (p < 0.05) in EG110 compared to EG100. After HIIT, TNF-α deceased (p < 0.001) in EG100 (d = 1.43) and EG110 (d = 0.60) at rest, at the end of HIIE (0.71 < d < 0.98) and at 15 min of recovery (0.70 < d < 2.78). HIIT with 110% MAV is more effective in young males on the improvements of some metabolic (Glucose), hormonal (Cortisol) and inflammatory (IL-6) markers at rest, at the end of HIIE and 15 min of recovery than training at 100 % MAV.
Collapse
|
5
|
Bachmann MC, Bellalta S, Basoalto R, Gómez-Valenzuela F, Jalil Y, Lépez M, Matamoros A, von Bernhardi R. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front Immunol 2020; 11:570083. [PMID: 33162985 PMCID: PMC7591463 DOI: 10.3389/fimmu.2020.570083] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is driven by multiple mechanisms that lead to changes in energy production, oxidative stress, homeostatic dysregulation and eventually to loss of functionality and increased disease susceptibility. Most aged individuals develop chronic low-grade inflammation, which is an important risk factor for morbidity, physical and cognitive impairment, frailty, and death. At any age, chronic inflammatory diseases are major causes of morbimortality, affecting up to 5-8% of the population of industrialized countries. Several environmental factors can play an important role for modifying the inflammatory state. Genetics accounts for only a small fraction of chronic-inflammatory diseases, whereas environmental factors appear to participate, either with a causative or a promotional role in 50% to 75% of patients. Several of those changes depend on epigenetic changes that will further modify the individual response to additional stimuli. The interaction between inflammation and the environment offers important insights on aging and health. These conditions, often depending on the individual's sex, appear to lead to decreased longevity and physical and cognitive decline. In addition to biological factors, the environment is also involved in the generation of psychological and social context leading to stress. Poor psychological environments and other sources of stress also result in increased inflammation. However, the mechanisms underlying the role of environmental and psychosocial factors and nutrition on the regulation of inflammation, and how the response elicited for those factors interact among them, are poorly understood. Whereas certain deleterious environmental factors result in the generation of oxidative stress driven by an increased production of reactive oxygen and nitrogen species, endoplasmic reticulum stress, and inflammation, other factors, including nutrition (polyunsaturated fatty acids) and behavioral factors (exercise) confer protection against inflammation, oxidative and endoplasmic reticulum stress, and thus ameliorate their deleterious effect. Here, we discuss processes and mechanisms of inflammation associated with environmental factors and behavior, their links to sex and gender, and their overall impact on aging.
Collapse
Affiliation(s)
| | - Sofía Bellalta
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Yorschua Jalil
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anibal Matamoros
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Biological Sciences (ICB), Federal University of Pará, Belem, Brazil
| | - Rommy von Bernhardi
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Cabral-Santos C, Silveira LS, Chimin P, Rosa-Neto JC, Lira FS. Moderate aerobic exercise-induced cytokines changes are disturbed in PPARα knockout mice. Cytokine 2020; 134:155207. [PMID: 32693363 DOI: 10.1016/j.cyto.2020.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/22/2020] [Accepted: 07/11/2020] [Indexed: 11/25/2022]
Abstract
The nuclear transcriptional factor peroxisome proliferator activated receptor alpha (PPARα) plays a role in regulating genes involved in lipid metabolism, adipogenesis and inflammation. We aimed to assess the role of PPARα on exercise-mediated locally produced cytokines in adipose fat deposits and skeletal muscle. C57BL/6 (WT) and PPARα knockout (PPARα-/-) mice were examined. Each genotype was randomly subdivided into three groups: non-exercised, and euthanized 2 or 24 h after a moderate aerobic exercise session (run on a treadmill at 60% of maximum speed for 1 h). Fat content in gastrocnemius muscle and lipolytic activity in isolated adipose tissue from mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue were evaluated. In addition, Interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1) content were evaluated by ELISA. WT mice showed a maximum lipolysis rate, as well as higher IL-6, IL-10, and IL10/TNF-α ratio values 2 h post-exercise (RPAT only) compared with PPARα-/- mice. Taken together, our data suggests that PPARα knockout mice exhibited reduced lipolysis and anti-inflammatory response in adipose tissue following exercise, PPARα appears to play an important role in immunomodulatory and lipolysis signaling after acute moderate exercise.
Collapse
Affiliation(s)
- Carolina Cabral-Santos
- Exercise and Immunometabolism Research Group, Department of Physical Education, Post-Graduation Program in Movement Sciences, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Loreana Sanches Silveira
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Patricia Chimin
- Universidade Estadual de Londrina, Centro de Educação Física e Desportos, Departamento de Fundamentos da Educação Física, Londrina, Brazil
| | - José Cesar Rosa-Neto
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil.
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Post-Graduation Program in Movement Sciences, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
7
|
The Effects of Acute and Chronic Aerobic Activity on the Signaling Pathway of the Inflammasome NLRP3 Complex in Young Men. ACTA ACUST UNITED AC 2019; 55:medicina55040105. [PMID: 30991661 PMCID: PMC6524053 DOI: 10.3390/medicina55040105] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Background and Objectives: The results of the studies show that the intensity and volume of aerobic exercise activity produce different responses of the immune system. This study aims to show how the signaling pathway of the inflammatory NLRP3 complex is influenced by the acute and chronic effects of moderate and high-intensity aerobic exercises in young men. Materials and Methods: Accordingly, 60 healthy (BMI = 23.56 ± 2.67) young (24.4 ± 0.4) students volunteered to participate in the study that was randomly divided into two experimental (n = 20) groups and one control (n = 20) group. The training protocol started with two intensity levels of 50% for a moderate group and 70% of maximum heart rate for high group for 30 min and then continued until reaching 70% (moderate group) and 90% (high group) of the maximum heart rate, respectively. Using Real Time-PCR method, the expression of NLRP3 gene and ELISA- were measured by IL-1β, IL-18. Results: The results showed that acute aerobic exercise with moderate intensity had no significant effect on the expression of NLRP3 gene and serum levels of IL-1β and IL-18 cytokines (p > 0.05) when acute exercise, with high intensity, begins an initiation of the activity of the inflammatory complex with elevated serum levels of IL-1β, IL-18, and NLRP3 gene expression (p < 0.05). In addition, chronic exercise with moderate intensity significantly reduced the expression of NLRP3 gene and serum levels of IL-1β, IL-18 cytokines (p < 0.05). In the case of chronic exercise with high intensity, a significant increase in expression of gene, NLRP3 and serum levels of IL-1β, IL-18 cytokines were observed (p < 0.05). Conclusions: Generally, it can be concluded that chronic exercise with moderate intensity is effective in decreasing the expression of the inflammasome and inflammation.
Collapse
|
8
|
Cavalcante PAM, Gregnani MF, Henrique JS, Ornellas FH, Araújo RC. Aerobic but not Resistance Exercise Can Induce Inflammatory Pathways via Toll-Like 2 and 4: a Systematic Review. SPORTS MEDICINE - OPEN 2017; 3:42. [PMID: 29185059 PMCID: PMC5705532 DOI: 10.1186/s40798-017-0111-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Only a few studies have addressed the relationship between toll-like receptors 2 and 4 (TLR2 and TLR4) and the production of local and systemic cytokines in response to physical exercise, and they have produced conflicting results. We aimed to determine whether acute and chronic exercise outcomes are associated with changes in TLR2 and TLR4 expression and signaling and if so, the mechanisms that connect them. METHODS PubMed database were consulted. This systematic review selected 39 articles, 26 involving humans and 13 based on rodents. RESULTS In acute resistance exercise studies, 75% reported a decrease in TLR4 or TLR2 expression and 25% did not find differences. For chronic resistance exercise studies, 67% reported a reduction of expression and 33% did not find differences. Studies of both types reported reductions in pro-inflammatory cytokines. In acute aerobic exercise studies, 40% revealed a decline in the expression of the receptors, 7% reported no significant difference, 40% showed an increase, and 13% did not evaluate their expression. Fifty-eight percent of studies of chronic aerobic exercise revealed a reduction in expression, 17% did not find a difference, and 25% reported increases; they also suggested that the expression of the receptors might be correlated with that of inflammatory cytokines. In studies on combined exercise, 50% reported a decline in receptors expression and 50% did not find a difference. CONCLUSIONS The majority of the articles (54%) link different types of exercise to a decline in TLR4 and TLR2 expression. However, aerobic exercise may induce inflammations through its influence on these receptor pathways. Higher levels of inflammation were seen in acute sessions (40%) than regular sessions (25%).
Collapse
Affiliation(s)
- Paula Andréa Malveira Cavalcante
- Medicine (Nephrology) Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
- , Rua Pedro de Toledo, 669/9and., 04039-032, São Paulo, SP, Brazil.
| | - Marcos Fernandes Gregnani
- Molecular Biology Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jessica Salles Henrique
- Neurology/Neuroscience Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Exercise Neurophysiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fábio Henrique Ornellas
- Medicine (Nephrology) Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ronaldo Carvalho Araújo
- Medicine (Nephrology) Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Molecular Biology Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
9
|
Silveira LS, Pimentel GD, Souza CO, Biondo LA, Teixeira AAS, Lima EA, Batatinha HAP, Rosa Neto JC, Lira FS. Effect of an acute moderate-exercise session on metabolic and inflammatory profile of PPAR-α knockout mice. Cell Biochem Funct 2017; 35:510-517. [DOI: 10.1002/cbf.3308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/23/2017] [Accepted: 09/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Loreana S. Silveira
- Exercise and Immunometabolism Research Group, Department of Physical Education; Universidade Estadual Paulista; Presidente Prudente SP Brazil
| | - Gustavo D. Pimentel
- Clinical and Sports Nutrition Research Laboratory (Labince); Nutrition Faculty (FANUT)-Federal University of Goiás (UFG); Goiânia GO Brazil
| | - Camila O. Souza
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Luana A. Biondo
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Alexandre Abílio S. Teixeira
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Edson A. Lima
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Helena A. P. Batatinha
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - José C. Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Fábio S. Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education; Universidade Estadual Paulista; Presidente Prudente SP Brazil
| |
Collapse
|
10
|
Acute Strenuous Exercise Induces an Imbalance on Histone H4 Acetylation/Histone Deacetylase 2 and Increases the Proinflammatory Profile of PBMC of Obese Individuals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1530230. [PMID: 29142617 PMCID: PMC5671743 DOI: 10.1155/2017/1530230] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 09/10/2017] [Indexed: 02/08/2023]
Abstract
This study evaluated the response of global histone H4 acetylation (H4ac), histone deacetylase 2 (HDAC2) activity, as well as the production of proinflammatory cytokines and monocyte phenotypes of lean and obese males after exercise. Ten lean and ten obese sedentary men were submitted to one session of strenuous exercise, and peripheral blood mononuclear cells (PBMC) were stimulated in vitro with lipopolysaccharide (LPS). Global H4ac levels, HDAC2 activity in PBMC, and IL-6, IL-8, and TNF-α production were analyzed. Monocyte phenotype was determined in accordance with the expression of CD14 and CD16. At rest, obese individuals presented higher frequency of proinflammatory CD14+CD16+ monocytes. LPS induced a significant augment in global H4ac and in the production of IL-6, IL-8, and TNF-α mainly in obese individuals. After exercise, the increased production of IL-8 and TNF-α and peripheral frequency of CD14+CD16+ were observed in both groups. In addition, exercise also induced a significant hyperacetylation of histone H4 and decreased HDAC2 activity in both nonstimulated and LPS-stimulated PBMC of obese individuals. Our data indicate that the obesity impacts on H4ac levels and that strenuous exercise leads to an enhanced chronic low-grade inflammation profile in obesity via an imbalance on H4ac/HDAC2.
Collapse
|
11
|
Inverse association of resistin with physical activity in the general population. PLoS One 2017; 12:e0182493. [PMID: 28771611 PMCID: PMC5542630 DOI: 10.1371/journal.pone.0182493] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
Aim Resistin is a cytokine related with inflammation and ischemic heart disease. Physical activity (PA) prevents chronic inflammation and ischemic heart disease. We studied the relationship of serum concentration of resistin with HDL cholesterol, a known biomarker of PA, and with different measures of PA, in a large sample of the general adult population in the Canary Islands. Methods Cross-sectional study of 6636 adults recruited randomly. We analyzed the correlation of resistin and HDL cholesterol with PA (as metabolic equivalent level [MET]), and fitted the results with linear and logistic regression models using adjustment for age, alcohol consumption and smoking. Results Mean resistin level was higher in women (p<0.001), correlated inversely with age, HDL cholesterol (p<0.001) and alcohol consumption (p<0.001 in men), and correlated directly with smoking (p<0.001). Resistin correlated inversely with the duration of leisure time PA (p<0.001), leisure time MET (p<0.001) and moderate leisure time PA (p<0.001), with some differences between sexes. Men (OR = 0.78 [0.61–0.99; p<0.05]) and women (OR = 0.75 [0.61–0.92; p<0.01]) in the upper quintile of leisure time PA had a lower risk of elevated resistin. In contrast, a high degree of sedentarism was associated with an increased risk elevated resistin in women (OR = 1.24 [1.04–1.47; p<0.05] and in men (OR = 1.40 [1.01–1.82; p<0.05]). Conclusions In our sample of the general population, resistin was inversely associated with measures and levels of PA and HDL cholesterol. The association of resistin with PA was stronger than the association of HDL cholesterol with PA, making resistin a potentially useful biomarker of PA.
Collapse
|
12
|
Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF- κB/MAPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8248142. [PMID: 28676833 PMCID: PMC5476883 DOI: 10.1155/2017/8248142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022]
Abstract
Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.
Collapse
|
13
|
Rodrigues MFC, Ferreira FC, Silva-Magosso NS, Barbosa MR, Souza MVC, Domingos MM, Canevazzi GHR, Stotzer US, Peviani SM, de Lira FS, Selistre de Araújo HS, Perez SEDA. Effects of resistance training and estrogen replacement on adipose tissue inflammation in ovariectomized rats. Appl Physiol Nutr Metab 2017; 42:605-612. [DOI: 10.1139/apnm-2016-0443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Estrogen deficiency is directly related to central obesity and low-grade inflammation. Hormonal replacement and exercise training are both able to decrease fat accumulation and inflammation in postmenopausal women. However, the efficiency of resistance training (RT) and estrogen replacement (ER) in minimizing adiposity and inflammation in the visceral adipose tissue (VAT) of ovariectomized (OVX) rats has not yet been elucidated. In this study, Sprague–Dawley rats were divided into the following 6 groups: sham-operated sedentary (Sham-Sed), OVX-Sed, Sham-RT, OVX-RT, OVX-Sed-ER, and OVX-RT-ER groups. ER was performed by implanting silastic capsules containing 17β-estradiol. For RT, the animals were required to climb a 1.1-m vertical ladder with conical flasks containing weights attached to their tails for 12 weeks. Histological analyses were used to evaluate morphological changes. Gene expression levels were determined by quantitative real-time reverse transcriptase polymerase chain reaction, and protein concentrations were determined using Multiplex/Luminex assays. Ovariectomy increased the body mass (BM), adipocyte area, and inflammation in the VAT, the latter of which was indicated by reduced interleukin-10 (48%) and increased tumor necrosis factor (TNF)-α concentration (∼3%). RT efficiently decreased BM, adipocyte area, and inflammation in the OVX groups. The combination of RT and ER decreased BM (19%) and the TNF-α concentration (18%) and increased the gene and protein expression levels of adiponectin (173% and 18%). These results indicate that RT and the combination of RT and ER are efficient strategies for reducing the BM and improving the inflammatory status of OVX rats.
Collapse
Affiliation(s)
- Maria Fernanda Cury Rodrigues
- Department of Physiological Sciences, Federal University of São Carlos, UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Fabiano Candido Ferreira
- Department of Physiological Sciences, Federal University of São Carlos, UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | | | - Marina Rodrigues Barbosa
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe 49400-000, Brazil
| | - Markus Vinicius Campos Souza
- Department of Physiological Sciences, Federal University of São Carlos, UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Mateus Moraes Domingos
- Department of Physiological Sciences, Federal University of São Carlos, UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | | | - Uliana Sbeguen Stotzer
- Department of Physiological Sciences, Federal University of São Carlos, UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Sabrina Messa Peviani
- Department of Physiological Sciences, Federal University of São Carlos, UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Fábio Santos de Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, University State Estadual Paulista, UNESP, Presidente Prudente, São Paulo 19060-900, Brazil
| | | | | |
Collapse
|
14
|
Thyfault JP, Wright DC. "Weighing" the effects of exercise and intrinsic aerobic capacity: are there beneficial effects independent of changes in weight? Appl Physiol Nutr Metab 2016; 41:911-6. [PMID: 27512815 DOI: 10.1139/apnm-2016-0122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been known for centuries that regularly performed exercise has beneficial effects on metabolic health. Owing to its central role in locomotion and the fact that it accounts for a large majority of whole-body glucose disposal and fatty acid oxidation, the effects of exercise on skeletal muscle has been a central focus in exercise physiology research. With this being said it is becoming increasingly well recognized that both adipose tissue and liver metabolism are robustly modified by exercise, especially in conditions of obesity and insulin resistance. One of the difficult questions to address is if the effects of exercise are direct or occur secondary to exercise-induced weight loss. The purpose of this review is to highlight recent work that has attempted to tease out the protective effects of exercise, or intrinsic aerobic capacity, against metabolic and inflammatory challenges as it relates to the treatment and prevention of obesity and insulin resistance. Recent studies reporting improvements in liver and adipose tissue insulin action following a single bout of exercise will also be discussed. The research highlighted in this review sheds new insight into protective, anti-inflammatory effects of exercise that occur largely independent of changes in adiposity and body weight.
Collapse
Affiliation(s)
- John P Thyfault
- a Molecular and Integrative Physiology, University of Kansas Medical Center, 2067 Hemenway Life Sciences and Innovation Center, MS:3043, 3901 Rainbow Blvd., Kansas, KS 66160, USA.,b Research Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| | - David C Wright
- c Department of Human Health and Nutritional Sciences, Room 343 Animal Sciences Building, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Barcelos RP, Bresciani G, Rodriguez-Miguelez P, Cuevas MJ, Soares FAA, Barbosa NV, González-Gallego J. Diclofenac pretreatment effects on the toll-like receptor 4/nuclear factor kappa B-mediated inflammatory response to eccentric exercise in rat liver. Life Sci 2016; 148:247-53. [DOI: 10.1016/j.lfs.2016.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/04/2015] [Accepted: 02/03/2016] [Indexed: 01/22/2023]
|
16
|
Differences in metabolic and inflammatory responses in lower and upper body high-intensity intermittent exercise. Eur J Appl Physiol 2015; 115:1467-74. [PMID: 25688040 DOI: 10.1007/s00421-015-3127-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to compare the effect of upper and lower body high-intensity intermittent exercise (HIIE) on immunometabolism profile. METHODS Seven male judo athletes completed two experimental sessions separated by at least 48 h. The athletes completed four bouts of the upper and lower body Wingate tests separated by 3-min recovery periods. The blood samples were collected at rest and immediately after the fourth bout of lower and upper body Wingate tests. Serum was analysed for IL-1ra (Interleukin-1 Receptor Antagonist), interleukins (IL-1) IL-2, IL-4, IL-6, IL-10, TNF-α (tumor necrosis factor alpha), cortisol, glucose, and NEFA (non-ester fatty acid). Peak power (maximum power attained during the 30 s test), mean power were calculated. In addition, after 1 and 2.5-min of each Wingate bout, blood samples from the ear lobe were collected for lactate analysis. RESULTS Our data demonstrated that lower body HIIE promoted a greater metabolic rate (values pre- vs. post-Wingate, for lactate: 1.02 ± 0.16 vs. 14.44 ± 1.08 mmol/L; for glucose: 112.5 ± 16.7 vs. 147.9 ± 23.5 mg/dL) and resulted in higher mechanical (mean power: 621 ± 46 vs. 427 ± 40 W, peak power: 794 ± 61 vs. 602 ± 109 W) performance compared to the upper body HIIE (lactate: 0.85 ± 0.18 vs. 12.69 ± 0.74 mmol/L; for glucose: 115.3 ± 20.4 vs. 123.7 ± 28.6 mg/dL; mean power: 480 ± 46 vs. 341 ± 45 W; and peak power: 672 ± 83 vs. 501 ± 120 W), but NEFA showed a similar response to both conditions, with increased IL-10 levels. CONCLUSIONS In conclusion, our results demonstrated that despite the higher performance in lower body HIIE, the inflammatory response did not differ between exercise modalities.
Collapse
|
17
|
Effect of exhaustive ultra-endurance exercise in muscular glycogen and both Alpha1 and Alpha2 Ampk protein expression in trained rats. J Physiol Biochem 2012. [PMID: 23184732 DOI: 10.1007/s13105-012-0224-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycogen is the main store of readily energy in skeletal muscle and plays a key role in muscle function, demonstrated by the inability to sustain prolonged high-intensity exercise upon depletion of these glycogen stores. With prolonged exercise, glycogen depletion occurs and 5'-AMP-activated protein kinase (AMPK), a potent regulator of muscle metabolism and gene expression, is activated promoting molecular signalling that increases glucose uptake by muscular skeletal cells. The aim of this study was primarily to determine the effect of ultra-endurance exercise on muscle glycogen reserves and secondly to verify the influence of this type of exercise on AMPK protein expression. Twenty-four male Wistar rats, 60 days old, were divided into four experimental groups: sedentary, sedentary exhausted (SE), endurance trained (T) and endurance trained exhausted (TE). The animals ran for 10 to 90 min/day, 5 days/week, for 12 weeks to attain trained status. Rats were killed immediately after the exhaustion protocol, which consisted of running on a treadmill (at approximately 60% Vmax until exhaustion). Optical density of periodic acid-Schiff was detected and glycogen depletion observed predominantly in type I muscle fibres of the TE group and in both type I and II muscle fibres in the SE group. Plasma glucose decreased only in the TE group. Hepatic glycogen was increased in T group and significantly depleted in TE group. AMPK protein expression was significantly elevated in TE and T groups. In conclusion, acute exhaustive ultra-endurance exercise promoted muscle glycogen depletion. It seems that total AMPK protein and gene expression is more influenced by status training.
Collapse
|
18
|
Fernandez-Gonzalo R, De Paz JA, Rodriguez-Miguelez P, Cuevas MJ, González-Gallego J. Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells. J Appl Physiol (1985) 2012; 112:2011-8. [PMID: 22461445 DOI: 10.1152/japplphysiol.01499.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study aimed to investigate the response of the toll-like receptor 4 (TLR4) signaling pathway to an acute bout of eccentric exercise, and to assess whether eccentric training attenuated the effects induced by acute eccentric exercise. Twenty men (22.4 ± 0.5 yr) were divided into a control group (CG, n = 8) and a training group (TG, n = 12). Both groups performed two acute eccentric bouts on a squat machine in a 9-wk interval. During this time, TG followed a 6-wk eccentric training program (3 session/wk; 3-5 sets of 10 repetitions with loads ranging between the 40 and 50% of maximal isometric voluntary contraction). CD14, TLR4, and TNF-α mRNA levels, and CD14, TLR4, myeloid differentiation factor 88, tumor necrosis factor receptor-associated factor 6, TIR-domain-containing adapter-inducing interferon-β, phospho-IκB kinases, phospho-IκB, phospho-ERK-1/2, and TNF-α protein concentration were measured in peripheral blood mononuclear cells, before, immediately, and 2 h after each eccentric bout. The first acute eccentric bout triggered a proinflammatory response mediated by an upregulation of all of the factors measured within the TLR4 signaling pathway. Following the training period and after the second acute bout, CG showed a similar proinflammatory response than that seen after the first bout. However, the eccentric training intervention decreased significantly the protein concentration of all factors analyzed in TG compared with results obtained after the first bout. These results suggest that the TLR4-signaling pathway plays a critical role in the proinflammatory response seen after acute eccentric exercise. This response was attenuated after an eccentric training program through myeloid differentiation factor 88-dependent and -independent pathways.
Collapse
|
19
|
Lira FS, Rosa JC, Pimentel GD, Seelaender M, Damaso AR, Oyama LM, do Nascimento CO. Both adiponectin and interleukin-10 inhibit LPS-induced activation of the NF-κB pathway in 3T3-L1 adipocytes. Cytokine 2011; 57:98-106. [PMID: 22047972 DOI: 10.1016/j.cyto.2011.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/04/2011] [Accepted: 10/01/2011] [Indexed: 01/04/2023]
Abstract
Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-κB) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-κB DNA binding activity (NF-κBp50 and NF-κBp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24h elevated IL-6 levels; activated the NF-κB pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-κB (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-κB (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-κB signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals.
Collapse
Affiliation(s)
- Fábio Santos Lira
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|