1
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
2
|
Olivo-Martínez Y, Martínez-Ruiz S, Cordero-Alday C, Bosch M, Badia J, Baldoma L. Modulation of Serotonin-Related Genes by Extracellular Vesicles of the Probiotic Escherichia coli Nissle 1917 in the Interleukin-1β-Induced Inflammation Model of Intestinal Epithelial Cells. Int J Mol Sci 2024; 25:5338. [PMID: 38791376 PMCID: PMC11121267 DOI: 10.3390/ijms25105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition involving dysregulated immune responses and imbalances in the gut microbiota in genetically susceptible individuals. Current therapies for IBD often have significant side-effects and limited success, prompting the search for novel therapeutic strategies. Microbiome-based approaches aim to restore the gut microbiota balance towards anti-inflammatory and mucosa-healing profiles. Extracellular vesicles (EVs) from beneficial gut microbes are emerging as potential postbiotics. Serotonin plays a crucial role in intestinal homeostasis, and its dysregulation is associated with IBD severity. Our study investigated the impact of EVs from the probiotic Nissle 1917 (EcN) and commensal E. coli on intestinal serotonin metabolism under inflammatory conditions using an IL-1β-induced inflammation model in Caco-2 cells. We found strain-specific effects. Specifically, EcN EVs reduced free serotonin levels by upregulating SERT expression through the downregulation of miR-24, miR-200a, TLR4, and NOD1. Additionally, EcN EVs mitigated IL-1β-induced changes in tight junction proteins and oxidative stress markers. These findings underscore the potential of postbiotic interventions as a therapeutic approach for IBD and related pathologies, with EcN EVs exhibiting promise in modulating serotonin metabolism and preserving intestinal barrier integrity. This study is the first to demonstrate the regulation of miR-24 and miR-200a by probiotic-derived EVs.
Collapse
Affiliation(s)
- Yenifer Olivo-Martínez
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.); (C.C.-A.)
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena 130015, Colombia
| | - Sergio Martínez-Ruiz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.); (C.C.-A.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero-Alday
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.); (C.C.-A.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Josefa Badia
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.); (C.C.-A.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldoma
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.); (C.C.-A.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| |
Collapse
|
3
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
4
|
Buey B, Forcén A, Grasa L, Layunta E, Mesonero JE, Latorre E. Gut Microbiota-Derived Short-Chain Fatty Acids: Novel Regulators of Intestinal Serotonin Transporter. Life (Basel) 2023; 13:life13051085. [PMID: 37240731 DOI: 10.3390/life13051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Serotonin (5-HT) is a key neurotransmitter synthesized both in the gut and the central nervous system. It exerts its signaling through specific receptors (5-HTR), which regulate numerous behaviors and functions such as mood, cognitive function, platelet aggregation, gastrointestinal motility, and inflammation. Serotonin activity is determined mainly by the extracellular availability of 5-HT, which is controlled by the serotonin transporter (SERT). Recent studies indicate that, by activation of innate immunity receptors, gut microbiota can modulate serotonergic signaling by SERT modulation. As part of its function, gut microbiota metabolize nutrients from diet to produce different by-products, including short-chain fatty acids (SCFAs): propionate, acetate, and butyrate. However, it is not known whether these SCFAs regulate the serotonergic system. The objective of this study was to analyze the effect of SCFAs on the gastrointestinal serotonergic system using the Caco-2/TC7 cell line that expresses SERT and several receptors constitutively. Cells were treated with different SCFAs concentrations, and SERT function and expression were evaluated. In addition, the expression of 5-HT receptors 1A, 2A, 2B, 3A, 4, and 7 was also studied. Our results show that the microbiota-derived SCFAs regulate intestinal serotonergic system, both individually and in combination, modulating the function and expression of SERT and the 5-HT1A, 5-HT2B, and 5-HT7 receptors expression. Our data highlight the role of gut microbiota in the modulation of intestinal homeostasis and suggest microbiome modulation as a potential therapeutic treatment for intestinal pathologies and neuropsychiatric disorders involving serotonin.
Collapse
Affiliation(s)
- Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Ana Forcén
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Elena Layunta
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Jose Emilio Mesonero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| |
Collapse
|
5
|
Ruyak SL, Noor S, DiDomenico J, Sun MS, Fernandez Oropeza AK, Rodriguez DE, Marquez LE, Milligan ED, Bakhireva LN. Effects of prenatal opioid and alcohol exposures on immune and serotonin factors in human placenta. Exp Neurol 2022; 353:114057. [PMID: 35364108 PMCID: PMC10035581 DOI: 10.1016/j.expneurol.2022.114057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Opioids and alcohol impact critical serotonin (5-HT) function in the developing placenta and fetus through the actions of immune proinflammatory factors. Yet, possible convergent effects of opioids and alcohol on human placental toll-like receptor 4 (TLR4) activation and subsequent 5-HT homeostasis remain entirely unknown. The purpose of this study was to examine the effect of prenatal exposure to opioids with or without prenatal alcohol exposure (PAE) on the expression of key placental immune and serotonin signaling factors in human placental tissue obtained from a well-characterized prospective cohort. METHODS Data were collected from a subset of participants enrolled in the prospective pre-birth Ethanol, Neurodevelopment, Infant, and Child Health (ENRICH-1) cohort. Women were recruited and classified into four study groups: 1) PAE (n = 20); 2) those taking medications for opioid use disorder (MOUD; n = 28), 3) concurrent PAE and MOUD (n = 20); and 4) controls (HC; n = 20) based on prospective, repeated self-report, and biomarker analysis. Placenta samples underwent tissue processing to identify mRNA for TLR4, nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), serotonin transporter (SERT), tryptophan hydroxylase (TPH1), indoleamine 2,3-Dioxygenase 1 (IDO) as well as protein concentrations of TLR4, IL-1β, TNF-α, SERT. To consider the association between study group and mRNA/protein expression of our targets, multivariable regression models were developed with inclusion of a priori selected covariates. RESULTS There was a significant negative association between PAE and SERT mRNA (β = -0.01; p < 0.01) and a positive association with TPH1 mRNA expression (β = 0.78; p < 0.05). In addition, there was a negative association between MOUD and TNF-α protein expression (β = -0.12; p < 0.05). CONCLUSIONS This study provides the first evidence that PAE may inhibit SERT expression while simultaneously promoting increased TPH1 protein expression in human placenta. This may result in increased 5-HT in fetal circulation known to affect neurodevelopment. Our data suggest that opioids and alcohol may disturb the bidirectional, dynamic interaction between the placental immune and serotonin system. Given the implication for brain development and health across the life-span further investigation of these critical mechanisms in well-defined cohorts is required.
Collapse
Affiliation(s)
- Sharon L Ruyak
- College of Nursing, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America; College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America.
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico, Health Sciences Center, Albuquerque, NM, United States of America
| | - Jared DiDomenico
- College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Melody S Sun
- Department of Neurosciences, University of New Mexico, Health Sciences Center, Albuquerque, NM, United States of America
| | - Annette K Fernandez Oropeza
- Department of Neurosciences, University of New Mexico, Health Sciences Center, Albuquerque, NM, United States of America
| | - Dominique E Rodriguez
- College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Lidia Enriquez Marquez
- College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico, Health Sciences Center, Albuquerque, NM, United States of America
| | - Ludmila N Bakhireva
- College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| |
Collapse
|
6
|
Li T, Liu H, Dong C, Lyu J. Prognostic Implications of Pyroptosis-Related Gene Signatures in Lung Squamous Cell Carcinoma. Front Pharmacol 2022; 13:806995. [PMID: 35153782 PMCID: PMC8829032 DOI: 10.3389/fphar.2022.806995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Lung squamous cell carcinoma (LUSC) has been a highly malignant tumor with very poor prognosis. It is confirmed that pyroptosis refers to the deaths of cells in a programmed and inflammatory manner. Nevertheless, the correlation between expression of genes related with pyroptosis and their prognosis remains uncertain in LUSC. Methods: Utilization of The Cancer Genome Atlas (TCGA) cohort has been done for evaluating the prognostics of pyroptosis-related genes for survival and constructing a signature with multiple genes. The least absolute shrinkage and selection operator (LASSO) Cox regression was performed for establishing such pyroptosis-related gene signature. Results: Eventually, identification of 28 genes in relation to pyroptosis was made in LUSC and healthy lung tissues. Upon the basis of these differentially-expressed genes (DEGs), the patients of LUSC can be divided into two subtypes. Nine gene signatures were established using LASSO. The surviving rate for low-risk group was apparently greater in contrast with the high-risk group (p < .001). According to our finding, risk score worked as an independent predictive factor of OS among LUSC sufferers in combination with clinical characteristics. In line with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, the enrichment of immunity-related genes and decreasing immunity status among the high-risk group. Conclusion: Genes in relation with pyroptosis played an essential role in tumor immunity, which is capable of predicting the prognosis for LUSCs.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacy, Xi'an Chest Hospital, Xi'an, China
| | - Huanqing Liu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chunsheng Dong
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J 2021; 35:e21888. [PMID: 34473368 PMCID: PMC9292703 DOI: 10.1096/fj.202100702r] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Endogenous tryptophan metabolism pathways lead to the production of serotonin (5‐hydroxytryptamine; 5‐HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%–2%) are sequestered for 5‐HT production. Though often associated with the functioning of the central nervous system, significant production of 5‐HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5‐HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5‐HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5‐HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5‐HT and kynurenine pathways.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Fernández-García V, González-Ramos S, Martín-Sanz P, García-Del Portillo F, Laparra JM, Boscá L. NOD1 in the interplay between microbiota and gastrointestinal immune adaptations. Pharmacol Res 2021; 171:105775. [PMID: 34273489 DOI: 10.1016/j.phrs.2021.105775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1), a pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals, has been linked to inflammatory pathologies. NOD1, which is expressed by immune and non-immune cells, is activated after recognizing microbe-associated molecular patterns (MAMPs). This recognition triggers host defense responses and both immune memory and tolerance can also be achieved during these processes. Since the gut microbiota is currently considered a master regulator of human physiology central in health and disease and the intestine metabolizes a wide range of nutrients, drugs and hormones, it is a fact that dysbiosis can alter tissues and organs homeostasis. These systemic alterations occur in response to gastrointestinal immune adaptations that are not yet fully understood. Even if previous evidence confirms the connection between the microbiota, the immune system and metabolic disorders, much remains to be discovered about the contribution of NOD1 to low-grade inflammatory pathologies such as obesity, diabetes and cardiovascular diseases. This review compiles the most recent findings in this area, while providing a dynamic and practical framework with future approaches for research and clinical applications on targeting NOD1. This knowledge can help to rate the consequences of the disease and to stratify the patients for therapeutic interventions.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - José Moisés Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra, Cantoblanco 8, 28049 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
10
|
Xiang C, Chen P, Zhang Q, Li Y, Pan Y, Xie W, Sun J, Liu Z. Intestinal microbiota modulates adrenomedullary response through Nod1 sensing in chromaffin cells. iScience 2021; 24:102849. [PMID: 34381974 PMCID: PMC8333343 DOI: 10.1016/j.isci.2021.102849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
The intestinal microbiota closely interacts with the neuroendocrine system and exerts profound effects on host physiology. Here, we report that nucleotide-binding oligomerization domain 1 (Nod1) ligand derived from intestinal bacteria modulates catecholamine storage and secretion in mouse adrenal chromaffin cells. The cytosolic peptidoglycan receptor Nod1 is involved in chromogranin A (Chga) retention in dense core granules (DCGs) in chromaffin cells. Mechanistically, upon recognizing its ligand, Nod1 localizes to DCGs, and recruits Rab2a, which is critical for Chga and epinephrine retention in DCGs. Depletion of Nod1 ligand or deficiency of Nod1 leads to a profound defect in epinephrine storage in chromaffin cells and subsequently less secretion upon stimulation. The intestine-adrenal medulla cross talk bridged by Nod1 ligand modulates adrenal medullary responses during the immobilization-induced stress response in mice. Thus, our study uncovers a mechanism by which intestinal microbes modulate epinephrine secretion in response to stress, which may provide further understanding of the gut-brain axis.
Collapse
Affiliation(s)
- Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinghui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchun Xie
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guang Dong Bio-healtech Advanced Co., Ltd., Foshan, 528000, P. R. China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
11
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. Beyond classic concepts in thyroid homeostasis: Immune system and microbiota. Mol Cell Endocrinol 2021; 533:111333. [PMID: 34048865 DOI: 10.1016/j.mce.2021.111333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
It has long been known that thyroid hormones have implications for multiple physiological processes and can lead to serious illness when there is an imbalance in its metabolism. The connections between thyroid hormone metabolism and the immune system have been extensively described, as they can participate in inflammation, autoimmunity, or cancer progression. In addition, changes in the normal intestinal microbiota involve the activation of the immune system while triggering different pathophysiological disorders. Recent studies have linked the microbiota and certain bacterial fragments or metabolites to the regulation of thyroid hormones and the general response in the endocrine system. Even if the biology and function of the thyroid gland has attracted more attention due to its pathophysiological importance, there are essential mechanisms and issues related to it that are related to the interplay between the intestinal microbiota and the immune system and must be further investigated. Here we summarize additional information to uncover these relationships, the knowledge of which would help establish new personalized medical strategies.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - José M Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
12
|
Yu HZ, Fu MH, Ji XP, E-Ni RG. Progress in research of gastrointestinal motility regulation. Shijie Huaren Xiaohua Zazhi 2020; 28:1183-1191. [DOI: 10.11569/wcjd.v28.i23.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal motility is an important part of the physiological function of the digestive tract, and its dysfunction is one of the key factors that cause different gastrointestinal motility disorders. These diseases seriously affect patients' normal life. With the development of scientific research and technology, well-designed research studies have been conducted on the regulatory mechanisms of gastrointestinal motility, which mainly include the regulation of gastrointestinal hormones, intestinal microflora, neurotransmitters, brain-gut peptides, interstitial cells of Cajal, and gastrointestinal electrical activities. In addition, current studies have proved that bitter taste receptors have certain regulatory effects on gastrointestinal motility. This paper primarily discusses the relevant pathways controlling gastrointestinal motility.
Collapse
Affiliation(s)
- Hong-Zhen Yu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Hai Fu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Xiao-Ping Ji
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Rong-Gui E-Ni
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
13
|
Metabolomics Analysis of Laparoscopic Surgery Combined with Wuda Granule to Promote Rapid Recovery of Patients with Colorectal Cancer Using UPLC/Q-TOF-MS/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5068268. [PMID: 32104193 PMCID: PMC7040410 DOI: 10.1155/2020/5068268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/20/2019] [Accepted: 12/21/2019] [Indexed: 12/30/2022]
Abstract
Surgery is the primary curative treatment for patients with nonmetastasized colorectal cancer (CRC). Rate of complications, morbidity, mortality, and overall survival of patients with CRC are factors associated with speed of recovery following surgery. Wuda granule (WD) is a traditional Chinese medicine (TCM) prescription used to promote rapid recovery after surgery. However, the specific mechanism of action of WD has not been characterized. Our study included 60 patients with clear histopathological evidence of colon or rectal cancer who underwent CRC laparoscopic surgery and 30 healthy individuals. Serum biochemistry and clinical evaluation of gastrointestinal function showed that WD could improve the nutritional status and gastrointestinal function and reduce the level of inflammation of patients with CRC following laparoscopic surgery. In addition, we used UPLC/Q-TOF-MS/MS-based metabolomics analysis to determine the mechanism of WD-related rapid recovery following laparoscopic surgery in patients with CRC. Twenty metabolites associated with arachidonic acid, alanine, aspartate and glutamate, α-linolenic acid, pyruvate, histidine, and glycerophospholipids were identified. The results suggested that the therapeutic mechanism of laparoscopic surgery combined with WD may be related to regulation of nutritional status, inflammation, immune function, energy, and gastrointestinal function in patients with CRC. This study also highlighted the ability of TCM compounds to interact with multiple targets to induce synergistic effects. This study may result in further studies of WD as a therapeutic agent to promote recovery following surgical resection of CRC tumors.
Collapse
|
14
|
Stasi C, Sadalla S, Milani S. The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis. Curr Drug Metab 2020; 20:646-655. [PMID: 31345143 DOI: 10.2174/1389200220666190725115503] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/05/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Serotonin (5-HT) has a pleiotropic function in gastrointestinal, neurological/psychiatric and liver diseases. The aim of this review was to elucidate whether the gut-microbiota played a critical role in regulating peripheral serotonin levels. METHODS We searched for relevant studies published in English using the PubMed database from 1993 to the present. RESULTS Several studies suggested that alterations in the gut-microbiota may contribute to a modulation of serotonin signalling. The first indication regarded the changes in the composition of the commensal bacteria and the intestinal transit time caused by antibiotic treatment. The second indication regarded the changes in serotonin levels correlated to specific bacteria. The third indication regarded the fact that decreased serotonin transporter expression was associated with a shift in gut-microbiota from homeostasis to inflammatory type microbiota. Serotonin plays a key role in the regulation of visceral pain, secretion, and initiation of the peristaltic reflex; however, its altered levels are also detected in many different psychiatric disorders. Symptoms of some gastrointestinal functional disorders may be due to deregulation in central nervous system activity, dysregulation at the peripheral level (intestine), or a combination of both (brain-gut axis) by means of neuro-endocrine-immune stimuli. Moreover, several studies have demonstrated the profibrogenic role of 5-HT in the liver, showing that it works synergistically with platelet-derived growth factor in stimulating hepatic stellate cell proliferation. CONCLUSION Although the specific interaction mechanisms are still unclear, some studies have suggested that there is a correlation between the gut-microbiota, some gastrointestinal and liver diseases and the serotonin metabolism.
Collapse
Affiliation(s)
- Cristina Stasi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Sinan Sadalla
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Milani
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
15
|
Tavolieri MV, Young SD, Bitzan M. A nod to gut-brain signalling: Nod-like receptors are critical for gut-brain axis signalling in mice. J Physiol 2020; 598:907-908. [PMID: 31925784 DOI: 10.1113/jp279432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | - Michael Bitzan
- School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Pusceddu MM, Barboza M, Keogh CE, Schneider M, Stokes P, Sladek JA, Kim HJD, Torres-Fuentes C, Goldfild LR, Gillis SE, Brust-Mascher I, Rabasa G, Wong KA, Lebrilla C, Byndloss MX, Maisonneuve C, Bäumler AJ, Philpott DJ, Ferrero RL, Barrett KE, Reardon C, Gareau MG. Nod-like receptors are critical for gut-brain axis signalling in mice. J Physiol 2019; 597:5777-5797. [PMID: 31652348 DOI: 10.1113/jp278640] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS •Nucleotide binding oligomerization domain (Nod)-like receptors regulate cognition, anxiety and hypothalamic-pituitary-adrenal axis activation. •Nod-like receptors regulate central and peripheral serotonergic biology. •Nod-like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour. ABSTRACT Gut-brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut-brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)-like receptors (NLR), Nod1 and Nod2, as novel regulators for gut-brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress-induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic-pituitary-adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell-specific deletion of Nod1 (VilCre+ Nod1f/f ), but not Nod2, increased susceptibility to stress-induced anxiety-like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut-brain communication and may serve as potential novel therapeutic targets for the treatment of gut-brain disorders.
Collapse
Affiliation(s)
- Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Mariana Barboza
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Melinda Schneider
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Patricia Stokes
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Jessica A Sladek
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Hyun Jung D Kim
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cristina Torres-Fuentes
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.,Department of Food Science & Technology, University of California Davis, Davis, CA, USA
| | - Lily R Goldfild
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Shane E Gillis
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Gonzalo Rabasa
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Kyle A Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Carlito Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | | | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Richard L Ferrero
- Hudson Institute of Medical Research, Department of Molecular and Translational Science and Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Kim E Barrett
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
17
|
Wang X, Zhang C, Zheng M, Gao F, Zhang J, Liu F. Metabolomics Analysis of L-Arginine Induced Gastrointestinal Motility Disorder in Rats Using UPLC-MS After Magnolol Treatment. Front Pharmacol 2019; 10:183. [PMID: 30881305 PMCID: PMC6405429 DOI: 10.3389/fphar.2019.00183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Magnolol, as the main active ingredient of Traditional Chinese Medicine, can significantly improve gastrointestinal motility disorders (GMD). In the present study, metabolomics was used to investigate the mechanism of magnolol improving L-arginine induced GMD in rats. Experimental Approach: SD rats were randomly divided into control group, model group and magnolol treated group. L-arginine was injected intraperitoneally in model and magnolol groups to induce GMD model. All intervention regimens were administered by oral gavage, once a day for five consecutive days. Relative gastric emptying rate and propulsive intestinal rate were measured. Metabolites in serum were analyzed based on UPLC-MS metabolomics technique. Results: Magnolol significantly promoted gastric emptying and small intestinal propulsion. Compared with the model group, the level of serotonin and L-tryptophan significantly reversed (P < 0.05) and 22 metabolites reversed in the magnolol group. According to MetPA database analysis, magnolol has mainly affected 10 major metabolic pathways which were related to each other, Tryptophan metabolism is the most critical metabolic pathway associated with gastrointestinal tract. Conclusion: These findings suggest that magnolol has a significantly promoting effect on L-arginine induced gastrointestinal motility disorder in rats, the mechanism is to reduce the production of nitric oxide to weaken the function of nitric oxide relaxing the gastrointestinal smooth muscle and increase the content of serotonin to promote gastrointestinal peristalsis and motility, secretion, absorption of nutrients.
Collapse
Affiliation(s)
- Xiao Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyue Zheng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Affiliation(s)
- Luc Maroteaux
- UMR-S839 INSERM, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| | - Fusun Kilic
- Departments of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|