1
|
Bangar NS, Dixit A, Apte MM, Tupe RS. Syzygium cumini (L.) skeels mitigate diabetic nephropathy by regulating Nrf2 pathway and mitocyhondrial dysfunction: In vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118684. [PMID: 39127117 DOI: 10.1016/j.jep.2024.118684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL PREVALENCE Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. 200C, 30C, and mother tincture [MT] are used to treat diabetes. This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating diabetic nephropathy (DN). MATERIALS AND METHODS Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 μL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 μg/mL) were incubated with renal cells (HEK-293) for 24 h. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed. RESULT In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex. CONCLUSION SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Aditi Dixit
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Mayura M Apte
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
2
|
Albadrani GM, Altyar AE, Kensara OA, Haridy MA, Sayed AA, Mohammedsaleh ZM, Al-Ghadi MQ, Saleem RM, Abdel-Daim MM. Lycopene alleviates 5-fluorouracil-induced nephrotoxicity by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6 signals. Ren Fail 2024; 46:2423843. [PMID: 39540361 PMCID: PMC11565692 DOI: 10.1080/0886022x.2024.2423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
5-Fluorouracil (5-FU) is one of the most used anticancer drugs. However, its nephrotoxicity-associated drawback is of clinical concern. Lycopene (LYC) is a red carotenoid with remarkable anti-inflammatory and anti-oxidative properties. In this study, rats were divided randomly into five groups: control, lycopene (10 mg) (10 mg/kg/day; P.O), 5-FU (30 mg/kg/day; i.p.), Lycopene (5 mg) + 5-FU (5 mg/kg + 30 mg/kg/day), and lycopene (10 mg) + 5-FU (10 mg/kg + 30 mg/kg/day). LYC attenuated the loss of renal function induced by 5-FU in a dose-dependent manner. Rats co-treated with LYC had lower serum urea, creatinine, uric acid and KIM-1 levels, and a higher serum albumin level than those receiving 5-FU alone. Furthermore, co-treatment with the high dose of LYC maintained renal oxidant-antioxidant balance by ameliorating/preventing the loss of antioxidants and the elevation of malondialdehyde. Rats treated with 5-FU had markedly lower renal levels of PPAR-gamma, HO-1, Nfr2, and Il-10 and higher levels of NF-kB, TNF-alpha, and IL6 compared to the control rats. Co-treatment with LYC attenuated the reduction in PPAR-gamma, HO-1, Nfr2, and IL-10 levels and moderated the elevated levels of NF-kB, TNF-alpha, and IL-6. The kidneys from rats co-treated with lycopene (10 mg) + 5-FU did not show the degenerative changes in the glomerular tufts and tubules observed for the rats treated with 5-FU alone. In conclusion, LYC is a promising therapeutic strategy for attenuating 5-FU-induced nephrotoxicity through the restoration of antioxidant activities and inhibition of inflammatory responses by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6, signals.
Collapse
Affiliation(s)
- Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohie A.M Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Yaribeygi H, Maleki M, Forouzanmehr B, Kesharwani P, Jamialahmadi T, Karav S, Sahebkar A. Exploring the antioxidant properties of semaglutide: A comprehensive review. J Diabetes Complications 2024; 38:108906. [PMID: 39549371 DOI: 10.1016/j.jdiacomp.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Patients with diabetes commonly experience an aberrant production of free radicals and weakened antioxidative defenses, making them highly susceptible to oxidative stress development. This, in turn, can induce and promote diabetic complications. Therefore, utilizing antidiabetic agents with antioxidative properties can offer dual benefits by addressing hyperglycemia and reducing oxidative damage. Semaglutide, a recently approved oral form of glucagon-like peptide-1 (GLP-1) analogues, has shown potent antidiabetic effects. Additionally, recent studies have suggested that it possesses antioxidative properties. However, the exact effects and the molecular pathways involved are not well understood. In this review, we present the latest findings on the antioxidative impacts of semaglutide and draw conclusions about the mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Bhutia GT, De AK, Bhowmik M, Bera T. Shellac and locust bean gum coacervated curcumin, epigallocatechin gallate nanoparticle ameliorates diabetic nephropathy in a streptozotocin-induced mouse model. Int J Biol Macromol 2024; 271:132369. [PMID: 38750846 DOI: 10.1016/j.ijbiomac.2024.132369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/27/2024]
Abstract
Curcumin and epigallocatechin gallate have the disadvantage of low aqueous solubility and first-pass metabolism, resulting in limited bioavailability. This work aimed to enhance oral bioavailability by forming gastric pH-stable shellac nanoparticles containing curcumin and epigallocatechin gallate using locust bean gum by anti-solvent precipitation (CESL-NP). The nanoparticles were characterized by their particle size, morphology, zeta potential, gastric pH stability, release profile, drug loading, and entrapment efficiency. The findings showed that a network of hydrolyzed shellac, locust bean gum, curcumin, and epigallocatechin gallate successfully entrapped individual particles inside a complex system. The morphological investigation of the CESL-NP formulation using FESEM, TEM, and AFM revealed the presence of spherical particles. FTIR, DSC, and XRD analysis revealed that curcumin and epigallocatechin gallate were amorphous due to their bond interactions with the matrix. Streptozotocin-treated mice, upon treatment with CESL-NP, showed kidney and pancreatic improvements with normalized kidney hypertrophy index and histopathology, maintained biochemical parameters, increased beta cell count, and a 38.68-fold higher blood glucose level inhibition were observed when compared to free-(CUR + EGCG). This research affirms that the shellac-locust bean gum complex shows potential for the sustained oral delivery of curcumin and epigallocatechin gallate, specifically for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Gyamcho Tshering Bhutia
- Laboratory of Nanomedicine, Division of Pharmaceutical Biotech., Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Asit Kumar De
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Manas Bhowmik
- Pharmaceutics Research laboratory II, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Tanmoy Bera
- Laboratory of Nanomedicine, Division of Pharmaceutical Biotech., Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India.
| |
Collapse
|
5
|
Yaribeygi H, Maleki M, Jamialahmadi T, Sahebkar A. Anti-inflammatory benefits of semaglutide: State of the art. J Clin Transl Endocrinol 2024; 36:100340. [PMID: 38576822 PMCID: PMC10992717 DOI: 10.1016/j.jcte.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Individuals with diabetes often have chronic inflammation and high levels of inflammatory cytokines, leading to insulin resistance and complications. Anti-inflammatory agents are proposed to prevent these issues, including using antidiabetic medications with anti-inflammatory properties like semaglutide, a GLP-1 analogue. Semaglutide not only lowers glucose but also shows potential anti-inflammatory effects. Studies suggest it can modulate inflammatory responses and benefit those with diabetes. However, the exact mechanisms of its anti-inflammatory effects are not fully understood. This review aims to discuss the latest findings on semaglutide's anti-inflammatory effects and the potential pathways involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yaribeygi H, Maleki M, Rashid-Farrokhi F, Abdullahi PR, Hemmati MA, Jamialahmadi T, Sahebkar A. Modulating effects of crocin on lipids and lipoproteins: Mechanisms and potential benefits. Heliyon 2024; 10:e28837. [PMID: 38617922 PMCID: PMC11015417 DOI: 10.1016/j.heliyon.2024.e28837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Dyslipidemia poses a significant risk to cardiovascular health in both diabetic and non-diabetic individuals. Therefore, it is crucial to normalize lipid homeostasis in order to prevent or minimize complications associated with dyslipidemia. However, pharmacological interventions for controlling lipid metabolism often come with adverse effects. As an alternative, utilizing herbal-based agents, which typically have fewer side effects, holds promise. Crocin, a naturally occurring nutraceutical, has been shown to impact various intracellular pathways, reduce oxidative stress, and alleviate inflammatory processes. Recent evidence suggests that crocin may also confer lipid-related benefits and potentially contribute to the normalization of lipid homeostasis. However, the specific advantages and the cellular pathways involved are not yet well understood. In this review, we present the latest findings regarding the lipid benefits of crocin, which could be instrumental in preventing or reducing disorders associated with dyslipidemia. Additionally, we explore the potential cellular mechanisms and pathways that mediate these lipid benefits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farin Rashid-Farrokhi
- CKD Research Centre, Shahid Beheshti University of Medical Science, IranNephrology Department, Masih Daneshvari Hospital, Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Disease, Tehran, Iran
| | | | - Mohammad Amin Hemmati
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Binmahfouz LS, Hassanein EH, Bagher AM, Hareeri RH, Alamri ZZ, Algandaby MM, Abdel-Daim MM, Abdel-Naim AB. Berberine alleviates chlorpyrifos-induced nephrotoxicity in rats via modulation of Nrf2/HO-1 axis. Heliyon 2024; 10:e25233. [PMID: 38327393 PMCID: PMC10847644 DOI: 10.1016/j.heliyon.2024.e25233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Chlorpyrifos (CPS), an organophosphorus insecticide, is widely used for agricultural and non-agricultural purposes with hazardous health effects. Berberine (BBR) is a traditional Chinese medicine and a phytochemical with anti-inflammatory and anti-oxidative properties. The present study evaluated the effects of BBR against kidney damage induced by CPS and the underlying mechanisms. An initial study indicated that BBR 50 mg/kg was optimal under our experimental conditions. Then, 24 rats (6/group) were randomized into: control, BBR (50 mg/kg/day), CPS (10 mg/kg/day), and CPS + BBR. BBR was administration 1 h prior to CPS. Each treatment was delivered daily for a period of 28 consecutive days using a gastric gavage tube. Compared to CPS-alone treated rats, BBR effectively improved renal function by preventing the rise in serum urea, creatinine, and uric levels. The reno-protective effects of BBR were confirmed through a histological examination of kidney tissues. BBR restored oxidant-antioxidant balance in renal tissues mediated by Keap1/Nrf2/HO-1 axis modulation. In addition, BBR decreased nitric oxide (NO) and myeloperoxidase (MPO) activity. This was paralleled with the potent down-regulation of NF-κB. Furthermore, BBR exhibited anti-apoptotic activities supported by the upregulation of Bcl-2 and down-regulation of Bax and caspase-3 expression. In conclusion, our data suggest that BBR attenuates CPS-induced nephrotoxicity in rats by restoring oxidant-antioxidant balance and inhibiting inflammatory response and apoptosis in renal tissue. This is mediated, at least partly, by modulation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Emad H.M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Zaenah Z. Alamri
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 349] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
9
|
Weir MA, Walsh M, Cuerden MS, Sontrop JM, Urquhart BL, Lim YJ, Chambers LC, Garg AX. The effect of micro-particle curcumin on chronic kidney disease progression: the MPAC-CKD randomized clinical trial. Nephrol Dial Transplant 2023; 38:2192-2200. [PMID: 36849161 PMCID: PMC10539205 DOI: 10.1093/ndt/gfad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Curcumin is a commonly used herbal supplement with anti-inflammatory and anti-fibrotic properties. Animal studies and small human trials suggest that curcumin reduces albuminuria in patients with chronic kidney disease (CKD). Micro-particle curcumin is a new, more bioavailable formulation of curcumin. METHODS To determine whether micro-particle curcumin versus placebo slows the progression of albuminuric CKD we conducted a randomized, double-blind, placebo-controlled trial with 6-month follow-up. We included adults with albuminuria [a random urine albumin-to-creatinine ratio >30 mg/mmol (265 mg/g) or a 24-h urine collection with more than 300 mg of protein] and an estimated glomerular filtration rate (eGFR) between 15 and 60 mL/min/1.73 m2 within the 3 months before randomization. We randomly allocated participants 1:1 to receive micro-particle curcumin capsules (90 mg/day) or matching placebo for 6 months. After randomization, the co-primary outcomes were the changes in albuminuria and the eGFR. RESULTS We enrolled 533 participants, but 4/265 participants in the curcumin group and 15/268 in the placebo group withdrew consent or became ineligible. The 6-month change in albuminuria did not differ significantly between the curcumin and placebo groups [geometric mean ratio 0.94, 97.5% confidence interval (CI) 0.82 to 1.08, P = .32]. Similarly, the 6-month change in eGFR did not differ between groups (mean between-group difference -0.22 mL/min/1.73 m2, 97.5% CI -1.38 to 0.95, P = .68). CONCLUSIONS Ninety milligrams of micro-particle curcumin daily did not slow the progression of albuminuric CKD over 6 months. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02369549.
Collapse
Affiliation(s)
- Matthew A Weir
- Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Michael Walsh
- Departments of Medicine and Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Jessica M Sontrop
- London Health Sciences Centre, London, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Bradley L Urquhart
- Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Yong Jin Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Amit X Garg
- Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| |
Collapse
|
10
|
Alqrad MAI, El-Agamy DS, Ibrahim SRM, Sirwi A, Abdallah HM, Abdel-Sattar E, El-Halawany AM, Elsaed WM, Mohamed GA. SIRT1/Nrf2/NF-κB Signaling Mediates Anti-Inflammatory and Anti-Apoptotic Activities of Oleanolic Acid in a Mouse Model of Acute Hepatorenal Damage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1351. [PMID: 37512162 PMCID: PMC10383078 DOI: 10.3390/medicina59071351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Background and objectives: Oleanolic acid (OA) is a penta-cyclic triterpene with diverse bioactivities such as anticarcinogenic, antiviral, antimicrobial, hepatoprotective, anti-atherosclerotic, hypolipidemic, and gastroprotective. However, its effects on hepatorenal damage remain unclear. The protective activity of OA, separated from Viscum schimperi (Loranthaceae), against TAA (thioacetamide)-produced acute hepatic and renal damage was explored. Materials and Methods: Mice were treated with OA for 7 days before TAA (200 mg/kg, i.p.). Serum indices of hepatorenal injury, pathological lesions, molecular biological indexes, and inflammatory/apoptotic genes were estimated. Results: The tissues of both organs were greatly affected by the TAA injection. That was evident through increased serum markers of hepato-renal injury as well as remarkable histopathological lesions. TAA-induced injury was associated with oxidative and inflammatory responses in both organs as there was an elevation of oxidative stress parameters (4-HNE (4-hydroxy-nonenal), MDA (malondialdehyde), NOx (nitric oxide)), decline of antioxidants (reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC)), and an increase in the gene expression/level of inflammatory mediators (interleukins (1β&6)). The inflammatory response was linked to a significant activation of NF-κB (nuclear-factor kappa-B)/TNF-α (tumor-necrosis factor-alpha) signaling. The inflammatory response in both organs was accompanied by apoptotic changes, including a rise in the gene expression and level of apoptotic parameters (caspase-3 and Bax) along with a decline in Bcl-2 (anti-apoptotic parameter) gene expression and level. These pathogenic events were found to be closely related to the suppression of the antioxidant signaling pathway, Nrf2 (nuclear-factor erythroid 2-related factor-2)/SIRT1 (sirtuin-1)/HO-1 (heme-oxygenase 1). On the other hand, OA significantly ameliorated TAA-induced injury in both organs. On the other hand, OA counterpoised the inflammatory response as it ameliorated NF-κB/TNF-α signaling and cytokine release. OA enhanced Nrf2/SIRT1/HO-1 signaling and counteracted apoptotic damage. Conclusions: OA showed anti-inflammation and antiapoptotic capacities that effectively suppressed TAA-induced acute hepatorenal damage.
Collapse
Affiliation(s)
- Manea A. I. Alqrad
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| |
Collapse
|
11
|
Ahmad S, Pandey AR, Rai AK, Singh SP, Kumar P, Singh S, Gulzar F, Ahmad I, Sashidhara KV, Tamrakar AK. Moringa oleifera impedes protein glycation and exerts reno-protective effects in streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116117. [PMID: 36584917 DOI: 10.1016/j.jep.2022.116117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera is a valued plant with wide distribution in tropical and subtropical regions of the world. It is traditionally used for the treatment of fever, infections, rheumatism, cancer, improving cardiac, renal and hepatic functions, and regulating blood glucose level. The plant has been scientifically reported for the anti-inflammatory, antioxidant, renoprotective, and anti-diabetic properties. Diabetic patients are prone to develop end-stage renal diseases due to incidence of diabetes-induced renal dysfunctions. Given that, increased production and accumulation of advanced glycation end-products (AGEs) play a conspicuous role in the development of diabetes-linked renal dysfunctions, nature-based interventions with AGEs inhibitory activity can prevent renal dysfunctions leading to renoprotection. AIM OF THE STUDY The study aimed to demonstrate the preventive effects of the ethanolic extract of the leaves of Moringa oleifera (EEMO) on protein glycation and its further assessment for the renoprotective effect in diabetic rats. MATERIALS AND METHODS Antiglycation activity of EEMO was assessed in vitro using bovine serum albumin. For reno-protective activity assessment, streptozotocin (STZ)-induced diabetic rats were orally treated with EEMO (100 mg/kg) or standard antiglycation agent aminoguanidine (100 mg/kg) for consecutive 8 weeks. The effects on glucose homeostasis, renal functions, and renal morphology were assessed by clinical biochemistry, molecular and histological examination. RESULTS Presence of EEMO efficiently prevented glucose-, fructose- or methylglyoxal-mediated glycation of protein. Under in vivo set-up, compared to diabetic control rats, EEMO treatment effectively improved the glucose tolerance and body weight, and reduced the serum levels of triglycerides and total cholesterol. Additionally, EEMO administration significantly ameliorated renal dysfunctions in diabetic rats characterized by improved levels of creatinine, urea nitrogen, and uric acid in serum, and total protein level in urine, accompanied by improved kidney morphology. The diabetes-associated pro-inflammatory response characterized by upregulated expression of the inducible nitric oxide synthase (iNos), activation of nuclear factor kappa B (NF-κB) and the raised levels of inflammatory factors, interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) in renal tissue was significantly attenuated in EEMO-treated rats. Moreover, EEMO treatment diminished renal reactive oxygen species (ROS) levels in diabetic animals. CONCLUSIONS Our study demonstrated that EEMO prevented AGEs formation and ameliorated renal dysfunctions in diabetic rats by blocking inflammatory/oxidative pathways. Our observations justify M. oleifera as a potential source of therapeutic interventions for diabetic nephropathy management.
Collapse
Affiliation(s)
- Shadab Ahmad
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Amit K Rai
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Suriya P Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Pawan Kumar
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Sushmita Singh
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Farah Gulzar
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ishbal Ahmad
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Akhilesh K Tamrakar
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
12
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
13
|
Liu C, Liu Y, Wang C, Guo Y, Cheng Y, Qian H, Zhao Y. Lycopene-Loaded Bilosomes Ameliorate High-Fat Diet-Induced Chronic Nephritis in Mice through the TLR4/MyD88 Inflammatory Pathway. Foods 2022; 11:foods11193042. [PMID: 36230117 PMCID: PMC9564075 DOI: 10.3390/foods11193042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease caused by a high-fat diet (HFD)-induced metabolic syndrome has received widespread attention. Lycopene has a wide range of biological activities and can improve a variety of chronic diseases through anti-inflammatory effects. In this study, HFD-fed mice were used as a metabolic syndrome model to evaluate the protective effect of lycopene in a sustained-release vehicle (bilosomes) in the small intestine against renal injury and to determine whether the TLR4/MyD88 pathway and related metabolic pathways are involved in this process. The results showed that lycopene bilosomes alleviated HFD-induced kidney damage, as evidenced by lower serum urea nitrogen, creatinine, and uric acid levels. Histopathology studies showed that lycopene bilosomes attenuated HFD-induced tubular cell and glomerular injury. In addition, Elisa, RT-PCR, and Western blotting results showed that lycopene bilosomes also reduced the expression of inflammatory factors such as TLR4, MyD88, NF-kB, TNF-a, and IL-6 in mouse kidneys. The mechanism was to attenuate renal inflammatory response by inhibiting the TLR4/MyD88 inflammatory pathway. These findings suggested that lycopene can alleviate nephritis and metabolic disorders caused by HFD, inhibiting the TLR4/MyD88 inflammatory pathway and its downstream pro-inflammatory cytokines and further regulating the vitamin K metabolism, beta-alanine metabolism, and glutathione metabolism pathways to relieve chronic nephritis.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Liu
- Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi 214122, China
| | - Ciwan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yong Zhao
- Thoracic and Cardiac Surgery, Affiliated Hospital of Jiangnan University, No.1000, He Feng Road, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
14
|
Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Effects of Ginsenosides on the Nrf2 Signaling Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:307-322. [PMID: 34981486 DOI: 10.1007/978-3-030-73234-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a major signaling pathway for the maintenance of homeostasis and redox balance. This pathway also plays a significant role in proteostasis, xenobiotic/drug metabolism, apoptosis, and lipid and carbohydrate metabolism. Conversely, the Nrf2 signaling pathway is impaired in several pathological conditions including cancer. Although various drugs have been developed to target the Nrf2 pathway, plant-derived chemicals than can potentially impact this pathway and are particularly attractive due to their minimal side effects. Ginsenosides are active components of ginseng and have been shown to exert pharmacological effects including antioxidant, anti-inflammatory, antitumor, antidiabetes, neuroprotective, and hepatoprotective activities. In this article, we have reviewed the effects of ginsenosides on Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Medicine, The University of Western Australia, Perth, Australia. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Sahebkar A. Astaxanthin and Nrf2 signaling pathway: a novel target for new therapeutic approaches. Mini Rev Med Chem 2021; 22:312-321. [PMID: 33964864 DOI: 10.2174/1389557521666210505112834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
Astaxanthin (AST) is a naturally occurring compound isolated from various sources such as fungi, plants, salmon, and crab. However, Haematococcus Pluvialis, a green alga, is the primary source of this beta carotenoid compound. AST has several favourable biological and pharmacological activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetes, hepatoprotective and neuroprotective. Nevertheless, the exact molecular mechanisms of these protective effects of AST are unclear yet. The Nrf2 signaling pathway is one of the critical candidate signaling pathways that may be involved in these beneficial effects of AST. This signaling pathway is responsible for maintaining the redox balance in the physiologic state. Upon nuclear translocation, Nrf2 signaling activates antioxidant enzymes to reduce oxidative stress and protect cells against damage. In the current study, we have reviewed the effects of AST on the Nrf2 signaling pathway, which could potentially be developed as a novel therapeutic approach for the management of various diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Zahra Ahmadi
- PhD student of Clinical Pathology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Habib Yaribeygi
- PhD student of Clinical Pathology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
17
|
Ahmadi Z, Mohammadinejad R, Roomiani S, Afshar EG, Ashrafizadeh M. Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View. J Pharmacopuncture 2021; 24:1-13. [PMID: 33833895 PMCID: PMC8010425 DOI: 10.3831/kpi.2021.24.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/19/2019] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Flavonoids consist a wide range of naturally occurring compounds which are exclusively found in different fruits and vegetables. These medicinal herbs have a number of favourable biological and therapeutic activities such as antioxidant, neuroprotective, renoprotective, anti-inflammatory, anti-diabetic and anti-tumor. Troxerutin, also known as vitamin P4, is a naturally occurring flavonoid which is isolated from tea, coffee and cereal grains as well as vegetables. It has a variety of valuable pharmacological and therapeutic activities including antioxidant, anti-inflammatory, anti-diabetic and anti-tumor. These pharmacological impacts have been demonstrated in in vitro and in vivo studies. Also, clinical trials have revealed the efficacy of troxerutin for management of phlebocholosis and hemorrhoidal diseases. In the present review, we focus on the therapeutic effects and biological activities of troxerutin as well as its molecular signaling pathways.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Roomiani
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
18
|
Bagheri Y, Barati A, Nouraei S, Jalili Namini N, Bakhshi M, Fathi E, Montazersaheb S. Comparative study of gavage and intraperitoneal administration of gamma-oryzanol in alleviation/attenuation in a rat animal model of renal ischemia/reperfusion-induced injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:175-183. [PMID: 33953856 PMCID: PMC8061328 DOI: 10.22038/ijbms.2020.51276.11642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Ischemia/reperfusion (I/R) is the leading cause of acute kidney injury. This study aimed to elucidate the reno-protective effect of gamma-oryzanol (GO) by comparing gavage and intraperitoneal (IP) administration methods on renal I/R injury in a rat model. MATERIALS AND METHODS Rats were divided into four groups including (group 1) sham, (group 2) I/R-control, (group 3) I/R+GO gavage-treated, and (group 4) I/R+ GO IP-treated. A single dose of GO was administrated to groups 3 and 4 (100 mg/kg body weight), 60 min before induction of I/R. After anesthesia, I/R was created by 45 min of ischemia, followed by 6 hr of reperfusion. Then, blood and tissue samples were subjected to evaluation of renal function, anti-oxidant capacity, inflammation, apoptotic proteins, and IKB/NF-kB pathway. RESULTS The two GO administration methods showed improvement of renal function along with attenuation of histological abnormalities. An increase in antioxidant capacity along with a decrease in pro-inflammatory markers, decline in the expression levels of BAX, Bax/Bcl-2, and caspase-3, and up-regulation of Bcl-2 expression were recorded. Moreover, a significant decrease in NF-Kb, p-IKBα, and MMP-2/9 with an increase in IKBα levels were also observed. Overall, in a comparative evaluation between the two gavage and IP administration methods, we did not find any differences in all examined parameters, except IL-6 which had a better result via gavage. CONCLUSION A single dose of GO administration has a reno-protective effect against renal I/R injury. Gavage and IP administration exhibit similar efficiency in alleviation of I/R injury.
Collapse
Affiliation(s)
- Yasin Bagheri
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Alireza Barati
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sana Nouraei
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nasim Jalili Namini
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Bakhshi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Boosting GLP-1 by Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:513-522. [DOI: 10.1007/978-3-030-73234-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Saranchina NV, Damzina AA, Ermolaev YE, Urazov EV, Gavrilenko NA, Gavrilenko MA. Determination of antioxidant capacity of medicinal tinctures using cuprac method involving Cu(II) neocuproine immobilized into polymethacrylate matrix. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118581. [PMID: 32554138 DOI: 10.1016/j.saa.2020.118581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
This work suggests using Cu(II) - neocuproine redox system immobilized into transparent polymethacrylate matrix for assessment of antioxidant capacity using CUPRAC method. The method we developed makes it possible to quantify the content of the antioxidants in the concentration range of 5.9 × 10-8-9.1 × 10-5 M. The sensor was tolerant to pH variations and painting, and used for the antioxidant capacity determination values of some commercial medicinal tinctures without pretreatment.
Collapse
Affiliation(s)
- N V Saranchina
- National Research Tomsk Polytechnic University, Pr. Lenina, 30, Tomsk 634050, Russia
| | - A A Damzina
- National Research Tomsk State University, Pr. Lenina, 36, Tomsk 634050, Russia
| | - Y E Ermolaev
- National Research Tomsk Polytechnic University, Pr. Lenina, 30, Tomsk 634050, Russia
| | - E V Urazov
- National Research Tomsk Polytechnic University, Pr. Lenina, 30, Tomsk 634050, Russia
| | - N A Gavrilenko
- National Research Tomsk State University, Pr. Lenina, 36, Tomsk 634050, Russia
| | - M A Gavrilenko
- National Research Tomsk Polytechnic University, Pr. Lenina, 30, Tomsk 634050, Russia.
| |
Collapse
|
21
|
Zarei M, Karimi E, Oskoueian E, Es-Haghi A, Yazdi MET. Comparative Study on the Biological Effects of Sodium Citrate-Based and Apigenin-Based Synthesized Silver Nanoparticles. Nutr Cancer 2020; 73:1511-1519. [PMID: 32757805 DOI: 10.1080/01635581.2020.1801780] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The apigenin is a bioactive flavonoid mostly found in fruits and vegetables that possess various biological activities. The current study was performed to compare the biological potentials of sodium citrate-based (SC-SNPs) and apigenin-based (AP-SNPs) synthesized silver nanoparticles under the in vitro and in vivo conditions. The synthesized silver nanoparticles were physically and chemically characterized. The anticancer, pro-apoptotic, and their anti-bacterial activities were determined. Further, the mice trial was conducted to determine the possible toxic effects of the synthesized silver nanoparticles. The result of particle size analysis revealed the nanometer sizes of the SC-SNPs and AP-SNPs were about 95.5 and 93.94 nm, respectively. Both nanoparticles indicated pseudo-spherical shape, homogenous dispersion with an appropriate good degree of stability. However, the anticancer potential, pro-apoptotic effects and antibacterial activity of AP-SNPs were higher than that of SC-SNPs. Moreover, the mice trial indicated that AP-SNPs improved the liver function through modulation of liver enzymes, lipid peroxidation, and increase in the expression of antioxidant enzymes (SOD and GPx) as compared to the mice received AP-SNPs during 30 day experiment. Consequently the synthesis of silver nanoparticles using apigenin as reducing bioactive compound may result in production of silver nanoparticles with enhanced anticancer, antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Mahsa Zarei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Oskoueian
- Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Mashhad, Iran
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
22
|
Akinmoladun AC, Adegbamigbe AD, Okafor NR, Josiah SS, Olaleye MT. Toxicological and pharmacological assessment of a multiherbal phytopharmaceutical on Triton X-1339-induced hyperlipidemia and allied biochemical dysfunctions. J Food Biochem 2020; 45:e13238. [PMID: 32410299 DOI: 10.1111/jfbc.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
This study investigated the safety and therapeutic effect of a multiherbal tea (MHT) on Triton X-1339-induced hyperlipidemia and associated biochemical and tissue dysfunctions. An infusion of the MHT was assessed for phytoconstituents, proximate and mineral composition, and antioxidant activity. Wistar rats administered 200 mg/kg Triton X-1399 were post-treated with MHT for 14 days followed by biochemical estimations in serum, heart, liver, and kidney of animals. Hematological and histopathological evaluations of the blood, and liver, respectively, were also performed. Different phytochemicals were detected in MHT, toxic metals were absent and antioxidant activity was appreciable. Disturbances in glucose level and redox homeostasis, alterations in liver, kidney, and heart function markers, and imbalances in hematological parameters precipitated by triton toxicity were mitigated by posttreatment with MHT. Multiherbal tea also ameliorated triton-induced hepatic histoarchitectural abnormalities. These results suggest that MHT is apparently an effective antilipemic tea with minimal or no side effects. PRACTICAL APPLICATIONS: Hyperlipidemia is one of the core risk factors for arteriosclerosis and a major contributor to other adverse health conditions. The prevalence of hyperlipidemia has increased drastically in the last few decades. Plant and plant products have been extensively used in the management of dyslipidemia and many plant-based antilipemic products with poorly defined toxicity and pharmacological profiles abound in the market. The results of this study demonstrated the protective effects of a MHT against triton-induced hyperlipidemia, atherogenic tendency, and dysfunction of key organs in rats and lent credence to its therapeutic relevance in the management of hyperlipidemia and related diseases.
Collapse
Affiliation(s)
- Afolabi C Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Adaugo Damilola Adegbamigbe
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Nkechi Ruth Okafor
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Sunday Solomon Josiah
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - M Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| |
Collapse
|
23
|
Curcumin alleviates TGF-β1-induced fibrosis in NRK-49F cells via suppression of miR-21 expression, and regulation of the TGF-β1/smad3 signaling pathway. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Arzi L, Hoshyar R, Jafarzadeh N, Riazi G, Sadeghizadeh M. Anti-metastatic properties of a potent herbal combination in cell and mice models of triple negative breast cancer. Life Sci 2020; 243:117245. [PMID: 31926253 DOI: 10.1016/j.lfs.2019.117245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 01/05/2023]
Abstract
AIM To determine the anti-metastatic potential of combinations of two bioactive carotenoids of saffron, crocin and crocetin, on 4T1 breast cancer and on a mice model of TNBC, and assess the effect of the most potent combination on the Wnt/β-catenin pathway. MAIN METHODS The effects of the carotenoid combinations on the viability of 4T1 cells were determined by MTT assay. The effects of the nontoxic doses on migration, mobility, invasion and adhesion to ECM were examined by scratch assay, Transwell/Matrigel-coated Transwell chamber and adhesion assay respectively. Tumors were inoculated by injecting mice with 4T1 cells. The weights and survival rates of the mice and tumor sizes were monitored. Histological analysis of the tissues was conducted. The expression levels of Wnt/β-catenin pathway genes were measured by Real-time PCR and western blotting. KEY FINDINGS Treatment of 4T1 cells with combination doses inhibited viability in a dose-dependent manner. The nontoxic combinations significantly inhibited migration, cell mobility and invasion, also attenuating adhesion to ECM. The combination therapy mice possessed more weight, higher survival rates and smaller tumors. Histological examination detected remarkably fewer metastatic foci in their livers and lungs. It was also demonstrated that the combinations exerted anti-metastatic effects by disturbing the Wnt/β-catenin target genes in the liver and tumors. SIGNIFICANCE Our findings propose a carotenoid combination as an alternative potent herbal treatment for TNBC, which lacks the adverse effects associated with either chemotherapeutic agents or herb-chemotherapeutic drugs.
Collapse
Affiliation(s)
- Laleh Arzi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Reyhane Hoshyar
- Microbiology and Molecular Genetics Department, Michigan State University, East Lansing, MI 48824, USA; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nazli Jafarzadeh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Rashwan AS, El-Beltagy MA, Saleh SY, Ibrahim IA. Potential role of cinnamaldehyde and costunolide to counteract metabolic syndrome induced by excessive fructose consumption. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1186/s43088-019-0025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
One of the serious public health problems in the world is metabolic syndrome. It includes visceral obesity, dyslipidemia, insulin resistance, hyperglycemia, and hypertension. As a contributor to almost all the classic signs of metabolic syndrome, fructose was the ideal choice. There are certain shortcomings with existing drugs for insulin-resistant treatment. Plants still represent the main source of most available medicines. Cinnamaldehyde (CNA) is an active principle of Cinnamomum zeylanicum. Costunolide (CE) is natural sesquiterpene lactones, which is the main bioactive constituent of Saussurea lappa. The main aim of the present study is to investigate the effect of the synthetic antidiabetic agent (metformin) in comparison with natural constituents (cinnamaldehyde, costunolide) after developing a reliable model for insulin resistance by using high fructose diet (HFD).
Results
It was found that HFD increased plasma glucose, insulin, glycosylated hemoglobin, HbA1c, serum total cholesterol, LDL-cholesterol, triglyceride, ALT, AST, creatinine, and uric acid. Moreover, HFD decreased hepatic reduced glutathione and superoxide dismutase levels. While oral administration of cinnamaldehyde and costunolide significantly decreased plasma glucose, HbA1c, total cholesterol, LDL-cholesterol, triglyceride, and increased level of hepatic reduced glutathione and superoxide dismutase activity. Also, cinnamaldehyde and costunolide restored the altered plasma levels of ALT, AST, creatinine, and uric acid to normal.
Conclusions
The results of this experimental study showed that cinnamaldehyde and costunolide could be used as safe drugs for treating different abnormalities of metabolic syndrome.
Collapse
|
26
|
Liao Z, Zhang J, Wang J, Yan T, Xu F, Wu B, Xiao F, Bi K, Niu J, Jia Y. The anti-nephritic activity of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) via modulation of AMPK-Sirt1-PGC-1α signaling axis mediated anti-oxidative in type 2 diabetes model mice. Int J Biol Macromol 2019; 140:568-576. [PMID: 31442509 DOI: 10.1016/j.ijbiomac.2019.08.149] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) with high morbidity and mortality is one of the most severe diabetes complications and affects nearly one-third of people with diabetes. Our present experiment was designed to assess the potential therapeutic of a polysaccharide purified from okra (OP) on DN in high-fat diet-fed and streptozotocin (STZ)-induced diabetic mice. We found that an 8-week treatment with OP could significantly decrease the 24-h urine protein (24-h UP), serum creatinine (Scr), serum urea nitrogen (SUN) and glycosylated hemoglobin (HbA1c) levels, which are regard as the biomarkers of renal injury. The results of immunohistochemical analysis and histopathological examination showed that the diabetic-induced microstructural changes and fibrosis in kidney can be alleviated by the administration of OP (400 mg/kg). Our immunofluorescences results demonstrated that OP (400 mg/kg) could greatly reduce the level of reactive oxygen species (ROS) in kidney. In addition, we also studied the level of SOD, GSH, CAT, HO-1, Nrf2, p-AMPK, PGC-1α, Sirt1, Bcl-2, cleaved caspase-3 and Bax in renal tissue by assay kit and western blot. Our results suggested that OP ameliorated DN in diabetic mice, which is possibly related to suppressing apoptosis and oxidative stress through activating AMPK-Sirt1-PGC-1α signaling axis.
Collapse
Affiliation(s)
- Zhengzheng Liao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jingying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jinyu Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jumin Niu
- Shenyang Women's and Children's Hospital, No. 87 Danan Street, Shenyang 110011, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
27
|
Wang Y, Zhao H, Wang Q, Zhou X, Lu X, Liu T, Zhan Y, Li P. Chinese Herbal Medicine in Ameliorating Diabetic Kidney Disease via Activating Autophagy. J Diabetes Res 2019; 2019:9030893. [PMID: 31828168 PMCID: PMC6885296 DOI: 10.1155/2019/9030893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD), a leading cause of end-stage renal disease (ESRD), has become a serious public health problem worldwide and lacks effective therapies due to its complex pathogenesis. Recent studies suggested defective autophagy involved in the pathogenesis and progression of DKD. Chinese herbal medicine, as an emerging option for the treatment of DKD, could improve diabetic kidney injury by activating autophagy. In this review, we briefly summarize underlying mechanisms of autophagy dysregulation in DKD, including AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), and the sirtuin (Sirt) pathways, and we particularly concentrate on the current status of Chinese herbal medicine treating DKD by regulating autophagy. The advances in our understanding regarding the treatment of DKD via regulating autophagy with Chinese herbal medicine will enhance the clinical application of Chinese medicine as well as discovery of novel therapeutic agents for diabetic patients.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian Wang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 10029, China
| | - Xuefeng Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 10029, China
| | - Xiaoguang Lu
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tongtong Liu
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yongli Zhan
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|