1
|
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of Hepatitis B virus-related hepatocellular carcinoma. Infect Agent Cancer 2024; 19:31. [PMID: 39010155 PMCID: PMC11247867 DOI: 10.1186/s13027-024-00593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.
Collapse
Affiliation(s)
- Sheida Behzadi Sheikhrobat
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ramezannia
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Liang J, Li B, Xia Y. MicroR-380-3p Reduces Sepsis-Induced Acute Kidney Injury via Regulating RAB1P to Restrain NF-κB Pathway. TOHOKU J EXP MED 2024; 263:69-79. [PMID: 38220171 DOI: 10.1620/tjem.2023.j106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Septic acute kidney injury (AKI) is a common complication in critically ill patients with high morbidity and mortality. This study intends to clarify the clinical value and molecular mechanism of microR-380-3p in septic AKI by recruiting patients with septic AKI and establishing septic AKI cell models. Patients with septic AKI were included and human kidney-2 (HK-2) cells were induced by lipopolysaccharide (LPS) to construct the AKI cell model of sepsis. The expression of microR-380-3p was detected by quantitative real-time RT-PCR (qRT-PCR). The expression of Bax, cleaved caspase 3, Bcl-2, p65, and p-p65 was detected by Western blot. The contents of inflammation and oxidation were determined by commercial kits. Bioinformatics predicted the binding target of microR-380-3p and a dual luciferase reporting system was used to verify the regulatory relationship between microR-380-3p and RAP1B. The concentration of microR-380-3p was elevated in patients with septic AKI and appeared to be a biomarker for these patients. Silenced microR-380-3p reversed the damage of LPS on HK-2 cells via promoting viability, inhibiting apoptosis, inflammation, and oxidation. RAP1B was a target of microR-380-3p and microR-380-3p exerted targeted inhibition of RAP1B expression level. Down-regulation of RAP1B reversed the influence of silenced microR-380-3p on HK-2 cells. MicroR-380-3p/RAP1B participated in activating the NF-κB pathway. MicroR-380-3p down-regulated RAP1B to exacerbate septic AKI, providing a potential therapeutic biomarker for septic AKI.
Collapse
Affiliation(s)
- Jifang Liang
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Bo Li
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Yanmei Xia
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
3
|
Zhang X, Li Y, Huan C, Hou Y, Liu R, Shi H, Zhang P, Zheng B, Wang Y, Wang H, Zhang W. LncRNA NKILA inhibits HBV replication by repressing NF-κB signalling activation. Virol Sin 2024; 39:44-55. [PMID: 37832719 PMCID: PMC10877346 DOI: 10.1016/j.virs.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatitis B virus (HBV) infection results in liver cirrhosis and hepatocellular carcinoma (HCC). HBx/nuclear factor (NF)-κB pathway plays a role in HBV replication. However, whether NF-κB-interacting long noncoding RNA (NKILA), a suppressor of NF-κB activation, regulates HBV replication remains largely unknown. In this study, gain-and-loss experiments showed that NKILA inhibited HBV replication by inhibiting NF-κB activity. In turn, HBV infection down-regulated NKILA expression. In addition, expression levels of NKILA were lower in the peripheral blood-derived monocytes (PBMCs) of HBV-positive patients than in healthy individuals, which were correlated with HBV viral loads. And a negative correlation between NKILA expression level and HBV viral loads was observed in blood serum from HBV-positive patients. Lower levels of endogenous NKILA were also observed in HepG2 cells expressing a 1.3-fold HBV genome, HBV-infected HepG2-NTCP cells, stable HBV-producing HepG2.2.15 and HepAD38 cells, compared to those HBV-negative cells. Furthermore, HBx was required for NKILA-mediated inhibition on HBV replication. NKILA decreased HBx-induced NF-κB activation by interrupting the interaction between HBx and p65, whereas NKILA mutants lack of essential domains for NF-ĸB inhibition, lost the ability to inhibit HBV replication. Together, our data demonstrate that NKILA may serve as a suppressor of HBV replication via NF-ĸB signalling.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China; Department of Ophthalmology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yuanyuan Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yubao Hou
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Rujia Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Hongyun Shi
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Peng Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yingchao Wang
- Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Hong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Wenyan Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
5
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Farshadpour F, Taherkhani R, Farzaneh M. Human papillomaviruses and bladder cancer risk: first report in south of Iran. Virusdisease 2023; 34:257-262. [PMID: 37408552 PMCID: PMC10317924 DOI: 10.1007/s13337-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/29/2023] [Indexed: 07/07/2023] Open
Abstract
Information regarding the possible carcinogenicity of human papillomaviruses (HPVs) in bladder tissue might pave the way for the prevention of bladder cancer through improving HPV vaccination of the at-risk population. To address this, this study was conducted to detect HPVs in bladder cancer tissues in the South of Iran. Bladder biopsy samples of 181 patients with bladder cancer were included in this study. The detection of HPVs was performed by nested PCR assay, targeting the L1 region of the genome, and sequencing. HPV was detected in 0.55% of the bladder cancer samples, while the non-cancerous bladder samples were negative for HPV. HPV genotype 6 was detected in this study. The HPV-positive patient was a 55-year-old man with papillary urothelial neoplasms of low malignant in stage Ta-T1. This patient was resident of Dayer city. Overall, HPV prevalence among patients with bladder cancer was not statistically associated with place of residency, gender, age, stage, and grade of the tumor (P value > 0.05). The presence of HPV is extremely rare in bladder cancer biopsy specimens in the south of Iran. Therefore, the results of our study rule out the possible role of HPVs in the etiology of bladder cancer. Due to the increasing air pollution in this region and high-risk jobs, and habits such as cigarette smoking and hookah smoking, the role of these factors alongside genetic factors seems more prominent than the role of HPVs in causing bladder cancer in the south of Iran. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00819-w.
Collapse
Affiliation(s)
- Fatemeh Farshadpour
- Department of Virology, School of Medicine, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633341 Iran
| | - Reza Taherkhani
- Department of Virology, School of Medicine, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633341 Iran
| | - Mohammadreza Farzaneh
- Department of Pathology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
7
|
Farshadpour F, Taherkhani R, Farajzadeh H. Hepatitis B infection among β-thalassemia major patients in Bushehr province of southern Iran. J Immunoassay Immunochem 2023; 44:147-161. [PMID: 36587831 DOI: 10.1080/15321819.2022.2163178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study was performed to determine the prevalence, genotype distribution and risk factors of hepatitis B virus (HBV) infection among β-thalassemia patients. ELISA was used to detect HBsAg and HBcAb. Molecular evaluation of HBV infection was performed by nested PCR, targeting S, X and pre-C regions of the genome, and sequencing. Of 126 thalassemia patients, 4 cases (3.17%) were positive for HBsAg, 23 cases (18.25%) were positive for HBcAb, and 6 cases (4.76%) had HBV viremia with genotype D, sub-genotype D3 and subtype ayw2. HBV prevalence among thalassemia patients was not statistically associated with gender distribution, place of residency, marital status and frequency of blood transfusion. HBsAg seroprevalence was significantly higher in Afghan immigrants and patients with ALT levels of 41-80 IU/L. The prevalence of HBV viremia was significantly higher among thalassemia patients aged >20 years compared to the patients aged <20 years. Moreover, 1.59% of thalassemia patients had seropositive occult HBV infection, which was positive for HBV-DNA and HBcAb but negative for HBsAg. Considering the relatively high prevalence of occult HBV infection among thalassemia patients, there is a possibility of their contamination through donated blood. Therefore, screening of donated blood based on detection of HBsAg cannot abolish HBV transmission through blood transfusion.
Collapse
Affiliation(s)
- Fatemeh Farshadpour
- Department of Virology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Taherkhani
- Department of Virology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Farajzadeh
- Department of Virology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
8
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
9
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
10
|
Zandi M, Shokri S, Mahmoudvand S, Hosseinzadeh Adli A, Mohammadi R, Haddadi A. Interplay between cellular metabolism and DNA viruses. J Med Virol 2022; 94:5163-5173. [PMID: 35869415 DOI: 10.1002/jmv.28018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Viruses as intracellular pathogens take over the host metabolism and reprogram to facilitate optimal virus production. DNA viruses can cause alterations in several metabolic pathways, including aerobic glycolysis also known as the Warburg effect, pentose phosphate pathway activation, and amino acid catabolism such as glutaminolysis, nucleotide biosynthesis, lipid metabolism, and amino acid biosynthesis. The available energy for productive infection can be increased in infected cells via modification of different carbon source utilization. This review discusses the metabolic alterations of the DNA viruses that will be the basis for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Hosseinzadeh Adli
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Mohammadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Azita Haddadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Mahmoudvand S, Shokri S. Effect of Lactate on Epigenetic Regulation in the Development of Hepatitis B Virus-related Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:786-787. [PMID: 36304502 PMCID: PMC9547259 DOI: 10.14218/jcth.2022.00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
| | - Somayeh Shokri
- Correspondence to: Somayeh Shokri, Department of Virology, School of Medicine, Hamadan University of Medical Science, Shahid Fahmideh Street, Hamadan 6517838736, Iran. ORCID: https://orcid.org/0000-0003-4609-3110. Tel: +98-9108829538, Fax: +98-8138380462, E-mail:
| |
Collapse
|
12
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Canonical and Divergent N-Terminal HBx Isoform Proteins Unveiled: Characteristics and Roles during HBV Replication. Biomedicines 2021; 9:biomedicines9111701. [PMID: 34829930 PMCID: PMC8616016 DOI: 10.3390/biomedicines9111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a viral regulatory and multifunctional protein. It is well-known that the canonical HBx reading frame bears two phylogenetically conserved internal in-frame translational initiation codons at Met2 and Met3, thus possibly generating divergent N-terminal smaller isoforms during translation. Here, we demonstrate that the three distinct HBx isoforms are generated from the ectopically expressed HBV HBx gene, named XF (full-length), XM (medium-length), and XS (short-length); they display different subcellular localizations when expressed individually in cultured hepatoma cells. Particularly, the smallest HBx isoform, XS, displayed a predominantly cytoplasmic localization. To study HBx proteins during viral replication, we performed site-directed mutagenesis to target the individual or combinatorial expression of the HBx isoforms within the HBV viral backbone (full viral genome). Our results indicate that of all HBx isoforms, only the smallest HBx isoform, XS, can restore WT levels of HBV replication, and bind to the viral mini chromosome, thereby establishing an active chromatin state, highlighting its crucial activities during HBV replication. Intriguingly, we found that sequences of HBV HBx genotype H are devoid of the conserved Met3 position, and therefore HBV genotype H infection is naturally silent for the expression of the HBx XS isoform. Finally, we found that the HBx XM (medium-length) isoform shares significant sequence similarity with the N-terminus domain of the COMMD8 protein, a member of the copper metabolism MURR1 domain-containing (COMMD) protein family. This novel finding might facilitate studies on the phylogenetic origin of the HBV X protein. The identification and functional characterization of its isoforms will shift the paradigm by changing the concept of HBx from being a unique, canonical, and multifunctional protein toward the occurrence of different HBx isoforms, carrying out different overlapping functions at different subcellular localizations during HBV genome replication. Significantly, our current work unveils new crucial HBV targets to study for potential antiviral research, and human virus pathogenesis.
Collapse
|
14
|
Gilmore TD. NF-κB and Human Cancer: What Have We Learned over the Past 35 Years? Biomedicines 2021; 9:biomedicines9080889. [PMID: 34440093 PMCID: PMC8389606 DOI: 10.3390/biomedicines9080889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transcription factor NF-κB has been extensively studied for its varied roles in cancer development since its initial characterization as a potent retroviral oncogene. It is now clear that NF-κB also plays a major role in a large variety of human cancers, including especially ones of immune cell origin. NF-κB is generally constitutively or aberrantly activated in human cancers where it is involved. These activations can occur due to mutations in the NF-κB transcription factors themselves, in upstream regulators of NF-κB, or in pathways that impact NF-κB. In addition, NF-κB can be activated by tumor-assisting processes such as inflammation, stromal effects, and genetic or epigenetic changes in chromatin. Aberrant NF-κB activity can affect many tumor-associated processes, including cell survival, cell cycle progression, inflammation, metastasis, angiogenesis, and regulatory T cell function. As such, inhibition of NF-κB has often been investigated as an anticancer strategy. Nevertheless, with a few exceptions, NF-κB inhibition has had limited success in human cancer treatment. This review covers general themes that have emerged regarding the biological roles and mechanisms by which NF-κB contributes to human cancers and new thoughts on how NF-κB may be targeted for cancer prognosis or therapy.
Collapse
|
15
|
Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9:4890-4917. [PMID: 34307543 PMCID: PMC8283590 DOI: 10.12998/wjcc.v9.i19.4890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancer-related deaths worldwide. In recent years, uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets. Despite the vast amount of data on this topic, HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile. Therefore, the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase. In this context, the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior. In line with these efforts, this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis and tumor progression in HCC and summarize new findings. Cumulative evidence indicates that HBV DNA integration promotes genomic instability, resulting in the overexpression of genes related to cancer development, metastasis, and angiogenesis or inactivation of tumor suppressor genes. In addition, genetic variations in HBV itself, especially preS2 deletions, may play a role in malignant transformation. Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs. Similarly, viral proteins of both HBV and HCV can affect pathways that are important anticancer targets. The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated. Additional, comprehensive studies are also needed to determine these viruses' interaction with integrins, farnesoid X, and the apelin system in malignant transformation and tumor progression. Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined, further studies are warranted to decipher the relationship among inflammasomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
16
|
Mahmoudvand S, Shokri S. Interactions between SARS coronavirus 2 papain-like protease and immune system: A potential drug target for the treatment of COVID-19. Scand J Immunol 2021; 94:e13044. [PMID: 33872387 PMCID: PMC8250271 DOI: 10.1111/sji.13044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 12/01/2022]
Abstract
Coronaviruses (CoVs) are a large family of respiratory viruses which can cause mild to moderate upper respiratory tract infections. Recently, new coronavirus named as Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has been identified which is a major threat to public health. Innate immune responses play a vital role in a host's defence against viruses. Interestingly, CoVs have evolved elaborate strategies to evade the complex system of sensors and signalling molecules to suppress host immunity. SARS‐CoV‐2 papain‐like protease (PLpro), as an important coronavirus enzyme, regulates viral spread and innate immune responses. SCoV‐2 PLpro is multifunctional enzyme with deubiquitinating (DUB) and deISGylating activity. The PLpro can interact with key regulators in signalling pathways such as STING, NF‐κB, cytokine production, MAPK and TGF‐β and hijack those to block the immune responses. Therefore, the PLpro can be as an important target for the treatment of COVID‐19. Until now, several drugs or compounds have been identified that can inhibit PLpro activity. Here we discuss about the dysregulation effects of PLpro on immune system and drugs that have potential inhibitors for SCoV‐2 PLpro.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of VirologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Somayeh Shokri
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of VirologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
17
|
Mahmoudvand S, Shokri S, Azaran A, Seyedian SS, Makvandi M, Mirzaei H, Sheikhrobat SB. Seronegative occult hepatitis C infection among hemodialysis patients: A prevalence study. Ther Apher Dial 2020; 25:218-224. [PMID: 32510846 DOI: 10.1111/1744-9987.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the prevalence of occult hepatitis C virus (HCV) infection (OCI) among HD patients. Blood samples were taken from 79 HD patients and their sera were evaluated for the presence of anti-HCV. Both the sera and peripheral blood mononuclear cells (PBMCs) were then checked for HCV RNA by nested reverse transcriptase-polymerase chain reaction. Anti-HCV was positive among 4/79 (5.1%) of the patients. From 75 patients who were negative for anti-HCV, 71 (94.7%) patients were also negative for HCV RNA in sera samples but five of them were positive for HCV RNA in PBMCs. Totally, out of 79 patients, HCV RNA was detected in PBMCs of five (6.3%) patients, indicating that these patients had OCI. No significant difference was observed between the frequency of OCI and gender (P-value = .6). HCV genotype in all five cases of OCI was genotype 3a. Our study showed prevalence rate of 6.3% OCI infection in HD patients. Regarding the serious complications and the clinical importance of OCI in HD patients, sensitive diagnostic methods for identifying HCV RNA in the PBMCs should be implemented for all HD patients.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azarakhsh Azaran
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed S Seyedian
- Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habibollah Mirzaei
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sheida B Sheikhrobat
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, McCubrey JA, Cervello M. GSK-3 in liver diseases: Friend or foe? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118743. [PMID: 32417256 DOI: 10.1016/j.bbamcr.2020.118743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Liver diseases, including hepatitis due to hepatitis B or C virus infection, non-alcoholic fatty liver disease, and hepatocellular carcinoma pose major challenges for overall health due to limited curative treatment options. Thus, there is an urgent need to develop new therapeutic strategies for the treatment of these diseases. A better understanding of the signaling pathways involved in the pathogenesis of liver diseases can help to improve the efficacy of emerging therapies, mainly based on pharmacological approaches, which influence one or more specific molecules involved in key signal transduction pathways. These emerging therapies are very promising for the prevention and treatment of liver diseases. One promising druggable molecular target is the multifunctional serine/threonine kinase, glycogen synthase kinase 3 (GSK-3). In this review, we discuss conditions in which GSK-3 is implicated in liver diseases. In addition, we explore newly emerging drugs that target GSK-3β, as well as their potential use in and impact on the management of liver diseases.
Collapse
Affiliation(s)
- Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
19
|
GPR43 regulates HBV X protein (HBx)-induced inflammatory response in human LO2 hepatocytes. Biomed Pharmacother 2020; 123:109737. [DOI: 10.1016/j.biopha.2019.109737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
|
20
|
Lu C, Fu W, Zhou R, Hu W. Network pharmacology-based study on the mechanism of Yiganling capsule in hepatitis B treatment. BMC Complement Med Ther 2020; 20:37. [PMID: 32024508 PMCID: PMC7076828 DOI: 10.1186/s12906-020-2815-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Yiganling (YGL) capsule is a traditional Chinese medicine preparation consisting of eight herbs that has been clinically proven to have a favorable treatment effect on Hepatitis B (HB). However, due to its multiple targets and multi-pharmacological effects, the mechanisms of YGL capsule in the treatment of HB are unknown. Methods First, the chemical constituents of YGL capsules were obtained from the Chinese medicine database, and YGL capsules were constructed. Second, active compounds were screened by the ADME model. The target fishing model was used to screen the corresponding targets of active compounds and to construct a compounds and compound targets network. Using human disease databases and literature mining, we systematically identified genes associated with HB, constructed disease-specific protein-protein interaction networks, and performed clustering and enrichment analyses of these networks. These networks were then merged to obtain a compound-disease target network, and cluster and enrichment analyses were performed on the compound-disease target network to acquire a compounds-disease targets-mechanism network and a clustering network. Results We successfully built eight pharmacological network diagrams, including four primary networks and other network maps. The four dominating network maps included a HB disease-associated protein-protein interaction network, a YGL capsule compounds-target network, a YGL capsule ingredient target-HB disease target network, and a YGL-HB disease mechanism network. Other networks included a pathway of HB disease targets, the HB disease protein-protein interaction cluster analysis network, and the YGL-HB target clustering network. Conclusion This study successfully forecasted, illuminated, and confirmed the synergistic effects of HB disease molecules and discovered the potential of HB relevant targets, clusters, and target-related biological processes and signaling pathways. Our research not only provides theoretical support for the molecular and pharmacological mechanisms of YGL capsule in HB treatment, but also provides new research methods for the study of the other traditional Chinese medicinal compounds.
Collapse
Affiliation(s)
- Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wanjin Fu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
21
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|