1
|
Ma N, Wang L, Meng M, Wang Y, Huo R, Chang G, Shen X. D-sodium lactate promotes the activation of NF-κB signaling pathway induced by lipopolysaccharide via histone lactylation in bovine mammary epithelial cells. Microb Pathog 2025; 199:107198. [PMID: 39662787 DOI: 10.1016/j.micpath.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Lactate is a glycolytic end product that is further metabolized as an energy source. This end product has been associated with certain diseases, including sepsis and tumors, and it can regulate the transition of macrophages to an anti-inflammatory state. This study aimed to explore the effects of lactate on the inflammatory responses of mammary gland epithelial cells, which constitute the first line of defense against pathogens in mammary glands. Bovine mammary epithelial cells (BMECs) were challenged with lipopolysaccharide (LPS) in the presence or absence of D-sodium lactate (D-nala). LPS exposure increased the concentration of lactate both inside and outside the cells. Further, inhibiting glycolysis diminished the LPS-induced production of proinflammatory cytokines. Treatment with LPS, exogenous D-nala, and their combination upregulated the expression levels of MCT1, increased the intracellular levels of lactate and histone H3 lysine 18 lactylation (H3K18la), and activated the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathway. The lactylation of H3K18 was mediated by p300/CBP. The p300/CBP inhibitor C646 decreased the level of H3K18la, reversing the activation of the NF-κB signaling pathway and release of proinflammatory cytokines. Therefore, LPS increased the intracellular level of lactate by upregulating MCT1 and glycolysis. D-nala exacerbated the LPS-induced inflammatory responses in BMECs. Moreover, intracellular lactate enhanced the activation of the NF-κB signaling pathway through the p300/CBP-mediated lactylation of H3K18. Thus, the findings of this study expand our understanding of lactate function in immune regulation.
Collapse
Affiliation(s)
- Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lairong Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ran Huo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
2
|
Mao YN, Ma YJ, Wang GQ. Synergistic Antibacterial Effect of Lactic Acid Bacteria and Baicalin Against Staphylococcus aureus In Vitro and In Vivo. Foodborne Pathog Dis 2024. [PMID: 39527139 DOI: 10.1089/fpd.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Pathogenic bacteria such as Staphylococcus aureus (S. aureus) are the principal cause of cow mastitis, which primarily impacts milk yield and results in significant financial losses for the animal husbandry industry. Lactic acid bacteria-cell-free supernatant (LAB-CFS) and baicalin (BAI) both have a number of biological effects, including decreasing inflammation. The combined use of LAB-CFS and BAI does not appear to have been used to protective against mastitis, however, and the underlying mechanisms are yet unknown. In this study, in vitro activity of LAB-CFS and BAI alone and in combination was determined (checkerboard experiments, time-kill curves, and flow cytometry to investigate membrane permeability) and examined the protective effects of LAB-CFS and BAI on S. aureus-induced mastitis in mice and the impact of NF-κB signaling pathways on the emergence of mastitis. We discovered that when LAB-CFS and BAI were used together, S. aureus was more effectively treated than when LAB-CFS and BAI were used separately. Flow cytometry demonstrated that LAB-CFS and BAI work together to kill bacteria. In vivo, the usage of LAB-CFS and BAI decreased the activity of myeloperoxidase, as well as IL-6, IL-1β, and TNF-α secretion and the levels of TLR2 and p65 (NF-κB) expression. These findings suggested that LAB-CFS and BAI had a preventive effect against mastitis brought on by S. aureus. Therefore, the NF-κB signaling pathway is thought to be the likely mechanism through which LAB-CFS and BAI reduced S. aureus-induced inflammation in the mammary of cows. For the treatment of cow mastitis, LAB-CFS and BAI are likely to replace antibiotics.
Collapse
Affiliation(s)
- Yan-Ni Mao
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
- Guyuan Branch, Ning Xia Academy of Agriculture and Forestry Sciences, Guyuan, China
| | - Yan-Jun Ma
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Gui-Qin Wang
- Veterinary Pharmacology Lab, School of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Xie Y, Li X, Xu D, He D, Wang J, Bi J, Liu J, Fu S. Hordenine Alleviates Lipopolysaccharide-Induced Mastitis by Suppressing Inflammation and Oxidative Stress, Modulating Intestinal Microbiota, and Preserving the Blood-Milk Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21503-21519. [PMID: 39289834 DOI: 10.1021/acs.jafc.4c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Mastitis is a common mammalian disease occurring in the mammary tissue and poses a major threat to agriculture and the dairy industry. Hordenine (HOR), a phenylethylamine alkaloid naturally extracted from malt, has various pharmacological effects, but its role in mastitis is unknown. The aim of this study was to investigate the role of HOR and its underlying mechanism in a lipopolysaccharide (LPS)-induced inflammatory response model of mouse mammary epithelial cells (EpH4-Ev) and mouse mastitis model. The experimental results showed that HOR attenuated LPS-induced mammary tissue damage (from 3.75 ± 0.25 to 1.75 ± 0.25) and restored the integrity of the blood-milk barrier. Further mechanistic studies revealed that HOR inhibited LPS-induced overactivation of the TLR4-MAPK/NF-κB signaling pathway and activated the AMPK/Nrf2/HO-1 signaling pathway. Additionally, HOR altered the composition of the intestinal microbiota in mice, ultimately reducing the extent of inflammatory injury (from 3.33 ± 0.33 to 0.67 ± 0.33) and upregulating the expression of tight junction proteins (ZO-1, occludin, and claudin-3). The findings of this study provide a theoretical basis in the rational use of HOR for the prevention and treatment of mastitis and the maintenance of mammalian mammary gland health.
Collapse
Affiliation(s)
- Yachun Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianwen Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dewei He
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jiaxin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Choi JW, Shin J, Zhou Z, Song HJ, Bae GS, Kim MS, Park SJ. Myricetin ameliorates the severity of pancreatitis in mice by regulating cathepsin B activity and inflammatory cytokine production. Int Immunopharmacol 2024; 136:112284. [PMID: 38823179 DOI: 10.1016/j.intimp.2024.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/β-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.
Collapse
Affiliation(s)
- Ji-Won Choi
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Joonyeon Shin
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ziqi Zhou
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea.
| |
Collapse
|
5
|
Luo H, Li Y, Xie J, Xu C, Zhang Z, Li M, Xia B, Shi Z, Lin L. Effect and mechanism of Prunella vulgaris L. extract on alleviating lipopolysaccharide-induced acute mastitis in protecting the blood-milk barrier and reducing inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117998. [PMID: 38484956 DOI: 10.1016/j.jep.2024.117998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1β, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Hongshan Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Chunfang Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhe Shi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
6
|
Gao Y, Hao Z, Zhang H, Liu J, Zhou G, Wen H, Su Q, Tong C, Huang S, Wang X. Forsythiaside A attenuates lipopolysaccharide-induced mouse mastitis by activating autophagy and regulating gut microbiota and metabolism. Chem Biol Interact 2024; 396:111044. [PMID: 38729284 DOI: 10.1016/j.cbi.2024.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Mastitis is an inflammatory disease of the mammary gland with a high incidence in lactating animals, significantly impacting their health and breastfeeding. Moreover, mastitis adversely affects milk quality and yield, resulting in substantial economic losses for the dairy farming industry. Forsythiaside A (FTA), a phenylethanol glycoside analog extracted from Forsythia, exhibits notable anti-inflammatory and antioxidant properties. However, its protective effects and specific mechanisms against mastitis remain unclear. In this study, a lipopolysaccharide (LPS)-induced mouse mastitis model was used to investigate the protective effect of FTA on LPS-induced mastitis and its potential mechanism using histological assays, Western blot, qRT-PCR, FITC-albumin permeability test, 16s rRNA gene sequencing analysis and non-targeted metabolomics assays to investigate the protective effect of FTA on LPS-induced mastitis model and its potential mechanism. The results demonstrated that FTA significantly mitigated LPS-induced mouse mastitis by reducing inflammation and apoptosis levels, modulating the PI3K/AKT/mTOR signaling pathways, inducing autophagy, and enhancing antioxidant capacity and the expression of tight junction proteins. Furthermore, FTA increased the abundance of beneficial microbiota while decreasing the levels of harmful microbiota in mice, thus counteracting the gut microbiota disruption induced by LPS stimulation. Intestinal metabolomics analysis revealed that FTA primarily regulated LPS-induced metabolite alterations through key metabolic pathways, such as tryptophan metabolism. This study confirms the anti-inflammatory and antioxidant effects of FTA on mouse mastitis, which are associated with key metabolic pathways, including the restoration of gut microbiota balance and the regulation of tryptophan metabolism. These findings provide a novel foundation for the treatment and prevention of mammalian mastitis using FTA.
Collapse
Affiliation(s)
- Yingkui Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Zhonghua Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Huaqiang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Jingjing Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Guangwei Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Haojie Wen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Qing Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
7
|
Ran X, Hu G, Guo W, Li K, Wang X, Liu J, Fu S. Hesperetin regulates the intestinal flora and inhibits the TLR4/NF-κB signaling axis to protect the blood-milk barrier and prevent mastitis. Life Sci 2024; 342:122533. [PMID: 38428570 DOI: 10.1016/j.lfs.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The World Health Organization recommends breastfeeding for 6 months, but mastitis, a common disease during lactation, presents a major obstacle to fulfilling this recommendation. Maternal nutrient intake during lactation has been shown to be related to mastitis. Therefore, this study aimed to explore the effect of hesperetin, a phytonutrient, on mastitis. The oral administration of hesperetin to lipopolysaccharide (LPS)-induced mastitis mice alleviated their pathological damage, reduced the secretion of pro-inflammatory cytokines, and maintained the integrity of their blood-milk barrier. Moreover, our results showed that oral administration of hesperetin regulates the composition of the intestinal flora of mice. Fecal microbial transplantation (FMT) from the mice of hesperetin group alleviated LPS-induced mastitis in recipient mice. In additional, hesperetin attenuated the inflammatory response and increased the expression of tight junction proteins (TJs) in LPS-stimulated mouse mammary epithelial cells (mMECs). Through network pharmacological analysis and further research, we demonstrated hesperetin inhibits the expression of TLR4 and the activation of NF-κB signaling. In conclusion, hesperetin protects the blood-milk barrier and improve mastitis by regulating intestinal flora and inhibiting the activation of TLR4/NF-κB signaling axis. This study provides a theoretical basis for lactating females to consume hesperetin as a supplement to prevent mastitis and maintain mammary health.
Collapse
Affiliation(s)
- Xin Ran
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weiwei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kefei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
8
|
Mao T, Fan J. Myricetin Protects Against Rat Intervertebral Disc Degeneration Partly Through the Nrf2/HO-1/NF-κB Signaling Pathway. Biochem Genet 2024; 62:950-967. [PMID: 37507641 DOI: 10.1007/s10528-023-10456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a prevalent musculoskeletal disorder. Nucleus pulposus cells (NPCs) play a significant role in the normal functioning of the IVD. Myricetin is an agent that exerts anti-inflammatory and antioxidant effects in various pathological conditions. Here, we investigated the ameliorative effects of myricetin on the IVD degeneration. NPCs were obtained from the IVD of rats, and were treated with myricetin (0, 5, 10, 15, 20 μM) for 24 h before 20 ng/mL IL-1β stimulation. RT-qPCR, western blotting, and ELISA were applied to evaluate the levels of inflammatory factors (iNOS, COX-2, TNF-α, IL-6, PGE2, and Nitrite) and extracellular matrix (ECM)-associated components (MMP13, ADAMTS-5, aggrecan, and collagen II) in NPCs. Activation status of related signaling pathways (NF-κB and Nrf2) was determined using western blotting and immunofluorescence staining. Experimental rat models of IDD were established using a needle puncture method. Myricetin (20 mg/kg) was administrated intraperitoneally, and the degeneration was evaluated using histopathological analysis. Myricetin treatment attenuated the IL-1β-induced production of inflammatory factors in NPCs. Downregulation of aggrecan and collagen II as well as upregulation of MMP-13 and ADAMTS-5 in NPCs caused by IL-1β was reversed by myricetin treatment. Mechanistically, myricetin blocked NF-κB signaling by activation of Nrf2 in IL-1β-stimulated NPCs. Moreover, inhibition of Nrf2 reversed the protective effects of myricetin in NPCs. The in vivo experiments showed that myricetin ameliorated the IDD progression in rats. The present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of myricetin on Nrf2 activation in NPCs.
Collapse
Affiliation(s)
- Tian Mao
- Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
9
|
Li S, Xiao H, Liu M, Wang Q, Sun C, Yao J, Cao N, Zhang H, Zhang G, Xiao X. Network pharmacology and experimental verification to explore the anti-superficial thrombophlebitis mechanism of Mailuo shutong pill. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117668. [PMID: 38159829 DOI: 10.1016/j.jep.2023.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mailuo shutong pill (MLST) has been widely used in clinical treatment of superficial thrombotic phlebitis (STP). Nevertheless, the major active components of MLST and the mechanism of synergistic action have not been reported. AIM OF THE STUDY The present study aimed to evaluate the improving effects and the underlying mechanism of MLST on mannitol-induced STP in rabbits. MATERIAL AND METHODS In this study, Ultrahigh-performance liquid chromatography electrospray ionization quadrupole-exactive orbitrap mass spectrometry (UHPLC-ESI-Q-Exactive-Orbitrap-MS) was used to analyze and identify the chemical composition of MLST and the prototype components absorbed into the blood. Then, according to the prototype components in serum, the targets and mechanisms of MLST were explored by applying network pharmacology. The rabbit model of STP was established by injecting 20% mannitol into bilateral auricular vein. The pathological changes of rabbit ear tissues, inflammatory factors, coagulation function and hemorheology were detected. In addition, molecular docking verified the interaction between the main active ingredient and the key target. Finally, the PI3K/AKT pathway and its regulated downstream pathways were verified by Western blot. RESULTS A total of 96 MLST components and 53 prototypical components absorbed into the blood were successfully identified. Based on network pharmacology, PI3K/AKT pathway and 10 chemical components closely related to this pathway were obtained. Hematoxylin-eosin (HE) staining results indicated that MLST effectively improved of the pathological damage of ear tissues. MLST decreased levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and C-reactive protein (CRP). The expression of platelets (PLT) and fibrinogen concentration (FIB) was decreased, while prothrombin time (PT) and activated partial thromboplastin time (APTT) were prolonged. In addition, the plasma viscosity and whole blood viscosity in the MLST groups were significantly decreased. The more important discovery was that the expressions of P-PI3K, VEGF, P-AKT, P-IκB-α, P-NF-κB, NLRP3, ASC, Cleaved IL-1β and Cleaved Caspase-1 were effectively reversed after treatment with MLST. CONCLUSIONS This study comprehensively analyzed and characterized the chemical composition of MLST and the prototypical components absorbed into the blood. This study strongly confirmed the pharmacodynamic effect of MLST on STP. More importantly, this pharmacodynamic effect was achieved through inhibition of the PI3K/AKT pathway and its regulated NF-κB and NLRP3 pathways.
Collapse
Affiliation(s)
- Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - He Xiao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China.
| | - Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qingguo Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China.
| | - Ningning Cao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China.
| | - Haifang Zhang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China.
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Prado Y, Aravena D, Gatica S, Llancalahuen FM, Aravena C, Gutiérrez-Vera C, Carreño LJ, Cabello-Verrugio C, Simon F. From genes to systems: The role of food supplementation in the regulation of sepsis-induced inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166909. [PMID: 37805092 DOI: 10.1016/j.bbadis.2023.166909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Systemic inflammation includes a widespread immune response to a harmful stimulus that results in extensive systemic damage. One common example of systemic inflammation is sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Under the pro-inflammatory environment of sepsis, oxidative stress contributes to tissue damage due to dysfunctional microcirculation that progressively causes the failure of multiple organs that ultimately triggers death. To address the underlying inflammatory condition in critically ill patients, progress has been made to assess the beneficial effects of dietary supplements, which include polyphenols, amino acids, fatty acids, vitamins, and minerals that are recognized for their immuno-modulating, anticoagulating, and analgesic properties. Therefore, we aimed to review and discuss the contribution of food-derived supplementation in the regulation of inflammation from gene expression to physiological responses and summarize the precedented potential of current therapeutic approaches during systemic inflammation.
Collapse
Affiliation(s)
- Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
11
|
Li Q, Chen J, Ren Y, Yang Z, Wang M, Zhang W, Cao L, Sun H, Nie S, Sun Z. Protective Effects and Mechanisms of Luteolin against Acute Respiratory Distress Syndrome: Network Pharmacology and In vivo and In vitro Studies. Curr Pharm Des 2024; 30:1404-1418. [PMID: 38616753 DOI: 10.2174/0113816128289341240327072531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) is an acute life-threatening disease, and luteolin has the potential to become a therapeutic agent for ARDS. However, its mechanism of action has not yet been clarified. OBJECTIVE The present study explored the potential effects and mechanisms of luteolin in the treatment of ARDS through network pharmacology analysis and verified them through biological experiments. METHODS The potential targets of luteolin and ARDS were obtained from online databases. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the underlying molecular mechanisms and to identify hub targets. Molecular docking was used to verify the relationship between luteolin and target proteins. Finally, the effects of luteolin on key signaling pathways and biological processes were verified by in vitro and in vivo experiments. RESULTS A total of 146 luteolin- and 496 ARDS-related targets were extracted from public databases. The network pharmacological analysis suggested that luteolin could inhibit ARDS through the following potential therapeutic targets: AKT1, RELA, and NFKBIA. Inflammatory and oxidative stress responses were the main biological processes involved, with the AKT/NF-κB signaling pathway being the key signaling pathway targeted by luteolin for the treatment of ARDS. Molecular docking analysis indicated that luteolin had a good binding affinity to AKT1, RELA, and NFKBIA. The in vitro and in vivo experiments revealed that luteolin could regulate the inflammatory response and oxidative stress in the treatment of ARDS by inhibiting the AKT/NF- κB signaling pathway. CONCLUSION Luteolin could reduce the production of reactive oxygen species and inflammatory factors by inhibiting the AKT/NF-κB signaling pathway, thus reducing apoptosis and attenuating ARDS.
Collapse
Affiliation(s)
- Quan Li
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- Department of Intensive Care Unit, Suqian First Hospital, Suqian 223800, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Juan Chen
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Haijun Sun
- Department of Intensive Care Unit, Suqian First Hospital, Suqian 223800, PR China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| |
Collapse
|
12
|
Ji ZH, Gao F, Xie WY, Wu HY, Ren WZ, Yuan B. Mammary Epithelial Cell-Derived Exosomal miR-221-3p Regulates Macrophage Polarization by Targeting Igf2 bp2 during Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14742-14757. [PMID: 37757458 DOI: 10.1021/acs.jafc.3c03350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mastitis affects the milk quality and yield and is the most expensive disease in dairy cows. Elucidation of the pathogenesis of mastitis is of great importance for disease control. As a medium of intercellular communication, exosomes play key roles in various inflammatory diseases by regulating macrophage polarization. However, the molecular factors in exosomes that mediate the intercellular communication between mammary epithelial cells and macrophages during mastitis remain to be further explored. In this study, we isolated and identified mammary epithelial cell-derived exosomes from a lipopolysaccharide (LPS)/lipoteichoic acid (LTA)-induced mastitis cell model, and we demonstrated that exosomes from LPS/LTA-stimulated mammary epithelial cells promote M1-type macrophage polarization in vivo and in vitro. Based on the results of high-throughput sequencing, we constructed a differential miRNA (microRNA) expression profile of exosomes and demonstrated that miR-221-3p was highly expressed. Furthermore, in vivo and in vitro experiments, combined with coculture experiments and fluorescence tracing, showed that high miR-221-3p expression promoted M1-type macrophage polarization, demonstrating the transcellular role of miR-221-3p. Mechanistically, dual luciferase reporter gene assays and rescue assays showed that miR-221-3p regulated macrophage polarization by targeting Igf2bp2. The results of this study will deepen our understanding of the pathogenesis of mastitis, and the molecular regulatory axis that was established in this study is expected to be a target for mastitis treatment.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
13
|
Costa KC, Cuelho CHF, Figueiredo SA, Vilela FMP, Fonseca MJV. Photochemoprevention of topical formulation containing purified fraction of Inga edulis leaves extract. Photochem Photobiol Sci 2023; 22:2105-2120. [PMID: 37261650 DOI: 10.1007/s43630-023-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Natural antioxidants have attracted attention for their therapeutic use as photochemopreventive agents. Inga edulis leaves extract and its purified fraction have high polyphenolic content and high antioxidant capacity. In addition, they presented UV photostability and low citotoxicity in fibroblast cells. In this context, this study first aimed at development of topical formulation containing purified fraction of I. edulis extract and the evaluation of skin penetration of the compounds. Moreover, the photoprotective/photochemopreventive potential of the formulation containing I. edulis purified fraction were investigated in vitro and in vivo. The topical formulation containing 1% of the purified fraction of I. edulis increased the endogenous antioxidant potential of the skin, and vicenin-2 and myricetin compounds were able to penetrate the epidermis and dermis. Additionally, the purified fraction (25 and 50 mg/mL) showed a photoprotective effect against UVA and UVB radiation in L929 fibroblast cells. In vivo studies have shown that the formulation added with purified fraction provided an anti-inflammatory effect on the skin of animals after UVB exposure, since it was observed a reduction in MPO activity, IL-1β and TNF-α cytokines, and CXCL1/KC chemokine concentrations. In conclusion, the purified fraction of I. edulis, rich in phenolic compounds, when incorporated in topical formulation, appears as an alternative to prevent skin damages induced by UV radiation, due to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Karini Carvalho Costa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camila Helena Ferreira Cuelho
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sônia Aparecida Figueiredo
- Department of Food and Drug, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Li K, Ran X, Zeng Y, Li S, Hu G, Wang X, Li Y, Yang Z, Liu J, Fu S. Maslinic acid alleviates LPS-induced mice mastitis by inhibiting inflammatory response, maintaining the integrity of the blood-milk barrier and regulating intestinal flora. Int Immunopharmacol 2023; 122:110551. [PMID: 37406397 DOI: 10.1016/j.intimp.2023.110551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mastitis occurs frequently in breastfeeding women and not only affects the women's health but also hinders breastfeeding. Maslinic acid is a type of pentacyclic triterpenoid widely found in olives that has good anti-inflammatory activity. This study aims to discuss the protective function of maslinic acid against mastitis and its underlying mechanism. For this, mice models of mastitis were established using lipopolysaccharide (LPS). The results revealed that maslinic acid reduced the pathological lesions in the mammary gland. In addition, it reduced the generation of pro-inflammatory factors and enzymes (IL-6, IL-1β, TNF-α, iNOS, and COX2) in both mice mammary tissue and mammary epithelial cells. The high-throughput 16S rDNA sequencing of intestinal flora showed that in mice with mastitis, maslinic acid treatment altered β-diversity and regulated microbial structure by increasing the abundance of probiotics such as Enterobacteriaceae and downregulating harmful bacteria such as Streptococcaceae. In addition, maslinic acid protected the blood-milk barrier by maintaining tight-junction protein expression. Furthermore, maslinic acid downregulated mammary inflammation by inhibiting the activation of NLRP3 inflammasome, AKT/NF-κB, and MAPK signaling pathways. Thus, in a mice model of LPS-induced mastitis, maslinic acid can inhibit the inflammatory response, protect the blood-milk barrier, and regulate the constitution of intestinal flora.
Collapse
Affiliation(s)
- Kefei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xin Ran
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yiruo Zeng
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang 110164, China
| | - Guiqiu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoxuan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ying Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhanqing Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
15
|
Wang J, Li Y, Wang J, Wang Y, Liu H, Bao J. Selenium Alleviates Ammonia-Induced Splenic Cell Apoptosis and Inflammation by Regulating the Interleukin Family/Death Receptor Axis and Nrf2 Signaling Pathway. Biol Trace Elem Res 2023; 201:1748-1760. [PMID: 35581429 DOI: 10.1007/s12011-022-03279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
Ammonia (NH3) is a harmful gas in livestock houses. So far, many researchers have demonstrated that NH3 is detrimental to animal and human organs. Selenium (Se) is one of the essential trace elements in the body and has a good antioxidant effect. However, there was little conclusive evidence that Se alleviated NH3 poisoning. To investigate the toxic mechanism of NH3 on pig spleen and the antagonistic effect of L-selenomethionine, a porcine NH3-poisoning model and an L-selenomethionine intervention model were established in this study. Our results showed that NH3 exposure increased the apoptosis rate, while L-selenomethionine supplementation alleviated the process of excessive apoptosis. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qRT-PCR), and western blot results confirmed that exposure to NH3 changed the expression levels of interleukin family factors, apoptosis, death receptor, and oxidative stress factors. Our study further confirmed that excessive NH3 induced inflammatory response and mediated necroptosis leading to cell apoptosis by activating the Nrf2 signaling pathway. Excessive NH3 could mediate spleen injury through oxidative stress-induced mitochondrial dynamics disorder. L-Selenomethionine could alleviate inflammation and abnormal apoptosis by inhibiting the IL-17/TNF-α/FADD axis. Our study would pave the way for comparative medicine and environmental toxicology.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yutao Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianxing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| |
Collapse
|
16
|
Ikeji CN, Adedara IA, Farombi EO. Dietary myricetin assuages atrazine-mediated hypothalamic-pituitary-testicular axis dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15655-15670. [PMID: 36169847 DOI: 10.1007/s11356-022-23033-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATZ) exposure is associated with reproductive dysfunction in both animals and humans. Myricetin, a flavonoid compound, is well documented for its numerous pharmacological activities. However, the impact of myricetin on the atrazine-mediated dysfunctional hypothalamic-pituitary-testicular axis is not known. This study investigated the role of myricetin on the atrazine-induced alterations in the male reproductive axis in rats orally gavaged with ATZ alone (50 mg/kg) or co-treated with ATZ + myricetin (MYR) at 5, 10, and 20 mg/kg for 30 consecutive days. Myricetin assuaged ATZ-induced reductions in intra-testicular testosterone, serum follicle-stimulating hormone, luteinizing hormone, and testosterone, coupled with decreases in alkaline phosphatase, acid phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase activities. Also, MYR treatment improved epididymal sperm count and motility and decreased sperm defects in ATZ-treated rats. Testicular sperm number, daily sperm production, and sperm viability remained unchanged in all treatment groups. Administration of MYR abated ATZ-mediated depletion in antioxidant status, an increase in myeloperoxidase activity, nitric oxide, hydrogen peroxide, malondialdehyde levels, and reactive oxygen and nitrogen species, as well as the histological lesions in the hypothalamus, epididymis, and testes of treated animals. All in all, MYR mitigated atrazine-mediated functional changes in the reproductive axis via anti-inflammatory and antioxidant mechanisms in atrazine-exposed rats. Dietary intake of MYR could be a worthy chemoprotective approach against reproductive dysfunction related to ATZ exposure.
Collapse
Affiliation(s)
- Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
17
|
Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, Yanagisawa D, Tooyama I, Wan Ngah WZ, Jantan I, Hamezah HS. An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol 2023; 13:1035220. [PMID: 36686668 PMCID: PMC9849397 DOI: 10.3389/fphar.2022.1035220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.
Collapse
Affiliation(s)
- Ummi Kalthum Azlan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Ahmed Mediani
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- 2Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Xiaohui Tong
- 3School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Daijiro Yanagisawa
- 4Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Wan Zurinah Wan Ngah
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ibrahim Jantan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,*Correspondence: Hamizah Shahirah Hamezah,
| |
Collapse
|
18
|
Kan X, Hu G, Liu Y, Xu P, Huang Y, Cai X, Guo W, Fu S, Liu J. Mammary Fibrosis Tendency and Mitochondrial Adaptability in Dairy Cows with Mastitis. Metabolites 2022; 12:1035. [PMID: 36355118 PMCID: PMC9692329 DOI: 10.3390/metabo12111035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 03/30/2024] Open
Abstract
Dairy cow mammary gland fibrosis causes huge economic losses to livestock production, however, research on dairy cow mammary gland fibrosis is in its infancy and it lacks effective treatments. Therefore, the purpose of this experiment was to explore the correlation between mastitis and fibrosis and mitochondrial damage, and to further explore its pathogenesis. In vivo, mammary tissue and milk samples were collected from healthy cows (n = 10) and mastitis cows (n = 10). The results of the study showed that compared with the control group, the mastitis tissue showed tissue damage, accumulation of collagen fibers, and the content of TGF-β1 in mammary tissue and milk was significantly increased; the level of inflammatory mediators was significantly increased; the fibrotic phenotype, collagen 1, α-SMA, vimentin gene, and protein levels were significantly increased, while the E-cadherin gene and protein levels were significantly decreased. In vitro, based on TGF-β1-induced bMECs, the above experimental results were further confirmed, and TGF-β1 significantly promoted the fibrotic phenotype of bMECs. On the other hand, in vivo results showed that fibrotic mammary tissue had a significantly stronger mitochondrial damage phenotype and significantly higher ROS than the control group. In vitro, the results also found that TGF-β1 induced a significant increase in the mitochondrial damage phenotype of bMECs, accompanied by a large amount of ROS production. Furthermore, in a TGF-β1-induced bMEC model, inhibiting the accumulation of ROS effectively alleviated the elevated fibrotic phenotype of TGF-β1-induced bMECs. In conclusion, the fibrotic phenotype of mammary gland tissue in dairy cows with mastitis was significantly increased, and mastitis disease was positively correlated with mammary fibrotic lesions. In an in vitro and in vivo model of cow mammary fibrosis, bMECs have impaired mitochondrial structure and dysfunction. Inhibiting the accumulation of ROS effectively alleviates the elevated fibrotic phenotype, which may be a potential therapeutic approach to alleviate mammary fibrosis.
Collapse
Affiliation(s)
- Xingchi Kan
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
- Zhijiang Laboratory, Kechuang Avenue, Hangzhou 311121, China
| | - Guiqiu Hu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Yiyao Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Ping Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Yaping Huang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Xiangyu Cai
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Wenjin Guo
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Shoupeng Fu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Juxiong Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| |
Collapse
|
19
|
Hu H, Hu Z, Zhang Y, Wan H, Yin Z, Li L, Liang X, Zhao X, Yin L, Ye G, Zou YF, Tang H, Jia R, Chen Y, Zhou H, Song X. Myricetin inhibits pseudorabies virus infection through direct inactivation and activating host antiviral defense. Front Microbiol 2022; 13:985108. [PMID: 36187970 PMCID: PMC9520584 DOI: 10.3389/fmicb.2022.985108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Myricetin, a polyhydroxyflavone compound, is one of the main ingredients of various human foods and therefore also known as dietary flavonoids. Due to the continuous emergence of resistant strains of herpesviruses, novel control measures are required. In the present study, myricetin exhibited potent antiviral activity against pseudorabies virus (PRV), a model organism of herpesvirus. The suppression rate could reach up to 96.4% at a concentration of 500 μM in cells, and the 50% inhibitory concentration (IC50) was 42.69 μM. Moreover, the inhibitory activity was not attenuated by the increased amount of infective dose, and a significant reduction of intracellular PRV virions was observed by indirect immunofluorescence. A mode of action study indicated that myricetin could directly inactivate the virus in vitro, leading to inhibition of viral adsorption, penetration and replication in cells. In addition to direct killing effect, myricetin could also activate host antiviral defense through regulation of apoptosis-related gene expressions (Bcl-2, Bcl-xl, Bax), NF-κB and MAPK signaling pathways and cytokine gene expressions (IL-1α, IL-1β, IL-6, c-Jun, STAT1, c-Fos, and c-Myc). In PRV-infected mouse model, myricetin could enhance the survival rate by 40% at 5 days post infection, and viral loads in kidney, liver, lung, spleen, and brain were significantly decreased. The pathological changes caused by PRV infection were improved by myricetin treatment. The gene expressions of inflammatory factors (MCP-1, G-CSF, IL-1α, IL-1β, and IL-6) and apoptotic factors (Bcl-xl, Bcl-2, and Bax) were regulated by myricetin in PRV-infected mice. The present findings suggest that myricetin can effectively inhibit PRV infection and become a candidate for development of new anti-herpesvirus drugs.
Collapse
Affiliation(s)
- Huaiyue Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Hu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., Dezhou, China
| | - Yingying Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, United States
- *Correspondence: Hao Zhou,
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Xu Song,
| |
Collapse
|
20
|
Du L, Zhang J, Zhang X, Li C, Wang Q, Meng G, Kan X, Zhang J, Jia Y. Oxypeucedanin relieves LPS-induced acute lung injury by inhibiting the inflammation and maintaining the integrity of the lung air-blood barrier. Aging (Albany NY) 2022; 14:6626-6641. [PMID: 35985771 PMCID: PMC9467393 DOI: 10.18632/aging.204235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Introduction: Acute lung injury (ALI) is commonly accompanied by a severe inflammatory reaction process, and effectively managing inflammatory reactions is an important therapeutic approach for alleviating ALI. Macrophages play an important role in the inflammatory response, and this role is proinflammatory in the early stages of inflammation and anti-inflammatory in the late stages. Oxypeucedanin is a natural product with a wide range of pharmacological functions. This study aimed to determine the effect of oxypeucedanin on lipopolysaccharide (LPS)-induced ALI. Methods and Results: In this study, the following experiments were performed based on LPS-induced models in vivo and in vitro. Using myeloperoxidase activity measurement, ELISA, qRT-PCR, and Western blotting, we found that oxypeucedanin modulated the activity of myeloperoxidase and decreased the expression levels of inflammatory mediators such as TNF-α, IL-6, IL-1β, MPO, COX-2 and iNOS in LPS-induced inflammation models. Meanwhile, oxypeucedanin inhibited the activation of PI3K/AKT and its downstream NF-κB and MAPK signaling pathways. In addition, oxypeucedanin significantly decreased the pulmonary vascular permeability, which was induced by LPSs, and the enhanced expression of tight junction proteins (Occludin and Claudin 3). Conclusions: In conclusion, this study demonstrated that the anti-inflammatory mechanism of oxypeucedanin is associated with the inhibition of the activation of PI3K/AKT/NF-κB and MAPK signaling pathways and the maintenance of the integrity of the lung air-blood barrier.
Collapse
Affiliation(s)
- Li Du
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinrong Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiyue Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Chunyan Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangping Meng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxi Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China.,Application Demonstration Center of Precision Medicine Molecular Diagnosis, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Zhou L, Li H, Hou G, Wang J, Zhou H, Wang D. Effects of Vine Tea Extract on Meat Quality, Gut Microbiota and Metabolome of Wenchang Broiler. Animals (Basel) 2022; 12:ani12131661. [PMID: 35804560 PMCID: PMC9265100 DOI: 10.3390/ani12131661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of vine tea (Ampelopsis grossedentata) extract (AGE) on meat quality, gut microbiota and cecal content metabolites of Wenchang broilers. A total of 240 female Wenchang broilers aged 70 days were randomly allocated into four groups with five replicates of twelve broilers each. Broilers were fed a corn-soybean basal diet supplemented with AGE at 0 (T1), 0.2% (T2), 0.4% (T3) and 0.6% (T4) until 124 days of age. The whole feeding trial lasted 54 days. Results suggest that the content of total triglycerides and low-density lipoprotein cholesterol in serum of broilers are linearly reduced with dietary AGE supplementation (p < 0.05). The T3 and T4 groups had higher (p < 0.05) a* value in thigh and breast muscles than the T1 group. Additionally, the dietary supplementation of AGE decreased the shear force and drip loss of both thigh and breast muscles linearly (p < 0.05). Compared with the T1 group, AGE supplementation increased the levels of inosine monophosphate (IMP) significantly (p < 0.05) in both the thigh and breast muscles. Furthermore, an increase (p < 0.05) in the total unsaturated fatty acid (USFA), polyunsaturated fatty acids (PUFA) and the ratio of unsaturated fatty acids to saturated fatty acid (USFA: SFA) in both the thigh and breast muscles in the T3 group was observed. Higher abundance of Bacteroidota (p < 0.05) and lower abundance of Firmicutes (p < 0.05) were observed in the T3 group. The abundance of Faecalibacterium was significantly decreased (p < 0.05) in the T3 group compared with the T1 group. Cholesterol sulfate and p-cresol sulfate were identified as differential metabolites between the T1 and T3 groups. It suggested that 0.4% of AGE supplementation significantly downregulated the levels of p-cresol sulfate and cholesterol sulfate (p < 0.05) and the hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity compared with the control. Our present study demonstrates that dietary supplementation with AGE can improve the quality and flavor by increasing the IMP and PUFA content in the muscle of Wenchang broilers. Furthermore, dietary AGE supplementation with 0.4% can regulate the cholesterol metabolism of Wenchang broilers.
Collapse
Affiliation(s)
- Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
| | - Hui Li
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (H.L.); (J.W.)
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
| | - Jian Wang
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (H.L.); (J.W.)
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Correspondence: (H.Z.); (D.W.)
| | - Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
- Correspondence: (H.Z.); (D.W.)
| |
Collapse
|
22
|
Prostaglandin D2 Attenuates Lipopolysaccharide-Induced Acute Lung Injury through the Modulation of Inflammation and Macrophage Polarization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acute lung injury (ALI) is a well-known respiratory disease and a leading cause of death worldwide. Despite advancements in the medical field, developing complete treatment strategies against this disease is still a challenge. In the current study, the therapeutic role of prostaglandin D2 (PGD2) was investigated on lipopolysaccharide (LPS)-induced lung injury in mice models and RAW264.7 macrophages through anti-inflammatory, histopathology, immunohistochemistry, and TUNEL staining. The overproduction of cytokines by RAW264.7 macrophages was observed after stimulation with LPS. However, pretreatment with PGD2 decreased the production of cytokines. The level of inflammatory markers was significantly restored in the PGD2 treatment group (TNF-α = 58.6 vs. 78.5 pg/mL; IL-1β = 29.3 vs. 36.6 pg/mL; IL-6 = 75.4 vs. 98.2 pg/mL; and CRP = 0.84 vs. 1.14 ng/mL). The wet/dry weight ratio of the lungs was quite significant in the disease control (LPS-only treatment) group. Moreover, the histological changes as determined by haematoxylin and eosin (H&E) staining clearly showed that PGD2 treatment maintains the lung tissue architecture. The iNOS expression pattern was increased in lung tissues of LPS-treated animals, whereas, in mice treated with PGD2, the expression of iNOS protein decreased. Flow cytometry data demonstrated that LPS intoxication enhanced apoptosis, which significantly decreased with PGD2 treatment. In conclusion, all these observations indicate that PGD2 provides an anti-inflammatory response in RAW264.7 macrophages and in ALI, and they suggest a therapeutic potential in lung pathogenesis.
Collapse
|
23
|
Huang F, Teng K, Liu Y, Wang T, Xia T, Yun F, Zhong J. Nisin Z attenuates lipopolysaccharide-induced mastitis by inhibiting the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways. J Dairy Sci 2022; 105:3530-3543. [PMID: 35181137 DOI: 10.3168/jds.2021-21356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Nisin Z is a possible alternative for treating bovine mastitis by inhibiting mastitis-causing pathogens and having anti-inflammatory activity. However, the anti-inflammatory mechanism of nisin Z on mastitis is unknown. Our study aimed to investigate the mechanisms of nisin Z on mastitis. Our results showed that nisin Z inhibited the activation of the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) signaling pathway, decreased the release of pro-inflammatory cytokines (i.e., tumor necrosis factor-α, IL-1β, and IL-6), and increased the anti-inflammatory cytokine (IL-10) in lipopolysaccharide (LPS)-induced MCF10A cells. After intraperitoneal injection, nisin Z significantly decreased inflammatory cell infiltration in the mammary gland, as well as decreased myeloperoxidase and pro-inflammatory cytokines in serum and mammary gland. Western blot analysis revealed that nisin Z also dramatically suppressed the activation of the ERK1/2 and p38 MAPK signaling pathways in LPS-induced mastitis mice. We also found that nisin Z treatment could enhance the blood-milk barrier. In summary, our study demonstrated that nisin Z exerted an anti-inflammatory effect by inhibiting the ERK1/2 and p38 MAPK signaling pathway and promoting the blood-milk barrier on LPS-induced mastitis.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfei Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Peng J, Chen X, Hou M, Yang K, Yang B, Wang P, Du Y, Yu Q, Ren J, Liu J. The TCM Preparation Feilike Mixture for the Treatment of Pneumonia: Network Analysis, Pharmacological Assessment and Silico Simulation. Front Pharmacol 2022; 13:794405. [PMID: 35295341 PMCID: PMC8918795 DOI: 10.3389/fphar.2022.794405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
The Feilike mixture (FLKM) is a valid prescription that is frequently used to assist in the clinical treatment of pneumonia. However, the mechanisms of its effects remain unclear. First, through literature evaluation, it was preliminarily determined that FLKM improved clinical symptoms, regulated immune inflammation response and ameliorated pulmonary function. Then, via database search and literature mining, 759 targets of the 104 active compounds of FLKM were identified. The component-target (CT) network showed that the key active compositions were resveratrol, stigmasterol, beta-sitosterol, sesamin, and quercetin. 115 targets overlapped with pneumonia-related targets. The protein-protein interaction (PPI) network identified TNF, AKT1, IL6, JUN, VEGFA and MAPK3 as hub targets. KEGG analyses found that they were mainly enriched in immune related pathway. Next, in vivo experiment, we observed that FLKM ameliorated pathological injury of lung tissue and reduced neutrophil infiltration in rats with LPS-induced pneumonia. And FLKM decreased the concentration of TNF-α and IL-6 in BALF and downregulated the expression of p38MAPK, AKT and VEGFA in lung tissue. Finally, Molecular docking tests showed tight docking of these predicted targeted proteins with key active compounds. Molecular dynamics simulation was employed to assess stability and flexibility of receptor-ligand. Among them, AKT1- stigmasterol bound more stably, and their binding free energies were −47.91 ± 1.62 kcal/mol. This study revealed core compositions and targets for FLKM treating pneumonia and provided integrated pharmacological evidence to support its clinical efficacy.
Collapse
Affiliation(s)
- Juqin Peng
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Chen
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Hou
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Kuo Yang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Bing Yang
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pan Wang
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Du
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junguo Ren, ; Jianxun Liu,
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junguo Ren, ; Jianxun Liu,
| |
Collapse
|
25
|
Lebda MA, Elmassry IH, Taha NM, Elfeky MS. Nanocurcumin alleviates inflammation and oxidative stress in LPS-induced mastitis via activation of Nrf2 and suppressing TLR4-mediated NF-κB and HMGB1 signaling pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8294-8305. [PMID: 34482462 DOI: 10.1007/s11356-021-16309-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Coliform mastitis is a worldwide serious disease of the mammary gland. Curcumin is a pleiotropic polyphenol obtained from turmeric, but it is hydrophobic and rapidly eliminated from the body. However, nanoformulation of curcumin significantly improves its pharmacological activity by enhancing its hydrophobicity and oral bioavailability. Our study aimed to investigate the possible antioxidant and anti-inflammatory effects of nanocurcumin as a prophylactic against LPS-induced coliform mastitis in rat model, where LPS was extracted from a field strain of Escherichia coli (bovine mastitis isolate). The study was conducted on twenty lactating Wistar female rats divided into four equal groups, and the mastitis model was initiated by injection of LPS through the duct of the mammary gland. The results showed that nanocurcumin significantly attenuated the lipid peroxidation (MDA), oxidized glutathione, the release of pro-inflammatory cytokines (TNF-α and IL-1β), and the gene expression of TLR4, NF-κB p65, and HMGB1. Meanwhile, it improved the reduced glutathione level and Nrf2 activity and preserved the normal alveolar architecture. These findings suggested that nanocurcumin supplementation can be a promising potential protective approach for coliform mastitis.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Ingi H Elmassry
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nabil M Taha
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed S Elfeky
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Ran X, Liu J, Fu S, He F, Li K, Hu G, Guo W. Phytic Acid Maintains the Integrity of the Blood-Milk Barrier by Regulating Inflammatory Response and Intestinal Flora Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:381-391. [PMID: 34969251 DOI: 10.1021/acs.jafc.1c06270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The destruction of the blood-milk barrier (BMB) caused by the mammary inflammatory response (MIR) is one of the main reasons that hinders breastfeeding. To relieve the inflammatory response and maintain BMB, we found that phytic acid (PA) has good anti-inflammatory activity. Therefore, we focused on researching the influence and mechanism of PA on BMB and MIR. We constructed a mammary inflammatory response model using lipopolysaccharide (LPS) in vivo, and we used mammary epithelial cells (mMECs) to construct a cell inflammatory response model in vitro. The results showed that PA alleviated mammary tissue damage and reduced the production of inflammatory mediators (such as IL-1β and iNOS) in mammary tissue and mMECs. PA also maintained the integrity of the BMB in mice by increasing the expression of tight junction proteins. 16S rDNA high-throughput sequencing showed that PA significantly ameliorated the intestinal flora of model mice. Mechanism studies showed that PA exerted an anti-MIR effect by inhibiting the AKT/NF-κB signaling pathway. In summary, our study found that PA maintains the integrity of BMB by regulating the inflammatory response and intestinal flora structure.
Collapse
Affiliation(s)
- Xin Ran
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Fuding He
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Kefei Li
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
27
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
28
|
Cis-9, Trans-11 CLA Alleviates Lipopolysaccharide-Induced Depression of Fatty Acid Synthesis by Inhibiting Oxidative Stress and Autophagy in Bovine Mammary Epithelial Cells. Antioxidants (Basel) 2021; 11:antiox11010055. [PMID: 35052560 PMCID: PMC8773093 DOI: 10.3390/antiox11010055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is the dominating endotoxin of Gram-negative bacteria, which can cause mastitis. Bovine mammary epithelial cells (BMECs), as major components of the mammary gland, usually suffer LPS challenge. Cis-9, trans-11 conjugated linoleic acid (CLA) has been reported to have anti-inflammatory characteristics, while its anti-oxidative ability to maintain cellular homeostasis in BMECs under LPS challenge is limited. Therefore, we studied whether cis-9, trans-11 CLA can restore the disturbance of cellular homeostasis indicated by the redox status and autophagy level caused by LPS and have an effect on cellular function- milk fat metabolism. For oxidative stress, LPS challenge promoted the formation of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) and decreased the concentration of glutathione. Anti-oxidative signaling regulated by transcription factor nuclear factor, erythroid 2 like 2 (Nrf2) was also depressed by LPS at the mRNA and protein level. However, cis-9, trans-11 CLA pretreatment downregulated the formation of ROS and TBARS and upregulated the expression of antioxidative enzymes. As a part of innate immunity, autophagy was also motivated by LPS challenge, while CLA decreased the autophagy level. LPS and H2O2 inhibited milk fat synthesis-related transcription factor sterol regulatory element binding protein (SREBP1), peroxisome proliferator activated receptor gamma (PPARG) and their downstream enzymes. Furthermore, 50 uM cis-9, trans-11 CLA promoted the mRNA and protein abundance of milk fat synthesis-related genes and lipid droplet formation in BMECs. In conclusion, LPS challenge disturbed the cellular homeostasis and depressed milk fat synthesis in BMECs; while cis-9, trans-11 CLA alleviated oxidative stress and decreased autophagy level, thus promoting milk fat synthesis, which offers a natural therapeutic strategy for mastitis.
Collapse
|
29
|
Selenium and Taurine Combination Is Better Than Alone in Protecting Lipopolysaccharide-Induced Mammary Inflammatory Lesions via Activating PI3K/Akt/mTOR Signaling Pathway by Scavenging Intracellular ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5048375. [PMID: 34938382 PMCID: PMC8687852 DOI: 10.1155/2021/5048375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.
Collapse
|
30
|
Kan X, Liu J, Cai X, Huang Y, Xu P, Fu S, Guo W, Hu G. Tartary buckwheat flavonoids relieve the tendency of mammary fibrosis induced by HFD during pregnancy and lactation. Aging (Albany NY) 2021; 13:25377-25392. [PMID: 34890369 PMCID: PMC8714130 DOI: 10.18632/aging.203752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Mammary gland fibrosis is a chronic and irreversible disease. Tartary buckwheat flavonoids (TBF) are a natural product of flavonoid extracts from buckwheat and have a wide range of biological activities. The purpose of this experiment was to explore whether HFD during pregnancy and lactation induces fibrosis of the mammary tissue and whether TBF alleviates the damage caused by HFD, along with its underlying mechanism. The HFD significantly increased the levels of TNF-α, IL-6, IL-1β, and MPO; significantly damaged the integrity of the blood-milk barrier; significantly increased the levels of collagen 1, vimentin and α-SMA, and reduced the level of E-cadherin. However, these effects were alleviated by TBF. Mechanistic studies showed that TBF inhibited the activation of AKT/NF-κB signaling and predicted the AKT amino acid residues that formed hydrogen bonds with TBF; in addition, these studies not only revealed that TBF promoted the expression of the tight junction proteins (TJs) claudin-3, occludin and ZO-1 and inhibited the activation of TGF-β/Smad signaling but also predicted the Smad MH2 amino acid residues that formed hydrogen bonds with TBF. Conclusion: HFD consumption during pregnancy and lactation induced the tendency of mammary fibrosis. TBF alleviated the tendency of mammary fibrosis by inhibiting the activation of AKT/NF-κB, repairing the blood-milk barrier and inhibiting the activation of TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiangyu Cai
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yaping Huang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ping Xu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guiqiu Hu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
32
|
PPARα agonist relieves spinal cord injury in rats by activating Nrf2/HO-1 via the Raf-1/MEK/ERK pathway. Aging (Albany NY) 2021; 13:24640-24654. [PMID: 34799468 PMCID: PMC8660597 DOI: 10.18632/aging.203699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
Objective: To observe the inhibitory effects of the peroxisome proliferator-activated receptor alpha (PPARα) agonist palmitoylethanolamide (PEA) on inflammatory responses and oxidative stress injury in rats with spinal cord injury (SCI). Methods: The SCI rat model was established using modified Allen's method and the changes in rats’ joint motion were observed by Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) at 1, 3 and 7 days after modeling, HE Staining and Nissl Staining has been carried out to evaluate the pathological lesion of spinal cords in rats. Besides, Immunohistochemical (IHC) was performed to detect the reactive oxygen species (ROS), expression levels of acrylamide (ACR) and manganese superoxide dismutase (MnSOD) in rat spinal cords, and Western Blotting was applied to measure protein expression levels of nuclear factor-kappa B (NF-κB), B cell lymphoma-2 (Bcl-2), BCL-2 associated X (BAX), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated (p)-Akt, HO-1, Nrf2, trithorax-1 (TRX-1), Raf-1, MEK, ERK, p-MEK and p-ERK. Results: The PPARα agonist PEA could alleviate SCI in rats, inhibit inflammatory responses, mitigate oxidative stress injury, reduce the apoptotic rate and promote SCI rats motor function recovery. In addition, the PPARα agonist PEA was able to activate the phosphorylation of MEK and ERK, stimulate Nrf-2 translocation into the nucleus and up-regulate the expressions of HO-1 and TRX-1. Conclusion: PPARα agonist PEA can relieve SCI in rats by inhibiting inflammatory responses and oxidative stress, which may involve a mechanism associated with the activation of Nrf2/HO-1 via the Raf-1/MEK/ERK pathway.
Collapse
|
33
|
Kan X, Chen Y, Huang B, Fu S, Guo W, Ran X, Cao Y, Xu D, Cheng J, Yang Z, Xu Y. Effect of Palrnatine on lipopolysaccharide-induced acute lung injury by inhibiting activation of the Akt/NF -κB pathway. J Zhejiang Univ Sci B 2021; 22:929-940. [PMID: 34783223 DOI: 10.1631/jzus.b2000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inflammation plays an important role in the development of acute lung injury (ALI). Severe pulmonary inflammation can cause acute respiratory distress syndrome (ARDS) or even death. Expression of proinflammatory interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) in the process of pulmonary inflammation will further exacerbate the severity of ALI. The purpose of this study was to explore the effect of Palrnatine (Pa) on lipopolysaccharide (LPS)-induced mouse ALI and its underlying mechanism. Pa, a natural product, has a wide range of pharmacological activities with the potential to protect against lung injury. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to detect the expression and translation of inflammatory genes and proteins in vitro and in vivo. Immunoprecipitation was used to detect the degree of P65 translocation into the nucleus. We also used molecular modeling to further clarify the mechanism of action. The results showed that Pa pretreatment could significantly inhibit the expression and secretion of the inflammatory cytokine IL-1β, and significantly reduce the protein level of the proinflammatory protease iNOS, in both in vivo and in vitro models induced by LPS. Further mechanism studies showed that Pa could significantly inhibit the activation of the protein kinase B (Akt)/nuclear factor-κB (NF-κB) signaling pathway in the LPS-induced ALI mode and in LPS-induced RAW264.7 cells. Through molecular dynamics simulation, we observed that Pa was bound to the catalytic pocket of Akt and effectively inhibited the biological activity of Akt. These results indicated that Pa significantly relieves LPS-induced ALI by activating the Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yingsheng Chen
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Bingxu Huang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Xin Ran
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Dianwen Xu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Ji Cheng
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Zhanqing Yang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yanling Xu
- Department of Respiratory Medicine, the Second Hospital, Jilin University, Changchun 130012, China.
| |
Collapse
|
34
|
Zhang X, Du L, Zhang J, Li C, Zhang J, Lv X. Hordenine Protects Against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation. Front Pharmacol 2021; 12:712232. [PMID: 34539399 PMCID: PMC8440820 DOI: 10.3389/fphar.2021.712232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
Acute lung injury (ALI) is a respiratory disease that leads to death in severe cases. Hordenine (Hor), a barley-derived natural product, has various biological activities, including anti-inflammatory, and anti-oxidation activities. We investigated the effect of Hor on lipopolysaccharide-induced ALI and its potential mechanism. The anti-inflammatory effects of Hor were detected using in vivo and in vitro models by enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blotting, and molecular docking simulations. Hor inhibited increases in the levels of inflammatory factors both in vivo and in vitro, and its anti-inflammatory effect inhibited activation of protein kinase B, nuclear factor-κB, and mitogen-activated protein kinase signaling. Hor alleviated lipopolysaccharide-induced ALI by inhibiting inflammatory cytokine increases in vivo and in vitro and shows potential for preventing inflammatory disease.
Collapse
Affiliation(s)
- Xiyue Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Li Du
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jinrong Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chunyan Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Kan X, Hu G, Huang B, Guo W, Huang Y, Chen Y, Xu P, Cai X, Fu S, Liu J. Pedunculoside protects against LPS-induced mastitis in mice by inhibiting inflammation and maintaining the integrity of blood-milk barrier. Aging (Albany NY) 2021; 13:19460-19474. [PMID: 34383710 PMCID: PMC8386561 DOI: 10.18632/aging.203357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 04/17/2023]
Abstract
Mastitis is a disease that seriously threatens the health of the mammary gland after delivery. Pedunculoside (PE) is the main bioactive component of Aquifoliaceae. The purpose of this experiment is to explore the effects of PE on mastitis and its underlying mechanisms. Our research results showed that PE could significantly inhibit the increase in the levels of inflammatory mediators such as TNF-α, IL-6, IL-1β, MPO and iNOS during mastitis. Mechanism studies have found that PE could significantly inhibit the phosphorylation of AKT protein and binds to the ASP-184 site. Further research found that PE also inhibited the activation of AKT's downstream pro-inflammatory signals NF-κB and MAPK. In addition, PE effectively promote the expression of tight junction proteins occludin and claudin-3 during inflammation, maintaining the integrity of the blood-milk barrier. In summary, our research shows that PE inhibits the phosphorylation of AKT/NF-κB and MAPK signals; It also relieves mastitis by repairing the blood-milk barrier.
Collapse
Affiliation(s)
- Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guiqiu Hu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Bingxu Huang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yaping Huang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yingsheng Chen
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ping Xu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiangyu Cai
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Li Y, Yang Y, Shao Y, Sun Y, Si H, Miao J, Xu Y. Chitosan functionalized graphene oxide nanocomposites for fluorescence imaging of apoptotic processes and targeted anti-inflammation study. Carbohydr Polym 2021; 269:118345. [PMID: 34294352 DOI: 10.1016/j.carbpol.2021.118345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022]
Abstract
This work reports novel chitosan functionalized graphene oxide (GO) nanocomposites combined fluorescence imaging and therapeutic functions in one agent, which can serve as a promising alternative to alleviate related diseases caused hyperinflammation. Briefly, GO was designed to be conjugated with chitosan, fluorescein-labeled peptide, toll-like receptor 4 antibody and hydroxycamptothecin/aloe emodin. We have demonstrated that such nanocomposites could effectively achieve active targeted delivery of pro-apoptotic and anti-inflammatory drugs into inflammatory cells and cause cells apoptosis by acid-responsive drug release. Moreover, confocal fluorescence imaging confirms that the drug-induced inflammatory cells apoptosis could be visualized the light-up fluorescence of fluorescein activated by caspase-3. Meanwhile, inflammatory-related biomarkers have down-regulated after the nanocomposites' treatment in both vitro and vivo experiments consistent with the results in histological sections. In summary, the bifunctional nanocomposites that possess anti-inflammation and fluorescence imaging could serve as a promising therapeutic agent for reducing hyperinflammation caused by numerous diseases.
Collapse
Affiliation(s)
- Yi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yazhi Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingge Shao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
37
|
Kan X, Liu J, Chen Y, Guo W, Xu D, Cheng J, Cao Y, Yang Z, Fu S. Protective effect of myricetin on LPS-induced mastitis in mice through ERK1/2 and p38 protein author. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1727-1735. [PMID: 34057544 DOI: 10.1007/s00210-021-02069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/15/2021] [Indexed: 12/01/2022]
Abstract
The inflammatory reaction of mammary gland tissue in dairy cattle leads to the occurrence of mastitis disease and causes huge economic loss. Myricetin (Myr), a flavonoid natural product, is extracted from the root, stem, and leaves of Myrica rubra. It has a wide range of biological activities, such as anti-oxidant, anti-inflammatory, and anti-tumor. The purpose of this experiment is to further explore the effect of Myr on mastitis and further explore its potential mechanism in LPS-induced mice mastitis model and LPS-induced mice mammary epithelial cells (mMECs). The results showed that Myr could significantly inhibit the expression of TNF-α, IL-6, and IL-1β in the mammary gland of mice. Furthermore, the results of mechanism studies show that Myr can significantly inhibit P38 and ERK1/2 protein phosphorylation levels in mice mammary tissue, and this result has been further verified at the cellular level. These results confirm that Myr can significantly inhibit mammary inflammation, and its potential mechanism is to play a protective role by inhibiting the phosphorylation level of P38 and ERK1/2 protein.
Collapse
Affiliation(s)
- Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Yingsheng Chen
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Dianwen Xu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Ji Cheng
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Zhanqing Yang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.
| |
Collapse
|
38
|
Sang H, Huang Y, Tian Y, Liu M, Chen L, Li L, Liu S, Yang J. Multiple modes of action of myricetin in influenza A virus infection. Phytother Res 2021; 35:2797-2806. [PMID: 33484023 DOI: 10.1002/ptr.7025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Influenza A virus remains a major threat to public health worldwide after its first pandemic. Scientists keep searching novel anti-influenza drugs, of which natural products present to be an important source. Myricetin, a natural flavonol compound, which exists in many edible plants, which has a wide range of biological activities, but its anti-influenza A virus activity is ambiguous. This study aims to evaluate the anti-influenza activity of myricetin and elucidate its underlying mechanism. Our results demonstrated that myricetin could significantly inhibit influenza A virus replication, reduce viral polymerase activity via selective inhibition of viral PB2 subunit, and the production of inflammatory cytokines by inhibiting TLR3 signaling pathway. The binding affinity analysis and the result of molecular docking revealed that myricetin interacted with the PB2 cap-binding pocket of influenza A virus. The above results suggested myricetin could exhibit anti-influenza virus activity with low cytotoxicity as well, and myricetin had low toxicity in BALB/c mice in vivo. Results from this study highlighted myricetin could be considered as a promising anti-influenza virus agent with dual inhibition profile. Furthermore, the compound with similar structure would provide a new option for the development of novel inhibitors against influenza A virus.
Collapse
Affiliation(s)
- Huiting Sang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yingna Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Miaomiao Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liurong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Wellnitz O, Bruckmaier RM. Invited review: The role of the blood-milk barrier and its manipulation for the efficacy of the mammary immune response and milk production. J Dairy Sci 2021; 104:6376-6388. [PMID: 33773785 DOI: 10.3168/jds.2020-20029] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
The intact blood-milk barrier (BMB) prevents an uncontrolled exchange of soluble and cellular components between blood and milk in the mammary gland. It enables the sustainability of the optimal milk composition for the nourishment of the offspring. Endothelial cells, connective tissue, the basal membrane, and mainly the epithelial cells provide the semipermeability of this barrier, allowing only a selective transfer of components necessary for milk production. The epithelial cells are closely connected to each other by different formations, in which the tight junctions are the most critical for separating the milk-containing compartments from the surrounding extracellular fluid and vasculature. During mastitis, the integrity of the BMB is reduced. This facilitates the transfer of immune cells and immune factors such as antibodies from blood into milk. Simultaneously, the transfer of soluble blood constituents without an obvious immune function into milk is promoted. Furthermore, a reduced BMB integrity causes a loss of milk constituents into the blood circulation. Different mechanisms are responsible for the barrier impairment including tight junction opening, but also cell degradation. To promote the cure of mastitis, the targeted manipulation of the BMB permeability may be a tool to optimize the immune function of the mammary gland. An intensified opening of the BMB supports the antibody transfer from blood into milk, which is supposed to increase the contribution of the specific immune system in the immune defense. On the contrary, a fast closure of the BMB during the recovery from mastitis can accelerate the normalization of milk composition and milk yield. Various agents have been experimentally shown to either open (e.g., pathogens and pathogen-associated molecular patterns, several nonsteroidal anti-inflammatory drugs, oxytocin, calcium chelators) or close (e.g., glucocorticoids, nonsteroidal anti-inflammatory drugs, natural anti-inflammatory drugs) the BMB.
Collapse
Affiliation(s)
- O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
40
|
Chen M, Chen Z, Huang D, Sun C, Xie J, Chen T, Zhao X, Huang Y, Li D, Wu B, Wu D. Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB pathway. Pulm Pharmacol Ther 2021; 65:102000. [PMID: 33601000 DOI: 10.1016/j.pupt.2021.102000] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although myricetin exerts anti-inflammation, anti-cancer, and anti-oxidation effects, the relationship between myricetin and tumor necrosis factor alpha (TNF-α) -stimulated inflammation in A549 cells remains unclear. This study sought to assess whether myricetin has an anti-inflammatory effect on TNF-α-induced A549 cells and clarify the potential mechanisms. METHODS Cell viability was examined with a Cell Counting Kit-8, and cytokine levels were determined by enzyme-linked immunosorbent assay and reverse transcription-quantitative PCR. Potential mechanisms were further explored by western blotting, immunofluorescence, and SIRT1 activity assays. RESULTS In A549 cells, TNF-α stimulation upregulated the production of interleukin-6 (IL-6) and interleukin-8 (IL-8). Moreover, TNF-α activated the nuclear factor-κB (NF-κB) pathway, as confirmed by IκB-α degradation, and phosphorylation and nuclear migration of NF-κB p65. However, pretreatment with myricetin significantly attenuated the observed responses triggered by TNF-α. Mechanistically, myricetin strongly increased the deacetylase activity through decreasing phosphorylation, but not expression, of sirtuin-1 (SIRT1) in TNF-α-stimulated A549 cells. Myricetin-mediated SIRT1 activation was further evidenced by the decreased acetylation of NF-κB p65 and p53. Subsequently, all of these concurrent changes were reversed by the addition of salermide (SIRT1 inhibitor), illustrating the critical role of SIRT1 in mediation of anti-inflammatory processes by myricetin. CONCLUSIONS Myricetin, an enhancer of SIRT1, inhibited TNF-α-induced NF-κB activation in A549 cells, therefore, reducing their inflammatory response. Our findings provide insight for novel therapies for inflammation-related diseases, such as asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Min Chen
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Ziyu Chen
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dan Huang
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chaoqun Sun
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinye Xie
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Tingting Chen
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xuanna Zhao
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yujie Huang
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dongming Li
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bin Wu
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Wu
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
41
|
Ali I, Yang M, Wang Y, Yang C, Shafiq M, Wang G, Li L. Sodium propionate protect the blood-milk barrier integrity, relieve lipopolysaccharide-induced inflammatory injury and cells apoptosis. Life Sci 2021; 270:119138. [PMID: 33524422 DOI: 10.1016/j.lfs.2021.119138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
AIMS Sodium propionate (SP) has been reported to possess an anti-inflammatory and anti-apoptotic potential by inhibiting certain signaling pathways and helps in reducing the pathological damages of the mammary gland. However, the effects of sodium propionate on attenuating Lipopolysaccharide (LPS)-induced inflammatory condition and cell damage in bovine mammary epithelial cells (bMECs) are not comprehensively studied yet. Therefore, the aim of the current investigation was to evaluate the protective effects of sodium propionate on LPS-induced inflammatory conditions and to clarify the possible underlying molecular mechanism in bMECs. MAIN METHODS The effects of increasing doses of SP on LPS-induced inflammation, oxidative stress and apoptosis was studied in vitro. Furthermore, the underlying protective mechanisms of SP on LPS-stimulated bMECs was investigated under different experimental conditions. KEY FINDINGS The results reveled that increased inflammatory cytokines, chemokines and those of tight junction's mRNA expression was significantly attenuated dose-dependently by propionate. Biochemical analysis revealed that propionate pretreatment modulated the LPS-induced intercellular reactive oxygen species (ROS) accumulation, oxidative and antioxidant factors and apoptosis rate. Furthermore, we investigated that the LPS activated nuclear factor-kB (NF-kB), caspase/Bax apoptotic pathways and Histone deacetylases (HDAC) was significantly attenuated by propionate in bMECs. SIGNIFICANCE Our results suggest that sodium propionate is a potent agent for ameliorating LPS-mediated cellular disruption and limiting detrimental inflammatory responses, partly via maintaining blood milk barrier integrity, inhibiting HDAC activity and NF-kB signaling pathway.
Collapse
Affiliation(s)
- Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiru Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Caixia Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Shafiq
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Guo H, Chen YF, Tang Y, Qian JQ. Method for enhancing bioavailability of myricetin based on self-assembly of casein-myricetin nanomicelles. IET Nanobiotechnol 2021; 14:239-244. [PMID: 32338633 DOI: 10.1049/iet-nbt.2018.5431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In order to expand the application in the medical field and enhance pharmacological effects, casein-myricetin nanomicelles were prepared by the self-assembly method and characterised by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. The parameters in self-assembly were optimised according to the factors of particle size, encapsulation yield, and drug loading. The result showed a pH of 5.5, a casein concentration of 2 mg/ml, a mass ratio of casein to myricetin of 8:1, ultrasonic power of 300 W, ultrasonic time of 5 min and ethanol volume of 7 ml were the optimal conditions. The situ cycle intestinal perfusion methods indicated that casein-myricetin nanomicelles can be more easily absorbed by small intestine than myricetin standard sample. Therefore, casein micelles are effective for improving the water solubility of myricetin.
Collapse
Affiliation(s)
- Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yun Fei Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yi Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Qing Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
43
|
Nrf2-ARE Signaling Partially Attenuates Lipopolysaccharide-Induced Mammary Lesions via Regulation of Oxidative and Organelle Stresses but Not Inflammatory Response in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8821833. [PMID: 33505589 PMCID: PMC7810562 DOI: 10.1155/2021/8821833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 11/30/2022]
Abstract
The incidence of mastitis is high during the postpartum stage, which causes severe pain and hinders breast feeding in humans and reduces milk production in dairy cows. Studies suggested that inflammation in multiple organs is associated with oxidative stress and nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element pathway is one of the most important antioxidant pathways, but the effects of Nrf2 on antioxidation in the mammary gland during mastitis are still unclear. In this study, intramammary lipopolysaccharide (LPS) challenge was carried out in wild-type (WT) and Nrf2 knockout mice. Results showed that the expression of Nrf2 affected the expression of milk protein genes (Csn2 and Csn3). Importantly, LPS treatment increased the expression of Nrf2 and HO-1 and the content of glutathione in the mammary gland of WT mice, but not in Nrf2(-/-) mice. The expression levels of glutathione synthesis genes (GCLC, GCLM, and xCT) were lower in Nrf2(-/-) mice than in WT mice. Moreover, mitochondrial-dependent apoptotic and endoplasmic reticulum stress were significantly relieved in WT mice compared with that in Nrf2(-/-) mice. In summary, the expression of Nrf2 may play an important role in prevention of oxidative and organelle stresses during endotoxin-induced mastitis in mouse mammary gland.
Collapse
|
44
|
Dioscin Improves Pyroptosis in LPS-Induced Mice Mastitis by Activating AMPK/Nrf2 and Inhibiting the NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8845521. [PMID: 33488936 PMCID: PMC7790561 DOI: 10.1155/2020/8845521] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Dioscin, a natural steroid saponin, has been shown to have anti-inflammatory effects, but its protective mechanism against mastitis is still unknown. NLRP3 inflammasome and pyroptosis play important roles in the pathogenesis of many inflammatory diseases, including mastitis. The purpose of this study was to explore the effect of dioscin on lipopolysaccharide- (LPS-) induced mastitis in vivo and in vitro and its mechanism of action. In vivo experiments, dioscin can reduce the inflammatory lesions and neutrophil motility in mammary tissue. Moreover, dioscin also can reduce the production of proinflammatory factors such as interleukin-1 beta (IL-1β) and inhibit the activation of NLRP3 inflammasome in LPS-induced mice mastitis. In vitro experiments, the results showed that dioscin inhibited the inflammatory response and the activation of NLRP3 inflammasome, but the survival rate of mouse mammary epithelial cells (mMECs) induced by LPS+ATP is increased. Subsequently, the experiment convinces that dioscin can reduce LPS+ATP-induced mMEC pyroptosis by adding Ac-DEVD-CHO (a caspase-3 inhibitor). Further mechanistic studies demonstrate that dioscin can activate AMPK/Nrf2 to inhibit NLRP3/GSDMD-induced mMEC pyroptosis. In summary, this paper reveals a novel function of dioscin on mMEC pyroptosis and provides a new potential therapy of dioscin for the treatment and prevention of mastitis.
Collapse
|
45
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
46
|
Xu Z, Lin R, Hou X, Wu J, Zhao W, Ma H, Fan Z, Li S, Zhu Y, Zhang D. Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264.7 cells via activating TLR4-MAPK-NF-κB signaling pathway. Int J Biol Macromol 2020; 164:4329-4338. [DOI: 10.1016/j.ijbiomac.2020.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/29/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
|
47
|
Chen Y, Liu C, Zhou P, Li J, Zhao X, Wang Y, Chen R, Song L, Zhao H, Yan H. Liraglutide reduces coronary endothelial cells no-reflow damage through activating MAPK/ERK signaling pathway. J Recept Signal Transduct Res 2020; 41:553-557. [PMID: 33045879 DOI: 10.1080/10799893.2020.1833921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|
48
|
Dehydroandrographolide inhibits mastitis by activating autophagy without affecting intestinal flora. Aging (Albany NY) 2020; 12:14050-14065. [PMID: 32702668 PMCID: PMC7425474 DOI: 10.18632/aging.103312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Mastitis can seriously damage the physical and mental health of lactating women. The use of antibiotics and anti-inflammatory drugs may damage the flora balance in lactating women. To alleviate mastitis in lactating women and reduce drug-induced damage to the flora, we found that dehydroandrographolide (Deh) has good anti-inflammatory and bacterial balance functions. In vivo, we found that Deh significantly inhibited the expression of MPO, IL6, IL-1β, TNF-α, COX2 and iNOS and reduced pathological damage to the mammary gland. The feces in the control and Deh groups were collected and sequenced for 16S flora. The results showed that Deh did not change the primary intestinal microflora composition of the two groups. In vitro, our study showed that Deh significantly inhibited the expression of IL6, IL-1β and TNF-α in the EpH4-Ev cell line. When an AMPK inhibitor was added, the anti-inflammatory effect of Deh was blocked. To further study the anti-inflammatory mechanism of Deh, we found that Deh significantly promoted autophagy through the phosphorylation of AMPK, Beclin and ULK1. In conclusion, our study found that Deh promoted autophagy and played an anti-inflammatory role by activating the AMPK/Beclin/ULK1 signaling pathway and did not affect intestinal flora.
Collapse
|
49
|
Vanillin protects lipopolysaccharide-induced acute lung injury by inhibiting ERK1/2, p38 and NF-κB pathway. Future Med Chem 2020; 11:2081-2094. [PMID: 31538519 DOI: 10.4155/fmc-2018-0432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Thus far, the anti-inflammatory effect of vanillin in acute lung injury (ALI) has not been studied. This study aimed to investigate the effect of vanillin in lipopolysaccharide (LPS)-induced ALI. Results & methodology: Our study detected the anti-inflammatory effects of vanillin by ELISA and western blot, respectively. Pretreatment of mice with vanillin significantly attenuated LPS-stimulated lung histopathological changes, myeloperoxidase activity and expression levels of proinflammatory cytokines by inhibiting the phosphorylation activities of ERK1/2, p38, AKT and NF-κB p65. In addition, vanillin inhibited LPS-induced TNF-α and IL-6 expression in RAW264.7 cells via ERK1/2, p38 and NF-κB signaling. Conclusion: Vanillin can inhibit macrophage activation and lung inflammation, which suggests new insights for clinical treatment of ALI.
Collapse
|
50
|
Gao J, Liu YC, Wang Y, Li H, Wang XM, Wu Y, Zhang DR, Gao S, Qi ZL. Impact of yeast and lactic acid bacteria on mastitis and milk microbiota composition of dairy cows. AMB Express 2020; 10:22. [PMID: 31997024 PMCID: PMC6987887 DOI: 10.1186/s13568-020-0953-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
This experiment was conducted to evaluate the impact of yeast and lactic acid bacteria (LAB) on mastitis and milk microbiota composition of dairy cows. Thirty lactating Holstein cows with similar parity, days in milk were randomly assigned to five treatments, including: (1) Health cows with milk SCC < 500,000 cells/mL, no clinical signs of mastitis were found, fed basal total mixed ration (TMR) without supplementation (H); (2) Mastitis cows with milk SCC > 500,000 cells/mL, fed basal TMR without supplementation (M); (3) Mastitis cows fed basal TMR supplemented with 8 g day-1 yeast (M + Y); (4) Mastitis cows fed basal TMR supplemented with 8 g day-1 LAB (M + L); (5) Mastitis cows (milk SCC > 500,000 cells/mL) fed basal TMR supplemented with 4 g day-1 yeast and 4 g day-1 LAB (M + Y + L). Blood and milk sample were collected at day 0, day 20 and day 40. The results showed efficacy of probiotic: On day 20 and day 40, milk SCC in H, M + Y, M + L, M + Y + L was significantly lower than that of M (P < 0.05). Milk concentration of TNF-α, IL-6 and IL-1β in M + Y + L were significantly reduced compared with that of M on day 40 (P < 0.05). Milk Myeloperoxidase (MPO) and N-Acetyl-β-D-Glucosaminidase (NAG) activity of M + Y, M + L, M + L + Y were lower than that of M on day 40 (P < 0.05). At genus level, Staphylococcus, Chryseobacterium and Lactococcus were dominant. Supplementation of LAB decreased abundance of Enterococcus and Streptococcus, identified as mastitis-causing pathogen. The results suggested the potential of LAB to prevent mastitis by relieving mammary gland inflammation and regulating milk microorganisms.
Collapse
|