1
|
Ji Y, Hu Y, Feng Y, Liu L, Chen Z, Shen H, Han Y, Xu H, Lao L. Mitochondrial 'Birth-Death' coordinator: An intelligent hydrogen nanogenerator to enhance intervertebral disc regeneration. Biomaterials 2025; 313:122764. [PMID: 39190941 DOI: 10.1016/j.biomaterials.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.
Collapse
Affiliation(s)
- Yucheng Ji
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China
| | - Yuwei Hu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, PR China
| | - Yubo Feng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China
| | - Lei Liu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, PR China
| | - Zhanyi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China
| | - Yingchao Han
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China.
| | - He Xu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, PR China.
| | - Lifeng Lao
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China.
| |
Collapse
|
2
|
Yuan M, Han Z, Somayaji Y, Nguyen N, Hu H, Madhu LN, Attaluri S, Kodali M, Yang Y, Hsu YC, Ahuja A, Srinivasan R, Pellois JP, Zhou HC, Shetty AK, Wang Y. Intranasal delivery of metformin using metal-organic framework (MOF)-74-Mg nanocarriers. ADVANCED COMPOSITES AND HYBRID MATERIALS 2025; 8:131. [PMID: 39834534 PMCID: PMC11742004 DOI: 10.1007/s42114-025-01227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Dosage tolerance is one of the translational challenges of using metformin (Met) in brain therapeutics. This paper presents metal-organic framework (MOF)-74-Mg nanocarriers (NCs) for intranasal (IN) delivery of brain-specific agents with a prolonged release time. We confirmed their excellent biocompatibility (5 mg/mL) and intrinsic fluorescence properties (370/500 nm excitation/emission peak) in Neuro-2A cells. This NC exhibited a high Met loading rate (10% wt/wt) and a sustained and prolonged release pattern of Met (90% release in 16 h) in Dulbecco's Modified Eagle Medium. We observed an optimal brain accumulation of Met-MOF (9% of the injected dosage) 8 h after IN injection. This percentage is at least 82 times higher than oral administration. Confocal imaging demonstrated significantly higher uptake of Met-MOF, 45 min after IN injection, by 79-85% neurons and 93-97% microglia than astrocytes and oligodendrocytes across 5xFAD mouse brain regions, including hippocampus and striatum. These results suggest MOF-74-Mg is a potential NC for high brain Met accumulation, real-time imaging, and prolonged and sustained release of Met and other neurotherapeutic agents that are challenging to deliver using traditional carriers and administration routes.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843 USA
| | - Nguyen Nguyen
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Hanwen Hu
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843 USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843 USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843 USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| | - Avik Ahuja
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, 8447 Riverside Pkwy, Bryan, TX 77807 USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX 77843 USA
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843 USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX 77843 USA
| | - Ya Wang
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
3
|
Han Z, Yuan M, Nguyen N, Zhou HC, Hubbard JE, Wang Y. Brain-specific targeted delivery of therapeutic agents using metal–organic framework-based nanomedicine. Coord Chem Rev 2024; 514:215926. [DOI: 10.1016/j.ccr.2024.215926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
5
|
Dong W, Imdad L, Xu S, Wang Y, Liu C, Song S, Li Z, Kong Y, Kong L, Ren X. O-GlcNAc Modification Is a Promising Therapeutic Target for Diabetic Retinopathy. Int J Mol Sci 2024; 25:6286. [PMID: 38892474 PMCID: PMC11173153 DOI: 10.3390/ijms25116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a very serious diabetes complication. Changes in the O-linked N-acetylglucosamine (O-GlcNAc) modification are associated with many diseases. However, its role in DR is not fully understood. In this research, we explored the effect of O-GlcNAc modification regulation by activating AMP-activated protein kinase (AMPK) in DR, providing some evidence for clinical DR treatment in the future. Bioinformatics was used to make predictions from the database, which were validated using the serum samples of diabetic patients. As an in vivo model, diabetic mice were induced using streptozotocin (STZ) injection with/without an AMPK agonist (metformin) or an AMPK inhibitor (compound C) treatment. Electroretinogram (ERG) and H&E staining were used to evaluate the retinal functional and morphological changes. In vitro, 661 w cells were exposed to high-glucose conditions, with or without metformin treatment. Apoptosis was evaluated using TUNEL staining. The protein expression was detected using Western blot and immunofluorescence staining. The angiogenesis ability was detected using a tube formation assay. The levels of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in the serum changed in the DR patients in the clinic. In the diabetic mice, the ERG wave amplitude and retinal thickness decreased. In vitro, the apoptotic cell percentage and Bax expression were increased, and Bcl2 expression was decreased in the 661 w cells under high-glucose conditions. The O-GlcNAc modification was increased in DR. In addition, the expression of GFAT/TXNIP O-GlcNAc was also increased in the 661 w cells after the high-glucose treatment. Additionally, the Co-immunoprecipitation(CO-IP) results show that TXNIP interacted with the O-GlcNAc modification. However, AMPK activation ameliorated this effect. We also found that silencing the AMPKα1 subunit reversed this process. In addition, the conditioned medium of the 661 w cells may have affected the tube formation in vitro. Taken together, O-GlcNAc modification was increased in DR with photoreceptor cell degeneration and neovascularization; however, it was reversed after activating AMPK. The underlying mechanism is linked to the GFAT/TXNIP-O-GlcNAc modification signaling axis. Therefore, the AMPKα1 subunit plays a vital role in the process.
Collapse
Affiliation(s)
- Wenkang Dong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
| | - Laraib Imdad
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
| | - Shengnan Xu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
| | - Yinli Wang
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
| | - Chengzhi Liu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
| | - Shiyu Song
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
| | - Zechuan Li
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
| | - Ying Kong
- Key Laboratory of Reproductive and Developmental Biology, Dalian Medical University, Dalian 116044, China
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China; (W.D.); (L.I.); (S.X.); (Y.W.); (C.L.); (S.S.); (Z.L.); (L.K.)
- Key Laboratory of Reproductive and Developmental Biology, Dalian Medical University, Dalian 116044, China
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
6
|
Oner M, Chen MC, Cheng PT, Lin H. Metformin inhibits nerve growth factor-induced sympathetic neuron differentiation through p35/CDK5 inhibition. Am J Physiol Cell Physiol 2024; 326:C1648-C1658. [PMID: 38682237 DOI: 10.1152/ajpcell.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Kim JM, Dziobaka S, Yoon YE, Lee HL, Jeong JH, Lee IR, Weidinger D, Yang C, Kim D, Gulperi Y, Lee CK, Sohn J, Song G, Hatt H, Lee SJ. OR2H2 Activates CAMKKβ-AMPK-Autophagy Signaling Axis and Suppresses Senescence in VK2/E6E7 Cells. Pharmaceuticals (Basel) 2023; 16:1221. [PMID: 37765029 PMCID: PMC10535153 DOI: 10.3390/ph16091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Olfactory receptors are expressed in multiple extra-nasal tissues and these ectopic olfactory receptors mediate tissue-specific functions and regulate cellular physiology. Ectopic olfactory receptors may play key roles in tissues constantly exposed to odorants, thus the functionality of these receptors in genital tissues is of particular interest. The functionality of ectopic olfactory receptors expressed in VK2/E6E7 human vaginal epithelial cells was investigated. OR2H2 was the most highly expressed olfactory receptor expressed in VK2/E6E7 cells, and activation of OR2H2 by aldehyde 13-13, a ligand of OR2H2, increased the intracellular calcium and cAMP concentrations. Immunoblotting demonstrated that activation of OR2H2 by aldehyde 13-13 stimulated the CAMKKβ-AMPK-mTORC1-autophagy signaling axis, and that these effects were negated by OR2H2 knockdown. AMPK is known to regulate senescence; consequently, we investigated further the effect of aldehyde 13-13 on senescence. In H2O2-induced senescent cells, activation of OR2H2 by aldehyde 13-13 restored proliferation, and reduced the expression of senescence markers, P16 and P19. Additionally, aldehyde 13-13 induced apoptosis of H2O2-induced senescent cells, compared with non-senescent normal cells. In vivo, aldehyde 13-13 increased the lifespan of Caenorhabditis elegans and budding yeast. These findings demonstrate that OR2H2 is a functional receptor in VK2/E6E7 cells, and that activation of OR2H2 activates the AMPK-autophagy axis, and suppresses cellular aging and senescence, which may increase cellular health.
Collapse
Affiliation(s)
- Ji Min Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Sina Dziobaka
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Ye Eun Yoon
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Ha Lim Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Ji Hyun Jeong
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - In-Ryeong Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
| | - Daniel Weidinger
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Changwon Yang
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Deokho Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Yalcin Gulperi
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Jeongwon Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02842, Republic of Korea;
- Korea Institute of Molecular Medicine and Nutrition, Seoul 02842, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 PLUS, Korea University, Seoul 02855, Republic of Korea; (J.M.K.); (Y.E.Y.); (H.L.L.); (J.H.J.); (I.-R.L.); (C.Y.); (D.K.); (Y.G.); (C.-K.L.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44791 Bochum, Germany; (S.D.); (D.W.)
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02846, Republic of Korea
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
8
|
Han HS, Ahn E, Park ES, Huh T, Choi S, Kwon Y, Choi BH, Lee J, Choi YH, Jeong YL, Lee GB, Kim M, Seong JK, Shin HM, Kim HR, Moon MH, Kim JK, Hwang GS, Koo SH. Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement. NATURE AGING 2023; 3:982-1000. [PMID: 37488415 DOI: 10.1038/s43587-023-00460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Adipose tissues are central in controlling metabolic homeostasis and failure in their preservation is associated with age-related metabolic disorders. The exact role of mature adipocytes in this phenomenon remains elusive. Here we describe the role of adipose branched-chain amino acid (BCAA) catabolism in this process. We found that adipocyte-specific Crtc2 knockout protected mice from age-associated metabolic decline. Multiomics analysis revealed that BCAA catabolism was impaired in aged visceral adipose tissues, leading to the activation of mechanistic target of rapamycin complex (mTORC1) signaling and the resultant cellular senescence, which was restored by Crtc2 knockout in adipocytes. Using single-cell RNA sequencing analysis, we found that age-associated decline in adipogenic potential of visceral adipose tissues was reinstated by Crtc2 knockout, via the reduction of BCAA-mTORC1 senescence-associated secretory phenotype axis. Collectively, we propose that perturbation of BCAA catabolism by CRTC2 is critical in instigating age-associated remodeling of adipose tissue and the resultant metabolic decline in vivo.
Collapse
Affiliation(s)
- Hye-Sook Han
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | | | - Tom Huh
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seri Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yongmin Kwon
- Division of Life Sciences, Korea University, Seoul, Korea
| | | | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, Korea
| | | | - Gwang Bin Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Minji Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Hang-Rae Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | | | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, Korea.
- Department of Life Sciences, POSTECH, Pohang, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, Korea.
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
9
|
Zhu Y, Han Y, Wang W, Liang G, Qi J. Mulberry leaves attenuate D-galactose-induced aging in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116286. [PMID: 36965545 DOI: 10.1016/j.jep.2023.116286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry leaves contain many bioactive compounds and have been widely used in traditional medicines and functional foods for prevention and treatment of age-related diseases, such as diabetes, cognitive impairment and obesity-mediated liver cancer. Aging has an irreversible negative impact on human health for many years, even decades, before death, which is a social and economic burden on society. AIM OF THE STUDY The objective of this study was to investigate the antioxidant and anti-aging effects of mulberry leaf extract (MLE) in vivo and in vitro. MATERIALS AND METHODS The Caenorhabditis elegans (C. elegans) was used as a model organism to observe the effects of different concentrations of MLE (1, 2, 4, 8 mg/mL) on nematodes' healthy lifespan, reproductive capacity, locomotion, stress resistance, and antioxidation. In addition, D-galactose (D-gal) induced liver aging in mice and L-02 cells were established. The antioxidant and anti-aging effects of MLE were evaluated by body weight, organ indexes, malondialdehyde (MDA), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), aspartate and alanine aminotransferases (AST and ALT), reactive oxygen species (ROS), mitochondrial membrane potential (MMP), hematoxylin and eosin (H&E), senescence-associated β-galactosidase (SA-β-Gal). Besides, the expressions of AMPK/SIRT1/PGC-1α and Nrf2-Keap1 were detected by Western blotting. RESULTS MLE could significantly prolonged nematodes' average life span and improved most physiological indicators related to aging of C. elegans. Moreover, Treatment with MLE ameliorated the decreased body weight and organ index (weight of organ/body weight) in model mice, and protected against oxidative stress in mice and liver cells, in a dose-dependent manner, up-regulating T-SOD and T-AOC, while reducing ROS and MDA levels. MLE decreased both liver and cell levels of AST and ALT, and enhanced the mitochondrial membrane potential. MLE activated the AMPK/SIRT1/PGC-1α pathways, participated in mitochondrial biosynthesis and oxidative metabolism and delayed D-gal-induced aging. MLE promoted the accumulation of Nrf2 in the nucleus, indicating that the improved oxidative stress response was mediated by the Nrf2-Keap1 pathway in vivo and in vitro. CONCLUSION MLE appeared to have great potential for stimulating the oxidative stress response and attenuating the aging process of in vivo and in vitro, and provide a novel health-promoting resource against aging and aging-related diseases.
Collapse
Affiliation(s)
- Yan Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yaping Han
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wuyang Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Guangming Liang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
10
|
Liao Y, Lai Y, Xu H, Gao L, Fu X, Wang X, Wang Q, Shen J, Fang J, Fang S. Bushen-Yizhi formula ameliorates mitochondrial dysfunction and oxidative stress via AMPK/Sirt1 signaling pathway in D-gal-induced aging rats. Chin Med 2023; 18:53. [PMID: 37170155 PMCID: PMC10176912 DOI: 10.1186/s13020-023-00755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND As a major risk factor for neurodegenerative diseases, aging has become a heavy health care burden worldwide. Age-related decline in mitochondrial function and oxidative stress is strongly associated with neurodegeneration. The previous study demonstrated that Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine formula, is effective in reducing neurodegeneration. METHODS This study is the first to investigate the effect of BSYZ on D-gal-induced learning memory in rats. Secondly, the potential metabolic mechanism of BSYZ was explored by 1H-NMR metabolomics analysis. Then based on the comparison of differential metabolites implied that BSYZ ameliorated mitochondrial dysfunction through choline metabolic pathway in D-gal-treated rats. Finally, pharmacological validation was conducted to explore the effects of BSYZ on D-gal-induced oxidative stress, neuroinflammation, and neuronal apoptosis. RESULTS Our data showed that BSYZ increased aspartate and betaine levels, while decreasing choline levels. Furthermore, BSYZ also increased the proteins level of CHDH and BHMT to regulate choline metabolic pathway. Meanwhile, BSYZ alleviated mitochondrial damage and oxidative stress, including enhanced ATP production and the ratio of NAD+/NADH, reduced the level of MDA, enhanced GSH and SOD activity, upregulated the expressions of p-AMPK, SIRT1 proteins. In addition, BSYZ downregulated the levels of inflammatory cytokines, such as TNF-α, IL-1β and IL-6, as well as suppressed Bcl-2 proteins family dependent apoptosis. CONCLUSION BSYZ treatment effectively rescues neurobehavioral impairment by improving mitochondrial dysfunction, oxidative stress, neuroinflammation and neuroapoptosis via AMPK/SIRT1 pathway in D-gal-induced aging.
Collapse
Affiliation(s)
- Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Huilin Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, Hong Kong S.A.R, People's Republic of China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
11
|
Karami F, Jamaati H, Coleman-Fuller N, Zeini MS, Hayes AW, Gholami M, Salehirad M, Darabi M, Motaghinejad M. Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis. Pharmacol Rep 2023; 75:511-543. [PMID: 37093496 DOI: 10.1007/s43440-023-00469-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 04/25/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease that activates several molecular pathways involved in neurodegenerative disorders. Metformin, an anti-hyperglycemic drug used for treating DM, has the potential to exert a significant neuroprotective role against the detrimental effects of DM. This review discusses recent clinical and laboratory studies investigating the neuroprotective properties of metformin against DM-induced neurodegeneration and the roles of various molecular pathways, including mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and its related cascades. A literature search was conducted from January 2000 to December 2022 using multiple databases including Web of Science, Wiley, Springer, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, Scopus, and the Cochrane Library to collect and evaluate peer-reviewed literature regarding the neuroprotective role of metformin against DM-induced neurodegenerative events. The literature search supports the conclusion that metformin is neuroprotective against DM-induced neuronal cell degeneration in both peripheral and central nervous systems, and this effect is likely mediated via modulation of oxidative stress, inflammation, and cell death pathways.
Collapse
Affiliation(s)
- Fatemeh Karami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Maryam Shokrian Zeini
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health and Institute for Integrative Toxicology, Michigan State University, East Lansing, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Darabi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Madhubala D, Patra A, Islam T, Saikia K, Khan MR, Ahmed SA, Borah JC, Mukherjee AK. Snake venom nerve growth factor-inspired designing of novel peptide therapeutics for the prevention of paraquat-induced apoptosis, neurodegeneration, and alteration of metabolic pathway genes in the rat pheochromocytoma PC-12 cell. Free Radic Biol Med 2023; 197:23-45. [PMID: 36669545 DOI: 10.1016/j.freeradbiomed.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Kangkon Saikia
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur R Khan
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Semim Akhtar Ahmed
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Jagat C Borah
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
13
|
Khaleghi-Mehr M, Delshad AA, Shafie-Damavandi S, Roghani M. Metformin mitigates amyloid β 1-40-induced cognitive decline via attenuation of oxidative/nitrosative stress and neuroinflammation. Metab Brain Dis 2023; 38:1127-1142. [PMID: 36723832 DOI: 10.1007/s11011-023-01170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Metformin is an antidiabetic medicine widely used for management of type 2 diabetes with neuroprotective effects and promising potential to attenuate cognitive impairment. The efficacy of metformin in attenuation of Alzheimer's disease (AD) pathology has not been well-documented. Thus, this study was designed to assess protective effect of metformin against Aβ1-40-instigared cognitive impairment. After intra-CA1 microinjection of aggregated Aβ1-40, rats received oral metformin (50 and/or 200 mg/kg/day) for two weeks. Cognition function was analyzed in various behavioral tasks besides measurement of hippocampal oxidative stress, apoptosis, and inflammation along with H&E staining and 3-nitrotyrosine (3-NT) immunohistochemistry. Obtained data showed significant improvement of discrimination score in novel object recognition test, higher alternation score in Y maze, greater latency in passive avoidance task, and lower working and reference memory errors in radial arm maze in metformin-treated Aβ-injured group. Moreover, metformin treatment attenuated hippocampal levels of nitrite, MDA, protein carbonyl, ROS, TNFα, GFAP, DNA fragmentation intensity, caspase 3 activity, AChE activity, and increased SOD activity and level of IL-10 as an anti-inflammatory factor. In addition, metformin treatment was associated with lower CA1 neuronal loss and it also decreased intensity of 3-NT immunoreactivity as an indicator of nitrosative stress. Taken together, obtained findings showed neuroprotective and anti-dementia property of metformin in male rats and this may have potential benefit in attenuation of cognitive decline and related complications in patients with neurodegenerative disorders such as AD besides diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
14
|
Wen J, Yi Z, Chen Y, Huang J, Mao X, Zhang L, Zeng Y, Cheng Q, Ye W, Liu Z, Liu F, Liu J. Efficacy of metformin therapy in patients with cancer: a meta-analysis of 22 randomised controlled trials. BMC Med 2022; 20:402. [PMID: 36280839 PMCID: PMC9594974 DOI: 10.1186/s12916-022-02599-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate whether metformin monotherapy or adjunctive therapy improves the prognosis in patients with any type of cancer compared to non-metformin users (age ≥18). METHODS Databases (Medline, Embase, and the Cochrane Central Register of Controlled Trials) and clinical trial registries ( ClinicalTrials.gov ; the World Health Organization International Clinical Trials Registry Platform) were screened for randomized, controlled trials (RCT) reporting at least progression-free survival (PFS) and/or overall survival (OS). Main outcome measures included hazard ratios (HR), and combined HRs and 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Of the 8419 records screened, 22 RCTs comprising 5943 participants were included. Pooled HRs were not statistically significant in both PFS (HR 0.97, 95% CI 0.82-1.15, I2 = 50%) and OS (HR 0.98, 95% CI 0.86-1.13, I2 = 33%) for patients with cancer between the metformin and control groups. Subgroup analyses demonstrated that metformin treatment was associated with a marginally significant improvement in PFS in reproductive system cancers (HR 0.86, 95% CI 0.74-1.00) and a significantly worse PFS in digestive system cancers (HR 1.45, 95% CI 1.03-2.04). The PFS or OS was observed consistently across maintenance dose, diabetes exclusion, median follow-up, risk of bias, and combined antitumoral therapies. CONCLUSION Metformin treatment was not associated with cancer-related mortality in adults compared with placebo or no treatment. However, metformin implied beneficial effects in the PFS of the patients with reproductive system cancers but was related to a worse PFS in digestive system cancers. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42022324672.
Collapse
Affiliation(s)
- Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuyao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueyi Mao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jingfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Actions of Metformin in the Brain: A New Perspective of Metformin Treatments in Related Neurological Disorders. Int J Mol Sci 2022; 23:ijms23158281. [PMID: 35955427 PMCID: PMC9368983 DOI: 10.3390/ijms23158281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Metformin is a first-line drug for treating type 2 diabetes mellitus (T2DM) and one of the most commonly prescribed drugs in the world. Besides its hypoglycemic effects, metformin also can improve cognitive or mood functions in some T2DM patients; moreover, it has been reported that metformin exerts beneficial effects on many neurological disorders, including major depressive disorder (MDD), Alzheimer’s disease (AD) and Fragile X syndrome (FXS); however, the mechanism underlying metformin in the brain is not fully understood. Neurotransmission between neurons is fundamental for brain functions, and its defects have been implicated in many neurological disorders. Recent studies suggest that metformin appears not only to regulate synaptic transmission or plasticity in pathological conditions but also to regulate the balance of excitation and inhibition (E/I balance) in neural networks. In this review, we focused on and reviewed the roles of metformin in brain functions and related neurological disorders, which would give us a deeper understanding of the actions of metformin in the brain.
Collapse
|
16
|
A Novel Based-Network Strategy to Identify Phytochemicals from Radix Salviae Miltiorrhizae (Danshen) for Treating Alzheimer's Disease. Molecules 2022; 27:molecules27144463. [PMID: 35889336 PMCID: PMC9317794 DOI: 10.3390/molecules27144463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that strikes millions worldwide. Herein, we demonstrate a new approach based on network target to identify anti-AD compounds from Danshen. Network pharmacology and molecular docking were employed to establish the DS-AD network, which mainly involved apoptosis of neuron cells. Then network scoring was confirmed via Connectivity Map analysis. M308 (Danshenxinkun D) was an anti-AD candidate with a high score (p < 0.01). Furthermore, we conducted ex vivo experiments with H2O2-treated PC12 cells to verify the neuroprotective effect of Salvia miltiorrhiza-containing plasma (SMP), and UPLC-Q-TOF/MS and RT-qPCR were performed to demonstrate the anti-AD activity of M308 from SMP. Results revealed that SMP could enhance cell viability and level of acetylcholine. AO/EB staining and Mitochondrial membrane potential (MMP) analysis showed that SMP significantly suppressed apoptosis, which may be due to anti-oxidative stress activity. Moreover, the effects of M308 and SMP on expressions of PSEN1, DRD2, and APP mRNA were consistent, and M308 can significantly reverse the expression of PSEN1 and DRD2 mRNA in H2O2-treated PC12 cells. The strategy based on the network could be employed to identify anti-AD compounds from Chinese herbs. Notably, M308 stands out as a promising anti-AD candidate for development.
Collapse
|
17
|
Zhao X, Huang X, Yang C, Jiang Y, Zhou W, Zheng W. Artemisinin Attenuates Amyloid-Induced Brain Inflammation and Memory Impairments by Modulating TLR4/NF-κB Signaling. Int J Mol Sci 2022; 23:ijms23116354. [PMID: 35683033 PMCID: PMC9181281 DOI: 10.3390/ijms23116354] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022] Open
Abstract
The abnormal immune response is an early change in the pathogenesis of Alzheimer’s disease (AD). Microglial activation is a crucial regulator of the immune response, which contributes to progressive neuronal injury by releasing neurotoxic products. Therefore, finding effective drugs to regulate microglial homeostasis and neuroinflammation has become a new AD treatment strategy. Artemisinin has potent anti-inflammatory and immune activities. However, it is unclear whether Artemisinin contributes to the regulation of microglial activation, thereby improving AD pathology. This study found that Artemisinin significantly reduced amyloid beta-peptide 1–42 (Aβ1–42)-induced increases in nitric oxide and reactive oxygen species and inflammatory factors in BV2 cells. In addition, Artemisinin inhibited the migration of microglia and prevented the expansion of the inflammatory cascade. The mechanical studies showed Artemisinin inhibited neuroinflammation and exerted neuroprotective effects by regulating the Toll-like receptor 4 (TLR4)/Nuclear factor-kappa B (NF-κB) signaling pathway. Similar results were obtained in AD model mice, in which Artemisinin administration attenuated Aβ1–42-induced neuroinflammation and neuronal injury, reversing spatial learning and memory deficits. The anti-inflammatory effect of Artemisinin is also accompanied by the activation of the TLR4/NF-κB signaling pathway in the animal model. Our results indicate that Artemisinin attenuated Aβ1–42-induced neuroinflammation and neuronal injury by stimulating the TLR4/NF-κB signaling pathway. These findings suggest that Artemisinin is a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Xia Zhao
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Hangzhou Medical College, Hangzhou 310000, China
| | - Xiaosu Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Chao Yang
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yizhou Jiang
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Wenshu Zhou
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Correspondence: ; Tel.: +853-88224919
| |
Collapse
|
18
|
Protective effects of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles on H2O2-induced oxidative stress in HepG2 cells. Int J Biol Macromol 2022; 213:339-351. [DOI: 10.1016/j.ijbiomac.2022.05.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
|
19
|
Arbo BD, Schimith LE, Goulart dos Santos M, Hort MA. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur J Pharmacol 2022; 919:174800. [DOI: 10.1016/j.ejphar.2022.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
|
20
|
Wang J, Hu JQ, Song YJ, Yin J, Wang YYF, Peng B, Zhang BW, Liu JM, Dong L, Wang S. 2'-Fucosyllactose Ameliorates Oxidative Stress Damage in d-Galactose-Induced Aging Mice by Regulating Gut Microbiota and AMPK/SIRT1/FOXO1 Pathway. Foods 2022; 11:foods11020151. [PMID: 35053883 PMCID: PMC8774504 DOI: 10.3390/foods11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
The imbalance of reactive oxygen species is the main cause in aging, accompanied by oxidative stress. As the most abundant in human milk oligosaccharides (HMOs), 2′-Fucosyllactose (2′-FL) has been confirmed to have great properties in immunity regulation and anti-inflammatory. The research on 2′-FL is focused on infants currently, while there is no related report of 2′-FL for the elderly. A d-galactose-induced accelerated aging model was established to explore the protective effect of 2′-FL on the intestines and brain in mice. In this study, 2′-FL significantly reduced oxidative stress damage and inflammation in the intestines of aging mice, potentially by regulating the sirtuin1 (SIRT1)-related and nuclear factor E2-related factor 2 (Nrf2) pathways. In addition, 2′-FL significantly improved the gut mucosal barrier function and increased the content of short-chain fatty acids (SCFAs) in the intestine. The gut microbiota analysis indicated that 2′-FL mainly increased the abundance of probiotics like Akkermansia in aging mice. Moreover, 2′-FL significantly inhibited apoptosis in the brains of aging mice, also increasing the expression of SIRT1. These findings provided a basis for learning the benefits of 2′-FL in the aging process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuo Wang
- Correspondence: ; Tel.: +86-22-8535-8445
| |
Collapse
|
21
|
Lin R, Liu L, Silva M, Fang J, Zhou Z, Wang H, Xu J, Li T, Zheng W. Hederagenin Protects PC12 Cells Against Corticosterone-Induced Injury by the Activation of the PI3K/AKT Pathway. Front Pharmacol 2021; 12:712876. [PMID: 34721013 PMCID: PMC8551867 DOI: 10.3389/fphar.2021.712876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Depression is a prevalent psychiatric disorder and a leading cause of disability worldwide. Despite a variety of available treatments currently being used in the clinic, a substantial proportion of patients is unresponsive to these treatments, urging the development of more effective therapeutic approaches. Hederagenin (Hed), a triterpenoid saponin extracted from Fructus Akebiae, has several biological activities including anti-apoptosis, anti-hyperlipidemic and anti-inflammatory properties. Over the years, its potential therapeutic effect in depression has also been proposed, but the information is limited and the mechanisms underlying its antidepressant-like effects are unclear. The present study explored the neuroprotective effects and the potential molecular mechanisms of Hederagenin action in corticosterone (CORT)-injured PC12 cells. Obtained results show that Hederagenin protected PC12 cells against CORT-induced damage in a concentration dependent manner. In adittion, Hederagenin prevented the decline of mitochondrial membrane potential, reduced the production of intracellular reactive oxygen species (ROS) and decreased the apoptosis induced by CORT. The protective effect of Hederagenin was reversed by a specific phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and AKT (also known as protein kinase B) inhibitor MK2206, suggesting that the effect of Hederagenin is mediated by the PI3K/AKT pathway. In line with this, western blot analysis results showed that Hederagenin stimulated the phosphorylation of AKT and its downstream target Forkhead box class O 3a (FoxO3a) and Glycogen synthase kinase-3-beta (GSK3β) in a concentration dependent manner. Taken together, these results indicate that the neuroprotective effect of Hederagenin is likely to occur via stimulation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ruohong Lin
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Linlin Liu
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Marta Silva
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Jiankang Fang
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Zhiwei Zhou
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tiejun Li
- Research and Development Department, Lansson Bio-Pharm Co., Ltd., Guangzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| |
Collapse
|
22
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Kozumbo WJ, Calabrese V. Metformin-enhances resilience via hormesis. Ageing Res Rev 2021; 71:101418. [PMID: 34365027 DOI: 10.1016/j.arr.2021.101418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The present paper demonstrates that metformin (MF) induced a broad spectrum of hormetic biphasic dose responses in a wide range of experimental studies, affecting multiple organ systems, cell types, and endpoints enhancing resilience to chemical stresses in preconditioning and co-current exposure protocols. Detailed mechanistic evaluations indicate that MF-induced hormetic-adaptive responses are mediated often via the activation of adenosine monophosphate-activated kinase (AMPK) protein and its subsequent upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Hormesis-induced protective responses by MF are largely mediated via a vast and highly integrated anti-inflammatory molecular network that enhances longevity and delays the onset and slows the progression of neurodegenerative and other chronic diseases.
Collapse
|
23
|
Cimicifuga racemosa Extract Ze 450 Re-Balances Energy Metabolism and Promotes Longevity. Antioxidants (Basel) 2021; 10:antiox10091432. [PMID: 34573064 PMCID: PMC8466145 DOI: 10.3390/antiox10091432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/31/2023] Open
Abstract
Recently, we reported that the Cimicifuga racemosa extract Ze 450 mediated protection from oxidative cell damage through a metabolic shift from oxidative phosphorylation to glycolysis. Here, we investigated the molecular mechanisms underlying the effects of Ze 450 against ferroptosis in neuronal cells, with a particular focus on mitochondria. The effects of Ze 450 on respiratory complex activity and hallmarks of ferroptosis were studied in isolated mitochondria and in cultured neuronal cells, respectively. In addition, Caenorhabditis elegans served as a model organism to study mitochondrial damage and longevity in vivo. We found that Ze 450 directly inhibited complex I activity in mitochondria and enhanced the metabolic shift towards glycolysis via cMyc and HIF1α regulation. The protective effects against ferroptosis were mediated independently of estrogen receptor activation and were distinct from effects exerted by metformin. In vivo, Ze 450 protected C. elegans from the mitochondrial toxin paraquat and promoted longevity in a dose-dependent manner. In conclusion, Ze 450 mediated a metabolic shift to glycolysis via direct effects on mitochondria and altered cell signaling, thereby promoting sustained cellular resilience to oxidative stress in vitro and in vivo.
Collapse
|
24
|
Chen Q, Cao T, Li N, Zeng C, Zhang S, Wu X, Zhang B, Cai H. Repurposing of Anti-Diabetic Agents as a New Opportunity to Alleviate Cognitive Impairment in Neurodegenerative and Neuropsychiatric Disorders. Front Pharmacol 2021; 12:667874. [PMID: 34108878 PMCID: PMC8182376 DOI: 10.3389/fphar.2021.667874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive impairment is a shared abnormality between type 2 diabetes mellitus (T2DM) and many neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease (AD) and schizophrenia. Emerging evidence suggests that brain insulin resistance plays a significant role in cognitive deficits, which provides the possibility of anti-diabetic agents repositioning to alleviate cognitive deficits. Both preclinical and clinical studies have evaluated the potential cognitive enhancement effects of anti-diabetic agents targeting the insulin pathway. Repurposing of anti-diabetic agents is considered to be promising for cognitive deficits prevention or control in these neurodegenerative and neuropsychiatric disorders. This article reviewed the possible relationship between brain insulin resistance and cognitive deficits. In addition, promising therapeutic interventions, especially current advances in anti-diabetic agents targeting the insulin pathway to alleviate cognitive impairment in AD and schizophrenia were also summarized.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
25
|
Calabrese EJ. Hormesis Mediates Acquired Resilience: Using Plant-Derived Chemicals to Enhance Health. Annu Rev Food Sci Technol 2021; 12:355-381. [DOI: 10.1146/annurev-food-062420-124437] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review provides an assessment of hormesis, a highly conserved evolutionary dose-response adaptive strategy that leads to the development of acquired resilience within well-defined temporal windows. The hormetic-based acquired resilience has a central role in affecting healthy aging, slowing the onset and progression of numerous neurodegenerative and other age-related diseases, and reducing risks and damage due to heart attacks, stroke, and other serious conditions of public health and medical importance. The review provides the historical foundations of hormesis, its dose-response features, its capacity for generalization across biological models and endpoints measured, and its mechanistic foundations. The review also provides a focus on the adaptive features of hormesis, i.e., its capacity to upregulate acquired resilience and how this can be mediated by numerous plant-derived extracts, such as curcumin, ginseng, Ginkgo biloba, resveratrol, and green tea, that induce a broad spectrum of chemopreventive effects via hormesis.
Collapse
Affiliation(s)
- Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
26
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
27
|
Plascencia-Villa G, Perry G. Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid Redox Signal 2021; 34:591-610. [PMID: 32486897 PMCID: PMC8098758 DOI: 10.1089/ars.2020.8134] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Significance: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. AD is currently ranked as the sixth leading cause of death, but some sources put it as third, after heart disease and cancer. Currently, there are no effective therapeutic approaches to treat or slow the progression of chronic neurodegeneration. In addition to the accumulation of amyloid-β (Aβ) and tau, AD patients show progressive neuronal loss and neuronal death, also high oxidative stress that correlates with abnormal levels or overload of brain metals. Recent Advances: Several promising compounds targeting oxidative stress, redox metals, and neuronal death are under preclinical or clinical evaluation as an alternative or complementary therapeutic strategy in mild cognitive impairment and AD. Here, we present a general analysis and overview, discuss limitations, and suggest potential directions for these treatments for AD and related dementia. Critical Issues: Most of the disease-modifying therapeutic strategies for AD under evaluation in clinical trials have focused on components of the amyloid cascade, including antibodies to reduce levels of Aβ and tau, as well as inhibitors of secretases. Unfortunately, several of the amyloid-focused therapeutics have failed the clinical outcomes or presented side effects, and numerous clinical trials of compounds have been halted, reducing realistic options for the development of effective AD treatments. Future Directions: The focus of research on AD and related dementias is shifting to alternative or innovative areas, such as ApoE, lipids, synapses, oxidative stress, cell death mechanisms, neuroimmunology, and neuroinflammation, as well as brain metabolism and bioenergetics.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| |
Collapse
|
28
|
Tao LX, Ji SS, Szalóki D, Kovács T, Mándi A, Antus S, Ding X, Kurtán T, Zhang HY. An optically active isochroman-2H-chromene conjugate potently suppresses neuronal oxidative injuries associated with the PI3K/Akt and MAPK signaling pathways. Acta Pharmacol Sin 2021; 42:36-44. [PMID: 32393798 PMCID: PMC7921582 DOI: 10.1038/s41401-020-0391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/23/2020] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggests that the use of potent neuroprotective agents featured with novel pharmacological mechanism would offer a promising strategy to delay or prevent the progression of neurodegeneration. Here, we provide the first demonstration that the chiral nonracemic isochroman-2H-chromene conjugate JE-133, a novel synthetic 1,3-disubstituted isochroman derivative, possesses superior neuroprotective effect against oxidative injuries. Pretreatment with JE-133 (1-10 μM) concentration-dependently prevented H2O2-induced cell death in SH-SY5Y neuroblastoma cells and rat primary cortical neurons. Pretreatment with JE-133 significantly alleviated H2O2-induced apoptotic changes. These protective effects could not be simply attributed to the direct free radical scavenging as JE-133 had moderate activity in reducing DPPH free radical. Further study revealed that pretreatment with JE-133 (10 μM) significantly decreased the phosphorylation of MAPK pathway proteins, especially ERK and P38, in the neuronal cells. In addition, blocking PI3K/Akt pathway using LY294002 partially counteracted the cell viability-enhancing effect of JE-133. We conclude that JE-133 exerts neuroprotection associated with dual regulative mechanisms and consequently activating cell survival and inhibiting apoptotic changes, which may provide important clues for the development of effective neuroprotective drug lead/candidate.
Collapse
Affiliation(s)
- Ling-Xue Tao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Sha-Sha Ji
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dóra Szalóki
- Department of Organic Chemistry, University of Debrecen, Debrecen, P. O. Box 400, H-4002, Debrecen, Hungary
| | - Tibor Kovács
- Department of Organic Chemistry, University of Debrecen, Debrecen, P. O. Box 400, H-4002, Debrecen, Hungary
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Debrecen, P. O. Box 400, H-4002, Debrecen, Hungary
| | - Sándor Antus
- Department of Organic Chemistry, University of Debrecen, Debrecen, P. O. Box 400, H-4002, Debrecen, Hungary
| | - Xun Ding
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, P. O. Box 400, H-4002, Debrecen, Hungary.
| | - Hai-Yan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
29
|
Chen X, Wu W, Gong B, Hou L, Dong X, Xu C, Zhao R, Yu Q, Zhou Z, Huang S, Chen L. Metformin attenuates cadmium-induced neuronal apoptosis in vitro via blocking ROS-dependent PP5/AMPK-JNK signaling pathway. Neuropharmacology 2020; 175:108065. [PMID: 32209321 PMCID: PMC7492486 DOI: 10.1016/j.neuropharm.2020.108065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd), a toxic environment contaminant, induces reactive oxygen species (ROS)-mediated neuronal apoptosis and consequential neurodegenerative disorders. Metformin, an anti-diabetic drug, has recently received a great attention owing to its protection against neurodegenerative diseases. However, little is known regarding the effect of metformin on Cd-induced neurotoxicity. Here we show that metformin effectively prevented Cd-evoked apoptotic cell death in neuronal cells, by suppressing Cd activation of c-Jun N-terminal kinases (JNK), which was attributed to blocking Cd inactivation of protein phosphatase 5 (PP5) and AMP-activated protein kinase (AMPK). Inhibition of JNK with SP600125, knockdown of c-Jun, or overexpression of PP5 potentiated metformin's inhibitory effect on Cd-induced phosphorylation of JNK/c-Jun and apoptosis. Activation of AMPK with AICAR or ectopic expression of constitutively active AMPKα strengthened the inhibitory effects of metformin on Cd-induced phosphorylation of JNK/c-Jun and apoptosis, whereas expression of dominant negative AMPKα weakened these effects of metformin. Metformin repressed Cd-induced ROS, thereby diminishing cell death. N-acetyl-l-cysteine enhanced the inhibitory effects of metformin on Cd-induced ROS and apoptosis. Moreover, using Mito-TEMPO, we further demonstrated that metformin attenuated Cd-induced cell death by suppressing induction of mitochondrial ROS. Taken together, these results indicate that metformin prevents mitochondrial ROS inactivation of PP5 and AMPK, thus attenuating Cd-induced JNK activation and apoptosis in neuronal cells. Our data highlight that metformin may be a promising drug for prevention of Cd-induced oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Wen Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoming Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
30
|
Protective Effect of Metformin against Hydrogen Peroxide-Induced Oxidative Damage in Human Retinal Pigment Epithelial (RPE) Cells by Enhancing Autophagy through Activation of AMPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2524174. [PMID: 32774666 PMCID: PMC7397438 DOI: 10.1155/2020/2524174] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness with limited effective treatment. Although the pathogenesis of this disease is complex and not fully understood, the oxidative damage caused by excessive reactive oxygen species (ROS) in retinal pigment epithelium (RPE) has been considered as a major cause. Autophagy is essential for the degradation of cellular components damaged by ROS, and its dysregulation has been implicated in AMD pathogenesis. Therefore, strategies aiming to boost autophagy could be effective in protecting RPE cells from oxidative damage. Metformin is the first-line anti-type 2 diabetes drug and has been reported to stimulate autophagy in many tissues. We therefore hypothesized that metformin may be able to protect RPE cells against H2O2-induced oxidative damage by autophagy activation. In the present study, we found that metformin attenuated H2O2-induced cell viability loss, apoptosis, elevated ROS levels, and the collapse of the mitochondria membrane potential in D407 cells. Autophagy was stimulated by metformin, and inhibition of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) or knockdown of Beclin1 and LC3B blocked the protective effects of metformin. In addition, we showed that metformin could activate the AMPK pathway, whereas both pharmacological and genetic inhibitions of AMPK blocked the autophagy-stimulating and protective effects of metformin. Metformin conferred a similar protection against H2O2-induced oxidative damage in primary cultured human RPE cells. Taken together, these results demonstrate that metformin could protect RPE cells from H2O2-induced oxidative damage by stimulating autophagy via the activation of the AMPK pathway, supporting its potential use in the prevention and treatment of AMD.
Collapse
|
31
|
Yang W, Shin HY, Cho H, Chung JY, Lee EJ, Kim JH, Kang ES. TOM40 Inhibits Ovarian Cancer Cell Growth by Modulating Mitochondrial Function Including Intracellular ATP and ROS Levels. Cancers (Basel) 2020; 12:cancers12051329. [PMID: 32456076 PMCID: PMC7281007 DOI: 10.3390/cancers12051329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
TOM40 is a channel-forming subunit of translocase, which is essential for the movement of proteins into the mitochondria. We found that TOM40 was highly expressed in epithelial ovarian cancer (EOC) cells at both the transcriptional and translational levels; its expression increased significantly during the transformation from normal ovarian epithelial cells to EOC (p < 0.001), and TOM40 expression negatively correlated with disease-free survival (Hazard ratio = 1.79, 95% Confidence inerval 1.16–2.78, p = 0.009). TOM40 knockdown decreased proliferation in several EOC cell lines and reduced tumor burden in an in vivo xenograft mouse model. TOM40 expression positively correlated with intracellular adenosine triphosphate (ATP) levels. The low ATP and high reactive oxygen species (ROS) levels increased the activity of AMP-activated protein kinase (AMPK) in TOM40 knockdown EOC cells. However, AMPK activity did not correlate with declined cell growth in TOM40 knockdown EOC cells. We found that metformin, first-line therapy for type 2 diabetes, effectively inhibited the growth of EOC cell lines in an AMPK-independent manner by inhibiting mitochondria complex I. In conclusion, TOM40 positively correlated with mitochondrial activities, and its association enhances the proliferation of ovarian cancer. Also, metformin is an effective therapeutic option in TOM40 overexpressed ovarian cancer than normal ovarian epithelium.
Collapse
Affiliation(s)
- Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Joon-Yong Chung
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Eun-ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
- Correspondence: (J.-H.K.); (E.-S.K.); Tel.:+82-2-2019-3430 (J.-H.K.); +82-2-3410-2703 (E.-S.K.); Fax: +82-2-3462-8209 (J.-H.K.); +82-2-3410-2719 (E.-S.K.)
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (J.-H.K.); (E.-S.K.); Tel.:+82-2-2019-3430 (J.-H.K.); +82-2-3410-2703 (E.-S.K.); Fax: +82-2-3462-8209 (J.-H.K.); +82-2-3410-2719 (E.-S.K.)
| |
Collapse
|
32
|
Lu Q, Wang J, Li B, Weng C, Li X, Yang W, Yan X, Hong J, Zhu W, Zhou X. Dual-Emission Reverse Change Ratio Photoluminescence Sensor Based on a Probe of Nitrogen-Doped Ti3C2 Quantum Dots@DAP to Detect H2O2 and Xanthine. Anal Chem 2020; 92:7770-7777. [DOI: 10.1021/acs.analchem.0c00895] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chenyuan Weng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyun Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoqiang Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
33
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
34
|
Zhang C, Zhao X, Lin S, Liu F, Ma J, Han Z, Jia F, Xie W, Zhang Q, Li X. Neuroprotective Effect of ent-Kaur-15-en-17-al-18-oic Acid on Amyloid Beta Peptide-Induced Oxidative Apoptosis in Alzheimer's Disease. Molecules 2019; 25:molecules25010142. [PMID: 31905798 PMCID: PMC6982857 DOI: 10.3390/molecules25010142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
ent-Kaur-15-en-17-al-18-oic acid, extracted from the Chinese well known folk herb Leontopodium longifolium, performed a significantly neuroprotective effect on amyloid beta peptide 25-35 (Aβ25-35)-induced SH-SY5Y cells neurotoxicity in Alzheimer's disease. The results demonstrated that this compound maintained oxidative stress balance, reduced levels of reactive oxygen species (ROS), malondialdehyde (MDA), and improved contents of glutathione (GSH) and superoxide dismutase (SOD) without obvious cytotoxicity. This compound also obviously relieved oxidative stress-induced apoptosis associated with p53 and nuclear factor κB (NF-κB) pathways accompanied by upregulating B-cell lymphoma-2 (bcl-2) and downregulating p53, nuclear factor κB (NF-κB), Bax, Cleaved-caspase 3, and Cytochrome C protein expressions further. Briefly, ent-kaur-15-en-17-al-18-oic acid protected cells from oxidative apoptosis associated with p53 and NF-κB pathways.
Collapse
Affiliation(s)
- Caiyun Zhang
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Xingming Zhao
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Shiqi Lin
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Fangyuan Liu
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Jiahui Ma
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Zhuo Han
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Fujuan Jia
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Weidong Xie
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
| | - Xia Li
- Marine College, Shandong University, Weihai 264209, Shandong, China; (C.Z.); (X.Z.); (S.L.); (F.L.); (J.M.); (Z.H.); (F.J.); (W.X.); (Q.Z.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: ; Tel.: +86-631-5688303
| |
Collapse
|
35
|
Jia L, Xiong Y, Zhang W, Ma X, Xu X. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp Cell Res 2019; 386:111717. [PMID: 31715142 DOI: 10.1016/j.yexcr.2019.111717] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Periodontal ligament stem cell (PDLSC)-based tissue engineering is an important method for regenerating lost bone in periodontitis. Maintaining or enhancing the osteogenic differentiation of PDLSCs, as well as enhancing the resistance of PDLSCs to oxidative stress, is necessary in this process. As a common hypoglycemic drug, metformin has been reported to have multiple effects on cell functions. This study found that low concentrations of metformin did not affect cell proliferation but did inhibit adipogenic differentiation and promote osteogenic differentiation of PDLSCs. This positive effect was associated with activation of Akt signaling by metformin. Moreover, applying metformin as either a pretreatment or co-treatment could reduce the amount of reactive oxygen species, enhance antioxidant capacity, and rescue the cell viability and osteogenic differentiation that were negatively affected by H2O2-induced oxidative stress in PDLSCs. In addition, metformin was found to activate the Nrf2 signaling pathway in PDLSCs, and knockdown of Nrf2 by siRNA impaired the protective effect of metformin. Taken together, these results indicate that metformin not only promotes osteogenic differentiation of PDLSCs, but also protects PDLSCs against oxidative stress-induced damage, suggesting that metformin could be potentially useful in promoting PDLSC-based bone regeneration in the treatment of periodontitis.
Collapse
Affiliation(s)
- Linglu Jia
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Wenjing Zhang
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Xiaoni Ma
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
36
|
Wang K, Su Y, Liang Y, Song Y, Wang L. Oral DhHP-6 for the Treatment of Type 2 Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20061517. [PMID: 30917579 PMCID: PMC6470840 DOI: 10.3390/ijms20061517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction which can be induced by oxidative stress. Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6) is a microperoxidase mimetic that can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we demonstrated an increased stability of linear peptides upon their covalent attachment to porphyrins. In this study, we assessed the utility of DhHP-6 as an oral anti-diabetic drug in vitro and in vivo. DhHP-6 showed high resistance to proteolytic degradation in vitro and in vivo. The degraded DhHP-6 product in gastrointestinal (GI) fluid retained the enzymatic activity of DhHP-6, but displayed a higher permeability coefficient. DhHP-6 protected against the cell damage induced by H2O2 and promoted insulin secretion in INS-1 cells. In the T2DM model, DhHP-6 reduced blood glucose levels and facilitated the recovery of blood lipid disorders. DhHP-6 also mitigated both insulin resistance and glucose tolerance. Most importantly, DhHP-6 promoted the recovery of damaged pancreas islets. These findings suggest that DhHP-6 in physiological environments has high stability against enzymatic degradation and maintains enzymatic activity. As DhHP-6 lowered the fasting blood glucose levels of T2DM mice, it thus represents a promising candidate for oral administration and clinical therapy.
Collapse
Affiliation(s)
- Kai Wang
- School of life Sciences, Jilin University, Changchun 130012, China.
| | - Yu Su
- School of life Sciences, Jilin University, Changchun 130012, China.
| | - Yuting Liang
- School of life Sciences, Jilin University, Changchun 130012, China.
| | - Yanhui Song
- School of life Sciences, Jilin University, Changchun 130012, China.
| | - Liping Wang
- School of life Sciences, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|