1
|
Meng K, Deng T, Liu M, Pu H, Zhang Y, Zou H, Xing Y, Xue W. Novel flavonoid derivatives containing 1,2,4-triazole Schiff bases as potential antifungal agents: design, synthesis, and biological evaluation. Bioorg Chem 2024; 153:107965. [PMID: 39566272 DOI: 10.1016/j.bioorg.2024.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
A series of flavonol derivatives containing 1,2,4-triazole Schiff base was designed, synthesized and tested for their biological activities. The results of the biological activity test showed that compounds exhibited the obvious antifungal activities against Sclerotinia sclerotiorum (S.s), Rhizoctonia solani (R.s), Botrytis cinerea (B.c) and Phomopsis sp (P.s). Among them, K14 showed excellent antimicrobial activity against B.c with the half maximal effective concentration (EC50) of 7.6 µg/mL as compared to azoxystrobin (18.0 µg/mL). Additionally, the in vivo protective and therapeutic activities of K14 on blueberry leaves were 94.1 and 88.7 % respectively, surpassing than that of the control drug azoxystrobin (91.6 and 74.4 %) at 200 µg/mL. The results of SEM showed that the mycelium appeared wrinkled, folded and changed in morphology after being treated with K14. In addition, fluorescence microscopy (FM) and cytoplasmic leakage assays showed that the cell membrane of B.c was disrupted. Further study of malondialdehyde (MDA) and relative conductivity measurements indicated that the normal function of cells is affected by K14 by increasing cell membrane permeability and promoting membrane lipid peroxidation. These results indicate that flavonol derivatives containing 1,2,4-triazole Schiff bases are expected to provide a new prospect for the development of novel fungicides.
Collapse
Affiliation(s)
- Kaini Meng
- Statet Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tianyu Deng
- Statet Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Min Liu
- Bijie Institute of Traditional Chinese Medicine, Bijie 551700, China
| | - Haotao Pu
- Statet Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yufang Zhang
- Statet Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongqian Zou
- Statet Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yunping Xing
- Statet Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- Statet Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Zhou Y, Sun Z, Zhou Q, Zeng W, Zhang M, Feng S, Xue W. Novel flavonol derivatives containing benzoxazole as potential antiviral agents: design, synthesis, and biological evaluation. Mol Divers 2024; 28:3919-3935. [PMID: 38229000 DOI: 10.1007/s11030-023-10786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
A series of flavonol derivatives containing benzoxazole were designed and synthesized, and the structures of all the target compounds were determined by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The structure of X2 was further confirmed by single crystal X-ray diffraction analysis. The results of the bioactivity tests showed that some of the target compounds possessed excellent antiviral activity against tobacco mosaic virus (TMV) in vivo. In particular, the median effective concentration (EC50) values for the curative and protective activities of X17 against TMV were 127.6 and 101.2 μg/mL, respectively, which were superior to those of ningnanmycin (320.0 and 234.6 μg/mL). The results of preliminary mechanism study indicated that X17 had a strong binding affinity for TMV coat protein (TMV-CP), which might hinder the self-assembly and replication of TMV particles. In addition, X17 was able to effectively inhibit tobacco leaf membrane lipid peroxidation and facilitate the removal of O2- from the body, thereby improving the disease resistance of tobacco plants. Therefore, the design and synthesis of flavonol derivatives containing benzoxazole provides value for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qing Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Miaohe Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shuang Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Sreelekshmi PK, Pooja SK, Vidya N, Sinosh S, Thejaswini V. Integrative Investigation of Flavonoids Targeting YBX1 Protein-Protein Interaction Network in Breast Cancer: From Computational Analysis to Experimental Validation. Mol Biotechnol 2024:10.1007/s12033-024-01311-6. [PMID: 39565541 DOI: 10.1007/s12033-024-01311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024]
Abstract
Y-box-binding protein 1 (YBX1) is a multifunctional oncoprotein with its nuclear localization contributing to chemo-resistance in breast cancer. Through its interactions with various proteins and lncRNAs, YBX1 promotes cancer cell migration, invasion, and metastasis. Despite its significant role in cancer progression, studies on YBX1's protein-protein interactions (PPIs) remain limited. Flavonoids are natural compounds with anticancer properties that inhibit metastasis, modulate immunity, and induce apoptosis, with minimal systemic toxicity, making them strong candidates for cancer therapy. Targeting PPIs offers a promising approach for cancer therapy and flavonoids, with their anticancer properties, may modulate these interactions. Our study focused on the YBX1 PPI network, specifically targeting HSPA1A, IGF2BP1, MECP2, G3BP1, EWSR1, PURA, and SYNCRIP. We selected four flavonoids Quercetin, Fisetin, Rutin, and Myricitrin based on literature and conducted 26 docking sessions. Further ADMET analysis indicated Quercetin and Fisetin as more favorable for drug-likeness parameters than Rutin and Myricitrin, which was underscored by MD simulation data. In vitro studies showed that Quercetin and Fisetin downregulated YBX1 expression in a dose-dependent manner (50 μM to 150 μM) in MCF-7 cells. Our study provides a preliminary understanding of YBX1 PPI and the potential of flavonoids to disrupt these interactions. This study investigates the potential of flavonoids to target YBX1 PPIs, providing insights into novel therapeutic strategies for YBX1-driven cancers.
Collapse
Affiliation(s)
- Presanna Kumar Sreelekshmi
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India
| | - Suresh Kumar Pooja
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Niranjan Vidya
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Skariyachan Sinosh
- Department of Microbiology, St. Pius X College, Rajapuram, Kasargod, Kerala, India
| | - Venkatesh Thejaswini
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India.
| |
Collapse
|
4
|
Endale HT, Tesfaye W, Hassen FS, Asrat WB, Temesgen EY, Shibabaw YY, Asefa T. Harmony unveiled: Intricate the interplay of dietary factor, gut microbiota, and colorectal cancer-A narrative review. SAGE Open Med 2024; 12:20503121241274724. [PMID: 39224896 PMCID: PMC11367611 DOI: 10.1177/20503121241274724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Diet plays a critical role in shaping the gut microbiome, which in turn regulates molecular activities in the colonic mucosa. The state and composition of the gut microbiome are key factors in the development of colorectal cancer. An altered gut microbiome, linked to weakened immune responses and the production of carcinogenic substances, is a significant contributor to colorectal cancer pathogenesis. Dietary changes that involve low-fiber and phytomolecule intake, coupled with higher consumption of red meat, can raise the risk of colorectal cancer. Salutary filaments, which reach the colon undigested, are metabolized by the gut microbiome, producing short-chain fatty acids. Short-chain fatty acids possess beneficial anti-inflammatory and antiproliferative properties that promote colon health. A well-balanced microbiome, supported by beneficial fibers and phytochemicals, can regulate the activation of proto-oncogenes and oncogenic pathways, thereby reducing cell proliferation. Recent research suggests that an overabundance of specific microbes, such as Fusobacterium nucleatum, may contribute to adverse changes in the colonic mucosa. Positive lifestyle adjustments have been demonstrated to effectively inhibit the growth of harmful opportunistic organisms. Synbiotics, which combine probiotics and prebiotics, can protect the intestinal mucosa by enhancing immune responses and decreasing the production of harmful metabolites, oxidative stress, and cell proliferation. This narrative review provides a concise understanding of evolving evidence regarding how diet influences the gut microbiome, leading to the restoration of the colonic epithelium. It underscores the importance of a healthy, plant-based diet and associated supplements in preventing colorectal cancer by enhancing gut microbiome health.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Yadelew Yimer Shibabaw
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tseganesh Asefa
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Mohammadhasani K, Vahedi Fard M, Mottaghi Moghaddam Shahri A, Khorasanchi Z. Polyphenols improve non-alcoholic fatty liver disease via gut microbiota: A comprehensive review. Food Sci Nutr 2024; 12:5341-5356. [PMID: 39139973 PMCID: PMC11317728 DOI: 10.1002/fsn3.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols, natural micronutrients derived from plants, are valued for their anti-inflammatory and antioxidant properties. The escalating global prevalence of non-alcoholic fatty liver disease (NAFLD) underscores its status as a chronic progressive liver condition. Furthermore, the dysregulation of gut microbiota (GM) is implicated in the onset and progression of NAFLD through the actions of metabolites such as bile acids (BAs), lipopolysaccharide (LPS), choline, and short-chain fatty acids (SCFAs). Additionally, GM may influence the integrity of the intestinal barrier. This review aims to evaluate the potential effects of polyphenols on GM and intestinal barrier function, and their subsequent impact on NAFLD. We searched through a wide range of databases, such as Web of Science, PubMed, EMBASE, and Scopus to gather information for our non-systematic review of English literature. GM functions and composition can be regulated by polyphenols such as chlorogenic acid, curcumin, green tea catechins, naringenin, quercetin, resveratrol, and sulforaphane. Regulating GM composition improves NAFLD by alleviating inflammation, liver fat accumulation, and liver enzymes. Furthermore, it improves serum lipid profile and gut barrier integrity. All of these components affect NAFLD through the metabolites of GM, including SCFAs, choline, LPS, and BAs. Current evidence indicates that chlorogenic acid, resveratrol, quercetin, and curcumin can modulate GM, improving intestinal barrier integrity and positively impacting NAFLD. More studies are necessary to evaluate the safety and efficacy of naringenin, sulforaphane, and catechin.
Collapse
Affiliation(s)
- Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Ali Mottaghi Moghaddam Shahri
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Amirkhosravi A, Mehrabani M, Fooladi S, Norouzmahani ME, Vasei S, Mir Y, Malekoladi Z, Faramarz S, Nematollahi MH, Mehrabani M. Rheum khorasanicum. Hydroalcoholic root extract induces cell death in human colorectal adenocarcinoma: An in vitro and in silico study. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:685-697. [PMID: 38408722 DOI: 10.1016/j.pharma.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Colorectal cancer (CRC) is the second greatest cause of cancer-related death in the world and chemotherapy, as an important part of CRC treatment, has some drawbacks, including systemic toxicity. Therefore, it is crucial to discover new and more effective CRC treatment plans. Rheum khorasanicum (R. khorasanicum) is a medicinal plant with high flavonoids, stilbenes, and anthraquinone contents, so it can be a potential source of antioxidants and can be used for therapeutic purposes and trigger apoptosis in cancer cells. In this study, we investigated the effects of hydroalcoholic root extract of R. khorasanicum treatment on inducing mitochondrial apoptosis of HT-29 and Caco-2 human colorectal adenocarcinoma cells. Firstly, the total phenolic and flavonoid content was determined. Then, the cytotoxic effects of R. khorasanicum on cells of three different types, including HT-29 and Caco-2 colon cancer cells as well as normal 3T3 cells were assessed using the MTT assay. To investigate the characteristics of cellular death, flow cytometry, and western blotting were performed. The results of this study indicated considerable phenolic (356.4±9.4 GAE/gDW) and flavonoid (934.55±17.1 QE/gDW) contents in R. khorasanicum. MTT assay's finding indicated that 100, 60, and 30μg/mL concentrations of R. khorasanicum reduce cell viability in HT-29 and Caco-2 cell lines significantly (P<0.05). It has been also revealed that R. khorasanicum extract induces apoptosis rather than necrosis in these cell lines. Moreover, Bcl-2 expression was significantly reduced in both HT-29 and Caco-2 cell lines, while Bax and cleaved caspase-3 expression soared considerably in the groups under R. khorasanicum treatment (P<0.05). In conclusion, our findings have suggested that high phenol and flavonoid contents of R. khorasanicum root extract possibly play an important role in cell cytotoxicity and apoptosis induction in HT-29 and Caco-2 colon cancer cells.
Collapse
Affiliation(s)
- Arian Amirkhosravi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mehrnaz Mehrabani
- Centre de recherche en physiologie, institut de neuropharmacologie, université des sciences médicales de Kerman, Kerman, Iran
| | - Saba Fooladi
- Yale Cardiovascular Research Center, section de médecine cardiovasculaire, département de médecine interne, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mohammad-Erfan Norouzmahani
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Saeedeh Vasei
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran
| | - Yousof Mir
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Zahra Malekoladi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| | - Mitra Mehrabani
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| |
Collapse
|
7
|
Kong F, Zhai J, Shi Y, Xu J, Li H, Zhang S, Han B, Shi Q, Li Y, Shen X, He S. Exploring the Anticancer Properties of Sakuranin Flavanone in Human Oropharyngeal Squamous Carcinoma Cells by Studying Its Effects on Caspase-driven Apoptosis, Mitochondrial Membrane Potential (MMP) Loss, Cell Migratory and Invasiveness and m-TOR/PI3K/AKT Signalling Pathway. J Oleo Sci 2024; 73:911-920. [PMID: 38797691 DOI: 10.5650/jos.ess23257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Sakuranin is a flavanone which is a class of flavonoids found abundantly in Prunus species. Flavonoids have been long known for their anticancer properties against a range of human cancers. However, there are no previous reports on the anticancer effects of sakuranin flavanone molecule. This study was designed to study the anticancer effects of sakuranin against human oropharyngeal carcinoma cells along with investigating its effects on caspase-mediated apoptosis, mitochondrial membrane potential (MMP) loss, cell migration and invasion and m-TOR/PI3K/AKT signalling pathway. MTT assay was used to study effects on cell viability. The apoptotic studies were carried out through AO/EB staining, annexin V/FITC staining, comet assay and western blotting assay. Transwell chambers assay was used to study effects on cell migration and invasion. Flow cytometry was used to study effects of Sakuranin on mitochondrial membrane potential loss (MMP). Finally, western blotting was used to investigate m-TOR/PI3K/AKT signalling pathway. Results indicated that Sakuranin led to potent cell proliferation inhibition in a dose-dependent manner. Sakuranin also induced apoptotic cell death as indicated by fluorescence microscopy and annexin V/FITC staining assays. The apoptotic induction was mediated via activation of caspase-3, caspase-9, and Bax while as it led to downregulation of Bcl-2. Sakuranin also caused inhibition of cell migration and cell invasion along with causing significant decrease in MMP. Sakuranin also caused inhibition of expressions of proteins related with m-TOR/PI3K/AKT signalling pathway. In conclusion, the current findings clearly indicate anticancer effects of Sakuranin flavanone in human oropharyngeal cancer cells and are mediated via caspase activated apoptosis, inhibition of cell migration and invasion, loss of mitochondrial membrane potential and targeting m-TOR/PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Fanyong Kong
- Department of Otorhinolaryngology, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University
| | - Jie Zhai
- Department of Otorhinolaryngology, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University
| | - Yueyue Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Jiaqi Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Haiyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Shiyuan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Qian Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Yunxia Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Shizhi He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| |
Collapse
|
8
|
Zhou Y, Gong C, Sun Z, Zeng W, Meng K, An Y, Hu Y, Xue W. Novel Flavonol Derivatives Containing 1,3,4-Thiadiazole as Potential Antifungal Agents: Design, Synthesis, and Biological Evaluation. ACS OMEGA 2024; 9:17297-17306. [PMID: 38645355 PMCID: PMC11024969 DOI: 10.1021/acsomega.3c10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
In order to discover novel compounds with excellent agricultural activities, novel flavonol derivatives containing 1,3,4-thiadiazole were synthesized and evaluated for their antifungal activities. The bioassay results showed that some of the target compounds had good antifungal activities against Botrytis cinerea, Phomopsis sp. and Sclerotinia sclerotiorum in vitro. It is worth noting that the half-effective concentration (EC50) value of Y18 against B. cinerea was 2.4 μg/mL, which was obviously superior to that of azoxystrobin (21.7 μg/mL). The curative activity of Y18 at 200 μg/mL (79.9%) was better than that of azoxystrobin (59.1%), and its protective activity (90.9%) was better than that of azoxystrobin (83.9%). Morphological studies by using scanning electron microscopy and fluorescence microscopy revealed that Y18 could affect the normal growth of B. cinerea mycelium. In addition, the mechanism of action studies indicated that Y18 could affect the integrity of cell membranes by inducing the production of endogenous reactive oxygen species and the release of the malondialdehyde content, leading to membrane lipid peroxidation and the release of cell contents. The inhibitory activity of flavonol derivatives containing 1,3,4-thiadiazole on plant fungi is notable, offering significant potential for the development of new antifungal agents.
Collapse
Affiliation(s)
- Yuanxiang Zhou
- National Key Laboratory of Green Pesticide,
Key Laboratory of Green Pesticide and Agricultural Bioengineering,
Ministry of Education, Center for R&D
of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide,
Key Laboratory of Green Pesticide and Agricultural Bioengineering,
Ministry of Education, Center for R&D
of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide,
Key Laboratory of Green Pesticide and Agricultural Bioengineering,
Ministry of Education, Center for R&D
of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide,
Key Laboratory of Green Pesticide and Agricultural Bioengineering,
Ministry of Education, Center for R&D
of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kaini Meng
- National Key Laboratory of Green Pesticide,
Key Laboratory of Green Pesticide and Agricultural Bioengineering,
Ministry of Education, Center for R&D
of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Youshan An
- National Key Laboratory of Green Pesticide,
Key Laboratory of Green Pesticide and Agricultural Bioengineering,
Ministry of Education, Center for R&D
of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuzhi Hu
- National Key Laboratory of Green Pesticide,
Key Laboratory of Green Pesticide and Agricultural Bioengineering,
Ministry of Education, Center for R&D
of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide,
Key Laboratory of Green Pesticide and Agricultural Bioengineering,
Ministry of Education, Center for R&D
of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Zhan W, Zhou R, Mao P, Yuan C, Zhang T, Liu Y, Tian J, Wang H, Xue W. Synthesis, antifungal activity and mechanism of action of novel chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole. Mol Divers 2024; 28:461-474. [PMID: 36964852 DOI: 10.1007/s11030-022-10593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 03/26/2023]
Abstract
A series of chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole was designed and synthesized. Structures of all compounds were characterized by 1H NMR, 13C NMR, 19F NMR, and HRMS. The biological activities of the compounds were determined with the mycelial growth rate method, and further studies showed that some compounds had good antifungal activities at the concentration of 100 μg/mL. The EC50 value of compound L31 was 15.9 μg/mL against Phomopsis sp., which were better than that of azoxystrobin (EC50 value was 69.4 μg/mL). In addition, the mechanism of action of compound L31 shown that compound can affect mycelial growth by disrupting membrane integrity against Phomopsis sp., and that the higher the concentration of the compound is, the greater the disruption of membrane integrity is.
Collapse
Affiliation(s)
- Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Piao Mao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chunmei Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tao Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yi Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jiao Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China.
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
10
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
11
|
Liu X, Cui S, Li W, Xie H, Shi L. Elucidation of the anti-colon cancer mechanism of Phellinus baumii polyphenol by an integrative approach of network pharmacology and experimental verification. Int J Biol Macromol 2023; 253:127429. [PMID: 37838121 DOI: 10.1016/j.ijbiomac.2023.127429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Colon cancer, a prevalent malignant tumor affecting the digestive system, presents a substantial risk to human health due to its high occurrence and mortality rates. Phellinus baumii polyphenol (PBP), a natural product derived from traditional Chinese medicine, has gained widespread popularity due to its low toxicity and minimal side effects, compared to radiation and chemotherapy. This study used an integrated approach of network pharmacology and experimental verification to elucidate the anti-colon cancer effects of PBP and its potential mechanisms. In network pharmacology, the identification of relevant targets involved a comprehensive search across multiple databases using keywords such as "active components of PBP" and "colon cancer". Venn diagram analysis was subsequently performed to ascertain the shared targets. To identify the key active components and core targets, we constructed a network of "Disease-Drug-Pathways-Targets" and a protein-protein interaction (PPI) network among the targets using Cytoscape 3.9.1. Furthermore, molecular docking was carried out to predict the binding affinity and conformation between the main active compounds (davallialactone and citrinin) of PBP and the core targets (TP53, STAT3, CASP3, CTNNB1, PARP1, MYC). To validate our findings, in vitro experiments were conducted. We verified that PBP exerted an anti-colon cancer effect on human colon cancer HCT116 cells by significantly inhibiting cell proliferation, promoting apoptosis and arresting the cell cycle in S phase by using Cell Counting Kit-8 (CCK-8) and flow cytometry. Finally, we determined the key regulatory proteins related to apoptosis and the cell cycle by western blot analysis, and proposed the potential mechanism by which PBP exerts an anti-colon cancer effect by inducing the caspase-dependent mitochondrial-mediated intrinsic apoptotic pathway and arresting the cell cycle in S phase in HCT116 cells. These results suggest that PBP possesses substantial potential for the treatment of colon cancer and may serve as a viable alternative therapeutic strategy in colon cancer treatment.
Collapse
Affiliation(s)
- Xue Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyao Cui
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; College of Life Sciences, Westlake University, Hangzhou 310058, China
| | - Wenle Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
de Luna FCF, Ferreira WAS, Casseb SMM, de Oliveira EHC. Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin. Pharmaceuticals (Basel) 2023; 16:1229. [PMID: 37765037 PMCID: PMC10537037 DOI: 10.3390/ph16091229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.
Collapse
Affiliation(s)
- Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | - Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | | | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, Brazil
| |
Collapse
|
13
|
Chen D, Chen Y, Huang F, Zhang X, Zhou Y, Xu L. The underlying regulatory mechanisms of colorectal carcinoma by combining Vitexin and Aspirin: based on systems biology, molecular docking, molecular dynamics simulation, and in vitro study. Front Endocrinol (Lausanne) 2023; 14:1147132. [PMID: 37564983 PMCID: PMC10410442 DOI: 10.3389/fendo.2023.1147132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a highly prevalent digestive system malignancy. Aspirin is currently one of the most promising chemopreventive agents for CRC, and the combination of aspirin and natural compounds helps to enhance the anticancer activity of aspirin. Natural flavonoids like vitexin have an anticancer activity focusing on colorectal carcinoma. Methods This study investigated the potential mechanism of action of the novel combination of vitexin and aspirin against colorectal cancer through network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments. Results The results of network pharmacology suggested that vitexin and aspirin regulate multiple signaling pathways through various target proteins such as NFKB1, PTGS2 (COX-2), MAPK1, MAPK3, and TP53. Cellular experiments revealed that the combined effect of vitexin and aspirin significantly inhibited HT-29 cell growth. Vitexin dose-dependently inhibited COX-2 expression in cells and enhanced the down-regulation of COX-2 and NF-κB expression in colorectal cancer cells by aspirin. Discussion This study provides a pharmacodynamic material and theoretical basis for applying agents against colorectal cancer to delay the development of drug resistance and improve the prognosis of cancer patients.
Collapse
Affiliation(s)
- Dengsheng Chen
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Ying Chen
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Fang Huang
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Xiaoling Zhang
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Yulv Zhou
- Department of Chinese Medicine and Anorectology, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Luning Xu
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| |
Collapse
|
14
|
Jin T, Li N, Wu Y, He Y, Yang D, He F. Nobiletin with AIEE Characteristics for Targeting Mitochondria and Real-Time Dynamic Tracking in Zebrafish. Molecules 2023; 28:4592. [PMID: 37375147 DOI: 10.3390/molecules28124592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Nobiletin is a natural product with multiple physiological activities and is the main ingredient of Pericarpium Citri Reticulatae. We successfully discovered that nobiletin exhibits aggregation induced emission enhancement (AIEE) properties and it has significant advantages such as a large Stokes shift, good stability and excellent biocompatibility. The increase in methoxy groups endows nobiletin a greater fat-solubility, bioavailability and transport rate than the corresponding unmethoxylated flavones. Ulteriorly, cells and zebrafish were used to explore the application of nobiletin in biological imaging. It emits fluorescence in cells and is specifically targeted at mitochondria. Moreover, it has a noteworthy affinity for the digestive system and liver of zebrafish. Due to the unique AIEE phenomenon and stable optical properties of nobiletin, it paves the way for discovering, modifying and synthesizing more molecules with AIEE characteristics. Furthermore, it has a great prospect with regard to imaging cells and cellular substructures, such as mitochondria, which play crucial roles in cell metabolism and death. Indeed, three-dimensional real-time imaging in zebrafish provides a dynamic and visual tool for studying the absorption, distribution, metabolism and excretion of drugs. In this article, more directions and inspiration can be presented for the exploration of non-invasive pharmacokinetic research and intuitive drug pathways or mechanisms.
Collapse
Affiliation(s)
- Tingting Jin
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Na Li
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Depo Yang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
15
|
Wei C, Du J, Shen Y, Wang Z, Lin Q, Chen J, Zhang F, Lin W, Wang Z, Yang Z, Ma W. Anticancer effect of involucrasin A on colorectal cancer cells by modulating the Akt/MDM2/p53 pathway. Oncol Lett 2023; 25:218. [PMID: 37153032 PMCID: PMC10157355 DOI: 10.3892/ol.2023.13804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/27/2023] [Indexed: 05/09/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide; however, there is still a lack of effective clinical anti-CRC agents. Naturally-occurring compounds have been considered a potentially valuable source of new antitumorigenic agents. Involucrasin A, a novel natural molecule, was isolated from Shuteria involucrata (Wall.) Wight & Arn by our team. In the present study, the anticancer activity of involucrasin A in HCT-116 CRC cells was evaluated. Firstly, the anti-proliferative effect of involucrasin A on HCT-116 cells was analyzed by sulforhodamine B and colony formation assays. The results revealed that involucrasin A exhibited a potent inhibitory effect on HCT-116 CRC cell proliferation in vitro. Subsequently, flow cytometry and western blotting indicated that involucrasin A induced apoptosis and upregulated the expression levels of apoptosis-related proteins, such as cleaved-caspase 6 and cleaved-caspase 9, in a dose-dependent manner. Mechanistically, involucrasin A significantly inhibited the phosphorylation of Akt and murine double minute 2 homologue (MDM2), which resulted in increased intracellular levels of p53. This was reversed by exogenous expression of the constitutively active form of Akt. Similarly, either knocking out p53 or knocking down Bax abrogated involucrasin A-induced proliferation inhibition and apoptosis. Together, the present study indicated that involucrasin A exerts antitumorigenic activities via modulating the Akt/MDM2/p53 pathway in HCT-116 CRC cells, and it is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Chengming Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Jingjing Du
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Qianyu Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Junhe Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong 518000, P.R. China
| | - Zhuya Yang
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Correspondence to: Professor Zhuya Yang, School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong, Kunming, Yunnan 650500, P.R. China, E-mail:
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
- Professor Wenzhe Ma, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Block H701, Macau, SAR 999078, P.R. China, E-mail:
| |
Collapse
|
16
|
He K, Gan WJ. Wnt/β-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer. Cancer Manag Res 2023; 15:435-448. [PMID: 37250384 PMCID: PMC10224676 DOI: 10.2147/cmar.s411168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a growth control pathway involved in various biological processes as well as the development and progression of cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world. The hyperactivation of Wnt signaling is observed in almost all CRC and plays a crucial role in cancer-related processes such as cancer stem cell (CSC) propagation, angiogenesis, epithelial-mesenchymal transition (EMT), chemoresistance, and metastasis. This review will discuss how the Wnt/β-catenin signaling pathway is involved in the carcinogenesis and progression of CRC and related therapeutic approaches.
Collapse
Affiliation(s)
- Kuang He
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
17
|
De S, Paul S, Manna A, Majumder C, Pal K, Casarcia N, Mondal A, Banerjee S, Nelson VK, Ghosh S, Hazra J, Bhattacharjee A, Mandal SC, Pal M, Bishayee A. Phenolic Phytochemicals for Prevention and Treatment of Colorectal Cancer: A Critical Evaluation of In Vivo Studies. Cancers (Basel) 2023; 15:993. [PMID: 36765950 PMCID: PMC9913554 DOI: 10.3390/cancers15030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samhita De
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Sourav Paul
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | - Anirban Manna
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | | | - Koustav Pal
- Jawaharlal Institute Post Graduate Medical Education and Research, Puducherry 605 006, India
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Vinod Kumar Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Anantapur 515 721, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology, Chennai 600 036, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
18
|
The Gut Microbiota Metabolite Urolithin B Prevents Colorectal Carcinogenesis by Remodeling Microbiota and PD-L1/HLA-B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6480848. [PMID: 36778211 PMCID: PMC9908333 DOI: 10.1155/2023/6480848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023]
Abstract
Colorectal cancer has risen to the third occurring cancer in the world. Fluorouracil (5-Fu), oxaliplatin, and cisplatin are the most effective chemotherapeutic agents for clinical chemotherapy. Nevertheless, due to chemotherapeutic drug resistance, the survival rate of patients with CRC remains very low. In this study, we used the inflammation-induced or mutation-family-inherited murine CRC models to study the anticancer and immunotherapy effects of urolithin B (UB), the final metabolite of polyphenols in the gastrointestinal tract. The label-free proteomics analysis and the gene ontology (GO) classifications were used to test and analyze the proteins affected by UB. And 16S rDNA sequencing and flow cytometry were utilized to uncover gut microbiome composition and immune defense improved by UB administration. The results indicated that urolithin B prevents colorectal carcinogenesis by remodeling gut microbial and tumor immune microenvironments, such as HLA-B, NK cells, regulatory T cells, and γδ TCR cells, and decreasing the PD-L1. The combination of urolithin B with first-line therapeutic drugs improved the colorectal intestinal hematochezia by shaping gut microbiota, providing a strategy for the treatment of immunotherapy treatment for CRC treatments. UB combined with anti-PD-1 antibody could inhibit the growth of colon cancer. Urolithin B may thus contribute to anticancer treatments and provide a high immune response microenvironment for CRC patients' further immunotherapy.
Collapse
|
19
|
Wang H, Chen K, Ning M, Wang X, Wang Z, Yue Y, Yuan Y, Yue T. Intake of Pro- and/or Prebiotics as a Promising Approach for Prevention and Treatment of Colorectal Cancer. Mol Nutr Food Res 2023; 67:e2200474. [PMID: 36349520 DOI: 10.1002/mnfr.202200474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer, posing a serious threat to human life. It is widely believed that dietary factors may be crucial modifiers of CRC risk, with pro-and/or prebiotics being especially promising. In this review, a synthesis of CRC prevention and treatment of strategies relying on usage of pro- and/or prebiotics supplements is given, as well as discuss mechanisms underlying the contribution of pro-and/or prebiotics to the suppression of colonic carcinogenesis. Furthermore, a framework for personalizing such supplements according to the composition of an individual's gut microbiome is suggested. Various factors including diversity of one's intestinal microflora, integrity of their intestinal barrier, and the presence of mutagenic/carcinogenic/genotoxic and beneficial compounds are known to have a prominent influence on the development of CRC; thus, clarifying the role of pro- and/or prebiotics will yield valuable insight toward optimizing interventions for enhanced patient outcomes in the future.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an, 71000, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
20
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
21
|
Anti-Inflammatory and Antioxidant Capacity of a Fruit and Vegetable-Based Nutraceutical Measured by Urinary Oxylipin Concentration in a Healthy Population: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Antioxidants (Basel) 2022; 11:antiox11071342. [PMID: 35883832 PMCID: PMC9312146 DOI: 10.3390/antiox11071342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oxylipins, lipid biomarkers of inflammation are considered the gold standard method to evaluate the inflammatory and antioxidant status. The aim of the present study was to investigate whether the administration of a polyphenolic extract shot in the form of a nutraceutical was able to reduce inflammation, measured in urine markers. Ninety-two participants (45 males, 47 females, age 34 ± 11 years, weight 73.10 ± 14.29 kg, height 1.72 ± 9 cm, BMI 24.40 ± 3.43 kg/m2) completed the study after an intervention of two 16-week periods consuming extract or placebo separated by a 4-week washout period. The results showed significant differences in terms of reduction of different pro-inflammatory oxylipins (15-keto-PGF2α (from 0.90 ± 0.25 ng/mL to 0.74 ± 0.19 ng/mL p < 0.05), ent-PGF2α (from 1.59 ± 0.37 ng/mL to 1.44 ± 0.32 ng/mL p < 0.05), 2,3-dinor-15-F2t-Isop) (from 1.17 ± 0.35 ng/mL to 1.02 ± 0.27 ng/mL p < 0.05), in total oxylipins count (from 8.03 ± 1.86 ng/mL to 7.25 ± 1.23 ng/mL p < 0.05), and increase in PGE2 (from 1.02 ± 0.38 ng/mL to 1.26 ± 0.38 ng/mL p < 0.05) which has an anti-inflammatory character, after extract consumption compared to placebo. The available data seem to indicate that long-term consumption of a nutraceutical with high polyphenol content improves inflammation and oxidation parameters measured in urine, through UHPLC-QqQ-ESI-MS/MS.
Collapse
|
22
|
Lackner S, Sconocchia T, Ziegler T, Passegger C, Meier-Allard N, Schwarzenberger E, Wonisch W, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Derler M, Strobl H, Holasek SJ. Immunomodulatory Effects of Aronia Juice Polyphenols-Results of a Randomized Placebo-Controlled Human Intervention Study and Cell Culture Experiments. Antioxidants (Basel) 2022; 11:1283. [PMID: 35883769 PMCID: PMC9312026 DOI: 10.3390/antiox11071283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary polyphenols, which are present in Aronia melanocarpa, have been associated with various beneficial effects on human health including antioxidant, antiviral, and anti-inflammatory activities. We aimed to investigate the immunomodulatory effects of aronia juice polyphenols in a randomized placebo-controlled human intervention study and cell culture experiments. A total of 40 females were asked to consume either 200 mL of aronia juice or a placebo drink for six weeks and were investigated again after a washout period of another six weeks. We observed that only half of the participants tolerated the aronia juice well (Vt) and the other half reported complaints (Vc). The placebo (P) was generally tolerated with one exception (p = 0.003). Plasma polyphenol levels increased significantly in Vt after the intervention (p = 0.024) but did neither in P nor in Vc. Regulatory T cell (Treg) frequencies remained constant in Vt and P during the intervention, whereas Tregs decreased in Vc (p = 0.018). In cell culture, inhibiting effects of ferulic acid (p = 0.0005) and catechin (p = 0.0393) on the differentiation of Tregs were observed as well as reduced activation of CD4-T cells in ferulic acid (p = 0.0072) and aronia juice (p = 0.0163) treated cells. Interestingly, a CD4+CD25-FoxP3+ cell population emerged in vitro in response to aronia juice, but not when testing individual polyphenols. In conclusion, our data strengthen possible individual hormetic effects, the importance of the food matrix for bioactivity, and the need for further investigations on possible impacts of specific physiological features such as the gut microbiota in the context of personalized nutrition.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Tommaso Sconocchia
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Division of Haematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Ziegler
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Juice Plus+ Science Institute, Collierville, TN 38017, USA
| | - Christina Passegger
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Nathalie Meier-Allard
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Elke Schwarzenberger
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Willibald Wonisch
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Martina Derler
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Sandra Johanna Holasek
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| |
Collapse
|
23
|
Hussain Y, Khan H, Alam W, Aschner M, Abdullah, Alsharif KF, Saso L. Flavonoids Targeting the mTOR Signaling Cascades in Cancer: A Potential Crosstalk in Anti-Breast Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4831833. [PMID: 35795855 PMCID: PMC9252758 DOI: 10.1155/2022/4831833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/04/2022] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death worldwide. Breast cancer is the second leading cause of death in women, with triple-negative breast cancer being the most lethal and aggressive form. Conventional therapies, such as radiation, surgery, hormonal, immune, gene, and chemotherapy, are widely used, but their therapeutic efficacy is limited due to adverse side effects, toxicities, resistance, recurrence, and therapeutic failure. Many molecules have been identified and investigated as potential therapeutic agents for breast cancer, with a focus on various signaling pathways. Flavonoids are a versatile class of phytochemicals that have been used in cancer treatment to overcome issues with traditional therapies. Cell proliferation, growth, apoptosis, autophagy, and survival are all controlled by mammalian target of rapamycin (mTOR) signaling. Flavonoids target mTOR signaling in breast cancer, and when this signaling pathway is regulated or deregulated, various signaling pathways provide potential therapeutic means. The role of various flavonoids as phytochemicals in targeting mTOR signaling pathways in breast cancer is highlighted in this review.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer” Sapienza University, 00185 Rome, Italy
| |
Collapse
|
24
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
25
|
Yang C, Zhu S, Chen Y, Liu Z, Zhang W, Zhao C, Luo C, Deng H. Flavonoid 4,4'-dimethoxychalcone suppresses cell proliferation via dehydrogenase inhibition and oxidative stress aggravation. Free Radic Biol Med 2021; 175:206-215. [PMID: 34506903 DOI: 10.1016/j.freeradbiomed.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022]
Abstract
Flavonoids are natural polyphenolic compounds with a diverse array of biological activities and health-promoting effects. Recent studies have found that 4,4'-dimethoxychalcone (DMC) promoted longevity via autophagy; however, its targets are currently unknown. Herein, we employed an unbiased thermal proteome profiling (TPP) method and identified multiple targets of DMC, including ALDH1A3, ALDH2, and PTGES2. We further determined the dissociation constant (Kd) of DMC and ALDH1A3 to be 2.8 μM using microscale thermophoresis (MST) analysis, which indicated that DMC inhibited ALDH1A3 activity and aggravated cellular oxidative stress. DMC treatment significantly increased cellular reactive oxygen species (ROS) production and inhibited cancer cell growth. Quantitative proteomic analysis showed that DMC upregulated proteins associated with stress-responses and downregulated proteins associated with cell cycle progression, and this was confirmed using cell cycle analysis. Taken together, we showed that TPP is an effective tool with which to identify flavonoid targets and set a precedent for deciphering flavonoid function in the future. We have demonstrated that DMC inhibited cell proliferation via ROS-induced cell cycle arrest and is an anti-proliferative agent in cancer treatment.
Collapse
Affiliation(s)
- Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Zongyuan Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Chongchong Zhao
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing, 100084, PR China
| | - Chengting Luo
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
26
|
Liu ZB, Zhang T, Ye X, Liu ZQ, Sun X, Zhang LL, Wu CJ. Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. J Pharm Pharmacol 2021; 74:162-178. [PMID: 34559879 DOI: 10.1093/jpp/rgab130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nowadays, one of the most common gastrointestinal cancers is colorectal cancer (CRC). Chemotherapy is still one of the main methods to treat cancer. However, the currently available synthetic chemotherapy drugs often cause serious adverse reactions. Apoptosis is generally considered as an ideal way for induction the death of tumour cells without the body's inflammatory response, and it is reported that lots of natural agents could trigger various cancer cells to apoptosis. The overarching aim of this project was to elucidate the specific mechanisms by which natural substances induce apoptosis in CRC cells and to be used as an alternative therapeutic option in the future. KEY FINDINGS The mechanisms for the pro-apoptotic effects of natural substances derived from herbs or plants include death receptor pathway, mitochondrial pathway, endoplasmic reticulum stress pathway, related signal transduction pathways (PI3K/Akt, MAPK, p53 signalling), and so on. SUMMARY This paper updated this information regarding the anti-tumour effects of natural agents via induction of apoptosis against CRC, which would be beneficial for future new drug research regarding natural products from herbs or plants.
Collapse
Affiliation(s)
- Zi-Bo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zi-Qi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Li-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | | |
Collapse
|
27
|
Dik B, Coskun D, Er A. Protective Effect of Nerium Oleander Distillate and Tarantula Cubensis Alcoholic Extract on Cancer Biomarkers on Colon and Liver Tissues of Rats with Experimental Colon Cancer. Anticancer Agents Med Chem 2021; 22:1962-1969. [PMID: 34477527 DOI: 10.2174/1871520621666210903120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colon cancers are among the three major cancer types that result in death. The research for effective treatment continues. OBJECTIVE The aim of this study is to determine the effects of Tarantula cubensis alcoholic extract (TCAE) and Nerium oleander (NO) distillate on the levels of midkine, TGF-β, VEGF, AFP, COX-2, IGF and caspase 3 in liver and colon tissues of experimentally induced colon cancer in rats. METHOD The liver and colon tissues of the rats were divided into Control, Colon Cancer (AZM), AZM+TCAE and AZM+NO groups and they were homogenized. The levels of midkine, TGF-β, VEGF, AFP, COX-2, IGF and caspase 3 in the colon and liver tissues were measured by ELISA kits. RESULTS All parameters levels of colon and liver tissues in the AZM group were generally higher (p<0.05) than the Control group. TCAE and NO prevented (p<0.05) the increases in midkine, TGF-β, VEGF, AFP, COX-2, IGF and caspase-3 levels in the colon. NO prevented increase of all parameters except for IGF level, while TCAE prevented (p<0.05) the increase of all values apart from COX-2 and IGF levels in the liver. CONCLUSION NO and TCAE may prevented at the specified marker levels of colon in the AZM induced colon cancer. The increases the level of parameters in the liver are not as severe as in the colon, due to the 18-week study period may not be sufficient for liver metastasis formationIn the future molecular studies should be done to determine the mechanisms and pathways of them more clearly.
Collapse
Affiliation(s)
- Burak Dik
- Selcuk University, Veterinary Faculty, Department of Pharmacology and Toxicology, Konya, Turkey
| | - Devran Coskun
- Siirt University, Veterinary Faculty, Department of Pharmacology and Toxicology, Siirt, Turkey
| | - Ayşe Er
- Selcuk University, Veterinary Faculty, Department of Pharmacology and Toxicology, Konya, Turkey
| |
Collapse
|
28
|
Pandey P, Khan F. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutr Res 2021; 92:21-31. [PMID: 34273640 DOI: 10.1016/j.nutres.2021.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Hesperidin, a phytoactive compound, is an abundant and economical dietary bioflavonoid possessing numerous biological and medicinal benefits. Several studies have strongly proven the significant chemotherapeutic potential of hesperidin. Therefore, this review aims to bring together the existing studies demonstrating hesperidin as a potential anticancer agent with its mode of action reported in the therapeutic strategies for numerous cancer types. Hesperidin acts via modulating multiple pathways involving cell cycle arrest, apoptosis, antiangiogenic, antimetastatic and DNA repair in various cancer cells. Hesperidin has been reported to alter several molecular targets related to carcinogenesis, such as reactive nitrogen species, cellular kinases, transcription factors, reactive oxygen species, drug transporters, cell cycle mediators and inflammatory cytokines. Collectively, this review provides significant insights for the potential of hesperidin to be a strong and promising candidate for pharmaceuticals, functional foods, dietary supplements, nutraceuticals and geared toward the better management of carcinoma.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India.
| |
Collapse
|
29
|
Khorsandi K, Kianmehr Z, Ghelichkhani E. Combination effect of red light irradiation and Traychspermum ammi essential oil on colorectal cancer cells (SW480). Lasers Med Sci 2021; 37:1031-1040. [PMID: 34191208 DOI: 10.1007/s10103-021-03350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Colon cancer is the third significant reason for death related to cancers in the world. There are various treatments for colon cancer, which have several side effects. Polyphenol agents are a type of antioxidant in plants that have diverse biological properties, such as anti-cancer effects. Here, we investigate the effect of Trachyspermum ammi essential oil (TEO) and red light irradiation on the colorectal cancer cell line (SW 480). The colorectal cancer cell lines were irradiated at 660 nm for 90 s and then the cells were incubated with different TEO concentrations. In another study, cells initially were treated with various TEO concentrations and then irradiation for 90 s. Effect of TEO and the red light irradiation on viability of the cell, ROS generation, and cell cycle was assessed by MTT and flow cytometry, respectively. The findings demonstrated that early incubation with TEO and then irradiation decreased the SW 480 cells survival more than the early irradiation at 660 nm and then essential oil. In addition, TEO treatment at IC50 concentration in combination with low-level laser irradiation induces ROS generation in SW 480 cells as compared to the dark group. In addition, TEO treatment at IC50 in combination with low-level laser irradiation induces G0/G1 arrest of the cell cycle in SW 480 cells in comparison to the dark group. This study revealed that the Trachyspermum ammi essential oil in combination with low-level laser results in more reduction in survival which leads to ROS generation and cell cycle arrest in SW 480 colorectal cancer cells.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Elmira Ghelichkhani
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Ray SK, Mukherjee S. Evolving Interplay Between Dietary Polyphenols and Gut Microbiota-An Emerging Importance in Healthcare. Front Nutr 2021; 8:634944. [PMID: 34109202 PMCID: PMC8180580 DOI: 10.3389/fnut.2021.634944] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Polyphenols are natural plant compounds and are the most abundant antioxidants in the human diet. As the gastrointestinal tract is the primary organ provided to diet sections, the diet may be regarded as one of the essential factors in the functionality, integrity, and composition of intestinal microbiota. In the gastrointestinal tract, many polyphenols remain unabsorbed and may accumulate in the large intestine, where the intestinal microbiota are most widely metabolized. When assuming primary roles for promoting host well-being, this intestinal health environment is presented to the effect of external influences, including dietary patterns. A few different methodologies have been developed to increase solvency and transport across the gastrointestinal tract and move it to targeted intestinal regions to resolve dietary polyphenols at the low bioavailability. Polyphenols form a fascinating community among the different nutritional substances, as some of them have been found to have critical biological activities that include antioxidant, antimicrobial, or anticarcinogenic activities. Besides, it affects metabolism and immunity of the intestines and has anti-inflammatory properties. The well-being status of subjects can also benefit from the development of bioactive polyphenol-determined metabolites, although the mechanisms have not been identified. Even though the incredible variety of health-advancing activities of dietary polyphenols has been widely studied, their effect on intestinal biology adaptation, and two-way relationship between polyphenols and microbiota is still poorly understood. We focused on results of polyphenols in diet with biological activities, gut ecology, and the influence of their proportional links on human well-being and disease in this study.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
31
|
Vaitkeviciene R, Zadeike D, Gaizauskaite Z, Valentaviciute K, Marksa M, Mazdzieriene R, Bartkiene E, Lele V, Juodeikiene G, Jakstas V. Functionalisation of rice bran assisted by ultrasonication and fermentation for the production of rice bran–lingonberry pulp‐based probiotic nutraceutical. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ruta Vaitkeviciene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Daiva Zadeike
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Zydrune Gaizauskaite
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Kristina Valentaviciute
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Ramute Mazdzieriene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Elena Bartkiene
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
- Department of Food Safety and Quality Veterinary Academy of Lithuanian University of Health Sciences Kaunas LT‐47181 Lithuania
| | - Vita Lele
- Department of Food Safety and Quality Veterinary Academy of Lithuanian University of Health Sciences Kaunas LT‐47181 Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| |
Collapse
|
32
|
Fan T, Xie Y, Ma W. Research progress on the protection and detoxification of phytochemicals against aflatoxin B 1-Induced liver toxicity. Toxicon 2021; 195:58-68. [PMID: 33716068 DOI: 10.1016/j.toxicon.2021.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic toxin, which can cause hepatitis, cirrhosis, and liver immunological damage. It has been involved in the etiology of human hepatocellular carcinoma. AFB1 can cause oxidative stress in the body's metabolism process, and then cause cytotoxicity, such as apoptosis and DNA damage. Scientific research has discovered that phytochemicals can induce the detoxification pathway of AFB1 through its biotransformation, thereby reducing the damage of AFB1 to the human body. In clinical treatment, certain phytochemicals have been effectively used in the treatment of liver injury due to the advantages of multiple targets, multiple pathways, low toxicity and side effects. Therefore, the article summarizes the toxic mechanism of AFB1-induced hepatoxicity, and the related research progress of phytochemicals for preventing and treating its cytotoxicity and genotoxicity. We also look forward to the existing problems and application prospects of phytochemicals in the pharmaceutical industry, in order to provide theoretical reference for the prevention and treatment of AFB1 poisoning in future research work.
Collapse
Affiliation(s)
- Tingting Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
33
|
Jung EJ, Paramanantham A, Kim HJ, Shin SC, Kim GS, Jung JM, Ryu CH, Hong SC, Chung KH, Kim CW, Lee WS. Artemisia annua L. Polyphenol-Induced Cell Death Is ROS-Independently Enhanced by Inhibition of JNK in HCT116 Colorectal Cancer Cells. Int J Mol Sci 2021; 22:1366. [PMID: 33573023 PMCID: PMC7866371 DOI: 10.3390/ijms22031366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is activated by chemotherapeutic reagents including natural plant polyphenols, and cell fate is determined by activated phospho-JNK as survival or death depending on stimuli and cell types. The purpose of this study was to elucidate the role of JNK on the anticancer effects of the Korean plant Artemisia annua L. (pKAL) polyphenols in p53 wild-type HCT116 human colorectal cancer cells. Cell morphology, protein expression levels, apoptosis/necrosis, reactive oxygen species (ROS), acidic vesicles, and granularity/DNA content were analyzed by phase-contrast microscopy; Western blot; and flow cytometry of annexin V/propidium iodide (PI)-, dichlorofluorescein (DCF)-, acridine orange (AO)-, and side scatter pulse height (SSC-H)/DNA content (PI)-stained cells. The results showed that pKAL induced morphological changes and necrosis or late apoptosis, which were associated with loss of plasma membrane/Golgi integrity, increased acidic vesicles and intracellular granularity, and decreased DNA content through downregulation of protein kinase B (Akt)/β-catenin/cyclophilin A/Golgi matrix protein 130 (GM130) and upregulation of phosphorylation of H2AX at Ser-139 (γ-H2AX)/p53/p21/Bak cleavage/phospho-JNK/p62/microtubule-associated protein 1 light chain 3B (LC3B)-I. Moreover, JNK inhibition by SP600125 enhanced ROS-independently pKAL-induced cell death through downregulation of p62 and upregulation of p53/p21/Bak cleavage despite a reduced state of DNA damage marker γ-H2AX. These findings indicate that phospho-JNK activated by pKAL inhibits p53-dependent cell death signaling and enhances DNA damage signaling, but cell fate is determined by phospho-JNK as survival rather than death in p53 wild-type HCT116 cells.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Anjugam Paramanantham
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Chung Ho Ryu
- Department of Food Technology, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Soon Chan Hong
- Department of Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Ky Hyun Chung
- Department of Urology, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Choong Won Kim
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| |
Collapse
|
34
|
Wang W, Zhang S, Wang J, Wu F, Wang T, Xu G. Bioactivity-Guided Synthesis Accelerates the Discovery of 3-(Iso)quinolinyl-4-chromenones as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:491-500. [PMID: 33382606 DOI: 10.1021/acs.jafc.0c06700] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fungal infections could cause tremendous decreases in crop yield and quality. Natural products, including flavonoids and (iso)quinolines, have always been an important source for lead discovery in medicinal and agricultural chemistry. To promote the discovery and development of new fungicides, a series of 3-(iso)quinolinyl-4-chromenone derivatives was designed and synthesized by the active substructure splicing principle and evaluated for their antifungal activities. The lead optimization was guided by bioactivity. The bioassay data revealed that the 3-quinolinyl-4-chromenone 13 showed significant in vitro activities against S. sclerotiorum, V. mali, and B. cinerea with EC50 values of 3.65, 2.61, and 2.32 mg/L, respectively. The 3-isoquinolinyl-4-chromenone 25 exhibited excellent in vitro activity against S. sclerotiorum with an EC50 value of 1.94 mg/L, close to that of commercial fungicide chlorothalonil (EC50 = 1.57 mg/L) but lower than that of boscalid (EC50 = 0.67 mg/L). For V. mali and B. cinerea, 3-isoquinolinyl-4-chromenone 25 (EC50 = 1.56, 1.54 mg/L) showed significantly higher activities than chlorothalonil (EC50 = 11.24, 2.92 mg/L). In addition, in vivo experiments proved that compounds 13 and 25 have excellent protective fungicidal activities with inhibitory rates of 88.24 and 94.12%, respectively, against B. cinerea at 50 mg/L, while the positive controls chlorothalonil and boscalid showed inhibitory rates of 76.47 and 97.06%, respectively. Physiological and biochemical studies showed that the primary action of mechanism of compounds 13 and 25 on S. sclerotiorum and B. cinerea may involve changing mycelial morphology and increasing cell membrane permeability. In addition, compound 13 may also affect the respiratory metabolism of B. cinerea. This study revealed that compounds 13 and 25 could be promising candidates for the development of novel fungicides in crop protection.
Collapse
Affiliation(s)
- Wei Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Shan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Jianhua Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Furan Wu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Yangling, 712100 Shaanxi, China
| |
Collapse
|
35
|
Jung EJ, Lee WS, Paramanantham A, Kim HJ, Shin SC, Kim GS, Jung JM, Ryu CH, Hong SC, Chung KH, Kim CW. p53 Enhances Artemisia annua L. Polyphenols-Induced Cell Death Through Upregulation of p53-Dependent Targets and Cleavage of PARP1 and Lamin A/C in HCT116 Colorectal Cancer Cells. Int J Mol Sci 2020; 21:ijms21239315. [PMID: 33297377 PMCID: PMC7730414 DOI: 10.3390/ijms21239315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
Plant-derived natural polyphenols exhibit anticancer activity without showing any noticeable toxicities to normal cells. The aim of this study was to investigate the role of p53 on the anticancer effect of polyphenols isolated from Korean Artemisia annua L. (pKAL) in HCT116 human colorectal cancer cells. We confirmed that pKAL induced reactive oxygen species (ROS) production, propidium iodide (PI) uptake, nuclear structure change, and acidic vesicles in a p53-independent manner in p53-null HCT116 cells through fluorescence microscopy analysis of DCF/PI-, DAPI-, and AO-stained cells. The pKAL-induced anticancer effects were found to be significantly higher in p53-wild HCT116 cells than in p53-null by hematoxylin staining, CCK-8 assay, Western blot, and flow cytometric analysis of annexin V/PI-stained cells. In addition, expression of ectopic p53 in p53-null cells was upregulated by pKAL in both the nucleus and cytoplasm, increasing pKAL-induced cell death. Moreover, Western bot analysis revealed that pKAL-induced cell death was associated with upregulation of p53-dependent targets such as p21, Bax and DR5 and cleavage of PARP1 and lamin A/C in p53-wild HCT116 cells, but not in p53-null. Taken together, these results indicate that p53 plays an important role in enhancing the anticancer effects of pKAL by upregulating p53 downstream targets and inducing intracellular cell death processes.
Collapse
Affiliation(s)
- Eun Joo Jung
- Departments of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (E.J.J.); (C.W.K.)
| | - Won Sup Lee
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
- Correspondence: ; Tel.: +82-55-750-8733; Fax: +82-55-758-9122
| | - Anjugam Paramanantham
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Hye Jung Kim
- Departments of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Jin-Myung Jung
- Departments of Neurosurgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Chung Ho Ryu
- Department of Food Technology, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Soon Chan Hong
- Departments of Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Ky Hyun Chung
- Departments of Urology, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Choong Won Kim
- Departments of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (E.J.J.); (C.W.K.)
| |
Collapse
|
36
|
Scaria B, Sood S, Raad C, Khanafer J, Jayachandiran R, Pupulin A, Grewal S, Okoko M, Arora M, Miles L, Pandey S. Natural Health Products (NHP's) and Natural Compounds as Therapeutic Agents for the Treatment of Cancer; Mechanisms of Anti-Cancer Activity of Natural Compounds and Overall Trends. Int J Mol Sci 2020; 21:E8480. [PMID: 33187200 PMCID: PMC7697102 DOI: 10.3390/ijms21228480] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most cancer therapeutics, such as tubulin-targeting chemotherapy drugs, cause cytotoxic, non-selective effects. These harmful side-effects drastically reduce the cancer patient's quality of life. Recently, researchers have focused their efforts on studying natural health products (NHP's) which have demonstrated the ability to selectively target cancer cells in cellular and animal models. However, the major hurdle of clinical validation remains. NHP's warrant further clinical investigation as a therapeutic option since they exhibit low toxicity, while retaining a selective effect. Additionally, they can sensitize cancerous cells to chemotherapy, which enhances the efficacy of chemotherapeutic drugs, indicating that they can be utilized as supplemental therapy. An additional area for further research is the investigation of drug-drug interactions between NHP's and chemotherapeutics. The objectives of this review are to report the most recent results from the field of anticancer NHP research, and to highlight the most recent advancements in possible supplemental therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada; (B.S.); (S.S.); (C.R.); (J.K.); (R.J.); (A.P.); (S.G.); (M.O.); (M.A.); (L.M.)
| |
Collapse
|
37
|
Xu Z, Zhao D, Zheng X, Huang B, Xia X, Pan X. Quercetin exerts bidirectional regulation effects on the efficacy of tamoxifen in estrogen receptor-positive breast cancer therapy: An in vitro study. ENVIRONMENTAL TOXICOLOGY 2020; 35:1179-1193. [PMID: 32530119 DOI: 10.1002/tox.22983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Tamoxifen was widely applied in the therapy of estrogen receptor (ER)-positive breast cancer. With the purpose of determining the potential impacts of quercetin on its effectiveness, MCF-7 cells were selected as the in vitro model and several cellular biological behaviors (ie, cell proliferation, migration, invasion, cycle, apoptosis, and oxidative stress) were investigated. As results, quercetin showed contrasting dose-response to cellular behaviors dependent on the ROS-regulated p53 signaling pathways. In detail, quercetin promoted cell proliferation and inhibited cell apoptosis at low concentrations, whereas high-concentration resulted in apoptosis induction. Moreover, quercetin at a low concentration significantly inhibited tamoxifen-induced antiproliferation in MCF-7 cells, whereas high concentrations enhanced cell apoptosis in a synergetic manner. The real-time quantitative polymerase chain reaction analysis further implied that quercetin exerted its dual roles in tamoxifen-induced antiproliferative effects by regulated the gene expression involved in cell metastasis, cycle, and apoptosis through the ER pathways. Our present study provides a considerable support to the combination of quercetin and tamoxifen on human ER-positive breast carcinoma management.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dimeng Zhao
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xianyao Zheng
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Bin Huang
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xuejun Pan
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
38
|
Naringin Combined with NF-κB Inhibition and Endoplasmic Reticulum Stress Induces Apoptotic Cell Death via Oxidative Stress and the PERK/eIF2α/ATF4/CHOP Axis in HT29 Colon Cancer Cells. Biochem Genet 2020; 59:159-184. [PMID: 32979141 DOI: 10.1007/s10528-020-09996-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Currently, combination therapy is considered the most effective solution for a selective chemotherapeutic effect in the treatment of colon cancer. This study investigated the death of both colon cancer HT29 cells and healthy vascular smooth muscle TG-Ha-VSMC cells (VSMCs) induced by naringin combined with endoplasmic reticulum (ER) stress and NF-κB inhibition. Naringin combined with tunicamycin and BAY 11-7082 suppressed the proliferation of HT29 cells in a dose-dependent manner and induced particularly apoptotic death without significantly affecting healthy VSMCs according to Annexin V/PI staining and AO/EB staining analyses. Insufficient antioxidant defense and heat shock response as well as excessive ROS generation were observed in HT29 cells following combination therapy. Quantitative real-time PCR and western blot analysis demonstrated that drug combination-induced mitochondrial apoptosis was activated through the ROS-mediated PERK/eIF2α/ATF4/CHOP pathway. Additionally, naringin combination significantly reduced the sXBP expression induced by tunicamycin+BAY 11-7082 in a dose-dependent manner. In conclusion, this study found that naringin combined with tunicamycin+BAY 11-7082 efficiently induced apoptotic cell death in HT29 colon cancer cells via oxidative stress and the PERK/eIF2α/ATF4/CHOP pathway, suggesting that naringin combined with tunicamycin plus BAY 11-7082 could be a new combination therapy strategy for effective colon cancer treatment with minimal side effects on healthy cells.
Collapse
|
39
|
Catalkaya G, Venema K, Lucini L, Rocchetti G, Delmas D, Daglia M, De Filippis A, Xiao H, Quiles JL, Xiao J, Capanoglu E. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.25] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Gizem Catalkaya
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation Faculty of Science and Engineering Maastricht University ‐ Campus Venlo Venlo The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM) Maastricht University Maastricht The Netherlands
| | - Luigi Lucini
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Dominique Delmas
- INSERM Research Center U1231 Université de Bourgogne Franche‐Comté Centre anticancéreux Georges François Leclerc Université de Bourgogne Franche‐Comté Dijon 21000 France
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Anna De Filippis
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst MA USA
| | - José L. Quiles
- Department of Physiology Institute of Nutrition and Food Technology ‘‘José Mataix” Biomedical Research Centre University of Granada Granada Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Taipa Macau
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
40
|
Sankaranarayanan R, Kumar DR, Patel J, Bhat GJ. Do Aspirin and Flavonoids Prevent Cancer through a Common Mechanism Involving Hydroxybenzoic Acids?-The Metabolite Hypothesis. Molecules 2020; 25:molecules25092243. [PMID: 32397626 PMCID: PMC7249170 DOI: 10.3390/molecules25092243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Despite decades of research to elucidate the cancer preventive mechanisms of aspirin and flavonoids, a consensus has not been reached on their specific modes of action. This inability to accurately pinpoint the mechanism involved is due to the failure to differentiate the primary targets from its associated downstream responses. This review is written in the context of the recent findings on the potential pathways involved in the prevention of colorectal cancers (CRC) by aspirin and flavonoids. Recent reports have demonstrated that the aspirin metabolites 2,3-dihydroxybenzoic acid (2,3-DHBA), 2,5-dihydroxybenzoic acid (2,5-DHBA) and the flavonoid metabolites 2,4,6-trihydroxybenzoic acid (2,4,6-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) were effective in inhibiting cancer cell growth in vitro. Limited in vivo studies also provide evidence that some of these hydroxybenzoic acids (HBAs) inhibit tumor growth in animal models. This raises the possibility that a common pathway involving HBAs may be responsible for the observed cancer preventive actions of aspirin and flavonoids. Since substantial amounts of aspirin and flavonoids are left unabsorbed in the intestinal lumen upon oral consumption, they may be subjected to degradation by the host and bacterial enzymes, generating simpler phenolic acids contributing to the prevention of CRC. Interestingly, these HBAs are also abundantly present in fruits and vegetables. Therefore, we suggest that the HBAs produced through microbial degradation of aspirin and flavonoids or those consumed through the diet may be common mediators of CRC prevention.
Collapse
Affiliation(s)
- Ranjini Sankaranarayanan
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
| | - D. Ramesh Kumar
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA;
| | - Janki Patel
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
| | - G. Jayarama Bhat
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
- Correspondence: ; Tel.: +1-605-688-6894
| |
Collapse
|
41
|
Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2020; 21:E1250. [PMID: 32070025 PMCID: PMC7072974 DOI: 10.3390/ijms21041250] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, 50139 Florence, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| |
Collapse
|
42
|
Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants (Basel) 2020; 9:antiox9010061. [PMID: 31936711 PMCID: PMC7022568 DOI: 10.3390/antiox9010061] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are naturally occurring micronutrients that are present in many food sources. Besides being potent antioxidants, these molecules may also possess anti-inflammatory properties. Many studies have highlighted their potential role in the prevention and treatment of various pathological conditions connected to oxidative stress and inflammation (e.g., cancer, and cardiovascular and neurodegenerative disorders). Neurodegenerative diseases are globally one of the main causes of death and represent an enormous burden in terms of human suffering, social distress, and economic costs. Recent data expanded on the initial antioxidant-based mechanism of polyphenols’ action by showing that they are also able to modulate several cell-signaling pathways and mediators. The proposed benefits of polyphenols, either as protective/prophylactic substances or as therapeutic molecules, may be achieved by the consumption of a natural polyphenol-enriched diet, by their use as food supplements, or with formulations as pharmaceutical drugs/nutraceuticals. It has also been proved that the health effects of polyphenols depend on the consumed amount and their bioavailability. However, their overconsumption may raise safety concerns due to the accumulation of high levels of these molecules in the organism, particularly if we consider the loose regulatory legislation regarding the commercialization and use of food supplements. This review addresses the main beneficial effects of food polyphenols, and focuses on neuroprotection and the safety issues related to overconsumption.
Collapse
|
43
|
Gessani S, Van Duijnhoven FJ, Moreno-Aliaga MJ. Editorial: Diet, Inflammation and Colorectal Cancer. Front Immunol 2019; 10:2598. [PMID: 31787978 PMCID: PMC6853989 DOI: 10.3389/fimmu.2019.02598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fränzel J Van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Jesus Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra's Health Research Institute (IdiSNA), Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
44
|
Synergistic anti-colon cancer effect of glycyrol and butyrate is associated with the enhanced activation of caspase-3 and structural features of glycyrol. Food Chem Toxicol 2019; 136:110952. [PMID: 31712101 DOI: 10.1016/j.fct.2019.110952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 02/03/2023]
Abstract
Coumarin-based anti-cancer agents have attracted considerable attention recently. Butyrate, a major short-chain fatty acid produced in colon by gut microbiota, has been shown to exert anticancer activity both in vitro and in vivo. In this study, we evaluated the anti-cancer effect of combining glycyrol (GC), a representative of coumarin compounds in licorice, or its analogues Glycycoumarin/Demethylsuberosin/Coumestrol (GCM/De/Coum) with butyrate in HT29 and HCT116 cells, and explored the relationship between the combined anti-cancer effect and structural features of coumarin compounds. Results showed the strongest inhibitory effect on cancer cells was induced by GC/butyrate combination via enhanced activation of caspase-3. Our data indicated the benzofuranyl, isopentenyl and methoxy groups presented in GC played critical role in its anti-cancer activity, while the furan group led to the further enhancement. The findings of the present study will be beneficial for developing coumarin-based compounds and coumarin compound-based regimen to fight against colon cancer.
Collapse
|