1
|
Mao Y, Zhu P, Wang J, Fan C, Yu Z, Yao L, He W, Li X, Zhou F, Gan M, Wu X, Geng D. Protective effects of cannabinoid receptor 2 on annulus fibrosus degeneration by upregulating autophagy via AKT-mTOR-p70S6K signal pathway. Biochem Pharmacol 2024; 232:116734. [PMID: 39710272 DOI: 10.1016/j.bcp.2024.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
As an important pathological process, annulus fibrosus (AF) degeneration contributes greatly to intervertebral disc degeneration (IVDD). Moreover, extracellular matrix (ECM) degradation and AF cell (AFC) autophagy are of utmost importance. The involvement of cannabinoid receptor type 2 (CB2) in the pathological mechanisms underlying different diseases has been demonstrated dueto its capacity toregulateautophagy. The objective of this study was to explore the impact of CB2-induced autophagy on AF degeneration and its underlying mechanism. First, the expression of CB2 in human degenerative AF tissues decreased with increasing degeneration degree, whereas its expression in rat AFCs increased in a concentration- and time-dependent manner following H2O2 intervention. Activation of CB2 increased collagen Ⅰ and Ⅱ expression while decreasing MMP3 and MMP13 expression. In addition, p62 expression decreased, whereas beclin-1 and LC3-Ⅱ/LC3-Ⅰ expression increased after JWH133 intervention. After CB2 activation, the addition of 3-MA impeded the synthesis of collagen Ⅰ and Ⅱ while preserving the elevated levels of MMP3 and MMP13. The activation of CB2 greatly suppressed the protein levels of the AKT/mTOR/p70S6K signaling pathway. In vivo, the JWH133 group exhibited elevated disk height index (DHI) and MRI signals, along with a comparatively intact structure of the intervertebral disc in contrast to the vehicle group. In general, CB2 activation could modulate apoptosis and autophagy in rat AFCs, thereby mitigating the advancement of IVDD. Moreover, the AKT/mTOR/p70S6K signaling pathway plays a role in the development of AF degeneration through the regulation of autophagy. The findings suggest that CB2 is a potentially effective therapeutic target for IVDD.
Collapse
Affiliation(s)
- Yubo Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jiale Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Chunyang Fan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zilin Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Lingye Yao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xinyun Li
- Department of Orthopedics, Medical School of Nantong University Clinical Medicine, Nantong 226000, Jiangsu, China
| | - Feng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| | - Minfeng Gan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| | - Xiexing Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
2
|
Sun H, Guo J, Xiong Z, Zhuang Y, Ning X, Liu M. Targeting nucleus pulposus cell death in the treatment of intervertebral disc degeneration. JOR Spine 2024; 7:e70011. [PMID: 39703198 PMCID: PMC11655182 DOI: 10.1002/jsp2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a progressive age-related disorder characterized by the reduction in the number of nucleus pulposus cells (NPCs) and degradation of extracellular matrix (ECM), thereby leading to chronic pain and disability. The pathogenesis of IDD is multifaceted, and current therapeutic strategies remain limited. The nucleus pulposus (NP), primarily composed of NPCs, proteoglycans, and type II collagen, constitutes essential components for maintaining intervertebral disc (IVD) function and spinal motion. The disturbed homeostasis of NPCs is closely associated with IDD. Accumulating evidence increasingly suggests the crucial role of programmed cell death (PCD) in regulating the homeostasis of NPCs. Aims This review aimed to elucidate various forms of PCD and their respective roles in IDD, and investigate diverse strategies targeting the cell death of NPCs for IDD treatment. Materials & Methods We collected the relevant literature regarding PCD and their roles in the development of IDD. Subsequently, we comprehensively summarized the intricate association between PCD and IDD, and also explored the potential and application of cell therapy and traditional Chinese medicine (TCM) in the prevention and treatment of IDD. Results Current literature indicated that the PCD of NPCs was closely associated with the pathogenesis of IDD. Additionally, the development of targeted pharmaceuticals based on the mechanisms of PCD could effectively impede the loss of NPCs. Conclusion This review demonstrated that targeting the PCD of NPCs may be a promising strategy for the treatment of IDD.
Collapse
Affiliation(s)
- Hong Sun
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Jiajie Guo
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Zhilin Xiong
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Yong Zhuang
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xu Ning
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Miao Liu
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
3
|
Yue C, Wu Y, Xia Y, Xin T, Gong Y, Tao L, Shen C, Zhu Y, Shen M, Wang D, Shen J. Tbxt alleviates senescence and apoptosis of nucleus pulposus cells through Atg7-mediated autophagy activation during intervertebral disk degeneration. Am J Physiol Cell Physiol 2024; 327:C237-C253. [PMID: 38853649 DOI: 10.1152/ajpcell.00126.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Intervertebral disk degeneration (IDD) is a significant cause of low back pain, characterized by excessive senescence and apoptosis of nucleus pulposus cells (NPCs). However, the precise mechanisms behind this senescence and apoptosis remain unclear. This study aimed to investigate the role of T-box transcription factor T (Tbxt) in IDD both in vitro and in vivo, using a hydrogen peroxide (H2O2)-induced NPCs senescence and apoptosis model, as well as a rat acupuncture IDD model. First, the expression of p16 and cleaved-caspase 3 significantly increased in degenerated human NPCs, accompanied by a decrease in Tbxt expression. Knockdown of Tbxt exacerbated senescence and apoptosis in the H2O2-induced NPCs degeneration model. Conversely, upregulation of Tbxt alleviated these effects induced by H2O2. Mechanistically, bioinformatic analysis revealed that the direct downstream target genes of Tbxt were highly enriched in autophagy-related pathways, and overexpression of Tbxt significantly activated autophagy in NPCs. Moreover, the administration of the autophagy inhibitor, 3-methyladenine, impeded the impact of Tbxt on the processes of senescence and apoptosis in NPCs. Further investigation revealed that Tbxt enhances autophagy by facilitating the transcription of ATG7 through its interaction with a specific motif within the promoter region. In conclusion, this study suggests that Tbxt mitigates H2O2-induced senescence and apoptosis of NPCs by activating ATG7-mediated autophagy.NEW & NOTEWORTHY This study investigates the role of Tbxt in IDD. The results demonstrate that knockdown of Tbxt exacerbates H2O2-induced senescence and apoptosis in NPCs and IDD, whereas upregulation of Tbxt significantly protects against IDD both in vivo and in vitro. Mechanistically, in the nucleus, Tbxt enhances the transcription of ATG7, leading to increased expression of ATG7 protein levels. This, in turn, promotes elevated autophagy levels, ultimately alleviating IDD.
Collapse
Affiliation(s)
- Caichun Yue
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yinghui Wu
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yanzhang Xia
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Tianwen Xin
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yuhao Gong
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Linfeng Tao
- Department of Critical Care Medicine, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Minghong Shen
- Department of Pathology, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Donglai Wang
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Jun Shen
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| |
Collapse
|
4
|
Sun R, Wang F, Zhong C, Shi H, Peng X, Gao JW, Wu XT. The regulatory mechanism of cyclic GMP-AMP synthase on inflammatory senescence of nucleus pulposus cell. J Orthop Surg Res 2024; 19:421. [PMID: 39034400 PMCID: PMC11265083 DOI: 10.1186/s13018-024-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Cellular senescence features irreversible growth arrest and secretion of multiple proinflammatory cytokines. Cyclic GMP-AMP synthase (cGAS) detects DNA damage and activates the DNA-sensing pathway, resulting in the upregulation of inflammatory genes and induction of cellular senescence. This study aimed to investigate the effect of cGAS in regulating senescence of nucleus pulposus (NP) cells under inflammatory microenvironment. METHODS The expression of cGAS was evaluated by immunohistochemical staining in rat intervertebral disc (IVD) degeneration model induced by annulus stabbing. NP cells were harvested from rat lumbar IVD and cultured with 10ng/ml IL-1β for 48 h to induce premature senescence. cGAS was silenced by cGAS specific siRNA in NP cells and cultured with IL-1β. Cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-β-gal) staining and flow cytometry. The expression of senescence-associated secretory phenotype including IL-6, IL-8, and TNF-a was evaluated by ELISA and western blotting. RESULTS cGAS was detected in rat NP cells in cytoplasm and the expression was significantly increased in degenerated IVD. Culturing in 10ng/ml IL-1β for 48 h induced cellular senescence in NP cells with attenuation of G1-S phase transition. In senescent NP cells the expression of cGAS, p53, p16, NF-kB, IL-6, IL-8, TNF-α was significantly increased while aggrecan and collagen type II was reduced than in normal NP cells. In NP cells with silenced cGAS, the expression of p53, p16, NF-kB, IL-6, IL-8, and TNF-α was reduced in inflammatory culturing with IL-1β. CONCLUSION cGAS was increased by NP cells in degenerated IVD promoting cellular senescence and senescent inflammatory phenotypes. Targeting cGAS may alleviate IVD degeneration by reducing NP cell senescence.
Collapse
Affiliation(s)
- Rui Sun
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Feng Wang
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Cong Zhong
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Hang Shi
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Xin Peng
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Jia-Wei Gao
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Xiao-Tao Wu
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China.
| |
Collapse
|
5
|
Majidpour M, Saravani R, Sargazi S, Sargazi S, Harati‐Sadegh M, Khorrami S, Sarhadi M, Alidadi A. A Study on Associations of Long Noncoding RNA HOTAIR Polymorphisms With Genetic Susceptibility to Chronic Kidney Disease. J Clin Lab Anal 2024; 38:e25086. [PMID: 38958113 PMCID: PMC11252834 DOI: 10.1002/jcla.25086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The importance of long noncoding RNAs (lncRNAs) in various biological processes has been increasingly recognized in recent years. This study investigated how gene polymorphism in HOX transcript antisense RNA (HOTAIR) lncRNA affects the predisposition to chronic kidney disease (CKD). METHODS This study comprised 150 patients with CKD and 150 healthy controls. A PCR-RFLP and ARMS-PCR techniques were used for genotyping the five target polymorphisms. RESULTS According to our findings, rs4759314 confers strong protection against CKD in allelic, dominant, and codominant heterozygote genetic patterns. Furthermore, rs3816153 decreased CKD risk by 78% when TT versus GG, 55% when GG+GT versus TT, and 74% when GT versus TT+GG. In contrast, the CC+CT genotype [odds ratio (OR) = 1.66, 95% confidence intervals (CIs) = 1.05-2.63] and the T allele (OR = 1.50, 95% CI = 1.06-2.11) of rs12826786, as well as the TT genotype (OR = 2.52, 95% CI = 1.06-5.98) of rs3816153 markedly increased the risk of CKD in the Iranian population. Although no linkage disequilibrium was found between the studied variants, the Crs12826786Trs920778Grs1899663Grs4759314Grs3816153 haplotype was associated with a decreased risk of CKD by 86% (OR = 0.14, 95% CI = 0.03-0.66). CONCLUSION The rs920778 was not correlated with CKD risk, whereas the HOTAIR rs4759314, rs12826786, rs1899663, and rs3816153 polymorphisms affected the risk of CKD in our population. It seems essential to conduct repeated studies across various ethnic groups to explore the link between HOTAIR variants and their impact on the disease outcome.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research CenterZahedan University of Medical SciencesZahedanIran
| | - Ramin Saravani
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Saman Sargazi
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Sara Sargazi
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
| | - Mahdiyeh Harati‐Sadegh
- Genetics of Non‐Communicable Disease Research CenterZahedan University of Medical SciencesZahedanIran
| | - Shadi Khorrami
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mohammad Sarhadi
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
| | - Ali Alidadi
- Department of Nephrology, Faculty of MedicineZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
6
|
Zhan G, Wei T, Xie H, Xie X, Hu J, Tang H, Cheng Y, Liu H, Li S, Yang G. Autophagy inhibition mediated by trillin promotes apoptosis in hepatocellular carcinoma cells via activation of mTOR/STAT3 signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1575-1587. [PMID: 37676495 DOI: 10.1007/s00210-023-02700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Apoptosis and autophagy have been shown to act cooperatively and antagonistically in self-elimination process. On the one side, apoptosis and autophagy can act as partners to induce cell death in a coordinated or cooperative manner; on the flip side, autophagy acts as an antagonist to block apoptotic cell death by promoting cell survival. Our previous research indicated that trillin could induce apoptosis of PLC/PRF/5 cells, but the effects of trillin on autophagy as well as its functional relationship to apoptosis have not been elucidated. Here, the running study aims to investigate the function and molecular mechanism of trillin on autophagy with hepatocellular carcinoma (HCC) cells. The objective of this study is to investigate the molecular mechanism of trillin on autophagy in HCC cells. Protein levels of autophagy markers beclin1, LC3B, and p62 were detected by western blotting. 6-Hydroxyflavone and stattic were used to test the role of trillin regulation of autophagy via serine threonine kinase (AKT)/extracellular-regulated protein kinases (ERK) 1/2/mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Flow cytometry was used to detect caspase 3 activity and apoptosis in PLC/PRF/5 cells treated with trillin for 24 h with or without rapamycin, stattic, and 6-hydroxyflavone. The protein level of autophagy marker beclin1 was decreased, whilst the protein level of p62 was significantly increased by trillin treatment, indicating trillin treatment led to inhibition of autophagy in HCC cells. Trillin treatment could reduce the protein levels of p-AKT and p-ERK1/2, but enhance the protein levels of mTOR and p-mTOR, suggesting that trillin could inhibit AKT/ERK rather than mTOR. The AKT/ERK activator 6-hydroxyflavone could reverse the loss of AKT and ERK1/2 phosphorylation induced by trillin, implying that trillin impairs autophagy through activated mTOR rather than AKT/ERK. STAT3 and p-STAT3 were significantly upregulated by the trillin treatment with an increase in dose from 0 to 50 μM, suggesting that autophagy inhibition is mediated by trillin via activation of STAT3 signaling. The STAT3 inhibitor stattic significantly reversed the increased STAT3 phosphorylation at tyrosine 705 induced by trillin. The mTOR signaling inhibitor rapamycin reversed the trillin-induced mTOR phosphorylation enhancement but exerted no effects on total mTOR levels, suggesting trillin treatment led to inhibition of autophagy in HCC cells through activating mTOR/STAT3 pathway. Furthermore, caspase 3 activities and the total rate of apoptosis were increased by trillin treatment, which was reversed by rapamycin, stattic, and 6-hydroxyflavone, proving that trillin promotes apoptosis via activation of mTOR/STAT3 signaling. Trillin induced autophagy inhibition and promoted apoptosis in PLC/PRF/5 cells via the activation of mTOR/STAT3 signaling. Trillin has the potential to be a viable therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Guangjie Zhan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, (Hubei Minzu University), Medical School of Hubei MinZu University, Enshi, Hubei, 445000, People's Republic of China
| | - Tiantian Wei
- Suizhou Hospital, Hubei University of Medicine, 441300, Suizhou, Hubei, People's Republic of China
| | - Huichen Xie
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, (Hubei Minzu University), Medical School of Hubei MinZu University, Enshi, Hubei, 445000, People's Republic of China
| | - Xiaoming Xie
- Suizhou Hospital, Hubei University of Medicine, 441300, Suizhou, Hubei, People's Republic of China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Hao Tang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Yating Cheng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Huaifeng Liu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China
| | - Shujing Li
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China.
| | - Guohua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Wang Z, Li X, Yu P, Zhu Y, Dai F, Ma Z, Shen X, Jiang H, Liu J. Role of Autophagy and Pyroptosis in Intervertebral Disc Degeneration. J Inflamm Res 2024; 17:91-100. [PMID: 38204989 PMCID: PMC10778915 DOI: 10.2147/jir.s434896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Intervertebral disc degeneration is a chronic degenerative disease caused by the interaction of genetic and environmental factors, mainly manifested as lower back pain. At present, the diagnosis of intervertebral disc degeneration mainly relies on imaging. However, early intervertebral disc degeneration is usually insidious, and there is currently a lack of relevant clinical biomarkers that can reliably reflect early disease progression. Pyroptosis is a regulatory form of cell death triggered by the activation of inflammatory bodies and caspase, which can induce the formation of plasma membrane pores and cell swelling or lysis. Previous studies have shown that during the progression of intervertebral disc degeneration, sustained activation of inflammasomes leads to nuclear cell pyroptosis, which can occur in the early stages of intervertebral disc degeneration. Moreover, intervertebral disc nucleus pulposus cells adapt to the external environment through autophagy and maintain cellular homeostasis and studying the mechanism of autophagy in IDD and intervening in its pathological and physiological processes can provide new ideas for the clinical treatment of IDD. This review analyzes the effects of pyroptosis and autophagy on IDD by reviewing relevant literature in recent years, in order to explore the relationship between pyroptosis, autophagy and IDD.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Xiaochun Li
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Pengfei Yu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Yu Zhu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Feng Dai
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Zhijia Ma
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Xueqiang Shen
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Hong Jiang
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Jintao Liu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| |
Collapse
|
8
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
9
|
Li Y, Sun W, Li J, Du R, Xing W, Yuan X, Zhong G, Zhao D, Liu Z, Jin X, Pan J, Li Y, Li Q, Kan G, Han X, Ling S, Sun X, Li Y. HuR-mediated nucleocytoplasmic translocation of HOTAIR relieves its inhibition of osteogenic differentiation and promotes bone formation. Bone Res 2023; 11:53. [PMID: 37872163 PMCID: PMC10593784 DOI: 10.1038/s41413-023-00289-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/25/2023] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.
Collapse
Affiliation(s)
- Yuheng Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- The Center of Space Bio-Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Xing
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Junjie Pan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Youyou Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xuan Han
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Xiqing Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
10
|
Zhang Z, Huo J, Ji X, Wei L, Zhang J. GREM1, LRPPRC and SLC39A4 as potential biomarkers of intervertebral disc degeneration: a bioinformatics analysis based on multiple microarray and single-cell sequencing data. BMC Musculoskelet Disord 2023; 24:729. [PMID: 37700277 PMCID: PMC10498557 DOI: 10.1186/s12891-023-06854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Low back pain (LBP) has drawn much widespread attention and is a major global health concern. In this field, intervertebral disc degeneration (IVDD) is frequently the focus of classic studies. However, the mechanistic foundation of IVDD is unclear and has led to conflicting outcomes. METHODS Gene expression profiles (GSE34095, GSE147383) of IVDD patients alongside control groups were analyzed to identify differentially expressed genes (DEGs) in the GEO database. GSE23130 and GSE70362 were applied to validate the yielded key genes from DEGs by means of a best subset selection regression. Four machine-learning models were established to assess their predictive ability. Single-sample gene set enrichment analysis (ssGSEA) was used to profile the correlation between overall immune infiltration levels with Thompson grades and key genes. The upstream targeting miRNAs of key genes (GSE63492) were also analyzed. A single-cell transcriptome sequencing data (GSE160756) was used to define several cell clusters of nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplate (CEP) of human intervertebral discs and the distribution of key genes in different cell clusters was yielded. RESULTS By developing appropriate p-values and logFC values, a total of 6 DEGs was obtained. 3 key genes (LRPPRC, GREM1, and SLC39A4) were validated by an externally validated predictive modeling method. The ssGSEA results indicated that key genes were correlated with the infiltration abundance of multiple immune cells, such as dendritic cells and macrophages. Accordingly, these 4 key miRNAs (miR-103a-3p, miR-484, miR-665, miR-107) were identified as upstream regulators targeting key genes using the miRNet database and external GEO datasets. Finally, the spatial distribution of key genes in AF, CEP, and NP was plotted. Pseudo-time series and GSEA analysis indicated that the expression level of GREM1 and the differentiation trajectory of NP chondrocytes are generally consistent. GREM1 may mainly exacerbate the degeneration of NP cells in IVDD. CONCLUSIONS Our study gives a novel perspective for identifying reliable and effective gene therapy targets in IVDD.
Collapse
Affiliation(s)
- ZhaoLiang Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - JianZhong Huo
- Taiyuan Central Hospital, Ninth Hospital of Shanxi Medical University, Southern Fendong Road 256, Taiyuan, ShanXi, 030009, China.
| | - XingHua Ji
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - LinDong Wei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinfeng Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
11
|
Silwal P, Nguyen-Thai AM, Mohammad HA, Wang Y, Robbins PD, Lee JY, Vo NV. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023; 13:686. [PMID: 37189433 PMCID: PMC10135543 DOI: 10.3390/biom13040686] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Closely associated with aging and age-related disorders, cellular senescence (CS) is the inability of cells to proliferate due to accumulated unrepaired cellular damage and irreversible cell cycle arrest. Senescent cells are characterized by their senescence-associated secretory phenotype that overproduces inflammatory and catabolic factors that hamper normal tissue homeostasis. Chronic accumulation of senescent cells is thought to be associated with intervertebral disc degeneration (IDD) in an aging population. This IDD is one of the largest age-dependent chronic disorders, often associated with neurological dysfunctions such as, low back pain, radiculopathy, and myelopathy. Senescent cells (SnCs) increase in number in the aged, degenerated discs, and have a causative role in driving age-related IDD. This review summarizes current evidence supporting the role of CS on onset and progression of age-related IDD. The discussion includes molecular pathways involved in CS such as p53-p21CIP1, p16INK4a, NF-κB, and MAPK, and the potential therapeutic value of targeting these pathways. We propose several mechanisms of CS in IDD including mechanical stress, oxidative stress, genotoxic stress, nutritional deprivation, and inflammatory stress. There are still large knowledge gaps in disc CS research, an understanding of which will provide opportunities to develop therapeutic interventions to treat age-related IDD.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Haneef Ahamed Mohammad
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanshan Wang
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul D. Robbins
- Institute of the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Nucleus pulposus related lncRNA and mRNA expression profiles in intervertebral disc degeneration. Genomics 2023; 115:110570. [PMID: 36746221 DOI: 10.1016/j.ygeno.2023.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
In the present study, we aimed to have a comprehensive understanding of nucleus pulposus related long noncoding RNA (lncRNA) and mRNA expression profiles in intervertebral disc degeneration (IDD). In total, 2418 mRNAs and 528 lncRNAs were found to be differentially expressed in the IDD group compared with the Control group. Combining microarray datasets and sequencing data, 5 overlapping DEMs and 7 overlapping DELs were identified. NF-κB signaling pathway, PI3K-Akt signaling pathway and Wnt/β-catenin signaling pathway were strongly linked with enriched GO terms and KEGG pathways. The ceRNA network suggested that lnc-TMEM44-AS1-hsa-miR-206-HDAC4 may be one crucial axis in IDD. PPI network analysis was constructed with 309 nodes and 129 edges. And the highest connectivity degrees were ALB, APOB and CCL2. This study suggested that specific lncRNAs and ceRNA axes may be crucial in the development of IDD. It provides a new perspective for delaying IDD process and enhancing intervertebral disc repair.
Collapse
|
13
|
Chen D, Jiang X, Zou H. hASCs-derived exosomal miR-155-5p targeting TGFβR2 promotes autophagy and reduces pyroptosis to alleviate intervertebral disc degeneration. J Orthop Translat 2023; 39:163-176. [PMID: 36950198 PMCID: PMC10025964 DOI: 10.1016/j.jot.2023.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a complex chronic disease involving nucleus pulposus cells (NPCs) senescence, apoptosis, autophagy and extracellular matrix (ECM) degradation. In this study, we aimed to investigate the role of human adipose tissue stem cells (hASCs)-derived exosomal miR-155-5p targeting TGFβR2 in IDD and the mechanisms involved. Then miRNA sequencing was performed, and hASCs-derived Exo (hASCs-Exo) was extracted and characterized. METHODS First, NPCs were treated with different concentrations of LPS. Then miRNA sequencing was performed, and hASCs-Exo was extracted and characterized. NPCs were treated with PBS or autophagy inhibitor 3-MA. NPCs were transfected with miR-155-5p mimic, si-TGFβR2 and negative control. Cell viability, apoptosis, ROS, caspase-1+PI, pyroptosis markers, inflammatory cytokines, autophagy markers, Aggrecan, MMP13, and Akt/mTOR pathway-related factors were measured. Bioinformatics prediction and dual-luciferase were performed to verify the binding sites of miR-155-5p to TGFβR2. Finally, we validated the role of hASCs-derived exosomal miR-155-5p on IDD in vivo. RESULTS LPS promoted pyroptosis of NPCs, and inhibited autophagy and ECM synthesis. MiR-155-5p was characterized as an inflammation-related miRNA in NPCs. HASCs-derived exosomal miR-155-5p inhibited pyroptosis of NPCs and promoted autophagy and ECM synthesis. After bioinformatics prediction and verification, it was found that miR-155-5p targeted TGFβR2. Moreover, miR-155-5p targeted TGFβR2 to promote autophagy and inhibit pyroptosis in NPCs. In vivo experiments revealed that hASCs-derived exosomal miR-155-5p alleviated IDD in rats. CONCLUSIONS HASCs-derived exosomal miR-155-5p alleviated IDD by targeting TGFβR2 to promote autophagy and reduce pyroptosis. Our study may provide a new therapeutic target for IDD. TRANSLATIONAL POTENTIAL OF THIS ARTICLE HASCs-derived exosomal miR-155-5p is expected to be a biomarker for clinical treatment of IDD. Our study may provide a new therapeutic target for IDD.
Collapse
|
14
|
Li X, An Y, Wang Q, Han X. The new ceRNA crosstalk between mRNAs and miRNAs in intervertebral disc degeneration. Front Cell Dev Biol 2022; 10:1083983. [PMID: 36531954 PMCID: PMC9755594 DOI: 10.3389/fcell.2022.1083983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2025] Open
Abstract
Degeneration of the intervertebral disc has been linked to lower back pain. To date, pathophysiological mechanisms of intervertebral disc degeneration (IDD) remain unclear; it is meaningful to find effective diagnostic biomarkers and new therapeutic strategies for IDD. This study aimed to reveal the molecular mechanism of IDD pathogenesis from the multidimensional transcriptomics perspective. Here, we acquired IDD bulk omics datasets (GSE67567 and GSE167199) including mRNA, microRNA expression profiles, and single-cell RNA sequencing (GSE199866) from the public Gene Expression Omnibus (GEO) database. Through principal component analysis and Venn analysis, we found different expression patterns in the IDD transcription level and identified 156 common DEGs in both bulk datasets. GO and KEGG functional analyses showed these dysregulators were mostly enriched in the collagen-containing extracellular matrix, cartilage development, chondrocyte differentiation, and immune response pathways. We also constructed a potentially dysregulated competing endogenous RNA (ceRNA) network between mRNAs and miRNAs related to IDD based on microRNA target information and co-expression analysis of RNA profiles and identified 36 ceRNA axes including ZFP36/miR-155-5p/FOS, BTG2/hsa-miR-185-5p/SOCS3, and COL9A2/hsa-miR-664a-5p/IBA57. Finally, in integrating bulk and single-cell transcriptome data analyses, a total of three marker genes, COL2A1, PAX1, and ZFP36L2, were identified. In conclusion, the key genes and the new ceRNA crosstalk we identified in intervertebral disc degeneration may provide new targets for the treatment of IDD.
Collapse
Affiliation(s)
- Xingye Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | | | | | | |
Collapse
|
15
|
Guo C, Chen Y, Wang Y, Hao Y. Regulatory roles of noncoding RNAs in intervertebral disc degeneration as potential therapeutic targets (Review). Exp Ther Med 2022; 25:44. [PMID: 36569433 PMCID: PMC9764052 DOI: 10.3892/etm.2022.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, which is one of the primary factors that lead to disability and pose a serious economic burden. The key pathological processes involved are extracellular matrix degradation, autophagy, apoptosis, and inflammation of nucleus pulposus cells. Non-coding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs, are key regulators of the aforementioned processes. ncRNAs are differentially expressed in tissues of the intervertebral disc between healthy individuals and patients and participate in the pathological progression of IDD via a complex pattern of gene regulation. However, the regulatory mechanisms of ncRNAs in IDD remain unclear. The present review summarizes the latest insights into the regulatory role of ncRNAs in IDD and sheds light on potentially novel therapeutic strategies for IDD that may be implemented in the future.
Collapse
Affiliation(s)
- Cunliang Guo
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yungang Chen
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuhe Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanke Hao
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China,Correspondence to: Dr Yanke Hao, Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
16
|
Yang F, Liu W, Huang Y, Yang S, Shao Z, Cai X, Xiong L. Regulated cell death: Implications for intervertebral disc degeneration and therapy. J Orthop Translat 2022; 37:163-172. [DOI: 10.1016/j.jot.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
|
17
|
Chen H, Zhou J, Zhang G, Luo Z, Li L, Kang X. Emerging role and therapeutic implication of mTOR signalling in intervertebral disc degeneration. Cell Prolif 2022; 56:e13338. [PMID: 36193577 PMCID: PMC9816935 DOI: 10.1111/cpr.13338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023] Open
Abstract
Intervertebral disc degeneration (IDD), an important cause of chronic low back pain (LBP), is considered the pathological basis for various spinal degenerative diseases. A series of factors, including inflammatory response, oxidative stress, autophagy, abnormal mechanical stress, nutritional deficiency, and genetics, lead to reduced extracellular matrix (ECM) synthesis by intervertebral disc (IVD) cells and accelerate IDD progression. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a vital role in diverse degenerative diseases. Recent studies have shown that mTOR signalling is involved in the regulation of autophagy, oxidative stress, inflammatory responses, ECM homeostasis, cellular senescence, and apoptosis in IVD cells. Accordingly, we reviewed the mechanism of mTOR signalling in the pathogenesis of IDD to provide innovative ideas for future research and IDD treatment.
Collapse
Affiliation(s)
- Hai‐Wei Chen
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Jian‐Wei Zhou
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| | - Guang‐Zhi Zhang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Zhang‐Bin Luo
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Lei Li
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Xue‐Wen Kang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| |
Collapse
|
18
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
19
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
20
|
Lan T, Yan B, Guo W, Shen Z, Chen J. VDR promotes nucleus pulposus cell mitophagy as a protective mechanism against oxidative stress injury. Free Radic Res 2022; 56:316-327. [PMID: 35786375 DOI: 10.1080/10715762.2022.2094791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Intervertebral disk degeneration (IDD) is a common aging disease. Excessive apoptosis of nucleus pulposus (NP) cells has been widely considered a main contributor to IDD. Emerging science has shown that autophagy plays a protective role against apoptosis under oxidative stress. Vitamin D receptor (VDR) is a steroid hormone receptor that can regulate autophagy. The purpose of this study was to clarify whether VDR alleviates IDD by promoting autophagy. H2O2 stimulation was used to establish oxidative stress conditions. Initially, the expression level of VDR in human degenerative NP tissues was measured by immunohistochemistry. In addition, the CRISPR-dCas9-VPR system and siRNA were utilized to upregulate or downregulate VDR and Parkin expression, respectively. Autophagic and apoptotic markers were determined by Western blotting and RT-qPCR. Transmission electron microscopy was used to monitor the occurrence of autophagy in rat NP cells. VDR expression was downregulated in human degenerative NP tissues and H2O2-stimulated rat NP cells, indicating a negative correlation between VDR expression and IDD. VDR overexpression promoted mitophagy and prevented apoptosis and mitochondrial injury under oxidative stress. Additionally, mitophagy inhibition by 3-MA abolished the protective effect of VDR activation in vitro. Furthermore, VDR activation promoted mitophagy via the PINK1/Parkin pathway in H2O2-treated NP cells. This study demonstrates that VDR activation ameliorates oxidative damage and decreases NP cell apoptosis by promoting PINK1/Parkin-dependent mitophagy, indicating that VDR may serve as a promising therapeutic target in the management of IDD.
Collapse
Affiliation(s)
- Tao Lan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Spine Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Bin Yan
- Department of Spine Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Weizhuang Guo
- Department of Spine Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Zhe Shen
- Department of Spine Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
21
|
Mechanisms and functions of long noncoding RNAs in intervertebral disc degeneration. Pathol Res Pract 2022; 235:153959. [DOI: 10.1016/j.prp.2022.153959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023]
|
22
|
Han J, Kong H, Wang X, Zhang XA. Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders. Cell Prolif 2022; 55:e13294. [PMID: 35735243 PMCID: PMC9528765 DOI: 10.1111/cpr.13294] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Musculoskeletal disorder (MSD) are a class of inflammatory and degener-ative diseases, but the precise molecular mechanisms are still poorly understood. Noncoding RNA (ncRNA) N6-methyladenosine (m6A) modification plays an essential role in the pathophysiological process of MSD. This review summarized the interaction be-tween m6A RNA methylation and ncRNAs in the molecular regulatory mechanism of MSD. It provides a new perspective for the pathophysiological mechanism and ncRNA m6A targeted therapy of MSD. METHODS A comprehensive search of databases was conducted with musculoskeletal disorders, noncoding RNA, N6-methyladenosine, intervertebral disc degeneration, oste-oporosis, osteosarcoma, osteoarthritis, skeletal muscle, bone, and cartilage as the key-words. Then, summarized all the relevant articles. RESULTS Intervertebral disc degeneration (IDD), osteoporosis (OP), osteosarcoma (OS), and osteoarthritis (OA) are common MSDs that affect muscle, bone, cartilage, and joint, leading to limited movement, pain, and disability. However, the precise pathogenesis remains unclear, and no effective treatment and drug is available at present. Numerous studies confirmed that the mutual regulation between m6A and ncRNAs (i.e., microRNAs, long ncRNAs, and circular RNAs) was found in MSD, m6A modification can regulate ncRNAs, and ncRNAs can also target m6A regulators. ncRNA m6A modification plays an essential role in the pathophysiological process of MSDs by regulating the homeostasis of skeletal muscle, bone, and cartilage. CONCLUSION m6A interacts with ncRNAs to regulate multiple biological processes and plays important roles in IDD, OP, OS, and OA. These studies provide new insights into the pathophysiological mechanism of MSD and targeting m6A-modified ncRNAs may be a promising therapy approach.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Kinesiology, Shenyang Sport University, Shenyang, China.,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
23
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
24
|
Sun Q, Zhang Y, Wang Y, Wang S, Yang F, Cai H, Xing Y, Zhou L, Chen S. LncRNA HOTAIR promotes α-synuclein aggregation and apoptosis of SH-SY5Y cells by regulating miR-221-3p in Parkinson's disease. Exp Cell Res 2022; 417:113132. [DOI: 10.1016/j.yexcr.2022.113132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 02/08/2023]
|
25
|
BRD4 Inhibition Suppresses Senescence and Apoptosis of Nucleus Pulposus Cells by Inducing Autophagy during Intervertebral Disc Degeneration: An In Vitro and In Vivo Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9181412. [PMID: 35308165 PMCID: PMC8933081 DOI: 10.1155/2022/9181412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/10/2021] [Accepted: 02/06/2022] [Indexed: 01/10/2023]
Abstract
Intervertebral disc degeneration (IDD) is the most common chronic skeletal muscle degeneration disease. Although the underlying mechanisms remain unclear, nucleus pulposus (NP) autophagy, senescence, and apoptosis are known to play a critical role in this process. Previous studies suggest that bromodomain-containing protein 4 (BRD4) promotes senescent and apoptotic effects in several age-related degenerative diseases. It is not known, however, if BRD4 inhibition is protective in IDD. In this study, we explored whether BRD4 influenced IDD. In human clinical specimens, the BRD4 level was markedly increased with the increasing Pfirrmann grade. At the cellular level, BRD4 inhibition prevented IL-1β-induced senescence and apoptosis of NP cells and activated autophagy via the AMPK/mTOR/ULK1 signaling pathway. Inhibition of autophagy by 3-methyladenine (3-MA) partially reversed the antisenescence and antiapoptotic effects of BRD4. In vivo, BRD4 inhibition attenuated IDD. Taken together, the results of this study showed that BRD4 inhibition reduced NP cell senescence and apoptosis by induced autophagy, which ultimately alleviated IDD. Therefore, BRD4 may serve as a novel potential therapeutic target for the treatment of IDD.
Collapse
|
26
|
Exosomes-derived miR-125-5p from cartilage endplate stem cells regulates autophagy and ECM metabolism in nucleus pulposus by targeting SUV38H1. Exp Cell Res 2022; 414:113066. [DOI: 10.1016/j.yexcr.2022.113066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
|
27
|
Du L, Li X, Gao Q, Yuan P, Sun Y, Chen Y, Huang B, Deng Y, Wang B. LncRNA nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) aggravates nucleus pulposus cell apoptosis and extracellular matrix degradation. Bioengineered 2022; 13:2746-2762. [PMID: 35094651 PMCID: PMC8973659 DOI: 10.1080/21655979.2021.2016087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Emerging reports uncover that long noncoding RNAs (lncRNAs) help regulate intervertebral disc degeneration (IVDD). Here, we probe the function of lncRNA nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) in IVDD. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to verify the expression of NR2F1-AS1 and miR-145-5p in nucleus pulposus (NP) tissues from IVDD patients or NP cells dealt with IL-1β or TNF-α. Flow cytometry or the TdT-mediated dUTP nick end labeling (TUNEL) assay was performed to validate the apoptosis of NP cells with selective regulation of NR2F1-AS1 and miR-145-5p. ECM-related genes, FOXO1, Bax, and Bcl2 were evaluated by qRT-PCR or Western blot (WB). The targeted relationships between NR2F1-AS1 and miR-145-5p, miR-145-5p and FOXO1 were testified by the dual-luciferase reporter assay and the RNA immunoprecipitation (RIP) assay. Our outcomes substantiated that NR2F1-AS1 was up-regulated, while miR-145-5p was down-regulated in intervertebral disc tissues of IVDD patients or NP cells treated with IL-1β or TNF-α. Besides, overexpressing NR2F1-AS1 intensified ECM degradation and NP cell apoptosis induced by IL-1β, while knocking down NR2F1-AS1 or up-regulating miR-145-5p reversed IL-1β-mediated effects in NP cells. Meanwhile, NR2F1-AS1 choked miR-145-5p and abated its effects in NP cells. This study confirms that NR2F1-AS1 modulates IVDD progression by up-regulating the FOXO1 pathway through the sponge of miR-145-5p as a competitive endogenous RNA (ceRNA).
Collapse
Affiliation(s)
- Longlong Du
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuefeng Li
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Qimeng Gao
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Puwei Yuan
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Yindi Sun
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingpu Chen
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bo Huang
- Department of Orthopaedic, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Yu Deng
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baohui Wang
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Mechanism of Long Noncoding RNA HOTAIR in Nucleus Pulposus Cell Autophagy and Apoptosis in Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8504601. [PMID: 35027936 PMCID: PMC8752263 DOI: 10.1155/2022/8504601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Objective Intervertebral disc degeneration (IDD) contributes to cervical and lumbar diseases. Long noncoding RNAs (lncRNAs) are implicated in IDD. This study explored the mechanism of lncRNA HOTAIR in IDD. Methods Normal and degenerative nucleus pulposus (NP) cells were isolated from NP tissues obtained in intervertebral disc surgery. Cell morphology was observed by immunocytochemistry staining and toluidine blue staining. NP cell markers were detected by RT-qPCR. Proliferation was detected by MTT assay. Autophagy-related proteins were detected by Western blot. Autophagosome was observed by monodansylcadaverine fluorescence staining. Apoptosis was detected by TUNEL staining and flow cytometry. si-HOTAIR and/or miR-148a inhibitor was introduced into degenerative NP cells. Binding relationships among HOTAIR, miR-148a, and PTEN were predicted and verified by dual-luciferase reporter assay and RNA pull-down. Finally, IDD rat models were established. Rat caudal intervertebral discs were assessed by HE staining. Expressions of HOTAIR, miR-148a, and PTEN were determined by RT-qPCR. Results HOTAIR was highly expressed in degenerative NP cells (p < 0.05). si-HOTAIR inhibited degenerative NP cell apoptosis and autophagy (p < 0.05). HOTAIR upregulated PTEN as a sponge of miR-148a. miR-148a was poorly expressed in degenerative NP cells. miR-148a deficiency partially reversed the inhibition of si-HOTAIR on degenerative NP cell autophagy and apoptosis (all p < 0.05). In vivo assay confirmed that si-HOTAIR impeded autophagy and apoptosis in intervertebral disc tissues, thus improving pathological injury in IDD rats (all p < 0.05). Conclusion LncRNA HOTAIR promoted NP cell autophagy and apoptosis via promoting PTEN expression as a ceRNA of miR-148a in IDD.
Collapse
|
29
|
Zhu B, Chen HX, Li S, Tan JH, Xie Y, Zou MX, Wang C, Xue JB, Li XL, Cao Y, Yan YG. Comprehensive analysis of N6-methyladenosine (m 6A) modification during the degeneration of lumbar intervertebral disc in mice. J Orthop Translat 2022; 31:126-138. [PMID: 34976732 PMCID: PMC8685911 DOI: 10.1016/j.jot.2021.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
Objective To study the N6-methyladenosine (m6A) modification pattern of nucleus pulposus (NP) tissue during intervertebral disc degeneration (IDD). Methods A standing mouse model was generated, and staining and imaging methods were used to evaluate the IDD model. Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) was used to analyze m6A methylation-associated transcripts in the NP, and real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of methylation-related enzymes and conduct bio-informatics analysis. Results The standing mouse model caused IDD. Continuous axial pressure changed the expression of related methylases in degenerated NP tissue. Relative to the control group, the expression levels of KIAA1429, METTL14, METTL3, METTL4, WTAP, DGCR8, EIF3A and YTHDC1 in the experimental group were higher, while those of FTO, ELAVL1, HNRNPC1 and SRSF2 were lower. We identified 985 differentially expressed genes through MeRIP-Seq, among which 363 genes were significantly up-regulated, and 622 genes were significantly down-regulated. In addition, among the 9648 genes counted, 1319 m6A peaks with significant differences in methylation were identified, among which 933 were significantly up-regulated, and 386 were significantly down-regulated. Genes and pathways that were enriched in IDD have been identified. Conclusion The results of this study elucidated the m6A methylation pattern of NP tissue in degenerated lumbar intervertebral disc of mice and provided new perspectives and clues for research on and the treatment of lumbar disc degeneration. The Translational potential of this article As one of the important causes of low back and leg pain, intervertebral disc degeneration brings a huge economic burden to the society, family and medical system. Therefore, understanding the molecular and cellular mechanisms of intervertebral disc degeneration is of great significance for guiding clinical treatment. In this study, methylated RNA immunoprecipitation with next-generation sequencing on mice lumbar nucleus pulposus tissues found that differentially expressed genes and changes in the expression of related methylases, confirming that RNA methylation is involved in intervertebral disc degeneration. The process provides new vision and clues for future research on intervertebral disc degeneration.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Hao-xiang Chen
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shan Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing-hua Tan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yong Xie
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing-bo Xue
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xue-lin Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Spine Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| | - Yi-guo Yan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
- Corresponding author. Department of Spine Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
30
|
Jiang C, Chen Z, Wang X, Zhang Y, Guo X, Xu Z, Yang H, Hao D. The potential mechanisms and application prospects of non-coding RNAs in intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1081185. [PMID: 36568075 PMCID: PMC9772433 DOI: 10.3389/fendo.2022.1081185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) is one of the most common musculoskeletal symptoms and severely affects patient quality of life. The majority of people may suffer from LBP during their life-span, which leading to huge economic burdens to family and society. According to the series of the previous studies, intervertebral disc degeneration (IDD) is considered as the major contributor resulting in LBP. Furthermore, non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate diverse cellular processes, which have been found to play pivotal roles in the development of IDD. However, the potential mechanisms of action for ncRNAs in the processes of IDD are still completely unrevealed. Therefore, it is challenging to consider ncRNAs to be used as the potential therapeutic targets for IDD. In this paper, we reviewed the current research progress and findings on ncRNAs in IDD: i). ncRNAs mainly participate in the process of IDD through regulating apoptosis of nucleus pulposus (NP) cells, metabolism of extracellular matrix (ECM) and inflammatory response; ii). the roles of miRNAs/lncRNAs/circRNAs are cross-talk in IDD development, which is similar to the network and can modulate each other; iii). ncRNAs have been attempted to combat the degenerative processes and may be promising as an efficient bio-therapeutic strategy in the future. Hence, this review systematically summarizes the principal pathomechanisms of IDD and shed light on the therapeutic potentials of ncRNAs in IDD.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xinyu Guo
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhengwei Xu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| |
Collapse
|
31
|
Wang Z, Shen J, Feng E, Jiao Y. AMPK as a Potential Therapeutic Target for Intervertebral Disc Degeneration. Front Mol Biosci 2021; 8:789087. [PMID: 34957218 PMCID: PMC8692877 DOI: 10.3389/fmolb.2021.789087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As the principal reason for low back pain, intervertebral disc degeneration (IDD) affects the health of people around the world regardless of race or region. Degenerative discs display a series of characteristic pathological changes, including cell apoptosis, senescence, remodeling of extracellular matrix, oxidative stress and inflammatory local microenvironment. As a serine/threonine-protein kinase in eukaryocytes, AMP-activated protein kinase (AMPK) is involved in various cellular processes through the modulation of cell metabolism and energy balance. Recent studies have shown the abnormal activity of AMPK in degenerative disc cells. Besides, AMPK regulates multiple crucial biological behaviors in IDD. In this review, we summarize the pathophysiologic changes of IDD and activation process of AMPK. We also attempt to generalize the role of AMPK in the pathogenesis of IDD. Moreover, therapies targeting AMPK in alleviating IDD are analyzed, for better insight into the potential of AMPK as a therapeutic target.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Erwei Feng
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Jiao
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Cao S, Liu H, Fan J, Yang K, Yang B, Wang J, Li J, Meng L, Li H. An Oxidative Stress-Related Gene Pair ( CCNB1/ PKD1), Competitive Endogenous RNAs, and Immune-Infiltration Patterns Potentially Regulate Intervertebral Disc Degeneration Development. Front Immunol 2021; 12:765382. [PMID: 34858418 PMCID: PMC8630707 DOI: 10.3389/fimmu.2021.765382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress (OS) irreversibly affects the pathogenesis of intervertebral disc degeneration (IDD). Certain non-coding RNAs act as competitive endogenous RNAs (ceRNAs) that regulate IDD progression. Analyzing the signatures of oxidative stress-related gene (OSRG) pairs and regulatory ceRNA mechanisms and immune-infiltration patterns associated with IDD may enable researchers to distinguish IDD and reveal the underlying mechanisms. In this study, OSRGs were downloaded and identified using the Gene Expression Omnibus database. Functional-enrichment analysis revealed the involvement of oxidative stress-related pathways and processes, and a ceRNA network was generated. Differentially expressed oxidative stress-related genes (De-OSRGs) were used to construct De-OSRG pairs, which were screened, and candidate De-OSRG pairs were identified. Immune cell-related gene pairs were selected via immune-infiltration analysis. A potential long non-coding RNA-microRNA-mRNA axis was determined, and clinical values were assessed. Eighteen De-OSRGs were identified that were primarily related to intricate signal-transduction pathways, apoptosis-related biological processes, and multiple kinase-related molecular functions. A ceRNA network consisting of 653 long non-coding RNA-microRNA links and 42 mRNA-miRNA links was constructed. Three candidate De-OSRG pairs were screened out from 13 De-OSRG pairs. The abundances of resting memory CD4+ T cells, resting dendritic cells, and CD8+ T cells differed between the control and IDD groups. CD8+ T cell infiltration correlated negatively with cyclin B1 (CCNB1) expression and positively with protein kinase D1 (PKD1) expression. CCNB1-PKD1 was the only pair that was differentially expressed in IDD, was correlated with CD8+ T cells, and displayed better predictive accuracy compared to individual genes. The PKD1-miR-20b-5p-AP000797 and CCNB1-miR-212-3p-AC079834 axes may regulate IDD. Our findings indicate that the OSRG pair CCNB1-PKD1, which regulates oxidative stress during IDD development, is a robust signature for identifying IDD. This OSRG pair and increased infiltration of CD8+ T cells, which play important roles in IDD, were functionally associated. Thus, the OSRG pair CCNB1-PKD1 is promising target for treating IDD.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Yang
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baohui Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liesu Meng
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
33
|
Lei C, Li J, Tang G, Wang J. MicroRNA‑25 protects nucleus pulposus cells against apoptosis via targeting SUMO2 in intervertebral disc degeneration. Mol Med Rep 2021; 24:724. [PMID: 34396430 DOI: 10.3892/mmr.2021.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 06/24/2021] [Indexed: 11/05/2022] Open
Abstract
It has been reported that microRNA (miRNA/miR)‑25 is downregulated in patients with intervertebral disc degeneration (IVDD). However, the potential role of miR‑25 in IVDD remains unclear. Therefore, the present study aimed to investigate the effects of miR‑25 on human intervertebral disc nucleus pulposus cells (NPCs). The expression levels of miR‑25 and those of small ubiquitin‑related modifier 2 (SUMO2) were determined in human nucleus pulposus (NP) tissues by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analyses. Subsequently, the potential interaction between miR‑25 and SUMO2 was validated via dual‑luciferase reporter assay and RNA pull‑down assay with biotinylated miRNA. The effects of miR‑25 on NPC proliferation and apoptosis were evaluated using Cell Counting Kit‑8 assay, 5‑ethynyl‑2'‑deoxyuridine incorporation assay, and flow cytometry. The results showed that miR‑25 was downregulated in patients with IVDD. In addition, miR‑25 increased the proliferation of NPCs and inhibited their apoptosis. Furthermore, the current study verified that miR‑25 could directly target SUMO2 and regulate its expression via the p53 signaling pathway. Additionally, the effects of miR‑25 on NPCs were abrogated following SUMO2 overexpression. Overall, the results of the present study demonstrated that miR‑25 could promote the proliferation and inhibit the apoptosis of NPCs via targeting SUMO2, suggesting that miR‑25 may be a potential target in the treatment of IVDD.
Collapse
Affiliation(s)
- Changbin Lei
- Department of Clinical Medical Research Center, Affiliated Hospital of Xiangnan University (Clinical College), Chenzhou, Hunan 423000, P.R. China
| | - Jian Li
- Department of Heavy Metal Pollution and Cancer Prevention Technology Research Center, Affiliated Hospital of Xiangnan University (Clinical College), Chenzhou, Hunan 423000, P.R. China
| | - Guang Tang
- Department of Heavy Metal Pollution and Cancer Prevention Technology Research Center, Affiliated Hospital of Xiangnan University (Clinical College), Chenzhou, Hunan 423000, P.R. China
| | - Jiong Wang
- Department of Heavy Metal Pollution and Cancer Prevention Technology Research Center, Affiliated Hospital of Xiangnan University (Clinical College), Chenzhou, Hunan 423000, P.R. China
| |
Collapse
|
34
|
Sun Z, Tang X, Wang H, Sun H, Chu P, Sun L, Tian J. LncRNA H19 Aggravates Intervertebral Disc Degeneration by Promoting the Autophagy and Apoptosis of Nucleus Pulposus Cells Through the miR-139/CXCR4/NF-κB Axis. Stem Cells Dev 2021; 30:736-748. [PMID: 34015968 DOI: 10.1089/scd.2021.0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The etiology of lumbocrural pain is closely related to intervertebral disc degeneration (IDD). Long noncoding RNAs (lncRNAs) serve crucial roles in IDD progression. This study investigated the effect of lncRNA H19 on autophagy and apoptosis of nucleus pulposus cells (NPCs) in IDD. The rat model of IDD was established. Normal NPCs and degenerative NPCs (DNPCs) were cultured in vitro. H19 expression in IDD rat was detected. DNPCs were treated with si-H19 to evaluate autophagy and apoptosis of DNPCs. The binding relationships between H19 and miR-139-3p, and miR-139-3p and CXCR4 were verified. DNPCs were co-transfected si-H19 and miR-139-3p inhibitor. The phosphorylation of NF-κB pathway-related p65 in DNPCs was detected. LncRNA H19 was upregulated in IDD rats. Downregulation of H19 inhibited autophagy and apoptosis of DNPCs. LncRNA H19 sponged miR-139-3p to inhibit CXCR4 expression. si-H19 and miR-139-3p inhibitor co-treatment induced autophagy and apoptosis, and enhanced CXCR4 expression. si-H19 decreased p-p65 phosphorylation, while si-H19 and miR-139-3p inhibitor co-treatment partially elevated p-p65 phosphorylation. In conclusion, lncRNA H19 facilitated the autophagy and apoptosis of DNPCs by the miR-139-3p/CXCR4/NF-κB axis, thereby aggravating IDD. This study may offer new insights for the management of IDD.
Collapse
Affiliation(s)
- Zhongyi Sun
- Department of Orthopaedics, Nanjing Jiangbei Hospital Affiliated to Nantong University, Nanjing, China
| | - Xiaoming Tang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Haibin Wang
- Department of Orthopaedics, Nanjing Jiangbei Hospital Affiliated to Nantong University, Nanjing, China
| | - Hongzhi Sun
- Department of Orthopaedics, Nanjing Jiangbei Hospital Affiliated to Nantong University, Nanjing, China
| | - Peilin Chu
- Department of Orthopaedics, Maanshan General Hospital of Ranger-Duree Healthcare, Ma'anshan, China
| | - Liang Sun
- Department of Orthopaedics, Maanshan General Hospital of Ranger-Duree Healthcare, Ma'anshan, China
| | - Jiwei Tian
- Department of Orthopaedics, Nanjing Jiangbei Hospital Affiliated to Nantong University, Nanjing, China
| |
Collapse
|
35
|
Autophagic Degradation of Gasdermin D Protects against Nucleus Pulposus Cell Pyroptosis and Retards Intervertebral Disc Degeneration In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5584447. [PMID: 34239691 PMCID: PMC8238599 DOI: 10.1155/2021/5584447] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is the primary culprit of low back pain and renders heavy social burden worldwide. Pyroptosis is a newly discovered form of programmed cell death, which is also involved in nucleus pulposus (NP) cells during IDD progression. Moderate autophagy activity is critical for NP cell survival, but its relationship with pyroptosis remains unknown. This study is aimed at investigating the relationship between autophagy and pyroptotic cell death. The pyroptosis executor N-terminal domain of gasdermin D (GSDMD-N) and inflammation-related proteins were measured in lipopolysaccharide- (LPS-) treated human NP cells. Inhibition of autophagy by siRNA transfection and chemical drugs aggravated human NP cell pyroptosis. Importantly, we found that the autophagy-lysosome pathway and not the proteasome pathway mediated the degradation of GSDMD-N as lysosome dysfunction promoted the accumulation of cytoplasmic GSDMD-N. Besides, P62/SQSTM1 colocalized with GSDMD-N and mediated its degradation. The administration of the caspase-1 inhibitor VX-765 could reduce cell pyroptosis as confirmed in a rat disc IDD model in vivo, whereas ATG5 knockdown significantly accelerated the progression of IDD. In conclusion, our study indicated that autophagy protects against LPS-induced human NP cell pyroptosis via a P62/SQSTM1-mediated degradation mechanism and the inhibition of pyroptosis retards IDD progression in vivo. These findings deepen the understanding of IDD pathogenesis and hold implications in unraveling therapeutic targets for IDD treatment.
Collapse
|
36
|
Gong CY, Zhang HH. Autophagy as a potential therapeutic target in intervertebral disc degeneration. Life Sci 2021; 273:119266. [PMID: 33631177 DOI: 10.1016/j.lfs.2021.119266] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular recirculation system that delivers cytoplasmic content to lysosomes for degradation, thereby maintaining metabolism and homeostasis. Recent studies have found that autophagy plays a dual role in intervertebral disc degeneration (IDD). Most studies have shown that inducing autophagy can slow down the process of IDD. A few studies have shown that extensive autophagy activation-mediated apoptosis accelerates IDD. In this review, we describe the pathophysiological characteristics of intervertebral disc (IVD), the mechanism of autophagy and the application of regulating autophagy in the treatment of IDD, hoping to provide a certain theoretical basis for the biotherapy of IDD.
Collapse
Affiliation(s)
- Chao-Yang Gong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China.
| |
Collapse
|
37
|
Lan T, Zheng YC, Li ND, Chen XS, Shen Z, Yan B. CRISPR/dCas9-Mediated Parkin Inhibition Impairs Mitophagy and Aggravates Apoptosis of Rat Nucleus Pulposus Cells Under Oxidative Stress. Front Mol Biosci 2021; 8:674632. [PMID: 33937342 PMCID: PMC8082403 DOI: 10.3389/fmolb.2021.674632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
Objective The aim of this study is to explore the role of Parkin in intervertebral disk degeneration (IDD) and its mitophagy regulation mechanism. Study design and methods Rat nucleus pulposus (NP) cells were stimulated with hydrogen peroxide (H2O2) to a mimic pathological condition. Apoptosis and mitophagy were assessed by Western blot, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and immunofluorescence staining. The CRISPR–dCas9–KRAB system was used to silence the expression of Parkin. Result In this study, we found that Parkin was downregulated in rat NP cells under oxidative stress. In addition, treatment with H2O2 resulted in mitochondrial dysfunction, autophagy inhibition, and a significant increase in the rate of apoptosis of NP cells. Meanwhile, mitophagy inhibition enhanced H2O2-induced apoptosis. Furthermore, repression of Parkin significantly attenuated mitophagy and exacerbated apoptosis. Conclusion These results suggested that Parkin may play a protective role in alleviating the apoptosis of NP cells via mitophagy, and that targeting Parkin may provide a promising therapeutic strategy for the prevention of IDD.
Collapse
Affiliation(s)
- Tao Lan
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu-Chen Zheng
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ning-Dao Li
- Department of Orthopedic Surgery, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiao-Sheng Chen
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhe Shen
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Bin Yan
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
38
|
Studies on the Regulatory Roles and Related Mechanisms of lncRNAs in the Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6657944. [PMID: 33791072 PMCID: PMC7984887 DOI: 10.1155/2021/6657944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have attracted extensive attention due to their regulatory role in various cellular processes. Emerging studies have indicated that lncRNAs are expressed to varying degrees after the growth and development of the nervous system as well as injury and degeneration, thus affecting various physiological processes of the nervous system. In this review, we have compiled various reported lncRNAs related to the growth and development of central and peripheral nerves and pathophysiology (including advanced nerve centers, spinal cord, and peripheral nervous system) and explained how these lncRNAs play regulatory roles through their interactions with target-coding genes. We believe that a full understanding of the regulatory function of lncRNAs in the nervous system will contribute to understand the molecular mechanism of changes after nerve injury and will contribute to discover new diagnostic markers and therapeutic targets for nerve injury diseases.
Collapse
|
39
|
Cao S, Li J, Yang K, Li H. Major ceRNA regulation and key metabolic signature analysis of intervertebral disc degeneration. BMC Musculoskelet Disord 2021; 22:249. [PMID: 33676464 PMCID: PMC7937257 DOI: 10.1186/s12891-021-04109-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 12/05/2022] Open
Abstract
Background and objective Intervertebral disc degeneration (IDD) is a complex multifactorial and irreversible pathological process. In IDD, multiple competing endogenous RNAs (ceRNA, including mRNA, lncRNA, and pseudogenes) can compete to bind with miRNAs. However, the potential metabolic signatures in nucleus pulposus (NP) cells remain poorly understood. This study investigated key metabolic genes and the ceRNA regulatory mechanisms in the pathogenesis of IDD based on microarray datasets. Methods We retrieved and downloaded four independent IDD microarray datasets from the Gene Expression Omnibus. Combining the predicted interactions from online databases (miRcode, miRDB, miRTarBase, and TargetScan), differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified. A ceRNA network was constructed and annotated using GO and KEGG pathway enrichment analyses. Moreover, we searched the online metabolic gene set and used support vector machine (SVM) to find the critical metabolic DEmRNA(s) and other DERNAs. Differential gene expression was validated with a merged dataset. Results A total of 45 DEmRNAs, 36 DElncRNAs, and only one DEmiRNA (miR-338-3p) were identified in the IDD microarray datasets. GO and KEGG pathway enrichment analyses revealed that the DEmRNAs were predominantly enriched in the PI3K-Akt signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, apoptosis, and cellular response to oxidative stress. Based on SVM screening, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK/FBPase) 2 is the critical metabolic gene with lower expression in IDD, and AC063977.6 is the key lncRNA with lower expression in IDD. The ceRNA hypothesis suggests that AC063977.6, miR-338-3p (high expression), and PFKFB2 are dysregulated as an axis in IDD. Conclusions The results suggest that lncRNA AC063977.6 correlate with PFKFB2, the vital metabolic signature gene, via targeting miR-338-3p during IDD pathogenesis. The current study may shed light on unraveling the pathogenesis of IDD. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04109-8.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kai Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haopeng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
40
|
Wang B, Ke W, Wang K, Li G, Ma L, Lu S, Xiang Q, Liao Z, Luo R, Song Y, Hua W, Wu X, Zhang Y, Zeng X, Yang C. Mechanosensitive Ion Channel Piezo1 Activated by Matrix Stiffness Regulates Oxidative Stress-Induced Senescence and Apoptosis in Human Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8884922. [PMID: 33628392 PMCID: PMC7889339 DOI: 10.1155/2021/8884922] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
Mechanical stimulation plays a crucial part in the development of intervertebral disc degeneration (IDD). Extracellular matrix (ECM) stiffness, which is a crucial mechanical microenvironment of the nucleus pulposus (NP) tissue, contributes to the pathogenesis of IDD. The mechanosensitive ion channel Piezo1 mediates mechanical transduction. This study purposed to investigate the function of Piezo1 in human NP cells under ECM stiffness. The expression of Piezo1 and the ECM elasticity modulus increased in degenerative NP tissues. Stiff ECM activated the Piezo1 channel and increased intracellular Ca2+ levels. Moreover, the activation of Piezo1 increased intracellular reactive oxygen species (ROS) levels and the expression of GRP78 and CHOP, which contribute to oxidative stress and endoplasmic reticulum (ER) stress. Furthermore, stiff ECM aggravated oxidative stress-induced senescence and apoptosis in human NP cells. Piezo1 inhibition alleviated oxidative stress-induced senescence and apoptosis, caused by the increase in ECM stiffness. Finally, Piezo1 silencing ameliorated IDD in an in vivo rat model and decreased the elasticity modulus of rat NP tissues. In conclusion, we identified the mechanosensitive ion channel Piezo1 in human NP cells as a mechanical transduction mediator for stiff ECM stimulation. Our results provide novel insights into the mechanism of mechanical transduction in NP cells, with potential for treating IDD.
Collapse
Affiliation(s)
- Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianlin Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
41
|
Non-coding RNAs modulate function of extracellular matrix proteins. Biomed Pharmacother 2021; 136:111240. [PMID: 33454598 DOI: 10.1016/j.biopha.2021.111240] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) creates a multifaceted system for the interaction of diverse structural proteins, matricellular molecules, proteoglycans, hyaluronan, and various glycoproteins that collaborate and bind with each other to produce a bioactive polymer. Alterations in the composition and configuration of ECM elements influence the cellular phenotype, thus participating in the pathogenesis of several human disorders. Recent studies indicate the crucial roles of non-coding RNAs in the modulation of ECM. Several miRNAs such as miR-21, miR-26, miR-19, miR-140, miR-29, miR-30, miR-133 have been dysregulated in disorders that are associated with disruption or breakdown of the ECM. Moreover, expression of MALAT1, PVT1, SRA1, n379519, RMRP, PFL, TUG1, TM1P3, FAS-AS1, PART1, XIST, and expression of other lncRNAs is altered in disorders associated with the modification of ECM components. In the current review, we discuss the role of lncRNAs and miRNAs in the modification of ECM and their relevance with the pathophysiology of human disorders such as cardiac/ lung fibrosis, cardiomyopathy, heart failure, asthma, osteoarthritis, and cancers.
Collapse
|
42
|
Jiang X, Chen D. LncRNA FAM83H-AS1 maintains intervertebral disc tissue homeostasis and attenuates inflammation-related pain via promoting nucleus pulposus cell growth through miR-22-3p inhibition. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1518. [PMID: 33313263 PMCID: PMC7729348 DOI: 10.21037/atm-20-7056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Intervertebral disc degeneration (IVDD) is regarded as the leading cause of low back pain, resulting in disability and a heavy burden on public health. Several studies have unveiled that long noncoding RNAs (lncRNAs) play a key role in the pathogenesis and progression of IVDD. In this study, we aimed to investigate the biological function and latent molecular mechanism of the lncRNA FAM83H antisense RNA 1 (FAM83H-AS1) in IVDD development. Methods Firstly, we established an IVDD model in rats using advanced glycation end products (AGEs) intradiscal injection. Subsequently, gain-of-function assays were conducted to investigate the role of FAM83H-AS1 in the progression of IVDD. Bioinformatics analysis, RNA pull down assay and rescue experiments were employed to shed light on the molecular mechanism underlying FAM83H-AS1 involving in IVDD. Results Our findings verified that AGEs treatment aggravated IVDD damage, and FAM83H-AS1 was downregulated in the IVDD group. Additionally, overexpression of FAM83H-AS1 contributed to the growth of nucleus pulposus (NP) cells and ameliorated IVDD injury. It was revealed that FAM83H-AS1 possessed the speculated binding sites of miR-22-3p. More importantly, we confirmed that FAM83H-AS1 functioned as a sponge of miR-22-3p in IVDD. Lastly, we demonstrated that miR-22-3p mediated the impact of FAM83H-AS1 on cell proliferation, ECM degradation, and inflammation. Conclusions Our study indicated that FAM83H-AS1 relieved IVDD deterioration through sponging miR-22-3p, and provides novel insights into the mechanisms underlying FAM83H-AS1 in IVDD progression.
Collapse
Affiliation(s)
- Xin Jiang
- Orthopaedics Department, Chinese-Japanese Friendship Hospital, Beijing, China
| | - Dong Chen
- Orthopaedics Department, Chinese-Japanese Friendship Hospital, Beijing, China
| |
Collapse
|
43
|
Guo HY, Guo MK, Wan ZY, Song F, Wang HQ. Emerging evidence on noncoding-RNA regulatory machinery in intervertebral disc degeneration: a narrative review. Arthritis Res Ther 2020; 22:270. [PMID: 33198793 PMCID: PMC7667735 DOI: 10.1186/s13075-020-02353-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the most common cause of low-back pain. Accumulating evidence indicates that the expression profiling of noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), are different between intervertebral disc tissues obtained from healthy individuals and patients with IDD. However, the roles of ncRNAs in IDD are still unclear until now. In this review, we summarize the studies concerning ncRNA interactions and regulatory functions in IDD. Apoptosis, aberrant proliferation, extracellular matrix degradation, and inflammatory abnormality are tetrad fundamental pathologic phenotypes in IDD. We demonstrated that ncRNAs are playing vital roles in apoptosis, proliferation, ECM degeneration, and inflammation process of IDD. The ncRNAs participate in underlying mechanisms of IDD in different ways. MiRNAs downregulate target genes’ expression by directly binding to the 3′-untranslated region of mRNAs. CircRNAs and lncRNAs act as sponges or competing endogenous RNAs by competitively binding to miRNAs and regulating the expression of mRNAs. The lncRNAs, circRNAs, miRNAs, and mRNAs widely crosstalk and form complex regulatory networks in the degenerative processes. The current review presents novel insights into the pathogenesis of IDD and potentially sheds light on the therapeutics in the future.
Collapse
Affiliation(s)
- Hao-Yu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Ming-Ke Guo
- Department of Orthopaedic Surgery, The Affiliated Hospital of PLA Army Medical University Warrant Officer School, Shijiazhuang, 050000, People's Republic of China
| | - Zhong-Yuan Wan
- Department of Orthopedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, People's Republic of China
| | - Fang Song
- Department of Stomatology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, People's Republic of China
| | - Hai-Qiang Wang
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xixian Avenue, Xixian District, Shaanxi Province, 712046, People's Republic of China.
| |
Collapse
|
44
|
Song H, Sui H, Zhang Q, Wang P, Wang F. Cucurbitacin E Induces Autophagy-Involved Apoptosis in Intestinal Epithelial Cells. Front Physiol 2020; 11:1020. [PMID: 32982778 PMCID: PMC7479753 DOI: 10.3389/fphys.2020.01020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis plays a crucial role in maintaining the structural and functional integrity of the intestinal epithelial barrier. Autophagy mediates injury to and repair of the intestinal epithelial barrier through multiple pathways in pathophysiological conditions. Our earlier study has found that cucurbitacin E (CuE) regulates the proliferation, migration, and permeability of human intestinal epithelial cells (IECs); however, its effects and mechanisms on apoptosis and autophagy are still unclear. This study reported CuE induced apoptosis and promoted autophagy of IECs in a concentration-dependent manner. The results showed that CuE could inhibit the expression of apoptosis-related protein Bcl-2 and drove activation of caspase-3 and cleavage of its substrate poly (ADP-ribose) polymerase. CuE also facilitated the expression of endoplasmic reticulum stress-related proteins, CHOP and Grp78, and autophagy-related proteins, Beclin1 and LC3, while inhibiting the phosphorylation of AKT and mammalian target of rapamycin (mTOR). An autophagy inhibitor, 3-methyladenine, reduced CuE-induced apoptosis. These results suggest that CuE may induce apoptosis and autophagy in IECs via the PI3K/AKT/mTOR signaling pathway and that autophagy following endoplasmic reticulum stress participates in the pro-apoptotic process induced by CuE.
Collapse
Affiliation(s)
- Huapei Song
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hehuan Sui
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Pharmacy, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, China.,Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
45
|
Lou W, Ding B, Zhong G, Yao J, Fan W, Fu P. RP11-480I12.5-004 Promotes Growth and Tumorigenesis of Breast Cancer by Relieving miR-29c-3p-Mediated AKT3 and CDK6 Degradation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:916-931. [PMID: 32810693 PMCID: PMC7452110 DOI: 10.1016/j.omtn.2020.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Pseudogenes have been reported to exert oncogenic or tumor-suppressive functions in cancer. However, the expression, role, and mechanism of pseudogene-derived RNAs in breast cancer remain unclear. The RNA levels and prognostic values of pseudogenes in breast cancer were determined. The levels of RP11-480I12.5 in cell lines and clinical samples were validated by quantitative real-time PCR. In vitro effects of RP11-480I12.5 on cell growth were measured by cell counting kit-8 (CCK-8) assay, colony formation assay, cell counting assay, and flow cytometry analysis. Xenograft model was established to detect its in vivo effect. The potential mechanism of RP11-480I12.5 was also studied by a combination of bioinformatic analysis and experimental confirmation. Finally, the possible functional parental genes of RP11-480I12.5 in breast cancer were explored. After a series of bioinformatic analyses, RP11-480I12.5 was selected as the most potential pseudogene in breast cancer. RP11-480I12.5 expression was significantly upregulated in breast cancer cell lines and clinical breast cancer tissues. Knockdown of RP11-480I12.5 markedly suppressed cell proliferation and colony formation, induced cell apoptosis of breast cancer in vitro, and inhibited tumor growth in vivo. Four transcripts of RP11-480I12.5 (001/002/003/004) were identified. Only overexpression of RP11-480I12.5-004 significantly enhanced cell growth of breast cancer both in vitro and in vivo. RP11-480I12.5-004 mainly located in cytoplasm and increased AKT3 and CDK6 mRNA expression, at least in part, by competitively binding to miR-29c-3p. Six parental genes of RP11-480I12.5 were found, among which TUBA1B and TUBA1C were statistically linked to RP11-480I12.5 expression, possessed prognostic values, and were upregulated in breast cancer. Our findings suggested that pseudogene-derived long non-coding RNA (lncRNA) RP11-480I12.5-004 promoted growth and tumorigenesis of breast cancer via increasing AKT3 and CDK6 expression by competitively binding to miR-29c-3p.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China; Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou 310003, Zhejiang, Province, China.
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou 310003, Zhejiang, Province, China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou 310003, Zhejiang, Province, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
46
|
Aboudehen K. Regulation of mTOR signaling by long non-coding RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194449. [PMID: 31751821 DOI: 10.1016/j.bbagrm.2019.194449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a major signaling hub that coordinates cellular and organismal responses, such as cell growth, proliferation, apoptosis, and metabolism. Dysregulation of mTOR signaling occurs in many human diseases, and there are significant ongoing efforts to pharmacologically target this pathway. Long noncoding RNAs (lncRNA), defined by a length > 200 nucleotides and absence of a long open-reading-frame, are a class of non-protein-coding RNAs. Mutations and dysregulations of lncRNAs are directly linked to the development and progression of many diseases, including cancer, diabetes, and neurologic disorders. Recent findings reveal diverse functions for lncRNA that include transcriptional regulation, organization of nuclear domains, and regulation of proteins or RNA molecules. Despite considerable development in our understanding of lncRNA over the past decade, only a fraction of annotated lncRNAs has been examined for biological function. In addition, lncRNAs have emerged as therapeutic targets due to their ability to modulate multiple pathways, including mTOR signaling. This review will provide an up-to-date summary of lncRNAs that are involved in regulating mTOR pathway.
Collapse
Affiliation(s)
- Karam Aboudehen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|