1
|
Hejazian SM, Rahbar Saadat Y, Hosseiniyan Khatibi SM, Farnood F, Farzamikia N, Hejazian SS, Batoumchi S, Shoja MM, Zununi Vahed S, Ardalan M. Circular RNAs as novel biomarkers in glomerular diseases. Arch Physiol Biochem 2024; 130:568-580. [PMID: 37194131 DOI: 10.1080/13813455.2023.2212328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Circular RNAs (circRNAs) regulate gene expression and biological procedures by controlling target genes or downstream pathways by sponging their related miRNA (s). Three types of circRNAs have been identified; exonic circRNAs (ecircRNAs), intronic RNAs (ciRNAs), and exon-intron circRNAs (ElciRNAs). It is clarified that altered levels of circRNAs have dynamic pathological and physiological functions in kidney diseases. Evidence suggests that circRNAs can be considered novel diagnostic biomarkers and therapeutic targets for renal diseases. Glomerulonephritis (GN) is a general term used to refer to a wide range of glomerular diseases. GN is an important cause of chronic kidney diseases. Here, we review the biogenesis of circRNAs, and their molecular and physiological functions in the kidney. Moreover, the dysregulated expression of circRNAs and their biological functions are discussed in primary and secondary glomerulonephritis. Moreover, diagnostic and therapeutic values of circRNAs in distinguishing or treating different types of GN are highlighted.
Collapse
Affiliation(s)
| | | | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Farzamikia
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Sina Hejazian
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Batoumchi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | | |
Collapse
|
2
|
Zhang L, Wang X. Hsa_circ_0008360 promotes high glucose-induced damage in HK-2 cells via miR-346/WNT2B axis. J Endocrinol Invest 2024; 47:2325-2337. [PMID: 38472721 DOI: 10.1007/s40618-024-02326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a leading cause of end-stage renal disease worldwide. Recent researches have shown that circular RNAs (circRNAs) could affect the progress of DN, but the mechanism is still indistinct. In this work, we explored the roles of hsa_circ_0008360 in DN. METHODS The levels of hsa_circ_0008360, microRNA-346 (miR-346) and Winglesstype family member 2B (WNT2B) were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) in DN tissues and HK2 cells. Meanwhile, the protein level of WNT2B was quantified by Western blot analysis. Besides, the function of cells was examined by Cell Counting Kit-8 (CCK8) assay, flow cytometry assay, western blot, and ELISA kit. Furthermore, the interplay between miR-346 and hsa_circ_0008360 or WNT2B was detected by dual-luciferase reporter assay. RESULTS The levels of hsa_circ_0008360 and WNT2B were increased, and the miR-346 level was decreased in the serum of DN patients and HG-treated HK2 cells. For functional analysis, hsa_circ_0008360 deficiency promoted cell viability, inhibits cell apoptosis, inflammatory response, and the synthesis of related fibrotic proteins in HG-treated HK2 cells. Moreover, overexpression of miR-346 induced the proliferation and inhibit apoptosis of HG-induced HK2 cells by inhibiting WNT2B expression. In mechanism, hsa_circ_0008360 acted as a miR-346 sponge to regulate the level of WNT2B. CONCLUSION Hsa_circ_0008360 can regulate miR-346/WNT2B axis in HG-induced HK2 cells, providing an underlying targeted therapy for DN patients.
Collapse
Affiliation(s)
- L Zhang
- Endocrinology Department, Tangdu Hospital of Air Force Medical University, No. 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - X Wang
- Endocrinology Department, Tangdu Hospital of Air Force Medical University, No. 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
3
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
4
|
Liu X, Sun H, Zheng L, Zhang J, Su H, Li B, Wu Q, Liu Y, Xu Y, Song X, Yu Y. Adipose-derived miRNAs as potential biomarkers for predicting adulthood obesity and its complications: A systematic review and bioinformatic analysis. Obes Rev 2024; 25:e13748. [PMID: 38590187 DOI: 10.1111/obr.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Adipose tissue is the first and primary target organ of obesity and the main source of circulating miRNAs in patients with obesity. This systematic review aimed to analyze and summarize the generation and mechanisms of adipose-derived miRNAs and their role as early predictors of various obesity-related complications. Literature searches in the PubMed and Web of Science databases using terms related to miRNAs, obesity, and adipose tissue. Pre-miRNAs from the Human MicroRNA Disease Database, known to regulate obesity-related metabolic disorders, were combined for intersection processing. Validated miRNA targets were sorted through literature review, and enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes via the KOBAS online tool, disease analysis, and miRNA transcription factor prediction using the TransmiR v. 2.0 database were also performed. Thirty miRNAs were identified using both obesity and adipose secretion as criteria. Seventy-nine functionally validated targets associated with 30 comorbidities of these miRNAs were identified, implicating pathways such as autophagy, p53 pathways, and inflammation. The miRNA precursors were analyzed to predict their transcription factors and explore their biosynthesis mechanisms. Our findings offer potential insights into the epigenetic changes related to adipose-driven obesity-related comorbidities.
Collapse
Affiliation(s)
- Xiyan Liu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Huayi Sun
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Department of Colorectal Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lixia Zheng
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Han Su
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Bingjie Li
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Qianhui Wu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Yunchan Liu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoyu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Zhang CY, Yang M. Roles of fibroblast growth factors in the treatment of diabetes. World J Diabetes 2024; 15:392-402. [PMID: 38591079 PMCID: PMC10999039 DOI: 10.4239/wjd.v15.i3.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 03/15/2024] Open
Abstract
Diabetes affects about 422 million people worldwide, causing 1.5 million deaths each year. However, the incidence of diabetes is increasing, including several types of diabetes. Type 1 diabetes (5%-10% of diabetic cases) and type 2 diabetes (90%-95% of diabetic cases) are the main types of diabetes in the clinic. Accumulating evidence shows that the fibroblast growth factor (FGF) family plays important roles in many metabolic disorders, including type 1 and type 2 diabetes. FGF consists of 23 family members (FGF-1-23) in humans. Here, we review current findings of FGFs in the treatment of diabetes and management of diabetic complications. Some FGFs (e.g., FGF-15, FGF-19, and FGF-21) have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes, and their therapeutic roles in diabetes are currently under investigation in clinical trials. Overall, the roles of FGFs in diabetes and diabetic complications are involved in numerous processes. First, FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production. Second, modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components, promote diabetic wound healing process and bone repair, and inhibit cancer cell proliferation and migration. Finally, FGFs can regulate the activation of glucose-excited neurons and the expression of thermogenic genes.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- NextGen Precision Health Institution, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
6
|
Ye L, Chen JH, Zhu SL, Xu DD, Yang Y, Shi MP. Hsa_circ_0001162 Inhibition Alleviates High Glucose-Induced Human Podocytes Injury by the miR-149-5p/MMP9 Signaling Pathway. Appl Biochem Biotechnol 2023; 195:7255-7276. [PMID: 36988849 DOI: 10.1007/s12010-023-04431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Emerging evidences suggested that circular RNAs (circRNAs) are involved in diabetic nephropathy (DN). Accumulating evidence had suggested that the degree of podocyte is a major prognostic determinant of DN progression. However, the function and in-depth mechanisms of hsa_circ_0001162 in podocyte injury of DN remain unclear. Hsa_circ_0001162 expression was detected by real-time quantitative PCR (RT-qPCR) in peripheral blood of DN patients and high glucose-induced podocytes injury model. The cell counting kit 8, 5-ethynyl-2'-deoxyuridine, flow cytometry with Annexin V-FITC/PI staining, caspase-3 activity assay Kit, enzyme linked immunosorbent assay (ELISA), RT-qPCR and western blotting were used to evaluate the effect of hsa_circ_0001162 / miR-149-5p / MMP9 axis on high glucose-induced podocyte injury. Mechanistically, dual luciferase reporter was used to confirm the relationship of miR-149-5p and hsa_circ_0001162 or MMP9. Furthermore, RNA-pull down and immunoprecipitation assay were implemented to verify the potential regulatory effects of EIF4A3 on biogenesis of hsa_circ_0001162. Our results showed that hsa_circ_0001162 was highly expressed in peripheral blood of DN patients and high glucose-induced podocytes injury model, and the knockdown of hsa_circ_0001162 increased the proliferation, inhibited the apoptosis, and suppressed inflammatory response in high glucose-induced podocytes injury. Mechanism studies demonstrated that EIF4A3 bound with flanking sequences of hsa_circ_0001162 to promote hsa_circ_0001162 expression, upregulated hsa_circ_0001162 increased the MMP9 expression via sponging miR-149-5p, thus aggravating the high glucose-induced podocytes injury. Overall, our data demonstrated that knockdown of hsa_circ_0001162 inhibited high glucose-induced podocytes injury by regulating miR-149-5p/MMP9 axis, and intervention of hsa_circ_0001162/miR-149-5p/MMP9 axis may be a potentially promising therapeutic strategy for podocyte injury in DN patients.
Collapse
Affiliation(s)
- Ling Ye
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China.
| | - Jie-Hui Chen
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Sheng-Lang Zhu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Dan-Dan Xu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Yun Yang
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Ming-Pei Shi
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
7
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
8
|
Li Z, Ren Y, Lv Z, Li M, Li Y, Fan X, Xiong Y, Qian L. Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications. Biomed Pharmacother 2023; 168:115744. [PMID: 37862970 DOI: 10.1016/j.biopha.2023.115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of single-stranded noncoding RNAs with a covalently closed loop structure, are generated in a circular conformation via non-canonical splicing or back-splicing events. Functionally, circRNAs have been elucidated to soak up microRNAs (miRNAs) and RNA binding proteins (RBPs), serve as protein scaffolds, maintain mRNA stability, and regulate gene transcription and translation. Notably, circRNAs are strongly implicated in the regulation of β-cell functions, insulin resistance, adipocyte functions, inflammation as well as oxidative stress via acting as miRNA sponges and RBP sponges. Basic and clinical studies have demonstrated that aberrant alterations of circRNAs expressions are strongly associated with the initiation and progression of diabetes mellitus (DM) and its complications. Here in this review, we present a summary of the biogenesis, transportation, degradation and functions of circRNAs, and highlight the recent findings on circRNAs and their action mechanisms in DM and its complications. Overall, this review should contribute greatly to our understanding of circRNAs in DM pathogenesis, offering insights into the further perspectives of circRNAs for DM diagnosis and therapy.
Collapse
Affiliation(s)
- Zi Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Man Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yujia Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China.
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
9
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Shao J, Wang M, Zhang A, Liu Z, Jiang G, Tang T, Wang J, Jia X, Lai S. Interference of a mammalian circRNA regulates lipid metabolism reprogramming by targeting miR-24-3p/Igf2/PI3K-AKT-mTOR and Igf2bp2/Ucp1 axis. Cell Mol Life Sci 2023; 80:252. [PMID: 37587272 PMCID: PMC11071982 DOI: 10.1007/s00018-023-04899-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
White adipose tissue (WAT) is important for regulating the whole systemic energy homeostasis. Excessive WAT accumulation further contributes to the development of obesity and obesity-related illnesses. More detailed mechanisms for WAT lipid metabolism reprogramming, however, are still elusive. Here, we report the abnormally high expression of a circular RNA (circRNA) mmu_circ_0001874 in the WAT and liver of mice with obesity. mmu_circ_0001874 interference achieved using a specific adeno-associated virus infects target tissues, down-regulating lipid accumulation in the obesity mice WAT, and liver tissues. Mechanistically, miR-24-3p directly interacts with the lipid metabolism effect of mmu_circ_0001874 and participates in adipogenesis and lipid accumulation by targeting Igf2/PI3K-AKT-mTOR axis. Moreover, mmu_circ_0001874 binds to Igf2bp2 to interact with Ucp1, up-regulating Ucp1 translation and increasing thermogenesis to decrease lipid accumulation. In conclusion, our data highlight a physiological role for circRNA in lipid metabolism reprogramming and suggest mmu_circ_0001874/miR-24-3p/Igf2/PI3K-AKT-mTOR and mmu_circ_0001874/Igf2bp2/Ucp1 axis may represent a potential mechanism for controlling lipid accumulation in obesity.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anjing Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Genglong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Wang Q, Zhu Y, Dong Q, Zhang L, Zhang W. A Novel Circ_Arf3/miR-452-5p/Mbnl1 Axis Regulates Proliferation and Expression of Fibrosis-Related Proteins of Mouse Mesangial Cells Under High Glucose. Diabetes Metab Syndr Obes 2023; 16:2105-2116. [PMID: 37457110 PMCID: PMC10349572 DOI: 10.2147/dmso.s400530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/31/2023] [Indexed: 07/18/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a serious microvascular complication of diabetes that may lead to chronic renal failure and end-stage renal disease. Circular RNAs (circRNAs) play important roles in DN progression. However, the action of circRNA ADP ribosylation factor 3 (circ_Arf3) in high glucose (HG)-induced change is still unclear. Methods Mouse mesangial cells (MCs) were treated with 30 mM HG as a DN cell model in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to examine the expression levels of circ_Arf3, microRNA (miR)-452-5p and muscleblind like splicing regulator 1 (Mbnl1). The proliferation of HG-treated MCs was assessed using 5 Ethynyl 2' deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays, and the levels of proliferation and fibrosis-related proteins and Mbnl1 were detected by Western blot. Dual-luciferase reporter and RNA pull-down assays were utilized to determine the relationship between miR-452-5p and circ_Arf3 or Mbnl1. Results Our results discovered that circ_Arf3 and Mbnl1 were lowly expressed in HG-treated MCs, while miR-452-5p expression was up-regulated. Moreover, circ_Arf3 was mainly located in the cytoplasm and had a ring-like stable structure. Functional assays demonstrated that overexpression of circ_Arf3 prevented cell proliferation and fibrous formation in HG-treated MCs. Circ_Arf3 could sponge miR-452-5p, and the effect of circ_Arf3 overexpression was reversed by enhanced expression of miR-452-5p. Mbnl1 was a direct target of miR-452-5p. Knockdown of Mbnl1 abolished the suppressive effects of miR-452-5p inhibitor on proliferation and fibrosis-related protein expression in HG-treated MCs. Moreover, circ_Arf3 regulated Mbnl1 through miR-452-5p. Conclusion Overexpression of circ_Arf3 prevents cell proliferation and fibrous formation in HG-treated MCs by regulating the expression of Mbnl1 via miR-452-5p.
Collapse
Affiliation(s)
- Qiong Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Yanting Zhu
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Wei Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| |
Collapse
|
12
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Mishra DD, Sahoo B, Maurya PK, Sharma R, Varughese S, Prasad N, Tiwari S. Therapeutic potential of urine exosomes derived from rats with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1157194. [PMID: 37251672 PMCID: PMC10213426 DOI: 10.3389/fendo.2023.1157194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Kidney disease is prevalent in diabetes. Urinary exosomes (uE) from animal models and patients with Diabetic nephropathy (DN) showed increased levels of miRs with reno-protective potential. We examined whether urinary loss of such miRs is associated with their reduced renal levels in DN patients. We also tested whether injecting uE can leverage kidney disease in rats. In this study (study-1) we performed microarray profiling of miRNA in uE and renal tissues in DN patients and subjects with diabetes without DN (controls). In study-2, diabetes was induced in Wistar rats by Streptozotocin (i.p. 50 mg/kg of body weight). Urinary exosomes were collected at 6th, 7th and 8th weeks, and injected back into the rats (100ug/biweekly, uE-treated n=7) via tail vein on weeks 9 and 10. Equal volume of vehicle was injected in controls (vehicle, n=7). uE from the human and rat showed the presence of exosome-specific proteins by immunoblotting. Microarray profiling revealed a set of 15 miRs having high levels in the uE, while lower in renal biopsies, from DN, compared to controls (n=5-9/group). Bioinformatic analysis also confirmed the Renoprotective potential of these miRs. Taqman qPCR confirmed the opposite regulation of miR-200c-3p and miR-24-3p in paired uE and renal biopsy samples from DN patients (n=15), relative to non-DN controls. A rise in 28 miRs levels, including miR-200c-3p, miR-24-3p, miR-30a-3p and miR-23a-3p were observed in the uE of DN rats, collected between 6th-8th weeks, relative to baseline (before diabetes induction). uE- treated DN rats had significantly reduced urine albumin-to-creatinine ratio, attenuated renal pathology, and lower miR-24-3p target fibrotic/inflammatory genes (TGF-beta, and Collagen IV), relative to vehicle treated DN rats. In uE treated rats, the renal expression of miR-24-3p, miR-30a-3p, let-7a-5p and miR-23a-3p was increased, relative to vehicle control. Patients with diabetic nephropathy had reduced renal levels, while higher uE abundance of miRs with reno-protective potential. Reverting the urinary loss of miRs by injecting uE attenuated renal pathology in diabetic rats.
Collapse
Affiliation(s)
- Deendayal Das Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Biswajit Sahoo
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pramod Kumar Maurya
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
14
|
Zhang L, Jin G, Zhang W, Wang X, Li Z, Dong Q. Silencing circ_0080425 alleviates high-glucose-induced endothelial cell dysfunction in diabetic nephropathy by targeting miR-140-3p/FN1 axis. Clin Exp Nephrol 2023; 27:12-23. [PMID: 36083527 DOI: 10.1007/s10157-022-02273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hsa_circ_0080425 (circ_0080425) is newly identified to correlate with the progression of diabetic nephropathy (DN). However, its role and mechanism in DN process is not very clear. METHODS Cell counting kit-8 assay, flow cytometry, scratch wound assay, and western blotting were performed to measure endothelial cell dysfunction. Expression of circ_0080425, microRNA (miR)-140-3p and fibronectin 1 (FN1) were determined by quantitative real-time PCR and western blotting. The direct interaction was confirmed by dual-luciferase reporter assay. RESULTS High-glucose (HG) treatment could induce inhibition of cell proliferation, cell cycle entrance and wound healing rate in human umbilical vein endothelial cells (HRGEC), and enhancement of apoptosis rate. Circ_0080425 expression was upregulated by HG, and exhausting circ_0080425 could attenuate HG-induced above effects in HRGEC. MiR-140-3p was sponged by circ_0080425, and its inhibitor reversed the regulation of circ_0080425 knockdown on HG-induced HRGEC injury. FN1 was targeted by miR-140-3p, and its overexpression also restored the inhibitory effect of miR-140-3p on HC-induced HRGEC injury. CONCLUSION Circ_0080425 expression might contribute to HG-induced endothelial cell injury, and circ_0080425/miR-140-3p/FN1 axis was a potential therapeutic approach to interfere DN process.
Collapse
Affiliation(s)
- Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Gang Jin
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Wei Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Xiaoming Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Zhenjiang Li
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
15
|
Sun J, Guan X, Niu C, Chen P, Li Y, Wang X, Luo L, Liu M, Shou Y, Huang X, Cai Y, Zhu J, Fan J, Li X, Jin L, Cong W. FGF13-Sensitive Alteration of Parkin Safeguards Mitochondrial Homeostasis in Endothelium of Diabetic Nephropathy. Diabetes 2023; 72:97-111. [PMID: 36256844 DOI: 10.2337/db22-0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Studies of diabetic glomerular injury have raised the possibility of developing useful early biomarkers and therapeutic approaches for the treatment of type 2 diabetic nephropathy (T2DN). In this study, we found that FGF13 expression is induced in glomerular endothelial cells (GECs) during T2DN progression. Endothelial-specific deletion of Fgf13 potentially alleviates T2DN damage, while Fgf13 overexpression has the opposite effect. Mechanistically, Fgf13 deficiency results in improved mitochondrial homeostasis and endothelial barrier integrity in T2DN. Moreover, FGF13-sensitive alteration of Parkin safeguards mitochondrial homeostasis in endothelium of T2DN through promotion of mitophagy and inhibition of apoptosis. Additionally, it is confirmed that the beneficial effects of Fgf13 deficiency on T2DN are abolished by endothelial-specific double deletion of Fgf13 and Prkn. The effects of Fgf13 deficiency on mitophagy and apoptosis through Parkin-dependent regulation may be distinct and separable events under diabetic conditions. These data show that the bifunctional role of Fgf13 deficiency in promoting mitophagy and inhibiting apoptosis through Parkin can shape mitochondrial homeostasis regulation in GECs and T2DN progression. As a potential therapeutic target for prevention and control of T2DN, a mechanistic understanding of the biofunction of FGF13 may also be relevant to the pathogenesis of other FGF13- and Parkin-associated diseases.
Collapse
Affiliation(s)
- Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, People's Republic of China
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chao Niu
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, People's Republic of China
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yuankuan Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Korea
| | - Xuejiao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lan Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Mengxue Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanni Shou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yan Cai
- Ningbo Ninth Hospital, Ningbo, People's Republic of China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
16
|
Yin W, Zhang Z, Xiao Z, Li X, Luo S, Zhou Z. Circular RNAs in diabetes and its complications: Current knowledge and future prospects. Front Genet 2022; 13:1006307. [PMID: 36386812 PMCID: PMC9643748 DOI: 10.3389/fgene.2022.1006307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
A novel class of non-coding RNA transcripts called circular RNAs (circRNAs) have been the subject of significant recent studies. Accumulating evidence points that circRNAs play an important role in the cellular processes, inflammatory expression, and immune responses through sponging miRNA, binding, or translating in proteins. Studies have found that circRNAs are involved in the physiologic and pathologic processes of diabetes. There has been an increased focus on the relevance of between abnormal circRNA expression and the development and progression of various types of diabetes and diabetes-related diseases. These circRNAs not only serve as promising diagnostic and prognostic molecular biomarkers, but also have important biological roles in islet cells, diabetes, and its complications. In addition, many circRNA signaling pathways have been found to regulate the occurrence and development of diabetes. Here we comprehensively review and discuss recent advances in our understanding of the physiologic function and regulatory mechanisms of circRNAs on pancreatic islet cells, different subtypes in diabetes, and diabetic complications.
Collapse
|
17
|
Zhou J, Peng X, Ru Y, Xu J. Circ_0060077 Knockdown Alleviates High-Glucose-Induced Cell Apoptosis, Oxidative Stress, Inflammation and Fibrosis in HK-2 Cells via miR-145-5p/VASN Pathway. Inflammation 2022; 45:1911-1923. [PMID: 35729462 DOI: 10.1007/s10753-022-01649-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
The involvement of circular RNAs (circRNAs) in the progression of diabetic nephropathy (DN) has been reported. However, the functions of circ_0060077 in DN remain unclear. HK-2 cells were treated with high glucose (HG) to establish DN cell model. Quantitative real-time polymerase chain reaction (qRT-PCR) was proceeded to determine the levels of circ_0060077, microRNA-145-5p (miR-145-5p) and vasorin (VASN). Cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and colony formation assay were conducted to assess cell proliferation ability. Flow cytometry analysis was employed for cell apoptosis. The oxidative stress level was evaluated by commercial kits. Enzyme-linked immunosorbent assay (ELISA) was adopted to examine the concentrations of inflammatory factors. Western blot assay was utilized for protein levels. Dual-luciferase reporter assay and RNA pull-down assay were manipulated to analyze the relationships among circ_0060077, miR-145-5p and VASN. Circ_0060077 level was increased in DN patients and HG-stimulated HK-2 cells. Circ_0060077 knockdown ameliorated the inhibitory effect of HG on HK-2 cell proliferation and the promotional effects on cell apoptosis, oxidative stress, inflammation and fibrosis. MiR-145-5p was identified as the target for circ_0060077 and miR-145-5p inhibition ameliorated the effect of circ_0060077 silencing on HG-induced HK-2 cell injury. Moreover, miR-145-5p directly bound to VASN. Overexpression of miR-145-5p facilitated cell proliferation and repressed apoptosis, oxidative injury, inflammation and fibrosis in HG-induced HK-2 cells by targeting VASN. Circ_0060077 silencing protected HK-2 cells from HG-induced damage by regulating miR-145-5p/VASN axis.
Collapse
Affiliation(s)
- Jinjin Zhou
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Xia Peng
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Yanhai Ru
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Jiayun Xu
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China.
| |
Collapse
|
18
|
Chen X, Liu M. CircATRNL1 increases acid-sensing ion channel 1 to advance epithelial-mesenchymal transition in endometriosis by binding to microRNA-103a-3p. Reprod Biol 2022; 22:100643. [DOI: 10.1016/j.repbio.2022.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
|
19
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
20
|
Jin J, Wang Y, Zheng D, Liang M, He Q. A Novel Identified Circular RNA, mmu_mmu_circRNA_0000309, Involves in Germacrone-Mediated Improvement of Diabetic Nephropathy Through Regulating Ferroptosis by Targeting miR-188-3p/GPX4 Signaling Axis. Antioxid Redox Signal 2022; 36:740-759. [PMID: 34913724 DOI: 10.1089/ars.2021.0063] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: Diabetic nephropathy (DN) is characterized by microalbuminuria, mainly associated with pathological and morphological alterations of podocyte. New drug targeting podocyte injury is a promising approach for treating DN. The present study is aimed at developing new drug targeting podocyte injury for treating DN. Results: In this study, germacrone ameliorated kidney damage and inhibited podocyte apoptosis in a DN mouse model. Based on RNA-seq, mmu_mmu_circRNA_0000309, located in host gene vascular endothelial zinc finger 1 (Vezf1), showed a sharp decline in DN mice and a remarkable recovery in germacrone-challenged DN mice. mmu_circRNA_0000309 silence or miR-188-3p mimics abrogated the antiapoptosis and anti-injury effects of germacrone through aggravating mitochondria damage, and elevating reactive oxygen species and ferroptosis-related protein levels. Mechanistically, mmu_circRNA_0000309 competitively sponged miR-188-3p, and subsequently promoted glutathione peroxidase 4 (GPX4) expression, thereby inactivating ferroptosis-dependent mitochondrial damage and podocyte apoptosis. In addition, GPX4 overexpression neutralized mmu_circRNA_0000309 silence-mediated mitochondria damage and ferroptosis in germacrone-exposed MPC5 cells. Innovation: We describe the novel effect and mechanism of germacrone on treating DN, which is linked to ferroptosis for the first time. Conclusion: mmu_circRNA_0000309 silence mediates drug resistance to germacrone in DN mice. mmu_circRNA_0000309 sponges miR-188-3p, and subsequently upregulates GPX4 expression, inactivating ferroptosis-dependent mitochondrial function and podocyte apoptosis. Possibly germacrone-based treatment for DN can be further motivated by regulating mmu_circRNA_0000309/miR-188-3p/GPX4 signaling axis. Antioxid. Redox Signal. 36, 740-759.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Danna Zheng
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Mingzhu Liang
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
21
|
Deng W, Huang D, Xie H, Wang L, Shen Q, Zeng R, Huang Y, Li J, Yang B. Danhong injection represses diabetic retinopathy and nephropathy advancement in diabetic mice by upregulating microRNA-30d-5p and targeting JAK1. Bioengineered 2022; 13:8187-8200. [PMID: 35297304 PMCID: PMC9162027 DOI: 10.1080/21655979.2021.2006964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Danhong injection (DHI) restrains diabetic retinopathy and nephropathy (DR and DN) advancement in diabetic mice. However, the downstream mechanism of its modulation is not fully studied. Diabetic model mice (db/db mice) were intravenously injected with DHI and corresponding virus particles. MiR-30d-5p and JAK1 were detected. The body weight and fasting blood glucose mice were measured every 4 weeks. The renal tissues and serum of mice were collected, and the contents of creatinine and blood urea nitrogen were biochemically analyzed. IL-6, IFN-γ and TNF-α were detected by ELISA, with the pathological conditions of renal tissues in mice by He staining, and the adjustment conditions by TUNEL. Human retinal pigment epithelium (ARPE-19) cells were selected to induce DR model in vitro by high glucose, and exposed to DHI for treatment. The corresponding plasmids were transfected, and miR-30d-5p and JAK1 were detected, with the proliferation ability by plate cloning, apoptosis by flow cytometry, and cell migration ability by Transwell. The angiogenesis ability of cells was assessed by tube formation assay. The targeting relationship between miR-30d-5p and JAK1 was detected. The results manifested that miR-30d-5p was declined in DR and DN, while JAK1 expression was elevated. DHI was able to improve DR and renal injury. DHI could regulate the miR-30d-5p-JAK1 axis in vivo, and miR-30d-5p targeted and regulated JAK1. Upregulation of miR-30d-5p or inhibition of JAK1 could improve DR and renal injury. The results implies that DHI can repress the development of DR and DN by elevating miR-30d-5p and targeting JAK1.
Collapse
Affiliation(s)
- Wei Deng
- Department of Nephrology, The Fourth People's Hospital of Chenzhou City, Hunan Province, 423001, China
| | - Dan Huang
- Department of Ophthalmology, The Fourth People's Hospital of Chenzhou City, Hunan Province, 423001, China
| | - HongWu Xie
- Department of Endocrinology, The Fourth People's Hospital of Chenzhou City, Hunan Province, 423001, China
| | - LiMin Wang
- Department of Nephrology, The Fourth People's Hospital of Chenzhou City, Hunan Province, 423001, China
| | - Qun Shen
- Department of Endocrinology, The Fourth People's Hospital of Chenzhou City, Hunan Province, 423001, China
| | - RongRong Zeng
- Department of Endocrinology, The Fourth People's Hospital of Chenzhou City, Hunan Province, 423001, China
| | - YuanLian Huang
- Department of Nephrology, The Fourth People's Hospital of Chenzhou City, Hunan Province, 423001, China
| | - JianHua Li
- Department of Nephrology, The Fourth People's Hospital of Chenzhou City, Hunan Province, 423001, China
| | - Bo Yang
- Department of Nephrology, The First Affiliated Hospital, University of South China, Hengyang City, Hunan Province, 421001,China
| |
Collapse
|
22
|
Zhang Y, Zuo X. miR-25-3p protects renal tubular epithelial cells from apoptosis induced by renal IRI by targeting DKK3. Open Life Sci 2022; 16:1393-1404. [PMID: 35174294 PMCID: PMC8812715 DOI: 10.1515/biol-2021-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the main causes of acute kidney injury (AKI). So far, there have been many studies on renal IRI, although an effective treatment method has not been developed. In recent years, growing evidence has shown that small noncoding RNAs play an important regulatory role in renal IRI. This article aims to explore whether microRNA-25-3p (miR-25-3p) plays a role in the molecular mechanism of renal IRI. The results showed that the expression level of miR-25-3p was significantly downregulated in a rat renal IRI model, and this result was confirmed with in vitro experiments. After the hypoxia-reoxygenation treatment, the apoptosis level of NRK-52E cells transfected with miR-25-3p mimics decreased significantly, and this antiapoptotic effect was antagonized by miR-25-3p inhibitors. In addition, we confirmed that DKK3 is a target of miR-25-3p. miR-25-3p exerts its protective effect against apoptosis on NRK-52E cells by inhibiting the expression of DKK3, and downregulating the expression level of miR-25-3p could disrupt this protective effect. In addition, we reconfirmed the role of miR-25-3p in rats. Therefore, we confirmed that miR-25-3p may target DKK3 to reduce renal cell damage caused by hypoxia and that miR-25-3p may be a new potential treatment for renal IRI.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology, Nanjing Medical University, Nanjing 210000, Jiangsu Province, P. R. China
| | - Xiangrong Zuo
- Department of Intensive Care Medical, Jiangsu Provincial People's Hospital, Nanjing 210000, Jiangsu Province, P. R. China
| |
Collapse
|
23
|
Zhang Y, Wang Z, Lan D, Zhao J, Wang L, Shao X, Wang D, Wu K, Sun M, Huang X, Yan M, Liang H, Rong X, Diao H, Guo J. MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2. Pharmacol Res 2022; 177:106124. [PMID: 35149188 DOI: 10.1016/j.phrs.2022.106124] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis is a pathological process of multiple cardiovascular diseases, which may lead to heart failure. Studies have shown that microRNAs (miRNAs) play critical roles in regulating mitophagy and cardiac fibrosis. We found that miR-24-3p expression was significantly downregulated in transverse aortic constriction (TAC) mice and cardiac fibroblasts (CFs) treated with Ang Ⅱ. We also found that, apart from improving cardiac structure and function, forced expression of miR-24-3p not only reduced the levels of collagen and α-SMA but also inhibited proliferation and migration of CFs. Next, our research proved that miR-24-3p suppressed the progression of mitophagy, autophagic flux, and the levels of mitophagy-related proteins in cardiac fibrosis models. Further analysis showed that PHB2 was a direct target of miR-24-3p. Finally, experiments showed that the knockdown of PHB2 reversed Ang Ⅱ-induced fibrosis in CFs. The results of our study suggests that increased expression of miR-24-3p contributes to the reduction of cardiac fibrosis and that it might be targeted therapeutically to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiying Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dingming Lan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jingjing Zhao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lexun Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, P. R. China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Xiaoqi Shao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dongwei Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kaili Wu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mengxian Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xueying Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiling Yan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, P. R. China
| | - Xianglu Rong
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, P. R. China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Hongtao Diao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
24
|
Liu M, Zhao J. Circular RNAs in Diabetic Nephropathy: Updates and Perspectives. Aging Dis 2022; 13:1365-1380. [PMID: 36186139 PMCID: PMC9466972 DOI: 10.14336/ad.2022.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Circular RNAs (circRNAs) are widespread endogenous transcripts lacking 5′-caps and 3′-polyadenylation tails. Their closed-loop structure confers exonuclease resistance and extreme stability. CircRNAs play essential roles in various diseases, including diabetes. Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease and is one of the most common complications of diabetes. CircRNAs are key in DN and therefore important for understanding DN pathophysiology and developing new therapeutic strategies. In the present review, we briefly introduce the characteristics and functions of circRNAs and summarize recent discoveries on how circRNAs participate in DN. Based on these advances, we suggest future perspectives for studying circRNAs in DN to improve DN treatment and management.
Collapse
Affiliation(s)
| | - Junli Zhao
- Correspondence should be addressed to: Dr. Junli Zhao, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China. E-mail: .
| |
Collapse
|
25
|
Zhang K, Wan X, Khan MA, Sun X, Yi X, Wang Z, Chen K, Peng L. Peripheral Blood circRNA Microarray Profiling Identities hsa_circ_0001831 and hsa_circ_0000867 as Two Novel circRNA Biomarkers for Early Type 2 Diabetic Nephropathy. Diabetes Metab Syndr Obes 2022; 15:2789-2801. [PMID: 36118796 PMCID: PMC9473550 DOI: 10.2147/dmso.s384054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) increases the incidence of diabetic nephropathy (DN) and eventually progresses to end-stage renal disease. Circular RNAs (circRNAs) are a class of non-coding RNAs that are promising as diagnostic biomarkers and therapeutic targets for human diseases. The aim of this study was to analyze the differential expression of circRNAs (DECs) in peripheral blood from patients with early type 2 diabetic nephropathy (ET2DN), T2DM and controls, which will facilitate to discover some new biomarkers for ET2DN. PATIENTS AND METHODS Twenty ET2DN patients, 20 T2DM patients, and 20 normal controls were included in this study. Blood samples from 3 random subjects of age- and sex-matched patients in each group, respectively, were used to detect circRNA expression profiles by circRNA microarray, and the circRNA expression of remaining subjects was validated by real-time quantitative polymerase chain reaction (qRT-PCR). Further functional assessment was performed by bioinformatic tools. RESULTS There were 586 DECs in ET2DN vs T2DM group (249 circRNAs were upregulated and 337 circRNAs were downregulated); 176 circRNAs were upregulated and 101 circRNAs were downregulated in T2DM vs control group; 57 circRNAs were upregulated and 5 circRNAs were downregulated in ET2DN vs control group. The functional and pathway enrichment of DECs were analyzed by GO and KEGG. qRT-PCR results revealed that hsa_circ_0001831 and hsa_circ_0000867 were significantly upregulated in ET2DN group compared to both of T2DM and control group. The ROC curve demonstrated that hsa_circ_0001831 and hsa_circ_0000867 have high sensitivity and specificity associated with ET2DN. CONCLUSION Our study showed the expression profiles of circRNAs in ET2DN patients and demonstrated that hsa_circ_0001831 and hsa_circ_0000867 can be used as novel diagnostic biomarkers for ET2DN.
Collapse
Affiliation(s)
- Keke Zhang
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xinxing Wan
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Md Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiaoying Sun
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xuan Yi
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Zhouqi Wang
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Ke Chen
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Ke Chen, Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China, Tel +86-731-8861-8239, Email
| | - Lin Peng
- Department of Nephrology, the First Hospital of Changsha, Changsha, People’s Republic of China
- Correspondence: Lin Peng, Department of Nephrology, the First Hospital of Changsha, Changsha, People’s Republic of China, Tel +86-731-8466-7510, Email
| |
Collapse
|
26
|
Fan W, Pang H, Xie Z, Huang G, Zhou Z. Circular RNAs in diabetes mellitus and its complications. Front Endocrinol (Lausanne) 2022; 13:885650. [PMID: 35979435 PMCID: PMC9376240 DOI: 10.3389/fendo.2022.885650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrine disorder characterized by a relative or absolute lack of insulin due to the dysfunction or destruction of β-cells. DM is one of the fastest growing challenges to global health in the 21st century and places a tremendous burden on affected individuals and their families and countries. Although insulin and antidiabetic drugs have been used to treat DM, a radical cure for the disease is unavailable. The pathogenesis of DM remains unclear. Emerging roles of circular RNAs (circRNAs) in DM have become a subject of global research. CircRNAs have been verified to participate in the onset and progression of DM, implying their potential roles as novel biomarkers and treatment tools. In the present review, we briefly introduce the characteristics of circRNAs. Next, we focus on specific roles of circRNAs in type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus and diabetes-associated complications.
Collapse
|
27
|
Cui X, Huang X, Huang M, Zhou S, Guo L, Yu W, Duan M, Jiang B, Zeng J, Zhou J, Huang X, Liang P, Zhang P. miR-24-3p obstructs the proliferation and migration of HSFs after thermal injury by targeting PPAR-β and positively regulated by NF-κB. Exp Dermatol 2021; 31:841-853. [PMID: 34932851 DOI: 10.1111/exd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Thermal injury repair is a complex process during which the maintenance of the proliferation and migration of human skin fibroblasts (HSFs) exert a crucial role. MicroRNAs have been proven to exert an essential function in repairing skin burns. This study delves into the regulatory effects of miR-24-3p on the migration and proliferation of HSFs that have sustained a thermal injury; thereby, providing deeper insight into thermal injury repair pathogenesis. The PPAR-β protein expression level progressively increased in a time-dependent manner on the 12th , 24th , and 48th hour following the thermal injury of the HSFs. The knockdown of PPAR-β markedly suppressed the proliferation of and migration of HSF. Following thermal injury, the knockdown also promoted the inflammatory cytokine IL-6, TNF-, PTGS-2, and P65 expression. PPAR-β contrastingly exhibited an opposite trend. A targeted relationship between PPAR-β and miR-24-3p was predicted and verified. miR-24-3p inhibited thermal injured-HSFs proliferation and migration and facilitated inflammatory cytokine expression through the regulation of PPAR-β. p65 directly targeted the transcriptional precursor of miR-24 and promoted miR-24 expression. A negative correlation between miR-24-3p expression level and PPAR-β expression level in rats burnt dermal tissues was observed. Our findings reveal that miR-24-3p is conducive to rehabilitating the denatured dermis, which may be beneficial in providing effective therapy of skin burns.
Collapse
Affiliation(s)
- Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Mitao Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Le Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Wenchang Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Mengting Duan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jie Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
28
|
Sun A, Sun N, Liang X, Hou Z. Circ-FBXW12 aggravates the development of diabetic nephropathy by binding to miR-31-5p to induce LIN28B. Diabetol Metab Syndr 2021; 13:141. [PMID: 34863268 PMCID: PMC8642853 DOI: 10.1186/s13098-021-00757-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The involvement of circular RNAs (circRNAs) in diabetic nephropathy (DN) has been gradually identified. In this study, we aimed to explore the functions of circRNA F-box/WD repeat-containing protein 12 (circ-FBXW12) in DN development. METHODS Reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was performed for the levels of circ-FBXW12, FBXW12 mRNA, microRNA-31-5p (miR-31-5p) and Lin-28 homolog B (LIN28B) mRNA. RNase R assay was used to analyze the stability of circ-FBXW12. Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis and 5-ethynyl-2'- deoxyuridine (EdU) assay were employed to evaluate cell viability, cell cycle and proliferation, respectively. Enzyme linked immunosorbent assay (ELISA) was done to measure the concentrations of inflammatory cytokines. Western blot assay was conducted for protein levels. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were examined with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the relationships among circ-FBXW12, miR-31-5p and LIN28B. RESULTS Circ-FBXW12 level was increased in DN patients' serums and high glucose (HG)-induced human mesangial cells (HMCs). Circ-FBXW12 knockdown suppressed cell proliferation, arrested cell cycle, reduced extracellular matrix (ECM) production and oxidative stress in HG-induced HMCs. Circ-FBXW12 was identified as the sponge for miR-31-5p, which then directly targeted LIN28B. MiR-31-5p inhibition reversed circ-FBXW12 knockdown-mediated effects on cell proliferation, cell cycle process, ECM production and oxidative in HG-triggered HMCs. Moreover, miR-31-5p overexpression showed similar results with circ-FBXW12 knockdown in HG-stimulated HMC progression, while LIN28B elevation reversed the effects. CONCLUSION Circ-FBXW12 knockdown suppressed HG-induced HMC growth, inflammation, ECM accumulation and oxidative stress by regulating miR-31-5p/LIN28B axis.
Collapse
Affiliation(s)
- Aidong Sun
- Department of Endocrinology, Zibo First Hospital, Zibo, 255200, Shandong, China
| | - Ningshuang Sun
- Chinese Traditional College of Changchun University of Chinese Medicine, Changchun, 130022, Jilin, China
| | - Xiao Liang
- Department of Thoracic Surgery, Zibo Central Hospital, Zibo, 255000, Shandong, People's Republic of China
| | - Zhenbo Hou
- Department of Pathology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255000, Shandong, People's Republic of China.
| |
Collapse
|
29
|
Deng J, Liu Y, Liu Y, Li W, Nie X. The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy. J Inflamm Res 2021; 14:5273-5290. [PMID: 34703268 PMCID: PMC8524061 DOI: 10.2147/jir.s334996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication in the late stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. Even so, available evidence shows its development is associated with metabolism, oxidative stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic nephropathy can lead to proteinuria, edema and hypertension, among other complications. In severe cases, it can cause life-threatening complications such as renal failure. Patients with type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of developing DN. Fibroblast growth factor (FGF) regulates several human processes essential for normal development. Even though FGF has been implicated in the pathological development of DN, the underlying mechanisms are not well understood. This review summarizes the role of FGF in the development of DN. Moreover, the association of FGF with metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. Findings of this review are expected to deepen our understanding of DN and generate ideas for developing effective prevention and treatments for the disease.
Collapse
Affiliation(s)
- Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Key Laboratory of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Institute of Materia Medica, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| |
Collapse
|
30
|
Kourtidou C, Stangou M, Marinaki S, Tziomalos K. Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms222011196. [PMID: 34681856 PMCID: PMC8537513 DOI: 10.3390/ijms222011196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with diabetic kidney disease (DKD) are at very high risk for cardiovascular events. Only part of this increased risk can be attributed to the presence of diabetes mellitus (DM) and to other DM-related comorbidities, including hypertension and obesity. The identification of novel risk factors that underpin the association between DKD and cardiovascular disease (CVD) is essential for risk stratification, for individualization of treatment and for identification of novel treatment targets.In the present review, we summarize the current knowledge regarding the role of emerging cardiovascular risk markers in patients with DKD. Among these biomarkers, fibroblast growth factor-23 and copeptin were studied more extensively and consistently predicted cardiovascular events in this population. Therefore, it might be useful to incorporate them in risk stratification strategies in patients with DKD to identify those who would possibly benefit from more aggressive management of cardiovascular risk factors.
Collapse
Affiliation(s)
- Christodoula Kourtidou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
- Correspondence:
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Medical School, National and Kapodistrian University of Athens, Laiko Hospital, 11527 Athens, Greece;
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| |
Collapse
|
31
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
32
|
Yu J, Xie D, Huang N, Zhou Q. Circular RNAs as Novel Diagnostic Biomarkers and Therapeutic Targets in Kidney Disease. Front Med (Lausanne) 2021; 8:714958. [PMID: 34604256 PMCID: PMC8481637 DOI: 10.3389/fmed.2021.714958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have aroused growing attention in this decade. They are widely expressed in eukaryotes and generally have high stability owing to their special closed-loop structure. Many circRNAs are abundant, evolutionarily conserved, and exhibit cell-type-specific and tissue-specific expression patterns. Mounting evidence suggests that circRNAs have regulatory potency for gene expression by acting as microRNA sponges, interacting with proteins, regulating transcription, or directly undergoing translation. Dysregulated expression of circRNAs were found in many pathological conditions and contribute to the pathogenesis and progression of various disorders, including renal diseases. Recent studies have revealed that circRNAs may serve as novel reliable biomarkers for the diagnosis and prognosis prediction of multiple kidney diseases, such as renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), and other glomerular diseases. Furthermore, circRNAs expressed by intrinsic kidney cells are shown to play a substantial role in kidney injury, mostly reported in DKD and RCC. Herein, we review the biogenesis and biological functions of circRNAs, and summarize their roles as promising biomarkers and therapeutic targets in common kidney diseases.
Collapse
Affiliation(s)
- Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danli Xie
- Department of Nephrology, Shishi General Hospital, Quanzhou, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Tao Y, Han J, Liu W, An L, Hu W, Wang N, Yu Y. MUC1 Promotes Mesangial Cell Proliferation and Kidney Fibrosis in Diabetic Nephropathy Through Activating STAT and β-Catenin Signal Pathway. DNA Cell Biol 2021; 40:1308-1316. [PMID: 34520253 DOI: 10.1089/dna.2021.0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes, which leads to most end-stage kidney diseases and threatens health of patients. Mucin 1 (MUC1) is a heterodimeric oncoprotein, which is abnormally expressed in tumors and hematologic diseases. The aim of this study is to clarify the mechanism and role of MUC1 in DN. The mesangial cells (MCs) suffered from high glucose (HG) treatment to mimic DN in vitro. The cell proliferation was detected by Cell Counting Kit-8 assay and 5-ethynyl-2-deoxyuridine (EdU) staining assay. The expression of MUC1 and fibrosis markers: fibronectin, collagen I, and collagen IV were assessed by western blot. In this study, we demonstrated that HG treatment induced MUC1 expression in MCs. With knockdown of MUC1 or overexpressed MUC1 in MCs, the results indicated that knockdown of MUC1 inhibited MCs proliferation and reduced kidney fibrosis markers expression, including fibronectin, collagen I, and collagen IV, whereas overexpression of MUC1 led to opposite results. Mechanically, MUC1 activated signal transducers and activators of transcription (STAT) and β-catenin signal pathway. After added AG490 (STAT inhibitor) or FH535 (β-catenin inhibitor), blocking STAT3 and β-catenin signal pathway attenuated MUC1-induced cell proliferation and fibronectin production in MCs. Finally, knockdown of MUC1 attenuated DN-induced kidney fibrosis in db/db mice. Therapeutic target for DN. In conclusion, MUC1 promotes MCs proliferation and kidney fibrosis in DN through activating STAT and β-catenin signal pathway, which can help to provide a novel therapeutic target for DN.
Collapse
Affiliation(s)
- Yiying Tao
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Jianfang Han
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Wenhua Liu
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Ling An
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Wenbo Hu
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Ningning Wang
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Yean Yu
- Department of Nephrology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan City, China
| |
Collapse
|
34
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Wang J, Yang S, Li W, Zhao M, Li K. Circ_0000491 Promotes Apoptosis, Inflammation, Oxidative Stress, and Fibrosis in High Glucose-Induced Mesangial Cells by Regulating miR-455-3p/Hmgb1 Axis. Nephron Clin Pract 2021; 146:72-83. [PMID: 34474408 DOI: 10.1159/000516870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes. Recently, many circular RNAs can exert crucial roles in DN progression. This study intended to explore the role and mechanism of circ_0000491 in DN. METHODS The DN mouse model was constructed by streptozotocin injection, and the DN cell model was established using high glucose (HG) treatment in mouse mesangial cells (SV40-MES13). The expression of circ_0000491 and microRNA-455-3p (miR-455-3p) was detected by quantitative real-time polymerase chain reaction. Cell apoptosis was evaluated by flow cytometry. The expression levels of high-mobility group box 1 (Hmgb1) protein, apoptosis-related proteins, and fibrosis-related proteins were examined by the Western blot assay. The release of inflammatory cytokines was assessed by enzyme-linked immunosorbent assay. The oxidative stress factors were analyzed by corresponding kits. The predicted interaction between miR-455-3p and circ_0000491 or Hmgb1 was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS Circ_0000491 was overexpressed in the DN mouse model and HG-induced SV40-MES13 cells. Knockdown of circ_0000491 weakened HG-induced apoptosis, inflammation, oxidative stress, and fibrosis in SV40-MES13 cells. miR-455-3p was a direct target of circ_0000491, and miR-455-3p inhibition could reverse the role of circ_0000491 silencing in HG-induced SV40-MES13 cells. Moreover, Hmgb1 was a target gene of miR-455-3p, and miR-455-3p played a protective role against HG-induced cell injury by targeting Hmgb1. In addition, circ_0000491 regulated Hmgb1 expression by sponging miR-455-3p. CONCLUSION Circ_0000491 knockdown inhibited HG-induced apoptosis, inflammation, oxidative stress, and fibrosis in SV40-MES13 cells by regulating miR-455-3p/Hmgb1 axis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Nephrology, Baoji People's Hospital, Baoji, China
| | - Shifeng Yang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wendong Li
- Department of Nephrology, Baoji People's Hospital, Baoji, China
| | - Ming Zhao
- Department of Endocrine Nephropathy, Aviation Industry 3201 Hospital, Hanzhong, China
| | - Kai Li
- Department of Endocrine Nephropathy, Hanzhong People's Hospital of Shaanxi Province, Hanzhong, China
| |
Collapse
|
36
|
Yang Y, Lei W, Jiang S, Ding B, Wang C, Chen Y, Shi W, Wu Z, Tian Y. CircRNAs: Decrypting the novel targets of fibrosis and aging. Ageing Res Rev 2021; 70:101390. [PMID: 34118443 DOI: 10.1016/j.arr.2021.101390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs. It is usually initiated by organic injury and leads to the gradual decline of organ function or even loss. Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts without a 5' cap or 3' tail which draw increasing attention. In particular, circRNAs have been identified to be involved in the multifaceted processes of fibrosis in various organs, including the heart, liver, lung, and kidney. As more and more circRNAs are functionally characterized, they have become novel therapies for fibrosis. In this review, we systematically summarized current studies regarding the roles of circRNAs in fibrosis and shed light on the basis of circRNAs as a potential treatment for fibrosis.
Collapse
|
37
|
Su Z, Ren N, Ling Z, Sheng L, Zhou S, Guo C, Ke Z, Xu T, Qin Z. Differential expression of microRNAs associated with neurodegenerative diseases and diabetic nephropathy in protein l-isoaspartyl methyltransferase-deficient mice. Cell Biol Int 2021; 45:2316-2330. [PMID: 34314072 DOI: 10.1002/cbin.11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 11/05/2022]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), an enzyme repairing isoaspartate residues in peptides and proteins that result from the spontaneous decomposition of normal l-aspartyl and l-asparaginyl residues during aging, has been revealed to be involved in neurodegenerative diseases (NDDs) and diabetes. However, the molecular mechanisms for a putative association of PIMT dysfunction with these diseases have not been clarified. Our study aimed to identify differentially expressed microRNAs (miRNAs) in the brain and kidneys of PIMT-deficient mice and uncover the epigenetic mechanism of PIMT-involved NDDs and diabetic nephropathy (DN). Differentially expressed miRNAs by sequencing underwent target prediction and enrichment analysis in the brain and kidney of PIMT knockout (KO) mice and age-matched wild-type (WT) littermates. Sequence analysis revealed 40 differentially expressed miRNAs in the PIMT KO mouse brain including 25 upregulated miRNAs and 15 downregulated miRNAs. In the PIMT KO mouse kidney, there were 80 differentially expressed miRNAs including 40 upregulated miRNAs and 40 downregulated miRNAs. Enrichment analysis and a systematic literature review of differentially expressed miRNAs indicated the involvement of PIMT deficiency in the pathogenesis in NDDs and DN. Some overlapped differentially expressed miRNAs between the brain and kidney were quantitatively assessed in the brain, kidney, and serum-derived exosomes, respectively. Despite being preliminary, these results may aid in investigating the pathological hallmarks and identify the potential therapeutic targets and biomarkers for PIMT dysfunction-related NDDs and DN.
Collapse
Affiliation(s)
- Zhonghao Su
- Department of Febrile Disease, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Ren
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zicheng Ling
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lanyue Sheng
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sirui Zhou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiefeng Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenxia Qin
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Hirota C, Takashina Y, Yoshino Y, Hasegawa H, Okamoto E, Matsunaga T, Ikari A. Reactive Oxygen Species Downregulate Transient Receptor Potential Melastatin 6 Expression Mediated by the Elevation of miR-24-3p in Renal Tubular Epithelial Cells. Cells 2021; 10:cells10081893. [PMID: 34440664 PMCID: PMC8393788 DOI: 10.3390/cells10081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background: A low level of serum magnesium ion (Mg2+) is associated with type 2 diabetes mellitus (T2D). However, the molecular mechanism of Mg2+ deficiency has not been fully clarified. The current study sought to assesses the effect of reactive oxygen species on the expression of Mg2+ channels and miRNA. Methods: The expression of Mg2+ channels and miRNA were examined by real-time polymerase chain reaction. Intracellular Mg2+ concentration was measured by Magnesium Green fluorescence measurement. Results: The mRNA level of transient receptor potential melastatin 6 (TRPM6), which functions as Mg2+ influx channel in the distal convoluted tubule (DCT) of the kidney, was decreased by glycated albumin (GA), but not by insulin in rat renal tubule-derived NRK-52E cells. The mRNA levels of TRPM7, a homologue of TRPM6, and CNNM2, a Mg2+ efflux transporter located at the basolateral membrane of DCT, were changed by neither GA nor insulin. The generation of reactive oxygen species (ROS) was increased by GA. Hydrogen peroxide (H2O2) dose-dependently decreased TRPM6 mRNA, but it inversely increased the reporter activity of TRPM6. H2O2 accelerated the degradation of TRPM6 mRNA in actinomycin D assay without affecting TRPM7 and CNNM2 mRNA expressions. Nine miRNAs were considered as candidates for the regulator of stability of TRPM6 mRNA. Among them, miR-24-3p expression was increased by H2O2. The H2O2-induced reduction of TRPM6 mRNA was rescued by miR-24-3p siRNA. Magnesium Green fluorescence measurement showed that Mg2+ influx is suppressed by H2O2, which was rescued by an antioxidant and miR-24-3p siRNA. Conclusions: We suggest that GA decreases TRPM6 expression mediated by the elevation of ROS and miR-24-3p in renal tubular epithelial cells of T2D.
Collapse
Affiliation(s)
- Chieko Hirota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Yui Takashina
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Hajime Hasegawa
- Saitama Medical Center, Department of Nephrology and Hypertension, Saitama Medical University, Saitama 350-8550, Japan;
| | - Ema Okamoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
39
|
Yi L, Ai K, Li H, Qiu S, Li Y, Wang Y, Li X, Zheng P, Chen J, Wu D, Xiang X, Chai X, Yuan Y, Zhang D. CircRNA_30032 promotes renal fibrosis in UUO model mice via miRNA-96-5p/HBEGF/KRAS axis. Aging (Albany NY) 2021; 13:12780-12799. [PMID: 33973871 PMCID: PMC8148471 DOI: 10.18632/aging.202947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
In this study, we investigated the role of circular RNA_30032 (circRNA_30032) in renal fibrosis and the underlying mechanisms. The study was carried out using TGF-β1-induced BUMPT cells and unilateral ureteral obstruction (UUO)-induced mice, respectively, as in vitro and in vivo models. CircRNA_30032 expression was significantly increased by 9.15- and 16.6-fold on days 3 and 7, respectively, in the renal tissues of UUO model mice. In TGF-β1-treated BUMPT cells, circRNA_30032 expression was induced by activation of the p38 mitogen-activated protein kinase signaling pathway. Quantitative real-time PCR, western blotting and dual luciferase reporter assays showed that circRNA_30032 mediated TGF-β1-induced and UUO-induced renal fibrosis by sponging miR-96-5p and increasing the expression of profibrotic proteins, including HBEGF, KRAS, collagen I, collagen III and fibronectin. CircRNA_30032 silencing significantly reduced renal fibrosis in UUO model mice by increasing miR-96-5p levels and decreasing levels of HBEGF and KRAS. These results demonstrate that circRNA_30032 promotes renal fibrosis via the miR-96-5p/HBEGF/KRAS axis and suggest that circRNA_30032 is a potential therapeutic target for treatment of renal fibrosis.
Collapse
Affiliation(s)
- Lei Yi
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Kai Ai
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huiling Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yijian Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Junxiang Chen
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dengke Wu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yunchang Yuan
- Department of Chest Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
40
|
Wei D, Sun L, Feng W. hsa_circ_0058357 acts as a ceRNA to promote non‑small cell lung cancer progression via the hsa‑miR‑24‑3p/AVL9 axis. Mol Med Rep 2021; 23:470. [PMID: 33880595 PMCID: PMC8097761 DOI: 10.3892/mmr.2021.12109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Abnormal circular RNAs (circRNAs) are associated with biological processes in cancer; however, the function of circRNAs remains largely unknown in non-small cell lung cancer (NSCLC). The present study aimed to investigate the role of hsa_circ_0058357 on the progression of NSCLC. Cell proliferation, migration and apoptosis were determined using Cell Counting Kit-8, Transwell and flow cytometry assays, respectively. Gene [circRNA and microRNA (miR)] and protein expression levels were determined via reverse transcription-quantitative PCR and immunoblotting. A luciferase assay was employed to detect the binding of miR-24-3p with AVL9 cell migration associated (AVL9), while a cancer xenograft model was established to evaluate cancer growth in vivo. The results demonstrated that hsa_circ_0058357 was highly expressed in human NSCLC tissues and NSCLC cells compared with para-cancerous tissues and human bronchial epithelial (HBE) cells, respectively. Knockdown of hsa_circ_0058357 significantly suppressed cell viability, migration and tumor growth, while it promoted apoptosis in NSCLC cells. As a competing endogenous RNA, hsa_circ_0058357 knockdown contributed to the increase of miR-24-3p expression in NSCLC cells. Of note, overexpression of miR-24-3p markedly abolished the exogenous hsa_circ_0058357-induced excessive proliferation, migration and apoptosis resistance of NSCLC cells. Mechanistically, as a signaling molecule in late secretory pathway, AVL9 was also expressed at a high level in NSCLC tissues and cells, which could be directly suppressed by miR-24-3p. In the tumor tissues, along with growth inhibition, hsa_circ_0058357 knockdown also mediated the elevation of miR-24-3p and the reduction of AVL9. Thus, it was suggested that hsa_circ_0058357 may be a crucial regulation factor in NSCLC by sponging hsa-miR-24-3p, leading to a decrease in miR-24-3p expression, and subsequent increase in AVL9 expression. Therefore, hsa_circ_0058357 may serve as a potential target for diagnosis and gene therapy for NSCLC.
Collapse
Affiliation(s)
- Dongshan Wei
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Lifang Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Feng
- Department of Cancer Diagnosis and Treatment, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
41
|
Zhao P, Li X, Li Y, Zhu J, Sun Y, Hong J. Mechanism of miR-365 in regulating BDNF-TrkB signal axis of HFD/STZ induced diabetic nephropathy fibrosis and renal function. Int Urol Nephrol 2021; 53:2177-2187. [PMID: 33881703 DOI: 10.1007/s11255-021-02853-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Diabetic nephropathy (DN) is one of the most serious complications of diabetes that leads to decline of renal function. Although numerous studies have revealed that microRNAs (miRNAs) play essential roles in the progression of DN, whether miR-365 is involved remains elusive. METHODS The successful construction of DN model was confirmed by ELSIA, hematoxylin-eosin (HE) and Masson staining assay. The expression of miR-365 was detected through RT-qPCR. The levels of BDNF, p-TrkB, α-smooth muscle actin (SMA), collagen IV (Col.IV), transforming growth factor-β1 (TGF-β1), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were evaluated by western blot, IF or ELISA assays. Luciferase reporter assay was used to detect the interaction between miR-365 and BDNF. RESULTS The DN mice model was induced by streptozotocin (STZ). Then miR-365 expression was found to upregulate in tissues of DN rat. Furthermore, elevated expression of miR-365 was found in high glucose (HG)-treated HK-2 cells. Silencing of miR-365 suppressed the accumulation of ECM components and secretion of inflammatory cytokines in HK-2 cells. In addition, it was demonstrated that miR-365 could target BDNF. The protein levels of BDNF and p-TrkB were negatively regulated by miR-365 in HK-2 cells. Moreover, inhibition of miR-365 suppressed the levels of SMA, Col.IV, TGF-β1, TNF-α, and IL-6, indicating the renal fibrosis was inhibited by miR-365 knockdown. CONCLUSION MiR-365 could regulate BDNF-TrkB signal axis in STZ induced DN fibrosis and renal function. The results of the current study might provide a promising biomarker for the treatment of DN in the future.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Nephrology, Haining People's Hospital, No. 2, Qianjiang West Road, Haizhou Street, Haining, 314400, Zhejiang, China
| | - Xiaqiu Li
- Department of Nephrology, Haining People's Hospital, No. 2, Qianjiang West Road, Haizhou Street, Haining, 314400, Zhejiang, China
| | - Yang Li
- Department of General Medicine, Haining People's Hospital, Haining, 314400, Zhejiang, China
| | - Jiaying Zhu
- Department of Endocrinology, Haining People's Hospital, Haining, 314400, Zhejiang, China
| | - Yu Sun
- Department of Nephrology, Haining People's Hospital, No. 2, Qianjiang West Road, Haizhou Street, Haining, 314400, Zhejiang, China.
| | - Jianli Hong
- Department of Endocrinology, Hengdian Wenrong Hospital, 99 Yingbin Road, Dongyang, 322118, Zhejiang, China.
| |
Collapse
|
42
|
Zheng W, Guo J, Liu ZS. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Clin Epigenetics 2021; 13:87. [PMID: 33883002 PMCID: PMC8061201 DOI: 10.1186/s13148-021-01079-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common microvascular complication of both type 1 (T1DM) and type 2 diabetes mellitus (T2DM), and the leading cause of end-stage renal disease (ESRD) worldwide. Persistent inflammation and subsequent chronic fibrosis are major causes of loss of renal function, which is associated with the progression of DKD to ESRD. In fact, DKD progression is affected by a combination of genetic and environmental factors. Approximately, one-third of diabetic patients progress to develop DKD despite intensive glycemic control, which propose an essential concept "metabolic memory." Epigenetic modifications, an extensively studied mechanism of metabolic memory, have been shown to contribute to the susceptibility to develop DKD. Epigenetic modifications also play a regulatory role in the interactions between the genes and the environmental factors. The epigenetic contributions to the processes of inflammation and fibrogenesis involved in DKD occur at different regulatory levels, including DNA methylation, histone modification and non-coding RNA modulation. Compared with genetic factors, epigenetics represents a new therapeutic frontier in understanding the development DKD and may lead to therapeutic breakthroughs due to the possibility to reverse these modifications therapeutically. Early recognition of epigenetic events and biomarkers is crucial for timely diagnosis and intervention of DKD, and for the prevention of the progression of DKD to ESRD. Herein, we will review the latest epigenetic mechanisms involved in the renal pathology of both type 1 (T1DN) and type 2 diabetic nephropathy (T2DN) and highlight the emerging role and possible therapeutic strategies based on the understanding of the role of epigenetics in DKD-associated inflammation and fibrogenesis.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, People's Republic of China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
43
|
Luo S, Deng M, Xie Z, Li X, Huang G, Zhou Z. Circulating circular RNAs profiles associated with type 1 diabetes. Diabetes Metab Res Rev 2021; 37:e3394. [PMID: 32798322 DOI: 10.1002/dmrr.3394] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
AIMS Circular RNAs (circRNAs) have recently been shown to exert important effects in human diseases. However, the roles of circRNAs in type 1 diabetes (T1D) are largely unknown. This study is to identify the circRNA expression profiles in the peripheral blood of patients with T1D and predict their potential regulatory mechanisms and coding potential. METHODS CircRNA expression profiles were detected by Arraystar human circRNA microarray. With real-time PCR validation, multiple bioinformatics approaches were used to explore their biological functions, construct the circRNA-miRNA-mRNA interactions, and predict circRNA coding potential. RESULTS A total of 93 differentially expressed circular transcripts were identified in T1D compared with controls, among which 30 were upregulated, and 63 were downregulated. Two circRNAs were identified to have significant differences by RT-PCR. Gene ontology analysis enriched terms such as cellular protein metabolic process, cytoplasm and zinc ion binding. The proposed molecular functions of these differentially expressed circRNAs, including cellular protein metabolic process, cytoplasm, and binding, may contribute to T1D. The most enriched pathways for these circRNAs were involved in protein processing in the endoplasmic reticulum. Hsa_circ_0072697 may be involved in 50 circRNA-miRNA-mRNA signalling pathways related to diabetes, such as circ_0072697-miR-15a-UBASH3A network. Furthermore, hsa_circ_0071224, hsa_circ_0002437, hsa_circ_0084429, hsa_circ_0072697, and hsa_circ_0000787 in T1D were considered to have the most coding potential involved in the pathogenesis of T1D. CONCLUSIONS These results showed that circRNAs are aberrantly expressed in the peripheral blood of patients with T1D and may play potential actions by interactions with miRNA and circRNA-derived peptides in the development of T1D.
Collapse
Affiliation(s)
- Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Min Deng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| |
Collapse
|
44
|
Tao QR, Chu YM, Wei L, Tu C, Han YY. Antiangiogenic therapy in diabetic nephropathy: A double‑edged sword (Review). Mol Med Rep 2021; 23:260. [PMID: 33655322 PMCID: PMC7893700 DOI: 10.3892/mmr.2021.11899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes and the associated complications are becoming a serious global threat and an increasing burden to human health and the healthcare systems. Diabetic nephropathy (DN) is the primary cause of end-stage kidney disease. Abnormal angiogenesis is well established to be implicated in the morphology and pathophysiology of DN. Factors that promote or inhibit angiogenesis serve an important role in DN. In the present review, the current issues associated with the vascular disease in DN are highlighted, and the challenges in the development of treatments are discussed.
Collapse
Affiliation(s)
- Qian-Ru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ying-Ming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuan-Yuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
45
|
Circular RNA circ_0068,888 protects against lipopolysaccharide-induced HK-2 cell injury via sponging microRNA-21-5p. Biochem Biophys Res Commun 2021; 540:1-7. [PMID: 33429194 DOI: 10.1016/j.bbrc.2020.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
Our previous findings revealed that hsa_circ_0068,888 was markedly down-regulated in the plasma of patients with sepsis-associated acute kidney injury (AKI). However, its molecular mechanism in AKI remains unclear. Herein, we explored the role of hsa_circ_0068,888 in AKI. Human renal proximal tubular cell line HK-2 was stimulated with lipopolysaccharide (LPS) to mimic AKI in vitro. Decreased hsa_circ_0068,888 expression was observed in AKI cell model. The overexpression of hsa_circ_0068,888 significantly increased the viability of LPS-stimulated HK-2 cells, whereas hsa_circ_0068,888 downregulation showed the opposite effect. Furthermore, LPS triggered inflammatory response and oxidative stress, which was inhibited by hsa_circ_0068,888 overexpression and enhanced by hsa_circ_0068,888 down-regulation. Hsa_circ_0068,888 overexpression suppressed the activation of nuclear factor-κB (NF-κB) pathway triggered by LPS as evidenced by decreased p-p65 protein level and nuclear translocation of p65 in hsa_circ_0068,888 overexpressed cells. Additionally, we proved that hsa_circ_0068,888 targeted microRNA-21-5p (miR-21-5p). The expression of miR-21-5p was markedly increased and was negatively regulated by hsa_circ_0068,888 in LPS-stimulated HK-2 cells. Furthermore, we demonstrated that miR-21-5p overexpression reversed the effects on cell viability, inflammatory response, oxidative stress, and NF-κB pathway induced by hsa_circ_0068,888 overexpression in LPS-stimulated HK-2 cells. Overall, these results implied that hsa_circ_0068,888 shows a protective effect on AKI by sponging miR-21-5p. Hence, up-regulation of hsa_circ_0068,888 might be a potential strategy in treatment for AKI.
Collapse
|
46
|
Li G, Qin Y, Qin S, Zhou X, Zhao W, Zhang D. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells. Life Sci 2020; 259:118269. [PMID: 32798559 DOI: 10.1016/j.lfs.2020.118269] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN), a severe microvascular complication of diabetes, has complex pathogenesis. Circular RNAs (circRNAs) exert broad biological functions on human diseases. This study intended to explore the role and mechanism of circ_WBSCR17 in DN. METHODS DN mice models were constructed using streptozotocin injection, and DN cell models were assembled using high glucose (HG) treatment in human kidney 2 cells (HK-2). The expression of circ_WBSCR17, miR-185-5p and SRY-Box Transcription Factor 6 (SOX6) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of SOX6 and fibrosis markers were examined by western blot. The release of inflammatory cytokines, cell proliferation and apoptosis, were assessed by enzyme-linked immunosorbent assay (ELISA), cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The predicted interaction between miR-185-5p and circ_WBSCR17 or SOX6 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULT Circ_WBSCR17 was highly expressed in DN mice models and HG-induced HK-2 cells. Circ_WBSCR17 knockdown or SOX6 knockdown promoted cell proliferation and blocked cell apoptosis, inflammatory responses and fibrosis, while circ_WBSCR17 overexpression or SOX6 overexpression conveyed the opposite effects. MiR-185-5p was a target of circ_WBSCR17 and directly bound to SOX6. MiR-185-5p could reverse the role of circ_WBSCR17 or SOX6. Moreover, the expression of SOX6 was modulated by circ_WBSCR17 through intermediating miR-185-5p. CONCLUSION Circ_WBSCR17 triggered the dysfunction of HG-induced HK-2 cells, including inflammatory responses and fibrosis, which was accomplished via the miR-185-5p/SOX6 regulatory axis.
Collapse
Affiliation(s)
- Guangzhi Li
- Department of Basic Medica, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Yongting Qin
- Department of Basic Medica, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Shuangli Qin
- Department of Basic Medica, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Xun Zhou
- Department of Basic Medica, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Wenhui Zhao
- Department of Basic Medica, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Dongmei Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China.
| |
Collapse
|
47
|
Mou X, Chenv JW, Zhou DY, Liu K, Chen LJ, Zhou D, Hu YB. A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR‑101b by targeting TGFβRI. Mol Med Rep 2020; 22:3785-3794. [PMID: 32901868 PMCID: PMC7533486 DOI: 10.3892/mmr.2020.11486] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) have crucial roles in various diseases; however, the mechanisms of action underlying circRNAs in the occurrence and development of diabetic nephropathy (DN) remains largely unknown. The present study investigated the differentially expressed circRNAs in the DN mice kidney cortex using circRNA sequencing and elucidated the role of circRNAs in mesangial cells. It was revealed that 40 circRNAs were unconventionally expressed, including 18 upregulated circRNAs and 22 downregulated circRNAs. Furthermore, circ_0000491 levels were significantly augmented in both DN mice and high glucose (HG, 30 mM)-induced mouse mesangial cells (MES13 cells). Knockdown of circ_0000491 significantly suppressed the increase of vimentin, fibronectin and α-smooth muscle actin, as well as collagen type I, III and IV, whilst reversing the decrease of E-cadherin in HG-induced MES13 cells. It was further revealed that circRNA_0000491 sponged miR-101b and that miR-101b directly targets TGFβRI. In addition, the expression levels of miR-101b were negatively associated with the transcriptional level of circRNA_0000491 and miR-101b inhibitors reversed the suppression of extracellular matrix (ECM)-associated protein synthesis mediated by knocking-down circRNA_0000491. In conclusion, the present study investigated the circRNA_0000491/miR-101b/TGFβRI axis in ECM accumulation and fibrosis-associated protein expression levels of mesangial cells, which suggested that circRNA_0000491 may be beneficial for the development of an effective therapeutic target for DN.
Collapse
Affiliation(s)
- Xin Mou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Jia Wei Chenv
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Di Yi Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Kaiyuan Liu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Li Jun Chen
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Danyang Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Yong Bin Hu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
48
|
Zhang JR, Sun HJ. Roles of circular RNAs in diabetic complications: From molecular mechanisms to therapeutic potential. Gene 2020; 763:145066. [PMID: 32827686 DOI: 10.1016/j.gene.2020.145066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is characterized by changed homeostasis of blood glucose levels, which is associated with various complications, including cardiomyopathy, atherosclerosis, endothelial dysfunction, nephropathy, retinopathy and neuropathy. In recent years, accumulative evidence has demonstrated that circular RNAs are identified as a novel type of noncoding RNAs (ncRNAs) involving in the regulation of various physiological processes and pathologic conditions. Specifically, the emergence of complications response to diabetes is finely controlled by a complex gene regulatory network in which circular RNAs play a critical role. Recently, circular RNAs are emerging as messengers that could influence cellular functions under diabetic conditions. Dysregulation of circular RNAs has been closely linked to the pathophysiology of diabetes-related complications. In this review, we aimed to summarize the current progression and underlying mechanisms of circular RNA in the development of diabetes-related complications. We will also provide an overview of circular RNA-regulated cell communications in different types of cells that have been linked to diabetic complications. We anticipated that the completion of this review will provide potential clues for developing novel circular RNAs-based biomarkers or therapeutic targets for diabetes and its associated complications.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi 214122, PR China; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
49
|
Liu J, Ding J, Qu B, Liu J, Song X, Suo Q, Zhou A, Yang J. CircPSMC3 alleviates the symptoms of PCOS by sponging miR-296-3p and regulating PTEN expression. J Cell Mol Med 2020; 24:11001-11011. [PMID: 32808450 PMCID: PMC7521274 DOI: 10.1111/jcmm.15747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common female endocrine disease that causes anovulatory infertility, still lacks promising strategy for the accurate diagnosis and effective therapeutics of PCOS attributed to its unclear aetiology. In this study, we determined the abnormal reduction in circPSMC3 expression by comparing the ovarian tissue samples of PCOS patients and normal individuals. The symptom relief caused by up-regulation of circPSMC3 in PCOS model mice suggested the potential for further study. In vitro functional experiments confirmed that circPSMC3 can inhibit cell proliferation and promote apoptosis by blocking the cell cycle in human-like granular tumour cell lines. Mechanism study revealed that circPSMC3 may play its role through sponging miR-296-3p to regulate PTEN expression. Collectively, we preliminarily characterized the role and possible insights of circPSMC3/miR-296-3p/PTEN axis in the proliferation and apoptosis of KGN cells. We hope that this work provides some original and valuable information for the research of circRNAs in PCOS, not only to better understand the pathogenesis but also to help provide new clues for seeking for the future therapeutic target of PCOS.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China.,Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Bing Qu
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jiuying Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Xiaojie Song
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Qingli Suo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Aifen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Tang B, Li W, Ji TT, Li XY, Qu X, Feng L, Bai S. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals. J Cell Mol Med 2020; 24:8779-8788. [PMID: 32597022 PMCID: PMC7412430 DOI: 10.1111/jcmm.15513] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease globally. The vital role of circular RNAs (circRNAs) has been reported in diabetic nephropathy progression, but the molecular mechanism linking diabetic nephropathy to circRNAs remains elusive. In this study, we investigated the significant function of circ-AKT3/miR-296-3p/E-cadherin regulatory network on the extracellular matrix accumulation in mesangial cells in diabetic nephropathy. The expression of circ-AKT3 and fibrosis-associated proteins, including fibronectin, collagen type I and collagen type IV, was assessed via RT-PCR and Western blot analysis in diabetic nephropathy animal model and mouse mesangial SV40-MES13 cells. Luciferase reporter assays were used to investigate interactions among E-cadherin, circ-AKT3 and miR-296-3p in mouse mesangial SV40-MES13 cells. Cell apoptosis was evaluated via flow cytometry. The level of circ-AKT3 was significantly lower in diabetic nephropathy mice model group and mouse mesangial SV40-MES13 cells treated with high-concentration (25 mmol/L) glucose. In addition, circ-AKT3 overexpression inhibited the level of fibrosis-associated protein, such as fibronectin, collagen type I and collagen type IV. Circ-AKT3 overexpression also inhibited the apoptosis of mouse mesangial SV40-MES13 cells treated with high glucose. Luciferase reporter assay and bioinformatics tools identified that circ-AKT3 could act as a sponge of miR-296-3p and E-cadherin was the miR-296-3p direct target. Moreover, circ-AKT3/miR-296-3p/E-cadherin modulated the extracellular matrix of mouse mesangial cells in high-concentration (25 mmol/L) glucose, inhibiting the synthesis of related extracellular matrix protein. In conclusion, circ-AKT3 inhibited the extracellular matrix accumulation in diabetic nephropathy mesangial cells through modulating miR-296-3p/E-cadherin signals, which might offer novel potential opportunities for clinical diagnosis targets and therapeutic biomarkers for diabetic nephropathy.
Collapse
Affiliation(s)
- Bo Tang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiliang Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ting-Ting Ji
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiao-Ying Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaolei Qu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Linhong Feng
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shoujun Bai
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|