1
|
Machura E, Krakowczyk H, Kleszyk M, Swiętochowska E, Grzywna-Rozenek E, Rusek M, Góra A, Chrobak E, Pukas-Bochenek A, Szczepanska M. Serum Levels of Selected Cytokines and Chemokines and IgG4 in Children With Recurrent Respiratory Tract Infections. J Immunol Res 2024; 2024:5170588. [PMID: 39431236 PMCID: PMC11490343 DOI: 10.1155/2024/5170588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Background: Respiratory tract infections are a common health problem. Cytokines/chemokines play a critical role in the regulation of the immune system. Their defective production may predispose to recurrent respiratory tract infections (RRIs), and an excessive immune response may lead to chronic inflammation and cause damage to the respiratory tract. Another biomarker of respiratory infections may be immunoglobulin-IgG4. Its meaning has still been little explored. We wanted to assess the suitability of the levels of biomarkers tested: interleukin (IL)-17A, IL-18, IL-23, normal T cells expressed and secreted (RANTES), and induced protein (IP)-10, as well as immunoglobilun G4 (IgG4) to predict recurrent infections. Methods: The study group (SG) included a total of 130 children (68 girls, 62 boys) between 3 and 17 years of age with RRI. The control group (CG) included 86 healthy children with no symptoms of inflammatory or allergic diseases (44 girls and 42 boys) of the same age. Blood samples were collected in fasting state and then serum samples were frozen and stored until biomarker assay. Results: Serum RANTES, IL-18, IL-23, and IgG4 concentration were higher in all children with recurrent infections vs. those in the CG (p < 0001). Serum levels of IL-17A and IP-10 were also significantly higher in the SG than in the CG, but only in the youngest children. Among the six serum markers, RANTES demonstrated the highest area under the receiver operating characteristic curve (area under curve) value (0.998, 95% confidence interval [CI]: 0.98-1.0, p < 0.001) for the diagnosis of RRIs, followed by IL-23 (0.99, 95% CI 0.966-0,999, p < 0.001) and IL-18 (0.957, 95% CI 0.921-0.980, p < 0.001). Conclusions: RANTES, IL-23, and IL-18 could be strong predictors of respiratory infections recurrence in children.
Collapse
Affiliation(s)
- Edyta Machura
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Helena Krakowczyk
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Kleszyk
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Elzbieta Swiętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Ewa Grzywna-Rozenek
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Malgorzata Rusek
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Anna Góra
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Ewelina Chrobak
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Anna Pukas-Bochenek
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Maria Szczepanska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
2
|
Shafiei M, Ghadimi S, Baharlou P, Moghimi F, Letafati A, Mozhgani SH. Role of Interleukin-17 cytokine family in human T-cell lymphotropic virus type 1 (HTLV-1) infection and associated diseases. Cytokine 2024; 182:156710. [PMID: 39089216 DOI: 10.1016/j.cyto.2024.156710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Human T-lymphotropic virus (HTLV-1) is a neglected virus with worldwide distribution of over 10 million people and is the cause of two main associated diseases Adult T cell Leukemia-Lymphoma (ATLL), and HTLV-1-associated Myelopathy/Tropical Spastic paraparesis (HAM/TSP). The IL-17 cytokine family plays a crucial role in the host immunity against HTLV-1 and the development of associated disease. A systematic review was conducted to analyze all research reporting on the levels or expression of the IL-17 HTLV-1 infection and associated diseases. METHODS The literature search was conducted in electronic databases including PubMed/Medline and Web of Sciences until January 31st, 2024, followed by the PRISMA guidelines. RESULTS Our search revealed 20 eligible articles to be included in our study. The total number of cases studied was 1420, of which 386 were carriers without any symptoms, and were 176 ATLL and 237 HAM/TSP. The IL-17 cytokine family production or mRNA expression was higher in HAM/TSP patients but showed a trend toward reduction in the case of ATLL. CONCLUSIONS Our results showed that while The IL-17 cytokine family plays a significant role in the immunopathogenesis of disease and clinical status of patients with inflammatory disorders such as HAM/TSP, IL-17 production is diminished and the RORC/IL-17 signaling pathway is downregulated during ATLL. Our data suggest that boosting the RORC/IL-17 signaling pathway in ATLL and using anti-IL-17 agents in HAM/TSP and other HTLV-related inflammatory conditions might benefit patients and improve their outcomes.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Saleh Ghadimi
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Pegah Baharlou
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Faezeh Moghimi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arash Letafati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Freitas ADS, Barroso FAL, Campos GM, Américo MF, Viegas RCDS, Gomes GC, Vital KD, Fernandes SOA, Carvalho RDDO, Jardin J, Miranda APGDS, Ferreira E, Martins FS, Laguna JG, Jan G, Azevedo V, de Jesus LCL. Exploring the anti-inflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J Biol Macromol 2024; 277:134216. [PMID: 39069058 DOI: 10.1016/j.ijbiomac.2024.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1β, TGFβ, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1β levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.
Collapse
Affiliation(s)
- Andria Dos Santos Freitas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriela Munis Campos
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferrary Américo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriel Camargos Gomes
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Kátia Duarte Vital
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Enio Ferreira
- Federal University of Minas Gerais, Department of General Pathology, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Guimarães Laguna
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| | - Luís Cláudio Lima de Jesus
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Gellhorn Serra M, Meier L, Sauerhering L, Wilhelm J, Kupke A. Organotypic brain slices as a model to study the neurotropism of the highly pathogenic Nipah and Ebola viruses. J Gen Virol 2024; 105. [PMID: 39466030 DOI: 10.1099/jgv.0.002038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Nipah virus (NiV) and Ebola virus (EBOV) are highly pathogenic zoonotic viruses with case fatality rates of up to 90%. While the brain is a known target organ following NiV infection, involvement of the central nervous system in EBOV-infected patients only became more evident after the West African epidemic in 2013-2016. To gain a deeper comprehension of the neurotropism of NiV and EBOV with respect to target cells, affected brain regions and local inflammatory responses, murine organotypic brain slices (BS) were established and infected. Both NiV and EBOV demonstrated the capacity to infect BS from adult wt mice and mice lacking the receptor for type I IFNs (IFNAR-/-) and targeted various cell types. NiV was observed to replicate in BS derived from both mouse strains, yet no release of infectious particles was detected. In contrast, EBOV replication was limited in both BS models. The release of several pro-inflammatory cytokines and chemokines, including eotaxin, IFN-γ, IL-1α, IL-9, IL-17a and keratinocyte-derived chemokine (KC), was observed in both virus-infected models, suggesting a potential role of the inflammatory response in NiV- or EBOV-induced neuropathology. It is noteworthy that the choroid plexus was identified as a highly susceptible target for EBOV and NiV infection, suggesting that the blood-cerebrospinal fluid barrier may serve as a potential entry point for these viruses.
Collapse
Affiliation(s)
- Michelle Gellhorn Serra
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| | - Lars Meier
- Philipps University Marburg, Institute of Virology, Marburg, Germany
| | - Lucie Sauerhering
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| | - Jochen Wilhelm
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
- Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Alexandra Kupke
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| |
Collapse
|
5
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
6
|
Otero AM, Connolly MG, Gonzalez-Ricon RJ, Wang SS, Allen JM, Antonson AM. Influenza A virus during pregnancy disrupts maternal intestinal immunity and fetal cortical development in a dose- and time-dependent manner. Mol Psychiatry 2024:10.1038/s41380-024-02648-9. [PMID: 38961232 DOI: 10.1038/s41380-024-02648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Epidemiological studies link exposure to viral infection during pregnancy, including influenza A virus (IAV) infection, with increased incidence of neurodevelopmental disorders (NDDs) in offspring. Models of maternal immune activation (MIA) using viral mimetics demonstrate that activation of maternal intestinal T helper 17 (TH17) cells, which produce effector cytokine interleukin (IL)-17, leads to aberrant fetal brain development, such as neocortical malformations. Fetal microglia and border-associated macrophages (BAMs) also serve as potential cellular mediators of MIA-induced cortical abnormalities. However, neither the inflammation-induced TH17 cell pathway nor fetal brain-resident macrophages have been thoroughly examined in models of live viral infection during pregnancy. Here, we inoculated pregnant mice with two infectious doses of IAV and evaluated peak innate and adaptive immune responses in the dam and fetus. While respiratory IAV infection led to dose-dependent maternal colonic shortening and microbial dysregulation, there was no elevation in intestinal TH17 cells nor IL-17. Systemically, IAV resulted in consistent dose- and time-dependent increases in IL-6 and IFN-γ. Fetal cortical abnormalities and global changes in fetal brain transcripts were observable in the high-but not the moderate-dose IAV group. Profiling of fetal microglia and BAMs revealed dose- and time-dependent differences in the numbers of meningeal but not choroid plexus BAMs, while microglial numbers and proliferative capacity of Iba1+ cells remained constant. Fetal brain-resident macrophages increased phagocytic CD68 expression, also in a dose- and time-dependent fashion. Taken together, our findings indicate that certain features of MIA are conserved between mimetic and live virus models, while others are not. Overall, we provide consistent evidence of an infection severity threshold for downstream maternal inflammation and fetal cortical abnormalities, which recapitulates a key feature of the epidemiological data and further underscores the importance of using live pathogens in NDD modeling to better evaluate the complete immune response and to improve translation to the clinic.
Collapse
Affiliation(s)
- Ashley M Otero
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Meghan G Connolly
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Selena S Wang
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adrienne M Antonson
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Giannessi F, Percario Z, Lombardi V, Sabatini A, Sacchi A, Lisi V, Battistini L, Borsellino G, Affabris E, Angelini DF. Macrophages treated with interferons induce different responses in lymphocytes via extracellular vesicles. iScience 2024; 27:109960. [PMID: 38832015 PMCID: PMC11144789 DOI: 10.1016/j.isci.2024.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Limited information exists regarding the impact of interferons (IFNs) on the information carried by extracellular vesicles (EVs). This study aimed at investigating whether IFN-α2b, IFN-β, IFN-γ, and IFN-λ1/2 modulate the content of EVs released by primary monocyte-derived macrophages (MDM). Small-EVs (sEVs) were purified by size exclusion chromatography from supernatants of MDM treated with IFNs. To characterize the concentration and dimensions of vesicles, nanoparticle tracking analysis was used. SEVs surface markers were examined by flow cytometry. IFN treatments induced a significant down-regulation of the exosomal markers CD9, CD63, and CD81 on sEVs, and a significant modulation of some adhesion molecules, major histocompatibility complexes and pro-coagulant proteins, suggesting IFNs influence biogenesis and shape the immunological asset of sEVs. SEVs released by IFN-stimulated MDM also impact lymphocyte function, showing significant modulation of lymphocyte activation and IL-17 release. Altogether, our results show that sEVs composition and activity are affected by IFN treatment of MDM.
Collapse
Affiliation(s)
- Flavia Giannessi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Valentina Lombardi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Veronica Lisi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Daniela F. Angelini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| |
Collapse
|
8
|
Sen M, Eroğul Ö. Retinoic Acid Neutralizes the Effects of Herpes Simplex Virus Type 1-Infected Cell Protein 0 (ICP0) in Retinal Pigment Epithelial Cells. Cureus 2024; 16:e61089. [PMID: 38919217 PMCID: PMC11196970 DOI: 10.7759/cureus.61089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) infection of the cornea, uvea, and retina is the leading infectious cause of blindness worldwide. This study examined the effects of retinoic acid (RA) on the protein levels of interleukin (IL)-17A and IL-23 cytokines with known proinflammatory effects and toll-like receptor 3 (TLR3) messenger RNA (mRNA) expression in retinal pigment epithelial (ARPE-19) cells treated with HSV-1-infected cell protein 0 (ICP0). METHODOLOGY We used 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyl tetrazolium bromide assay to calculate the half maximal inhibitory concentration (IC50) doses of RA and ICP0 in ARPE-19 cells. At the end of 24 hours, protein levels of IL-17A and IL-23 were analyzed using enzyme-linked immunosorbent assay. TLR3 mRNA expression levels were also calculated using reverse transcription-polymerase chain reaction (RT-PCR). RESULTS RA administration decreased IL-17A levels, which were elevated by ICP0. The IL-23 levels were similar between the ICP0-treated and control groups, but the difference was significant between the ICP0-treated group and RA+ICP0 combination. These results showed that RA can significantly increase IL-23 levels in the presence of ICP0. Although ICP0 dramatically increased TLR3 mRNA expression compared with that in the control group, the RA+ICP0 combination returned TLR3 mRNA expression to a level similar to that in the control group (P = 0.419). CONCLUSIONS RA may potentially neutralize HSV-1 ICP0 negative effects in ARPE-19 cells.
Collapse
Affiliation(s)
- Merve Sen
- Department of Medical Services and Techniques, Suhut Vocational School of Health Services, Afyonkarahısar Health Sciences University, Afyonkarahisar, TUR
| | - Özgür Eroğul
- Department of Opthalmology, Faculty of Medicine, Afyonkarahisar Health Science University, Afyonkarahisar, TUR
| |
Collapse
|
9
|
Thiam F, Diop G, Coulonges C, Derbois C, Thiam A, Diouara AAM, Mbaye MN, Diop M, Nguer CM, Dieye Y, Mbengue B, Zagury JF, Deleuze JF, Dieye A. An elevated level of interleukin-17A in a Senegalese malaria cohort is associated with rs8193038 IL-17A genetic variant. BMC Infect Dis 2024; 24:275. [PMID: 38438955 PMCID: PMC10910704 DOI: 10.1186/s12879-024-09149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
Malaria infection is a multifactorial disease partly modulated by host immuno-genetic factors. Recent evidence has demonstrated the importance of Interleukin-17 family proinflammatory cytokines and their genetic variants in host immunity. However, limited knowledge exists about their role in parasitic infections such as malaria. We aimed to investigate IL-17A serum levels in patients with severe and uncomplicated malaria and gene polymorphism's influence on the IL-17A serum levels. In this research, 125 severe (SM) and uncomplicated (UM) malaria patients and 48 free malaria controls were enrolled. IL-17A serum levels were measured with ELISA. PCR and DNA sequencing were used to assess host genetic polymorphisms in IL-17A. We performed a multivariate regression to estimate the impact of human IL-17A variants on IL-17A serum levels and malaria outcomes. Elevated serum IL-17A levels accompanied by increased parasitemia were found in SM patients compared to UM and controls (P < 0.0001). Also, the IL-17A levels were lower in SM patients who were deceased than in those who survived. In addition, the minor allele frequencies (MAF) of two IL-17A polymorphisms (rs3819024 and rs3748067) were more prevalent in SM patients than UM patients, indicating an essential role in SM. Interestingly, the heterozygous rs8193038 AG genotype was significantly associated with higher levels of IL-17A than the homozygous wild type (AA). According to our results, it can be concluded that the IL-17A gene rs8193038 polymorphism significantly affects IL-17A gene expression. Our results fill a gap in the implication of IL-17A gene polymorphisms on the cytokine level in a malaria cohort. IL-17A gene polymorphisms also may influence cytokine production in response to Plasmodium infections and may contribute to the hyperinflammatory responses during severe malaria outcomes.
Collapse
Affiliation(s)
- Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal.
| | - Gora Diop
- Departement de Biologie Animale, Faculte Des Sciences Et Techniques, Unite Postulante de Biologie GenetiqueGenomique Et Bio-Informatique (G2B), Universite Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
- Pole d'Immunophysiopathologie & Maladies Infectieuses (IMI), Institut Pasteur de Dakar, 36, Avenue Pasteur, Dakar, BP: 220, Senegal
| | - Cedric Coulonges
- Equipe GBA «GenomiqueBioinformatique & Applications», Conservatoire National Des Arts Et Metiers, 292, Rue Saint Martin, Paris Cedex 03, Paris, 75141, France
| | - Celine Derbois
- Centre National de Recherche en Génétique Humaine (CNRGH), Institut de Biologie François Jacob, 2 Rue Gaston Crémieux, CP 5721, Evry Cedex, 91057, France
| | - Alassane Thiam
- Pole d'Immunophysiopathologie & Maladies Infectieuses (IMI), Institut Pasteur de Dakar, 36, Avenue Pasteur, Dakar, BP: 220, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Mame Ndew Mbaye
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Mamadou Diop
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Babacar Mbengue
- Service d'Immunologie, Faculté de Médecine, de Pharmacie Et d'Odontostomatologie, Université Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
| | - Jean-Francois Zagury
- Equipe GBA «GenomiqueBioinformatique & Applications», Conservatoire National Des Arts Et Metiers, 292, Rue Saint Martin, Paris Cedex 03, Paris, 75141, France
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génétique Humaine (CNRGH), Institut de Biologie François Jacob, 2 Rue Gaston Crémieux, CP 5721, Evry Cedex, 91057, France
| | - Alioune Dieye
- Service d'Immunologie, Faculté de Médecine, de Pharmacie Et d'Odontostomatologie, Université Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
| |
Collapse
|
10
|
Khilwani R, Singh S. Traversing through the Mechanistic Event Analysis in IL-6 and IL-17 Signaling for a New Therapeutic Paradigm in NSCLC. Int J Mol Sci 2024; 25:1216. [PMID: 38279220 PMCID: PMC10816370 DOI: 10.3390/ijms25021216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
IL-6 and IL-17 are paradoxical cytokines that progress inflammatory states in chronic diseases, including cancer. In lung cancer, their role has been elucidated to favor cancer development by modulating signaling mechanisms critical to cellular growth. The intrinsic ability of these cytokines to influence macroautophagy is yet another reason to facilitate lung cancer. Here, we employed a systems immunology approach to discover the mechanistic role of these cytokines in cancer development. In a biological system, at later stages, the activation of NFkB stimulates immunosuppressive phenotypes to achieve tolerating effects in a transformed cell. We found that the upregulation of cytokines signaled M2 macrophages to modulate tumor responses through the activation of autophagic intermediates and inflammasome mediators. This caused immune perturbations in the tumor microenvironment, which were associated with cancer inflammation. To address these inflammatory states, we performed triggered event analysis to examine whether overexpressing immune effectors or downregulating immune suppressors may have an effect on cancer reversal. Interestingly, the inhibition of immune regulators opposed the model outcome to an increased immune response. Therefore, IL6-IL17-mediated regulation of lung cancer may address tumor malignancy and potentiate the development of newer therapeutics for NSCLC.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India;
| |
Collapse
|
11
|
Rashid MU, Coombs KM. Chloride Intracellular Channel Protein 1 (CLIC1) Is a Critical Host Cellular Factor for Influenza A Virus Replication. Viruses 2024; 16:129. [PMID: 38257829 PMCID: PMC10819074 DOI: 10.3390/v16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Influenza A Virus (IAV) uses host cellular proteins during replication in host cells. IAV infection causes elevated expression of chloride intracellular channel protein 1 (CLIC1) in lung epithelial cells, but the importance of this protein in IAV replication is unknown. (2) In this study, we determined the role of CLIC1 in IAV replication by investigating the effects of CLIC1 knockdown (KD) on IAV viral protein translation, genomic RNA transcription, and host cellular proteome dysregulation. (3) Results: CLIC1 KD in A549 human lung epithelial cells resulted in a significant decrease in progeny supernatant IAV, but virus protein expression was unaffected. However, a significantly larger number of viral RNAs accumulated in CLIC1 KD cells. Treatment with a CLIC1 inhibitor also caused a significant reduction in IAV replication, suggesting that CLIC1 is an important host factor in IAV replication. SomaScan®, which measures 1322 proteins, identified IAV-induced dysregulated proteins in wild-type cells and in CLIC1 KD cells. The expression of 116 and 149 proteins was significantly altered in wild-type and in CLIC1 KD cells, respectively. A large number of the dysregulated proteins in CLIC1 KD cells were associated with cellular transcription and predicted to be inhibited during IAV replication. (4) Conclusions: This study suggests that CLIC1 is involved in later stages of IAV replication. Further investigation should clarify mechanism(s) for the development of anti-IAV drugs targeting CLIC1 protein.
Collapse
Affiliation(s)
- Mahamud-ur Rashid
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E OJ9, Canada
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E OJ9, Canada
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
12
|
Kwon DI, Park S, Jeong YL, Kim YM, Min J, Lee C, Choi JA, Choi YH, Kong HJ, Choi Y, Baek S, Lee KJ, Kang YW, Jeong C, You G, Oh Y, Im SK, Song M, Kim JK, Chang J, Choi D, Lee SW. Fc-fused IL-7 provides broad antiviral effects against respiratory virus infections through IL-17A-producing pulmonary innate-like T cells. Cell Rep Med 2024; 5:101362. [PMID: 38232693 PMCID: PMC10829794 DOI: 10.1016/j.xcrm.2023.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/15/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Repeated pandemics caused by the influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV) have resulted in serious problems in global public health, emphasizing the need for broad-spectrum antiviral therapeutics against respiratory virus infections. Here, we show the protective effects of long-acting recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc) against major respiratory viruses, including influenza virus, SARS-CoV-2, and respiratory syncytial virus. Administration of rhIL-7-hyFc in a therapeutic or prophylactic regimen induces substantial antiviral effects. During an influenza A virus (IAV) infection, rhIL-7-hyFc treatment increases pulmonary T cells composed of blood-derived interferon γ (IFNγ)+ conventional T cells and locally expanded IL-17A+ innate-like T cells. Single-cell RNA transcriptomics reveals that rhIL-7-hyFc upregulates antiviral genes in pulmonary T cells and induces clonal expansion of type 17 innate-like T cells. rhIL-7-hyFc-mediated disease prevention is dependent on IL-17A in both IAV- and SARS-CoV-2-infected mice. Collectively, we suggest that rhIL-7-hyFc can be used as a broadly active therapeutic for future respiratory virus pandemic.
Collapse
Affiliation(s)
- Dong-Il Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Subin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Yujin L Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Young-Min Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jeongyong Min
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Changhyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jung-Ah Choi
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Hyun-Jung Kong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngwon Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungtae Baek
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea
| | - Kun-Joo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Yeon-Woo Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Chaerim Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Gihoon You
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Youngsik Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Sun-Kyoung Im
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Donghoon Choi
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea.
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea.
| |
Collapse
|
13
|
Zendejas-Hernandez U, Alcántara-Martínez N, Vivar DT, Valenzuela F, Sosa Espinoza A, Cervera Ceballos EE. Nebulized glycyrrhizin/enoxolone drug modulates IL-17A in COVID-19 patients: a randomized clinical trial. Front Immunol 2024; 14:1282280. [PMID: 38283346 PMCID: PMC10811189 DOI: 10.3389/fimmu.2023.1282280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Glycyrrhizin (GA) and its derivative Enoxolone (18β), isolated from the Glycyrrhiza glabra plant, are two potential molecules for treating viral diseases. Both demonstrate to regulate immune system with antiviral and anti-inflammatory activities, with the latter mainly due to modulation of inflammatory cytokines. The aim of this clinical trial was to evaluate the safety and efficacy of a nebulized GA/18β drug for treating COVID-19 patients. Methods An open label, randomized, placebo-controlled clinical trial was conducted in Mexico City from January-August 2022 (Registration No. PROTAP-CLI-00). Clinical and biochemical parameters were recorded. Blood samples from patients were regularly collected to evaluate interleukins IL-4, IL-2, IL-1b, TNF-α, IL-17A, IL-6, IL-10,IFN-γ, IL-12, IL-8 and TGF-β1, as well as IgM and IgG against SARS-CoV-2. Two doses of the drug were used - 30/2 mg (dose A) and 90/4 mg (dose B). Results and discussion Both GA/18β doses modulated inflammatory response by reducing mainly IL-17A expression, which in turn kept IL-1β, IL-6, IL-8 and TNF-α interleukins unchanged, indicating significant modulation of key interleukin levels to prevent exacerbation of the immune response in COVID-19 patients. Early on, dose A increased IgM, while dose B induced expression of the antiviral IFN-γ. No severe side effects were seen with either dose, indicating nebulized GA/18β is a safe treatment that could be used for COVID-19 and potentially other viral infections involving inflammatory response.
Collapse
Affiliation(s)
| | - Nemi Alcántara-Martínez
- Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico
- Science Faculty, National Autonomous University of Mexico, Mexico City, Mexico
| | - Diana Tovar Vivar
- Research and Development Department, Columbia Laboratories, Mexico City, Mexico
| | - Fermín Valenzuela
- Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico
| | | | | |
Collapse
|
14
|
Wangen C, Raithel A, Tillmanns J, Gege C, Herrmann A, Vitt D, Kohlhof H, Marschall M, Hahn F. Validation of nuclear receptor RORγ isoform 1 as a novel host-directed antiviral target based on the modulation of cholesterol levels. Antiviral Res 2024; 221:105769. [PMID: 38056603 DOI: 10.1016/j.antiviral.2023.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Currently, the clinically approved repertoire of antiviral drugs predominantly comprises direct-acting antivirals (DAAs). However, the use of DAAs is frequently limited by adverse effects, restriction to individual virus species, or the induction of viral drug resistance. These issues will likely be resolved by the introduction of host-directed antivirals (HDAs) targeting cellular proteins crucial for viral replication. However, experiences with the development of antiviral HDAs and clinical applications are still in their infancy. With the present study, we explored the human nuclear receptor and transcription factor RORγ isoform 1 (RORγ1), a member of the retinoic acid receptor-related orphan receptor (ROR) family, as a putative target of antiviral HDAs. To this end, cell culture models were used to investigate major viral human pathogens, i.e. the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human cytomegalovirus (HCMV), varicella zoster virus (VZV) and human immunodeficiency virus 1 (HIV-1). Our results demonstrated (i) an antiviral activity of the clinically relevant RORγ modulators cedirogant and others, (ii) that isoform RORγ1 acts as the responsible determinant and drug target in the analyzed cell culture-based models, (iii) a selectivity of the antiviral effect for RORγ1 over related receptors RORα and RORβ, (iv) a late-phase inhibition exerted by cedirogant in HCMV replication and (v) a mechanistic link to the cellular cholesterol biosynthesis. Combined, the data highlight this novel RORγ-specific antiviral targeting concept and the developmental potential of RORγ-directed small molecules.
Collapse
Affiliation(s)
- Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Andrea Raithel
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | | | - Alexandra Herrmann
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Immunic AG, Gräfelfing, Germany.
| | | | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
15
|
Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, August A, Huang W. Th2 and Th17-associated immunopathology following SARS-CoV-2 breakthrough infection in Spike-vaccinated ACE2-humanized mice. J Med Virol 2024; 96:e29408. [PMID: 38258331 PMCID: PMC10832989 DOI: 10.1002/jmv.29408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Jiménez-Meléndez A, Shakya R, Markussen T, Robertson LJ, Myrmel M, Makvandi-Nejad S. Gene expression profile of HCT-8 cells following single or co-infections with Cryptosporidium parvum and bovine coronavirus. Sci Rep 2023; 13:22106. [PMID: 38092824 PMCID: PMC10719361 DOI: 10.1038/s41598-023-49488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Ruchika Shakya
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lucy J Robertson
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Mette Myrmel
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Shokouh Makvandi-Nejad
- Research Group Animal Health, Vaccinology, Norwegian Veterinary Institute, Ås, Norway
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| |
Collapse
|
17
|
Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, August A, Huang W. Th2 and Th17-Associated Immunopathology Following SARS-CoV-2 Breakthrough Infection in Spike-Vaccinated ACE2-humanized Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563016. [PMID: 37904941 PMCID: PMC10614945 DOI: 10.1101/2023.10.18.563016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Xu Q, Chi C, Tang Z. Disseminated molluscum contagiosum after secukinumab: Unreported adverse effect? J Dermatol 2023; 50:e331-e332. [PMID: 37183554 DOI: 10.1111/1346-8138.16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Qunye Xu
- Department of Dermatology, Zhejiang University School of Medicine Second Affiliated Hospital Daishan Branch, Daishan, China
- Department of Dermatology, The First People's Hospital Daishan, Daishan, China
| | - Chaocheng Chi
- Department of Dermatology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Zhuangli Tang
- Department of Dermatology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| |
Collapse
|
19
|
França DCH, Fujimori M, de Queiroz AA, Borges MD, Magalhães Neto AM, de Camargos PJV, Ribeiro EB, França EL, Honorio-França AC, Fagundes-Triches DLG. Melatonin and Cytokines Modulate Daily Instrumental Activities of Elderly People with SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:ijms24108647. [PMID: 37239991 DOI: 10.3390/ijms24108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The Comprehensive Geriatric Assessment analyzes the health and quality of life of the elderly. Basic and instrumental daily activities may be compromised due to neuroimmunoendocrine changes, and studies suggest that possible immunological changes occur during infections in the elderly. Thus, this study aimed to analyze cytokine and melatonin levels in serum and correlate the Comprehensive Geriatric Assessment in elderly patients with SARS-CoV-2 infection. The sample consisted of 73 elderly individuals, 43 of whom were without infection and 30 of whom had positive diagnoses of COVID-19. Blood samples were collected to quantify cytokines by flow cytometry and melatonin by ELISA. In addition, structured and validated questionnaires were applied to assess basic (Katz) and instrumental (Lawton and Brody) activities. There was an increase in IL-6, IL-17, and melatonin in the group of elderly individuals with infection. In addition, a positive correlation was observed between melatonin and IL-6 and IL-17 in elderly patients with SARS-CoV-2 infection. Furthermore, there was a reduction in the score of the Lawton and Brody Scale in the infected elderly. These data suggest that the melatonin hormone and inflammatory cytokines are altered in the serum of the elderly with SARS-CoV-2 infection. In addition, there is a degree of dependence, mainly regarding the performance of daily instrumental activities, in the elderly. The considerable impact on the elderly person's ability to perform everyday tasks necessary for independent living is an extremely important result, and changes in cytokines and melatonin probably are associated with alterations in these daily activities of the elderly.
Collapse
Affiliation(s)
| | - Mahmi Fujimori
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, Mato Grosso, Brazil
| | - Adriele Ataídes de Queiroz
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, Mato Grosso, Brazil
| | - Maraísa Delmut Borges
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, Mato Grosso, Brazil
| | - Aníbal Monteiro Magalhães Neto
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, Mato Grosso, Brazil
| | | | - Elton Brito Ribeiro
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78557-287, Mato Grosso, Brazil
| | - Eduardo Luzía França
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, Mato Grosso, Brazil
| | | | | |
Collapse
|
20
|
Kim MH, Sise ME, Xu M, Goldberg DS, Fontana RJ, Kort JJ, Alloway RR, Durand CM, Brown RS, Levitsky J, Gustafson JL, Reese PP, Chung RT. Early initiation of glecaprevir/pibrentasvir after transplantation of HCV-viremic kidneys into HCV-negative recipients is associated with normalization in the altered inflammatory milieu. Clin Transplant 2023; 37:e14926. [PMID: 36752566 PMCID: PMC10951469 DOI: 10.1111/ctr.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
Our previous Multicenter Trial to Transplant HCV-infected Kidneys (MYTHIC) observed that 100% of hepatitis C virus (HCV)-uninfected patients who received a kidney from an HCV-infected deceased donor were cured of HCV with an 8-week regimen of glecaprevir and pibrentasvir (G/P) initiated 2-5 days after transplantation. Following acute and chronic infection with HCV, immune system perturbations have been reported to persist even after viral clearance. The aim of this study was to determine whether HCV viremic kidney recipients in the MYTHIC study experience sustained changes in the soluble inflammatory milieu associated with HCV infection. Among nine patients with HCV viremia at day 3 post-kidney transplant (post-KT D3), IP-10, IL-10, MIP-1β, and IL-8 were significantly elevated from baseline. However, over the subsequent visits, there was a rapid, dramatic reduction back to baseline levels. Among seven patients who were not HCV viremic at post-KT D3, the cytokine levels did not significantly change. HCV-uninfected patients who received a kidney from an HCV-viremic deceased donor and were treated with early G/P experienced only transient alterations in the soluble inflammatory milieu. These data provide reassuring evidence that there appear to be no persistent cytokine disturbances with transient HCV viremia accompanying HCV donor positive/recipient negative kidney transplant.
Collapse
Affiliation(s)
- Myung-Ho Kim
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan E. Sise
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Min Xu
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David S. Goldberg
- Division of Digestive Health & Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert J. Fontana
- Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jens J. Kort
- Global Medical Affairs Research & Development, AbbVie Inc., North Chicago, Illinois, USA
| | - Rita R. Alloway
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christine M. Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert S. Brown
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Josh Levitsky
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jenna L. Gustafson
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter P. Reese
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymond T. Chung
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Liu M, Yang J, Qian S, Sun Z, Jin Y, Liu X, Ye D, Rong R, Yang Y. Mahuang Xixin Fuzi decoction protects the BALB/c-nude mice infected with influenza A virus by reducing inflammatory cytokines storm and weakly regulating SIgA immune response. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116070. [PMID: 36549371 DOI: 10.1016/j.jep.2022.116070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahuang Xixin Fuzi Decoction (MXF), as a classical prescription of traditional Chinese medicine (TCM), has been used to treat the immunocompromised individuals infected with influenza A virus (IAV). AIM OF THE STUDY The study aims to explore the regulatory of MXF on inflammation and secretory immunoglobulin A (SIgA) antibodies immune response in BALB/c-nude mice infected with IAV. MATERIALS AND METHODS The BALB/c-nude mice were infected with IAV, then different dosages of MXF were orally administrated to the mice. The weight, rectal temperature, spontaneous activity, spleen index, lung index, pathological changes of lung tissues, and the relative mRNA expression level of H1N1 M gene were measured for the purpose of valuing the antiviral effect of MXF. The expression levels of cytokines in lungs and immunoglobulin A (IgA) in serum of BALB/c-nude mice were determined with Cytometric Bead Array System (CBA). SIgA in bronchoalveolar lavage fluids (BALF) was detected with Enzyme-linked Immunosorbent Assay (ELISA). The mRNA and protein expression levels of B cell activating factor (BAFF), chemokine receptors 10 (CCR10), and polymeric immunoglobulin receptor (pIgR) in the lung tissues, which are related to the secretion of SIgA, were determined by using RT-PCR and Western blot. RESULTS MXF could alleviate the clinical features and reduce the severity of viral lung lesions, including improving the body weight, rectal temperature and spontaneous activity of nude mice infected with IAV, increasing spleen index, decreasing lung index, alleviating pathological damage, and decreasing the relative expression level of H1N1 M gene. Levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), interleukin-12p70 (IL-12p70), and interleukin-17A (IL-17A) were also significantly decreased after treatment with MXF. Interferon-γ (IFN-γ), an antiviral cytokine, was significantly up-regulated in high dose MXF (3.12 g/kg) group. Moreover, after MXF treatment, the expressions of SIgA in BALF and IgA in serum were both at relatively low levels. And the mRNA and protein expressions of BAFF, CCR10, and pIgR were significantly decreased after treatment with MXF. CONCLUSIONS MXF has obviously protective effects on BALB/c-nude mice infected with IAV by inhibiting virus replication, calming inflammatory cytokine storm, and regulating SIgA immune response weakly.
Collapse
Affiliation(s)
- Meiyi Liu
- Shandong University of Traditional Chinese Medicine, PR China
| | - Jia Yang
- Shandong University of Traditional Chinese Medicine, PR China
| | - Shensi Qian
- Shandong University of Traditional Chinese Medicine, PR China
| | - Zhuyun Sun
- Shandong University of Traditional Chinese Medicine, PR China
| | - Yifan Jin
- Shandong University of Traditional Chinese Medicine, PR China
| | - Xiaoyun Liu
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Yong Yang
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
22
|
Park E, Yoo Y, Park S, Choi C, Yoon Y. siRNAs to Knock-down Antiviral Chemokine-related Genes in FRhK-4 Cells. J Food Prot 2023; 86:100076. [PMID: 36989860 DOI: 10.1016/j.jfp.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
The objective of this study was to generate small interfering RNA (siRNA) to knockdown antiviral chemokine-related genes in fetal rhesus monkey kidney (FRhK-4) cells. We generated siRNA duplexes to suppress antiviral chemokines like CXCL10 and CCL4 in FRhK-4 cells by downregulating interferon regulatory factor (IRF) 3 and IRF7. Three siRNA duplexes (si-F-IRF3-1, si-F-IRF3-2, and si-F-IRF3-3) targeting IRF3, and one siRNA duplex (si-F-IRF7) targeting IRF7 were generated. A nontarget siRNA duplex was used as the negative control. The nontarget or target siRNA duplexes (si-F-IRF3-1, si-F-IRF3-2, si-F-IRF3-3, and si-F-IRF7) were transfected into FRhK-4 cells using transfection reagents, and they were then incubated at 37°C for 6 h with 5% CO2. After 6 h, the medium was removed, and fresh medium was added to each cell, and they were then incubated at 37°C for 48 h with 5% CO2. The transfected FRhK-4 cells were infected with hepatitis A virus (HAV) HM-175/18f (viral titer: 105 PFU/mL) and incubated at 37°C for 3 h with 5% CO2 for HAV propagation. The expression levels of chemokines, including CXCL10 and CCL4, under the regulation of IRF3 and IRF7 in the transfected FRhK-4 cells were measured using quantitative real-time polymerase chain reaction after 3 h of HAV infection. The results indicated that CXCL10 and CCL4 expression levels were decreased in FRhK-4 cells transfected with si-F-IRF3-1, si-F-IRF3-3, or si-F-IRF7 (p < 0.05) compared to those in the negative control. These results indicate that si-F-IRF3-1 and si-F-IRF3-3, and si-F-IRF7 successfully knocked down IRF3 and IRF7 in FRhK-4 cells, respectively and suppressed antiviral chemokines. These siRNAs could be used to suppress antiviral chemokines in FRhK-4 cells.
Collapse
|
23
|
Liberalesso VYSW, Azevedo MLV, Malaquias MAS, de Paula CBV, Nagashima S, de Souza DG, Neto PC, Gouveia KO, Biscaro LC, Giamberardino ALG, Gonçalves GT, Kondo TTS, Raboni SM, Weiss I, Machado-Souza C, de Noronha L. The role of IL17 and IL17RA polymorphisms in lethal pandemic acute viral pneumonia (Influenza A virus H1N1 subtype). SURGICAL AND EXPERIMENTAL PATHOLOGY 2023; 6:1. [PMCID: PMC9907201 DOI: 10.1186/s42047-023-00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background The cytokines play an essential role in acute inflammatory processes, and the IL-17 may be responsible for ambiguous aspects, and the correlation with genetic polymorphisms could improve the search for this critical biomarker. Thus, this study aimed to evaluate the IL-17A and IL-17RA tissue expression and the polymorphisms that codified these proteins in a population that died of pandemic Influenza A virus H1N1 subtype compared to a non-pandemic Influenza virus population. Methods Necropsy lung samples immunohistochemistry was performed to assess the presence of IL-17A and IL-17RA in the pulmonary tissue. Eight single nucleotide polymorphisms were genotyped using TaqMan® technology. Results The Influenza A H1N1 pandemic group had higher tissue expression of IL-17A, higher neutrophil recruitment and shorter survival time between admission and death. Three single nucleotide polymorphisms conferred risk for pandemic influenza A H1N1, the AA genotype of rs3819025 G/A, the CC genotype of rs2241044 A/C, and the TT genotype of rs 2,241,043 C/T. Conclusions One IL17A polymorphism (rs381905) and two IL17RA polymorphisms (rs2241044 and rs2241043) represented biomarkers of worse prognosis in the population infected with pandemic influenza A H1N1. The greater tissue expression of IL-17A shows a Th17 polarization and highlights the aggressiveness of the pandemic influenza virus with its duality in the protection and pathogenesis of the pulmonary infectious process.
Collapse
Affiliation(s)
| | - Marina Luise Viola Azevedo
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Mineia Alessandra Scaranello Malaquias
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Caroline Busatta Vaz de Paula
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Seigo Nagashima
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Daiane Gavlik de Souza
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Plínio Cézar Neto
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Kauana Oliveira Gouveia
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Larissa Cristina Biscaro
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Ana Luisa Garcia Giamberardino
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Gabrielle Tasso Gonçalves
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Thais Teles Soares Kondo
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Sonia Maria Raboni
- grid.411078.b0000 0004 0502 3690Laboratory of Virology, Hospital de Clínicas, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Isabelle Weiss
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Cleber Machado-Souza
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Lucia de Noronha
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| |
Collapse
|
24
|
Filaggrin and cytokines in respiratory samples of preterm infants at risk for respiratory viral infection. Sci Rep 2022; 12:21278. [PMID: 36482106 PMCID: PMC9731953 DOI: 10.1038/s41598-022-25897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Respiratory viral infections (RVIs) are frequent in preterm infants possibly inducing long-term impact on respiratory morbidity. Immune response and respiratory barriers are key defense elements against viral insults in premature infants admitted to Neonatal Intensive Care Units (NICUs). Our main goals were to describe the local immune response in respiratory secretions of preterm infants with RVIs during NICU admission and to evaluate the expression and synthesis of lung barrier regulators, both in respiratory samples and in vitro models. Samples from preterm infants that went on to develop RVIs had lower filaggrin gene and protein levels at a cellular level were compared to never-infected neonates (controls). Filaggrin, MIP-1α/CCL3 and MCP-1 levels were higher in pre-infection supernatants compared to controls. Filaggrin, HIF-1α, VEGF, RANTES/CCL5, IL-17A, IL-1β, MIP-1α and MIP-1β/CCL5 levels were higher during and after infection. ROC curve and logistic regression analysis shows that these molecules could be used as infection risk biomarkers. Small airway epithelial cells stimulated by poly:IC presented reduced filaggrin gene expression and increased levels in supernatant. We conclude that filaggrin gene and protein dysregulation is a risk factor of RVI in newborns admitted at the NICU.
Collapse
|
25
|
Liu X, Zhang X, Liu C, Mu W, Peng J, Song K. Immune and inflammation: related factor alterations as biomarkers for predicting prognosis and responsiveness to PD-1 monoclonal antibodies in cervical cancer. Discov Oncol 2022; 13:96. [PMID: 36171464 PMCID: PMC9519820 DOI: 10.1007/s12672-022-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We aimed to elucidate the potential mechanisms of effective responsiveness to PD-1 monoclonal antibody and evaluate more reliable biomarkers to improve the ability to predict the populations of cervical cancer (CC) suitable for immunotherapy. METHODS Peripheral blood samples of CC patients undergoing anti-PD-1 therapy were collected before and after treatment. Differentially expressed genes (DEGs) were analyzed between partial response (PR) and progressive disease (PD) patients. A novel prognostic inflammation and immune-related response gene (IRRG) model was constructed and its prognostic role, correlation with tumor immunity and tumor mutation were evaluated. RESULTS DEGs in PR patient after treatment could predict the response to PD-1 monoclonal antibodies. Among PR-specific pathways, tumor immunity, leukocyte migration, and cytokine activities were prominently enriched. Additionally, an IRRG signature comprising CTLA4, AZU1, C5, LAT, CXCL2, GDF7, MPL, PPARG and CELA1 was established and validated to predict the prognosis of CC with great accuracy and specificity. This signature could reflect the tumor microenvironment (TME) and tumor mutational burden (TMB). We also found stimulated adaptive immunity and downregulated inflammation at baseline in patients with sensitive responses to PD-1 monoclonal antibody. CONCLUSION We developed an IRRG signature and verified that it was an independent prognostic factor for predicting survival and could reflect a sensitive response to PD-1 monoclonal antibody, which plays a nonnegligible role in the TME of CC. Further investigations are warranted to confirm that patients with stimulated adaptive immunity and downregulated inflammation at baseline could achieve a better survival benefit from PD-1 monoclonal antibody.
Collapse
Affiliation(s)
- Xihan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Gynecologic Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xi Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Gynecologic Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wendi Mu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jin Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Gynecologic Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
26
|
Li M, Gao Y, Yang L, Lin Y, Deng W, Jiang T, Bi X, Lu Y, Zhang L, Shen G, Liu R, Wu S, Chang M, Xu M, Hu L, Song R, Jiang Y, Yi W, Xie Y. Dynamic changes of cytokine profiles and virological markers during 48 weeks of entecavir treatment for HBeAg-positive chronic hepatitis B. Front Immunol 2022; 13:1024333. [PMID: 36203581 PMCID: PMC9531241 DOI: 10.3389/fimmu.2022.1024333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe aims of this study were to investigate the kinetic changes of serum, virological, and immunological markers during entecavir (ETV) antiviral therapy and to explore whether these indicators can predict the antiviral efficacy of ETV in hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients.MethodsHBeAg-positive CHB patients were enrolled and treated with ETV 0.5 mg/day. Clinical biochemical, virological, and serological tests were performed at baseline and every 12 weeks during the 48-week treatment. Plasma levels of cytokines (Flt-3L, IFN-α2, IFN-γ, IL-10, IL-17A, IL-6, TGF-β1, TGF-β2, TGF-β3, and TNF-α) were measured at baseline and at 12 and 24 weeks after treatment. Analysis of the trends of these clinical indicators in ETV antiviral therapy was performed.ResultsA total of 105 HBeAg-positive CHB patients were enrolled, and 100 of them completed 48 weeks of ETV treatment and follow-up. After 48 weeks of treatment, hepatitis B s antigen (HBsAg) decline ≥ 1 log10 was found in seven patients, but no patient achieved HBsAg disappearance. serological HBeAg disappeared in 13 patients, and serological HBeAg transformed in 3 patients. The baseline HBsAg and HBeAg levels, HBV DNA load, IL-10, and TGF-β1 levels in the complete virological response group were lower than those in the incomplete virological response group, while the ALT level in the complete virological response group was higher than that in the incomplete virological response group. Both univariate analysis and multivariate analysis showed that baseline biochemical indexes, virological indexes, and cytokine levels had no correlation with the complete virological response at 48 weeks. In multivariate analysis, low baseline HBV DNA load, and HBeAg and IL-10 levels were significantly associated with ALT normalization after 48 weeks of ETV treatment (HBeAg OR = 1.003, 95% CI 1.001–1.006, p = 0.007; HBV DNA OR = 0.184, 95% CI 0.046–0.739, p = 0.017; IL-10 OR = 0.040, 95% CI 0.972–0.999, p = 0.040).ConclusionCytokine levels changed dynamically during ETV antiviral therapy. Low baseline HBV DNA load, and HBeAg and IL-10 levels were significantly associated with ALT normalization after 48 weeks of ETV treatment.
Collapse
Affiliation(s)
- Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Rui Song, ; Yuyong Jiang, ; Wei Yi, ; Yao Xie,
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Rui Song, ; Yuyong Jiang, ; Wei Yi, ; Yao Xie,
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Rui Song, ; Yuyong Jiang, ; Wei Yi, ; Yao Xie,
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
- *Correspondence: Rui Song, ; Yuyong Jiang, ; Wei Yi, ; Yao Xie,
| |
Collapse
|
27
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
28
|
Wang Y, Su W, Li Y, Yuan J, Yao M, Su X, Wang Y. Analyzing the pathogenesis of systemic lupus erythematosus complicated by atherosclerosis using transcriptome data. Front Immunol 2022; 13:935545. [PMID: 35935949 PMCID: PMC9354579 DOI: 10.3389/fimmu.2022.935545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Accumulating evidence supports the predisposition of systemic lupus erythematosus (SLE) to atherosclerosis (AS). However, the common pathogenesis of these two diseases remains unclear. This study aimed to explore the mechanisms of SLE complicated by AS. Methods Gene expression profiles of SLE (GSE50772) and AS (GSE100927) were downloaded from the Gene Expression Omnibus. We analyzed differentially expressed genes (DEGs) of SLE and AS and performed enrichment analyses separately. After analyzing the common DEGs (CDEGs), we performed functional enrichment analysis, protein-protein interaction (PPI) network analysis, and hub genes (HGs) identification of CDEGs. Then, we performed a co-expression analysis of HGs and verified their expression and diagnostic value. We further explored immune cell infiltration and analyzed the correlation between HGs and infiltrating immune cells (IICs). Finally, we verified the reliability of the screening pathway. Results We obtained 530 DEGs from the GSE50772 dataset and 448 DEGs from the GSE100927 dataset. The results of the enrichment analysis showed that there were many similar immune- and inflammation-related processes between the two diseases. We analyzed 26 CDEGs (two downregulated genes and 24 upregulated genes) and enrichment analysis highlighted the important role of the IL-17 signaling pathway. We identified five HGs (CCR1, CD163, IL1RN, MMP9, and SIGLEC1) using the CytoHubba plugin and HGs validation showed that the five HGs screened were reliable. Co-expression networks showed that five HGs can affect mononuclear cell migration. Immune cell infiltration analysis indicated monocytes in SLE and M0 macrophages in AS accounted for a high proportion of all IICs, and the difference in infiltration was obvious. We also found a significant positive correlation between CCR1, CD163, IL1RN, and MMP9 and monocytes in SLE, and a significant positive correlation between CCR1, IL1RN, MMP9, and SIGLEC1 and M0 macrophages in AS. Pathway validation also demonstrated that the IL-17 signaling pathway was a key pathway for the differentiation of monocytes into macrophages. Conclusions The five HGs may promote the differentiation of monocytes into macrophages by influencing the IL-17 signaling pathway, leading to SLE complicated by AS. Our study provides insights into the mechanisms of SLE complicated by AS.
Collapse
|
29
|
Pérez Gómez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Serum Cytokines Predict Neurological Damage in Genetically Diverse Mouse Models. Cells 2022; 11:2044. [PMID: 35805128 PMCID: PMC9265636 DOI: 10.3390/cells11132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Viral infections contribute to neurological and immunological dysfunction driven by complex genetic networks. Theiler's murine encephalomyelitis virus (TMEV) causes neurological dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-induced immune responses in serum may predict neurological outcomes in acute infection. To test the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i. Each strain produced unique baseline cytokine levels and had distinct immune responses to the injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise regression analysis, we identified serum immune markers predictive for TMEV-induced neurological phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1β, and MIP-1β for limb weakness. These findings indicate how temporal differences in immune responses are influenced by host genetic background and demonstrate the potential of serum biomarkers to track the neurological effects of viral infection.
Collapse
Affiliation(s)
- Aracely A. Pérez Gómez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Molecular and Cellular Medicine, Texas A & M Health Science Center, Texas A & M University, College Station, TX 77843, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| |
Collapse
|
30
|
Hassan MH, Abuhamdah S, Elsadek BEM, Abdelwahab A, Abd-Elhamid TH, Fayed HM, Abbass A, Abdallah AAM, Mohamed M, Abd-Elmagid WM. Expression Patterns of Macrophage Migration Inhibitory Factor and Its Gene Variants (MIF-173 G˃C) in Verruca Vulgaris. Clin Cosmet Investig Dermatol 2022; 15:1073-1085. [PMID: 35712358 PMCID: PMC9196281 DOI: 10.2147/ccid.s363916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022]
Abstract
Introduction Verruca vulgaris is a benign hyperkeratotic proliferation of the epidermis. Few studies look at the differences in serum and tissue macrophage migration inhibitory factor (MIF) levels in verruca vulgaris, as well as its gene polymorphisms that have yet to be explored. The current study provided in-depth evaluation of MIF in serum and tissues of patients with verruca vulgaris, and establishes for the first time the possible association of MIF gene polymorphisms with common warts. Methods This case-control study included 50 patients who were diagnosed clinically as common warts in comparison with 50 age and sex-matched controls. Clinical examination was done on all included cases. Serum MIF was measured using enzyme-linked immunosorbent assay (ELISA), while its tissue expression was analyzed using Western blotting and immunohistochemical techniques for the included participants. Analysis of MIF-173 G˃C single nucleotide polymorphism was performed by polymerase chain reaction (PCR) using restriction fragment length polymorphism (RFLP) technique. Results The overall results revealed significantly lower MIF tissue expression in lesional and perilesional skin biopsies from cases compared to the controls using Western blot and immunohistochemical analysis. Yet, the difference in the serum MIF levels between cases and controls was not significant (p ˃ 0.05). GC genotype of the studied MIF rs755622 G>C SNP could be considered as a protective genetic factor against the occurrence of verruca vulgaris among Egyptians with OR (95% CI) equal 0.444 (0.199-0.989). Conclusion MIF and its genetic variants are thought to play a pathogenic role in verruca vulgaris development and recurrence.
Collapse
Affiliation(s)
- Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, 83523, Egypt
| | - Sawsan Abuhamdah
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates.,Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ashraf Abdelwahab
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hanan M Fayed
- Department of Chemical and Clinical Pathology, Faculty of Medicine, South Valley University, Qena, 83523, Egypt
| | - Amany Abbass
- Department of Chemical and Clinical Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Marwa Mohamed
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Wafaa Mohamed Abd-Elmagid
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
31
|
Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami A, Ghasemian Sorbeni F, Farahzadi R, Ghasemnejad T. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J 2022; 19:92. [PMID: 35619180 PMCID: PMC9134144 DOI: 10.1186/s12985-022-01814-1] [Citation(s) in RCA: 255] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/09/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a significant threat to global health. This virus affects the respiratory tract and usually leads to pneumonia in most patients and acute respiratory distress syndrome (ARDS) in 15% of cases. ARDS is one of the leading causes of death in patients with COVID-19 and is mainly triggered by elevated levels of pro-inflammatory cytokines, referred to as cytokine storm. Interleukins, such as interleukin-6 (1L-6), interleukin-1 (IL-1), interleukin-17 (IL-17), and tumor necrosis factor-alpha (TNF-α) play a very significant role in lung damage in ARDS patients through the impairments of the respiratory epithelium. Cytokine storm is defined as acute overproduction and uncontrolled release of pro-inflammatory markers, both locally and systemically. The eradication of COVID-19 is currently practically impossible, and there is no specific treatment for critically ill patients with COVID-19; however, suppressing the inflammatory response may be a possible strategy. In light of this, we review the efficacy of specific inhibitors of IL6, IL1, IL-17, and TNF-α for treating COVID-19-related infections to manage COVID-19 and improve the survival rate for patients suffering from severe conditions.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | | | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| |
Collapse
|
32
|
Liu N, Jiang F, Ye M, Wang B, Ge D, Chang S. HuR confers IL-17a-induced migration and invasion of gastric cancer cells via upregulation of Snail translation. Cytokine 2022; 153:155830. [PMID: 35247650 DOI: 10.1016/j.cyto.2022.155830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Human gastric cancer is a leading cause of cancer mortality in the world wide. We found that the expression of IL-17a was significantly increased in gastric cancer cells. Treatment with recombinant IL-17a (rIL-17a) can increase migration, invasion and epithelial to mesenchymal transition (EMT) of gastric cancer cells. Further, Snail, a key factor to regulate EMT, was significantly increased in rIL-17a-treated gastric cancer cells. While knockdown of Snail can abolish IL-17a-induced EMT of gastric cancer cells. Mechanistically, IL-17a can promote the translation efficiency of Snail, while had no effect on its mRNA expression or protein stability. Further, we found that IL-17a can increase the expression of HuR, which markedly promoted translation of Snail mRNA. While knockdown of HuR can reverse rIL-17a-induced expression of Snail and EMT of gastric cancer cells. Collectively, our data suggested that HuR confers IL-17a induced migration and invasion of gastric cancer cells via upregulation of Snail translation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fan Jiang
- Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Mulin Ye
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bangjie Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Dongsheng Ge
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Shunwu Chang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China.
| |
Collapse
|