1
|
Ramzy A, Abdel-Halim M, Manie T, Elemam NM, Mansour S, Youness RA, Sebak A. In-vitro immune-modulation of triple-negative breast cancer through targeting miR-30a-5p/MALAT1 axis using nano-PDT combinational approach. Transl Oncol 2025; 55:102365. [PMID: 40132387 PMCID: PMC11984585 DOI: 10.1016/j.tranon.2025.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an immunogenic tumor; however, its tumor immune microenvironment (TIME) is densely packed with immune suppressive cytokines and immune checkpoints. The immune-suppressive features of TNBC TIME represent a considerable obstacle to any immunotherapeutic approach. The objective of this study was to develop a multimodal in-vitro strategy to manipulate the TNBC TIME and enhance patients' outcomes by employing carefully tailored hybrid chitosan-lipid Nanoparticles (CLNPs), metformin and chlorin e6 (Ce-6)-mediated PDT, alone or combined. Special focus is directed towards evaluation of the role of the selected treatment agents on the non-coding RNAs (ncRNAs) involved in tuning the immuno-oncogenic profile of TNBC, for instance, the miR-30a-5p/MALAT1 network. METHODS This study enrolled 30 BC patients. CLNPs and ce-6-loaded CLNPs with different physicochemical features were synthesized and optimized using ionotropic gelation. The intracellular concentration and effects on MDA-MB-231 cellular viability were investigated. UHPLC was used to quantify ce-6. MDA-MB-231 cells were transfected with miR-30a-5p oligonucleotides and MALAT1 siRNAs using lipofection to investigate the interaction between MIF, PD-L1, TNF-α, IL-10, and the miR-30a-5p/MALAT1 ceRNA network. qRT-PCR was used to evaluate IL-10, TNF-α, and MIF expression levels, whereas flow cytometry was used for PD-L1. RESULTS Immunophenotyping of BC biopsies revealed significantly elevated levels of immunosuppressive markers, including IL-10, TNF-α, PD-L1, and MIF in BC biopsies compared to its normal counterparts. Upon patient stratification, it was shown that MIF and IL-10 are upregulated in TNBC patients compared to non-TNBC patients. Nonetheless, immune suppressive biomarkers expression investigated in the current study was generally correlated with signs of poor prognosis. CLNPs with mean particle size ranging from 50-150 nm were obtained. CLNPs exhibited different patterns of intracellular uptake, cytotoxicity and modulation of the immunosuppressive markers based on their physicochemical properties and composition. In particular, CLNP4 in-vitro effectively reduced IL-10, TNF-α, MIF, and PD-L1. Loading of Ce-6 into CLNP4 (Ce6-CLNPs) improved the in-vitro cytotoxic effects via PDT. In addition, PDT with Ce6-CLNP4 enhanced the expression of tumor-suppressive miR-30a-5p and decreased oncogenic lncRNA MALAT1 expression in MDA-MB-231 cells, suggesting a potential for modulating the TNBC immuno-oncogenic profile. CONCLUSION This study demonstrated that CLNPs and Ce-6-mediated PDT can modulate several key immunosuppressive factors and the miR-30a-5p/MALAT1 axis in TNBC cells. These findings provide a rationale for further in-vivo investigation of this multimodal therapeutic strategy.
Collapse
Affiliation(s)
- Asmaa Ramzy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Tamer Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt; Faculty of Pharmaceutical Engineering, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Rana A Youness
- Department of Molecular Biology and Biochemistry, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt.
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
2
|
Luo Y, Ren Q, He J, Wu M. miR-126-3p Serves as a Biomarker for Hepatitis B Virus-Associated Chronic Acute Liver Failure and Regulates Inflammation by Regulating ERRFI1. J Biochem Mol Toxicol 2025; 39:e70252. [PMID: 40227026 DOI: 10.1002/jbt.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Hepatitis B virus-associated chronic acute liver failure (HBV-ACLF) is the leading cause of ACLF, affecting approximately 90% of patients with ACLF. The objective of this study was to investigate the clinical relevance of miR-126-3p on HBV-ACLF as well as the regulatory impact of ERRFI1 and miR-126-3p on the inflammatory response caused by ACLF via in vitro experimental methodologies. RT-qPCR was utilized to quantify the expression levels of miR-126-3p, ERRFI1, NLRP3, caspase 1, and IL-1β. The clinical function of miR-126-3p was assessed using ROC analysis or Kaplan-Meier curve. Cell proliferation was quantified via the CCK-8 assay, while the dual-luciferase reporter assay was employed to confirm the specific binding interaction between miR-126-3p and ERRFI1. In patients with HBV-ACLF, a significant downregulation of miR-126-3p expression was observed; The level of miR-126-3p served as a prognostic indicator for the progression of HBV-ACLF, with reduced expression being associated with an unfavorable clinical outcome. In addition, miR-126-3p was found to modulate LPS-induced cell proliferation, and inflammation in THLE-2 cells through the regulation of ERRFI1 expression. Therefore, miR-126-3p might serve as a biomarker for HBV-ACLF.
Collapse
Affiliation(s)
- Yiping Luo
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiuping Ren
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun He
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Menghang Wu
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Rostom MM, Rashwan AA, Sotiropoulou CD, Hozayen SZ, Abdelhamid AM, Abdelhalim MM, Eltahtawy O, Emara HM, Elemam NM, Kontos CK, Youness RA. MIAT: A pivotal oncogenic long noncoding RNA tunning the hallmarks of solid malignancies. Transl Oncol 2025; 54:102329. [PMID: 40014977 PMCID: PMC11910686 DOI: 10.1016/j.tranon.2025.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non-coding RNAs (LncRNAs) have emerged as intriguing players in cellular regulation, challenging the traditional view of non-coding RNAs as mere "dark genome". Non-coding DNA makes up most of the human genome and plays a pivotal role in cancer development. These RNA molecules, which do not code for proteins, have captivated researchers with their diverse and crucial roles in gene regulation, chromatin dynamics, and other cellular processes. In several physiological and pathological circumstances, lncRNAs serve critical functions. This review will tackle the complex function of the lncRNA myocardial infarction-associated transcript (MIAT) in various solid malignancies. A special emphasis would be directed on the correlation between cancer patients' clinicopathological features and the expression profile of MIAT. MIAT is a oncogenic regulator in many malignant tumors, where it can control the growth, invasion, metastasis, and resistance to death of cells. As a result, MIAT is thought to be a possible biomarker and therapeutic target for cancer patients. The biological functions, mechanisms and potential clinical implications of MIAT during carcinogenesis and finally the current possible therapeutic approaches targeting MIAT are also outlined in this review.
Collapse
Affiliation(s)
- Monica M Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Alaa A Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Christina D Sotiropoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Sama Z Hozayen
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | | | - Miriam Mokhtar Abdelhalim
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | - Omar Eltahtawy
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | - Hadir M Emara
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt; Department of Nanotechnology, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, UAE; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, UAE
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt.
| |
Collapse
|
4
|
He J, Dong Y, Chen X, Wang S, Shen Z, Huang X, Li W, Yang Z, Cheng J, Li J, Liu Q, Xu Z, Sun D, Zhang W. Hypothyroidism induced by excessive-iodine is associated in humans with altered hsa-miR-199a-5p/HIF-1α axis and thyroglobulin. J Nutr Biochem 2025; 138:109841. [PMID: 39805372 DOI: 10.1016/j.jnutbio.2025.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The adverse effect of excessive iodine intake has attracted extensive attention. However, the role of excessive iodine on hypothyroidism and detailed mechanism are not exactly known. Studies have shown that miRNAs are crucial to the occurrence and development of hypothyroidism. Nevertheless, there still limited population-based studies on the miRNA-mRNA regulation in the occurrence of hypothyroidism induced by excessive iodine. Total of 291 hypothyroidism patients and 291 controls matched by sex (1:1) and age (±3 years) were enrolled from Heze City, Shandong Province. Multiple logistic regression analysis revealed that water iodine concentration of 100-300 µg/L was an independent risk factor for hypothyroidism. Additionally, excessive water iodine was associated with an increase in thyroglobulin (Tg) concentration in new diagnosed hypothyroidism patients. Further, high-throughput miRNA sequencing indicated that hsa-miR-19b-3p, hsa-miR-199a-5p, hsa-miR-204-5p and hsa-miR-144-3p were significantly correlated with the occurrence of hypothyroidism. Q-PCR results showed that levels of hsa-miR-199a-5p and hsa-miR-204-5p in the hypothyroidism group were markedly lower than those in the control group. In addition, among the hypothyroidism patients, hsa-miR-199a-5p level in water iodine >100 µg/L group was remarkably higher than that in 10-100 µg/L group. Furthermore, HIF-1α and PD-L1 mRNA levels in whole blood were determined, which are the target genes regulated by miRNA-199a-5p in previous studies. Compared with the control group, HIF-1α mRNA level was significantly increased in the hypothyroidism group. In the hypothyroidism case group, compared with the 10-100 µg/L group, HIF-1α mRNA level was remarkably decreased in water iodine >100 µg/L group. Collectively, miR-199a-5p/HIF-1α axis may contribute to hypothyroidism induced by excessive iodine through thyroglobulin.
Collapse
Affiliation(s)
- Jing He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Yishan Dong
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Xianglan Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China; Guangdong Provincial People's Hospital Zhuhai Hospital, Zhuhai, Guangdong, China
| | - Shuo Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Zheng Shen
- Department of Public Health, Municipal Hospital of Heze, Heze, China
| | - Xu Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Weijia Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Zhihan Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Jin Cheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Jinyu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Qiaoling Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Ziqi Xu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China; Jiaozhou Maternal and Child Health and Family Planning Service Centre, Qingdao, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China.
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China.
| |
Collapse
|
5
|
Li X, Li Y, Zhu J, Yang Y, Yang S. Bibliometric analysis of nanoparticle research for diagnostics and therapeutics in hepatocellular carcinoma. DISCOVER NANO 2025; 20:61. [PMID: 40159297 PMCID: PMC11955440 DOI: 10.1186/s11671-025-04226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVES The aim of this study was to explore the bibliometric analysis of nanomaterials-based therapies for hepatocellular carcinoma as a means of assessing the current state of development and future trends in the field. MATERIALS AND METHODS Literature on hepatocellular carcinoma and nanomedicine interactions was searched from the core database of the Web of Science and bibliometric and visualisation analyses were performed using VOSviewer, CiteSpace and GraphPad Prism data analysis software. We focused on important keywords, countries, authors, affiliations, journals, and literature in the field of nanomaterials for HCC. RESULTS The search resulted in the finalization of 421 documents. The search resulted in the finalization of 421 documents. From 2008 to 2023, nanomedicine research in HCC has developed rapidly, and the number of published papers has steadily increased, increasing by about 2300%. There are currently 57 countries involved in research in this area. Among them, The USA had the strongest international cooperation network and cooperated most closely with China. Gene delivery and carbon nanotubes were early keywords, immunotherapy and nanocarriers are recent research hotspots. It is important that the selection of nanocarriers and drug delivery have become the core trends driving the development of hepatocellular carcinoma. CONCLUSION The combination of nanomaterials with traditional imaging techniques such as MRI can improve the early diagnosis rate of HCC. Nanomaterials can achieve precise targeting of cancer cells by encapsulating drugs, loading bioactive molecules or modifying specific targeting ligands, thus significantly improving drug efficacy and effectively reducing adverse reactions in therapy.
Collapse
Affiliation(s)
- Xiaoqing Li
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, China
- Key Laboratory of Pathobiology (Yanbian University Hospital), State Ethnic Affairs Commission, Yanji, 133000, China
| | - Yue Li
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, China
- Key Laboratory of Pathobiology (Yanbian University Hospital), State Ethnic Affairs Commission, Yanji, 133000, China
| | - Jingyan Zhu
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, China
- Key Laboratory of Pathobiology (Yanbian University Hospital), State Ethnic Affairs Commission, Yanji, 133000, China
| | - Yang Yang
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, China
- Key Laboratory of Pathobiology (Yanbian University Hospital), State Ethnic Affairs Commission, Yanji, 133000, China
| | - Shipeng Yang
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, China.
- Key Laboratory of Pathobiology (Yanbian University Hospital), State Ethnic Affairs Commission, Yanji, 133000, China.
| |
Collapse
|
6
|
Wang J, Lai Z, Liu N, Wang Y, Li F, Song N, Cheng J. A bioinformatics analysis of the target role of miRNA-431-5p on KLK6 in colorectal cancer. Hereditas 2025; 162:46. [PMID: 40156045 PMCID: PMC11951700 DOI: 10.1186/s41065-025-00395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Although increasing evidence suggests that microRNAs (miRNAs) play different roles in the occurrence, development, and prognosis of colorectal cancer (CRC), investigations on miRNA-targeted regulation in CRC are sparse. However, the high morbidity and mortality of CRC necessitates exploring this area of research for potential alternative therapeutic approaches to CRC. METHODS Bioinformatics analysis was used to obtain the key Hub genes related to CRC, and survival analysis was performed to screen out the core genes. Meanwhile, verification was performed using CCK-8, Transwell, qPCR, WB, immunohistochemistry and dual luciferase assays at a cellular level. RESULTS This study identified the hub gene KLK6 associated with CRC based on the GEO and TCGA databases. Survival analysis revealed a significant decrease in the survival rate of CRC patients with increasing expression levels of KLK6. Target gene prediction confirmed that miR-431-5p can target KLK6. Cell experimental results demonstrated that the miR-431-5p inhibitor enhanced cell viability and promoted cell migration and invasion while miR-431-5p mimics reduced cell viability and inhibited cell migration and invasion. Both the inhibitor and mimics of miR-431-5p suppressed and promoted the expression of miR-431-5p, as well as promoted and inhibited the KLK6 mRNA and protein expression. Dual luciferase results showed that miR-431-5p targeted KLK6, and cell recovery experiments further verified that miR-431-5p regulated cell viability, migration and invasion by targeting KLK6. CONCLUSIONS Through target gene prediction, miR-431-5p was found to target KLK6, suggesting its therapeutic potential in CRC. As such, therapies that can inhibit KLK6 via miR-431-5p offer a promising approach to CRC. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Zonglang Lai
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Na Liu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Yuhong Wang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Feng Li
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Na Song
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Jun Cheng
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| |
Collapse
|
7
|
Norollahi SE, Morovat S, Keymoradzadeh A, Hamzei A, Modaeinama M, Soleimanmanesh N, Soleimanmanesh Y, Najafizadeh A, Bakhshalipour E, Alijani B, Samadani AA. Transforming agents: The power of structural modifications in glioblastoma multiforme therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:41-56. [PMID: 39701498 DOI: 10.1016/j.pbiomolbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024]
Abstract
Glioblastoma (GBM) is a very deadly type of brain tumor with a poor prognosis and a short survival rate. Recent advancements in understanding GBM's molecular and genetic characteristics have led to the development of various therapeutic and diagnostic strategies. Key elements such as microRNAs, lncRNAs, exosomes, angiogenesis, and chromatin modifications are highlighted, alongside significant epigenetic alterations that impact therapy and diagnosis. Despite these advancements, molecular classifications have not improved patient outcomes due to intratumoral diversity complicating targeted therapies. In this article, it is tried to emphasize the potential of investigating the epigenetic landscape of GBM, particularly identifying patients with diffuse hypermethylation at gene promoters associated with better outcomes. Integrating epigenetic and genetic data has enhanced the identification of glioma subtypes with high diagnostic precision. The reversibility of epigenetic changes offers promising therapeutic prospects, as recent insights into the "epigenetic orchestra" suggest new avenues for innovative treatment modalities for this challenging cancer. In this review article, we focus on the roles of translational elements and their alterations in the context of GBM diagnosis and therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran; Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| | - Saman Morovat
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Arman Keymoradzadeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Hamzei
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Morteza Modaeinama
- Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Alijani
- Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Li G, Peng T, Zhang J. Diagnostic significance of serum hsa_circ_0000745 and hsa_circ_0001459 in ischemic stroke and its role in the prognosis of interventional therapy. Brain Inj 2025; 39:381-389. [PMID: 39602335 DOI: 10.1080/02699052.2024.2433668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE We aimed to identify hsa_circ_0000745 and hsa_circ_0001459 expression, value as biomarkers in ischemic stroke (IS), and functions in BV2 cells. METHODS RNA sequencing datasets in the GEO database were retrieved. The expression of circulating hsa_circ_0000745 and hsa_circ_0001459 was validated by RT-qPCR. The predictive values of hsa_circ_0000745 and hsa_circ_0001459 in the diagnosis and outcome of acute IS were evaluated using receiver operator characteristic curve analysis. BV2 cells were treated with lipopolysaccharide, followed by hsa_circ_0000745 or hsa_circ_0001459 downregulation and subsequent migration and apoptosis assay. The downstream miR-1287-5p was detected using the luciferase reporter gene assay. RESULTS Hsa_circ_0000745 or hsa_circ_0001459 were upregulated in acute IS. Hsa_circ_0000745 or/and hsa_circ_0001459 differentiated between healthy control subjects and patients with IS, resulting in areas under curve (AUC) of 0.85 and 0.83, respectively. Hsa_circ_0000745 or hsa_circ_0001459 was positively correlated with serum pro-inflammatory cytokines and the NIHSS (P<0.001). Longitudinal and ROC analyses of hsa_circ_0001459 and hsa_circ_0000745 expression levels revealed the 90-day-outcome-predicting potential after stroke. Hsa_circ_0001459 and hsa_circ_0000745 promoted the apoptosis and inhibited the migration of LPS-induced BV2 cells. Hsa_circ_0001459 and hsa_circ_0000745 commonly sponged miR-1287-5p. CONCLUSIONS Hsa_circ_0001459 and hsa_circ_0000745 showed upregulations in IS and might have clinical utility as a diagnostic and outcome-predicting marker.
Collapse
Affiliation(s)
- Gaoyi Li
- Department of Neurosurgery, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Tao Peng
- Department of Neurosurgery, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Jingquan Zhang
- Department of Neurosurgery, Putuo People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Mohamed AH, Abaza T, Youssef YA, Rady M, Fahmy SA, Kamel R, Hamdi N, Efthimiado E, Braoudaki M, Youness RA. Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics. NANOSCALE ADVANCES 2025; 7:934-962. [PMID: 39823046 PMCID: PMC11733735 DOI: 10.1039/d4na00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs. Evidence indicates that EVs are particularly effective in delivering chemotherapeutic medications, and immunomodulatory agents. However, the advancement of EV-based therapies into clinical practice is hindered by challenges including EVs heterogeneity, cargo loading efficiency, and in vivo stability. Overall, EVs have the potential to change cancer therapeutic paradigms. Continued research and development activities are critical for improving EV-based medications and increasing their therapeutic impact.
Collapse
Affiliation(s)
- Adham H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Tasneem Abaza
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University 12613 Giza Egypt
- Université Paris-Saclay, Université d'Evry Val D'Essonne 91000 Évry-Courcouronnes Île-de-France France
| | - Yomna A Youssef
- Department of Physiology, Faculty of Physical Therapy, German International University (GIU) 11835 Cairo Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
- Faculty of Biotechnology, German International University New Administrative Capital 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre 12622 Cairo Egypt
| | - Nabila Hamdi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
| | - Eleni Efthimiado
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens Athens Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire Hatfield AL10 9AB UK
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| |
Collapse
|
10
|
Chen J, Hu Q, Zhang C, Zhao A, Guan B, Wang Y, Zhang M, Li X, Chen B, Zeng L, Chen M, Wu B, Wang J, Yang Y, Ji J. Tendomodulin in pan-cancer analysis: exploring its impact on immune modulation and uncovering functional insights in colorectal cancer. BMC Cancer 2025; 25:239. [PMID: 39934677 DOI: 10.1186/s12885-025-13608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Tendomodulin (TNMD) is pivotal in various malignancies, including colorectal cancer (CRC). However, its comprehensive impact across cancers, particularly its immunomodulatory function in CRC, remains underexplored. This study explored the role of TNMD in CRC by focusing on its immunomodulatory functions through comprehensive molecular and clinical analyses. METHODS Multiple bioinformatics databases and analytical tools were utilized for the TNMD in pan-cancer analysis. To validate the role of TNMD in CRC, we performed experiments, including immunofluorescence (IF), immunohistochemistry (IHC), real-time quantitative reverse transcription PCR (qPCR), western blotting, and cell migration assays. RESULTS TNMD expression and gene mutation vary across cancers and offer high diagnostic value. Survival analysis found that TNMD is associated with prognosis in multiple cancers. Notably, in patients with high microsatellite instability (MSI-H) CRC, TNMD expression correlated positively with various immune cells, particularly natural killer (NK) cells, whereas it was inversely correlated with regulatory T cells (Tregs). Crucially, in patients with microsatellite stability (MSS) CRC, high TNMD expression was associated with better immunotherapy outcomes, indicating its potential as a biomarker for patient stratification and tailored treatment approaches. Furthermore, single-cell sequencing data revealed stronger interactions between TNMD-positive tumor cells and fibroblasts or macrophages in the tumor microenvironment. Finally, TNMD was overexpressed in CRC tumor tissues and cell lines, thereby promoting invasion and metastasis. CONCLUSIONS Our findings reveal a critical immunomodulatory role of TNMD in CRC, particularly in influencing tumor-immune interactions. Beyond its potential diagnostic and prognostic biomarker, TNMD promotes CRC metastasis and invasion, thus emerging as a promising therapeutic target. These findings highlight TNMD's significance in CRC and potentially other malignancies.
Collapse
Affiliation(s)
- Jingfeng Chen
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
- Anorectal surgery of The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qin Hu
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Cong Zhang
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, 323000, China
| | - Aiqi Zhao
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Bihua Guan
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Yifan Wang
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Min Zhang
- Department, Pathology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xia Li
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Biao Chen
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Lulu Zeng
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui Central Hospital, Lishui, 323000, China
| | - Bing Wu
- Department, Pharmacy, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianping Wang
- Anorectal surgery of The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Yang Yang
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China.
- Key Laboratory of Precision Medicine of Lishui, Lishui Central Hospital, Lishui, 323000, China.
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.
| | - Jiansong Ji
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China.
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, 323000, China.
- Key Laboratory of Precision Medicine of Lishui, Lishui Central Hospital, Lishui, 323000, China.
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.
| |
Collapse
|
11
|
Farzam OR, Eslami S, Jafarizadeh A, Alamdari SG, Dabbaghipour R, Nobari SA, Baradaran B. The significance of exosomal non-coding RNAs (ncRNAs) in the metastasis of colorectal cancer and development of therapy resistance. Gene 2025; 937:149141. [PMID: 39643147 DOI: 10.1016/j.gene.2024.149141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) represents a common type of carcinoma with significant mortality rates globally. A primary factor contributing to the unfavorable treatment outcomes and reduced survival rates in CRC patients is the occurrence of metastasis. Various intricate molecular mechanisms are implicated in the metastatic process, leading to mortality among individuals with CRC. In the realm of intercellular communication, exosomes, which are a form of extracellular vesicle (EV), play an essential role. These vesicles act as conduits for information exchange between cells and originate from multiple sources. By fostering a microenvironment conducive to CRC progression, exosomes and EVs significantly influence the advancement of the disease. They contain a diverse array of molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids, and transcription factors. Notably, ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are prominently featured within exosomes. These ncRNAs have the capacity to regulate various critical molecules or signaling pathways, particularly those associated with tumor metastasis, thereby playing a crucial role in tumorigenesis. Their presence indicates a substantial potential to affect vital aspects of tumor progression, including proliferation, metastasis, and resistance to treatment. This research aims to categorize exosomal ncRNAs and examine their functions in colorectal cancer. Furthermore, it investigates the clinical applicability of novel biomarkers and therapeutic strategies in CRC. Abbreviations: ncRNAs, non-coding RNAs; CRC, Colorectal cancer; EV, extracellular vesicle; mRNAs, messenger RNAs; miRNAs, microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs; HOTTIP, HOXA transcript at the distal tip; NSCLC, non-small cell lung cancer; 5-FU, 5-fluorouracil; OX, Oxaliplatin; PDCD4, programmed cell death factor 4; Tregs, regulatory T cells; EMT, epithelial-mesenchymal transition; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; USP2, ubiquitin carboxyl-terminal hydrolase 2; TNM, tumor node metastasis; TAMs, tumor-associated macrophages; RASA1, RAS p21 protein activator 1; PDCD4, programmed cell death 4; ZBTB2, zinc finger and BTB domain containing 2; SOCS1, suppressor of cytokine signaling 1; TUBB3, β-III tubulin; MSCs, mesenchymal stem cells.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Eslami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-based Medicine, Iranian EBM Center: A Joana-affiliated Group, Tabriz University of Medicine Science, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Alizadeh Nobari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Elshaer SS, Abd-Elmawla MA, Rizk NI, Fathi D, Doghish AS, Abulsoud AI. Comprehensive insights and In silico analysis into the emerging role of LincRNAs in lung diseases pathogenesis; a step toward ncRNA precision. Funct Integr Genomics 2025; 25:34. [PMID: 39912974 PMCID: PMC11802690 DOI: 10.1007/s10142-025-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as essential regulators of gene expression, significantly influencing various biological processes. Approximately half of all lncRNAs are classified as long intergenic non-coding RNAs (lincRNAs), which are situated among coding genes. Recent studies have documented the role of lincRNAs in the pathogenesis of lung diseases, including lung cancer, pulmonary fibrosis, and pulmonary arterial hypertension. These lincRNAs can modulate gene expression through various mechanisms, including epigenetic modifications, transcriptional regulation, and post-transcriptional regulation. By functioning as competing endogenous RNAs (ceRNAs), lincRNAs can affect the activity of microRNAs (miRNAs) and their corresponding target genes. This review delves into the intricate mechanisms by which lincRNAs contribute to the development and progression of various lung diseases. Furthermore, it discusses the potential of lincRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menoufia, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo, 11231, Nasr City, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo, 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, 11829, Badr City, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Cairo, 11231, Nasr City, Egypt.
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Cairo, 11231, Nasr City, Egypt
- Faculty of Pharmacy, Integrative Health Centre, Heliopolis University, Cairo, 11785, Egypt
| |
Collapse
|
13
|
Kenari SN, Mohamadynejad P, Moghanibashi M, Bagheri A, Rouhi L. Upregulation of LncRNAs G2E3-AS1 and BACE1-AS as prognostic biomarkers in metastatic colorectal cancer. Biomarkers 2025; 30:88-96. [PMID: 39745049 DOI: 10.1080/1354750x.2024.2448508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/25/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Despite the current diagnostic and therapeutic methods for colorectal cancer (CRC), patients are often diagnosed at advanced stages of colorectal cancer. Recently, numerous investigations have highlighted the role of lncRNAs in cancer development and progression. This study investigated less well-characterized genes in the colorectal cancer metastasis process. MATERIALS AND METHODS Genes expression profiles from CRC patients were downloaded from the TCGA database by the TCGAbiolinks R package. Differential gene expression analysis of miRNA, lncRNAs, and mRNAs was conducted for the M1 and M0 compared to control samples. Then, the DIANA lncbase3 tool was used to find M1-specific miRNA-LncRNA interactions. In addition, the expression of selected genes was evaluated by Real-time RT-PCR in forty-one CRC tissues. RESULTS Our analysis showed that the expression levels of 77 lncRNAs, 12 miRNAs, and 627 mRNA were significantly changed only in metastatic tumors. In experimental study, significant overexpression of LncRNAs LINC00839, LINC01006, BACE1-AS and G2E3-AS1 was confirmed in metastatic tumors. Also, ROC analysis showed that these lncRNAs, especially lncRNAs G2E3-AS1 and BACE1-AS, are good prognostic biomarkers for metastatic colorectal tumors. CONCLUSION We demonstrated that the lncRNAs G2E3-AS1 and BACE1-AS expression upregulated in CRC tissues can be good potential biomarkers for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Shahrbanoo Nandoust Kenari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Abouzar Bagheri
- Immunogenetics Research Center, Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Rouhi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
14
|
Saberiyan M, Ghasemi N, Jafari N, Sadeghi M, Ghaderi A, Mousavi P. Investigate of LOC101928988 Regulatory Effect on the DAPK2 Transcription in Breast Tumors. Cancer Rep (Hoboken) 2025; 8:e70115. [PMID: 39971705 PMCID: PMC11839281 DOI: 10.1002/cnr2.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/24/2024] [Accepted: 12/24/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The World Health Organization has mentioned breast cancer holds the highest incidence rate among all types of cancer globally. Death-associated protein kinase 2 (DAPK2) is a serine/threonine kinase linked to various forms of malignancy, such as breast cancer. This protein assumes a pivotal function in a multitude of cellular mechanisms, including apoptosis, autophagy, and cell migration. AIMS This study aimed to study the LOC101928988 regulatory effect on the DAPK2 expression in breast cancer. METHODS In this study, 38 paired tumoral and normal tissues were selected from patients. Quantitative real-time PCR was used to analyze the expression of DAPK2 and LOC101928988. The interactions of DAPK2 and its intermediate elements with LOC101928988 were predicted by docking analysis. RESULTS The expression of DAPK2 and LOC101928988 was downregulated in tumor tissues compared to the control group. Further analysis revealed a significant positive correlation between DAPK2 and LOC101928988 levels in tumoral and adjacent normal tissues. A comparison of gene expression between different grades, stages, and HER2 statuses showed significant findings. ROC curve analysis of DAPK2 and LOC101928988 expression revealed 77% and 72% AUC for BC tissue, respectively. CONCLUSIONS Overall, our results suggest that alterations in the levels of DAPK2 and LOC101928988 may be involved in tumor initiation and progression in breast cancer. It has also been reported that LOC101928988 probably has a role in regulating DAPK2 expression through interaction with transcription factors.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Student Research CommitteeHormozgan University of Medical SciencesBandar AbbasIran
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Nazila Ghasemi
- Department of Biology, Jahrom BranchIslamic Azad UniversityJahromIran
| | - Negar Jafari
- Department of Cardiology, School of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Mahboubeh Sadeghi
- Student Research CommitteeHormozgan University of Medical SciencesBandar AbbasIran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of MedicineShiraz University of Medical SciencesShirazIran
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Pegah Mousavi
- Molecular Medicine Research CenterHormozgan Health Institute, Hormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
15
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2025; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
16
|
Pérez-Navarro Y, Salinas-Vera YM, López-Camarillo C, Figueroa-Angulo EE, Alvarez-Sánchez ME. The role of long non-coding RNA NORAD in digestive system tumors. Noncoding RNA Res 2025; 10:55-62. [PMID: 39296642 PMCID: PMC11406672 DOI: 10.1016/j.ncrna.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.
Collapse
Affiliation(s)
- Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| | - Yarely M Salinas-Vera
- Centro Nacional de Identificación Humana, Comisión Nacional de Búsqueda, Secretaría de Gobernación, Camino a Santa Teresa No 1679, Jardines del Pedregal, Ciudad de México, Mexico
| | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Laboratorio de Oncogenómica y Proteómica del cáncer, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| |
Collapse
|
17
|
Jiang Y, Qi S, Zhang R, Zhao R, Fu Y, Fang Y, Shao M. Diagnosis of hepatocellular carcinoma using liquid biopsy-based biomarkers: a systematic review and network meta-analysis. Front Oncol 2025; 14:1483521. [PMID: 39935848 PMCID: PMC11810725 DOI: 10.3389/fonc.2024.1483521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The diagnostic performance of liquid biopsy-based biomarkers for HCC was comprehensively compared in this network meta-analysis (NMA). Methods A thorough literature search was conducted to identify all comparative studies from January 1, 2000, to January 11, 2024. The QUADAS-2 tool was utilized to appraise the quality of studies involving diagnostic performance. R (v4.3.3) and an ANOVA model-based NMA were used to assess the diagnostic accuracy of each biomarker. Results This study included 82 studies comprising a total of 15,024 patients.CircRNA demonstrated significantly superior performance in distinguishing HCC from healthy populations (superiority index: 3.550 (95% CI [0.143-3])) compared to other diagnostic biomarkers for HCC. "mRNA exhibited significantly superior performance in distinguishing HCC from liver disease patients (superiority index:10.621 (95% CI [7-11])) compared to other diagnostic biomarkers for HCC. Further subgroup analysis of the top-ranking liquid biopsy-based diagnostic biomarkers revealed that hsa_circ_000224 (superiority index: 3.091 (95% CI[0.143-9]) ranked remarkably higher in distinguishing HCC from both healthy populations and liver disease patients. Subgroup analysis of mRNA demonstrated that KIAA0101 mRNA (superiority index: 2.434 (95% CI [0.2-5]) ranked remarkably higher in distinguishing HCC from healthy populations and liver disease patients, respectively. Discussion The results of this meta-analysis show that circRNA and mRNA are the first choice for HCC diagnosis. Subsequent analysis of circRNA and mRNA highlighted hsa_circ_000224, hsa_circ_0003998, KIAA0101 mRNA and GPC-3mRNA as the optimal diagnostic biomarkers for distinguishing HCC from healthy populations and liver disease patients, respectively. Well-structured prospective studies are crucial to comprehensively validate these findings. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/,identifier CRD42024521299.
Collapse
Affiliation(s)
- Yutong Jiang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shangwen Qi
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Rongrong Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruixia Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yu Fu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuxuan Fang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingyi Shao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Zhang C, Sun D, Zhou H, Liu C, Ruan J, Kang J, Xie Y. Autophagy-related long non-coding RNA MIR210HG plays a therapeutic role in hepatocellular carcinoma. Discov Oncol 2025; 16:75. [PMID: 39838125 PMCID: PMC11751285 DOI: 10.1007/s12672-025-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the role of the autophagy-related long noncoding RNA (lncRNA) MIR210HG in hepatocellular carcinoma and its potential as a therapeutic target. METHODS LncRNA MIR210HG expression and its correlation with survival outcomes in hepatocellular carcinoma patients were analyzed using data from The Cancer Genome Atlas (TCGA). Kaplan-Meier and Cox regression analyses were conducted to assess survival correlations. Quantitative reverse transcription PCR was used to measure lncRNA MIR210HG expression in liver cancer cells and normal liver cells. Functional assays, including CCK-8, Transwell, flow cytometry, and western blot, were performed to evaluate the effects of lncRNA MIR210HG on cell proliferation, invasion, apoptosis, and autophagy in hepatocellular carcinoma. RESULTS Elevated lncRNA MIR210HG expression correlated with poor overall survival in hepatocellular carcinoma patients. LncRNA MIR210HG expression was significantly up-regulated in hepatocellular carcinoma cells compared to normal liver cells. Knockdown of lncRNA MIR210HG inhibited cell proliferation and autophagy, while promoting apoptosis in hepatocellular carcinoma cells, findings that were confirmed through both in vitro and in vivo studies. CONCLUSION The findings suggest that lncRNA MIR210HG contributes to hepatocellular carcinoma progression by regulating autophagy and could serve as a promising therapeutic target in hepatocellular carcinoma treatment strategies.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Changan District, Shijiazhuang, 050017, China
| | - Dianxing Sun
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Changan District, Shijiazhuang, 050017, China.
- Department of Infection, The 980, Hospital of PLA Joint Logistics Support Force, Shijiazhuang, 050082, China.
| | - Huifang Zhou
- Department of Infection, The 980, Hospital of PLA Joint Logistics Support Force, Shijiazhuang, 050082, China
| | - Chao Liu
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Changan District, Shijiazhuang, 050017, China
| | - Jie Ruan
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Changan District, Shijiazhuang, 050017, China
| | - Jiwen Kang
- Department of Infection, The 980, Hospital of PLA Joint Logistics Support Force, Shijiazhuang, 050082, China
| | - Ying Xie
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Changan District, Shijiazhuang, 050017, China.
| |
Collapse
|
19
|
Duan L, Lin W, Zhang Y, Jin L, Xiao J, Wang H, Pang S, Wang H, Sun D, Gong Y, Li H. Exosomes in Autoimmune Diseases: A Review of Mechanisms and Diagnostic Applications. Clin Rev Allergy Immunol 2025; 68:5. [PMID: 39820756 DOI: 10.1007/s12016-024-09013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
Exosomes, small extracellular vesicles secreted by various cell types, have emerged as key players in the pathophysiology of autoimmune diseases. These vesicles serve as mediators of intercellular communication, facilitating the transfer of bioactive molecules such as proteins, lipids, and nucleotide. In autoimmune diseases, exosomes have been implicated in modulating immune responses, oxidative stress, autophagy, gut microbes, and the cell cycle, contributing to disease initiation, progression, and immune dysregulation. Recent advancements in exosome isolation techniques and their molecular characterization have paved the way for exploring their clinical potential as biomarkers and therapeutic targets. This review focuses on the mechanisms by which exosomes influence autoimmune disease development and their potential clinical applications, particularly in diagnosis. The role of exosomes in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes mellitus (T1DM), inflammatory bowel disease (IBD), and Sjögren's syndrome (SS), is discussed in relation to their involvements in antigen presentation, T-cell activation, and the induction of inflammatory pathways. Additionally, exosome-based biomarkers offer promising non-invasive diagnostic tools for early diagnostic, disease monitoring, and therapeutic response assessment. However, challenges such as standardization of exosome isolation protocols and validation of their clinical significance remain. This review highlights the potential of exosomes as both diagnostic biomarkers and therapeutic targets in autoimmune diseases, emphasizing the need for further research to overcome current limitations and fully harness their clinical value.
Collapse
Affiliation(s)
- Lina Duan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wanying Lin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yi Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lingyue Jin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jie Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haifang Wang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shuyin Pang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hongxia Wang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Dehua Sun
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Ying Gong
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Haixia Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
20
|
Wang W, Hashimi B, Wang P. Targeting ferroptosis: the role of non-coding RNAs in hepatocellular carcinoma progression and therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03791-y. [PMID: 39820644 DOI: 10.1007/s00210-025-03791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
One of the most common tumors is hepatocellular carcinoma (HCC), and the prognosis for late-stage HCC is still not good. It is anticipated that improved outcomes would result from a deeper comprehension of the pathophysiology of HCC. Ferroptosis as a new discovered cell death type is linked to the progression of HCC and may be crucial for its detection, prevention, therapy, and prognosis. Numerous studies suggest that epigenetic alterations mediated by non-coding RNAs (ncRNA) might influence cancer cell susceptibility to ferroptosis. This study elucidates the processes of ferroptosis and delineates the paths by which ncRNAs influence HCC by modulating ferroptosis. Furthermore, it offers significant insights into ferroptosis-associated ncRNAs, intending to discover novel therapeutic approaches for HCC. It also explores innovative concepts for the future use of ncRNA-based ferroptosis-targeted therapeutics.
Collapse
Affiliation(s)
- Weijia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People's Hospital), Shandong Province, China
| | - Behishta Hashimi
- Department of Midwifery, Jahan Institute of Health Sciences, Kabul, Afghanistan
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong Province, China.
| |
Collapse
|
21
|
Zhang H, Tang H, Tu W, Peng F. Regulatory role of non-coding RNAs in 5-Fluorouracil resistance in gastrointestinal cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:4. [PMID: 39935428 PMCID: PMC11810461 DOI: 10.20517/cdr.2024.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Gastrointestinal (GI) cancers are becoming a growing cause of morbidity and mortality globally, posing a significant risk to human life and health. The main treatment for this kind of cancer is chemotherapy based on 5-fluorouracil (5-FU). However, the issue of 5-FU resistance is becoming increasingly prominent, which greatly limits its effectiveness in clinical treatment. Recently, numerous studies have disclosed that some non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), exert remarkable physiological functions within cells. In addition, these ncRNAs can also serve as important information communication molecules in the tumor microenvironment and regulate tumor chemotherapy resistance. In particular, they have been shown to play multiple roles in regulating 5-FU resistance in GI cancers. Herein, we summarize the targets, pathways, and mechanisms involved in regulating 5-FU resistance by ncRNAs and briefly discuss the application potential of ncRNAs as biomarkers or therapeutic targets for 5-FU resistance in GI cancers, aiming to offer a reference to tackle issues related to 5-FU resistance.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu 610051, Sichuan, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, Sichuan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510700, Guangdong, China
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu 610051, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
22
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
23
|
Tang H, Sun S, Zhang Y, Jin Y, Wang C, Xu C, Zhang Y, Chen L, Wu D. LINC01088 Targets miR-195-5p to Promote Proliferation and Migration and Reduce Apoptosis in the Inhibition of Carotid Artery Stenosis. Clin Appl Thromb Hemost 2025; 31:10760296251319281. [PMID: 40129392 PMCID: PMC11946290 DOI: 10.1177/10760296251319281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 03/26/2025] Open
Abstract
Carotid artery stenosis (CAS) often goes undetected until it reaches an advanced stage, which can result in serious complications. The present study evaluated the potential of long noncoding RNA (lncRNA) LINC01088 as a biomarker for CAS. 92 CAS patients and 92 healthy controls (Control group) were included. RT-qPCR was performed to assess the relative levels of LINC01088 and miR-195-5p. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic potential of LINC01088. The relationship between LINC01088 and miR-195-5p was identified by luciferase reporter assay. Proliferation, migration, and apoptosis in human aortic endothelial cells (HAECs) were assessed using CCK8, transwell, and flow cytometry assay. DAVID was employed for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. CAS patients showed decreased LINC01088 expression and increased miR-195-5p expression compared to Control, with a negative correlation between their expression levels in CAS. LINC01088 demonstrated high sensitivity and specificity in distinguishing CAS patients from healthy individuals. LINC01088 directly targets miR-195-5p. Upregulation of LINC01088 reversed the effects of ox-LDL treatment, restoring proliferation and migration while reducing apoptosis in HAECs. However, miR-195-5p mimic reduced the protection of LINC01088 on HAECs proliferation, migration, and apoptosis. For miR-195-5p target genes, GO revealed protein metabolism pathways and KEGG highlighted the p53 and MAPK signaling pathways. The present study revealed the diagnosis value of LINC01088. LINC01088 reversed ox-LDL-induced proliferation, apoptosis, and migration by acting as sponges of miR-195-5p in HAECs. LINC01088 may serve as a protective biomarker in CAS progression.
Collapse
Affiliation(s)
- Huoquan Tang
- Department of Neurosurgery, Taiyuan Iron & Steel (Group) Co. General Hospital, Taiyuan, China
| | - Shuo Sun
- Department of Neurosurgery, The Affiliated Hospital of Hebei University, Baoding, China
| | - Yali Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ying Jin
- Department of Nursing, The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Caijiao Wang
- Department of Nursing, The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Chunchun Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yanfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Li Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Defeng Wu
- Department of Neurology, The First People's Hospital of Xiantao, Xiantao, China
| |
Collapse
|
24
|
Abudoureyimu M, Sun N, Chen W, Lin X, Pan F, Wang R. Aurora-A promotes lenvatinib resistance experimentally through hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2025; 39:3946320251316692. [PMID: 39895095 PMCID: PMC11789117 DOI: 10.1177/03946320251316692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE This study aimed to investigate whether the dysregulation of Aurora-A is involved in lenvatinib resistance in hepatocellular carcinoma. METHODS Bioinformatics tools and drug sensitivity assays were used to investigate the association between Aurora-A expression level and lenvatinib resistance in hepatocellular carcinoma cell lines. Cell function experiments had performed after treatment with lenvatinib and/or a selective Aurora-A inhibitor (MLN-8237). CircRNA microarray, RIP, RNA pull-down, and dual-luciferace reporter assay were performed to identify the downstream molecular mechanism of Aurora-A dysregulation. RESULTS Aurora-A expression was positively correlated with lenvatinib resistance in hepatocellular carcinoma cells. The Aurora-A selective inhibitor MLN-8237, in combination with lenvatinib, synergistically inhibited hepatocellular carcinoma cell proliferation in vitro and vivo, suggesting the Aurora-A might be a potential therapeutic target for lenvatinib resistance. Mechanistically, Aurora-A induced FGFR1 expression through the hsa-circ-0058046/miR-424-5p/FGFR1 axis. Aurora-A promotes lenvatinib resistance through hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma cells. The simultaneous inhibition of FGFR1 by the Aurora-A inhibitor MLN-8237 and lenvatinib overcame lenvatinib resistance in hepatocellular carcinoma cells. CONCLUSION Collectively, our findings indicate that Aurora-A promotes lenvatinib resistance through the hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma (HCC) cells. These results suggest that Aurora-A may serve as a therapeutic target for HCC patients exhibiting lenvatinib resistance. Furthermore, the combination of lenvatinib and MLN-8237 shows potential for clinical trials aimed at overcoming lenvatinib resistance.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Humans
- Phenylurea Compounds/pharmacology
- Quinolines/pharmacology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Cell Line, Tumor
- Aurora Kinase A/metabolism
- Aurora Kinase A/genetics
- Aurora Kinase A/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Animals
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Mice, Nude
- Mice
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Ni Sun
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Weiwei Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Fan Pan
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:47-68. [PMID: 39102033 PMCID: PMC11787197 DOI: 10.1007/s00210-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
PIWI-interacting RNAs (piRNAs) have received a lot of attention for their functions in cancer research. This class of short non-coding RNAs (ncRNA) has roles in genomic stability, chromatin remodeling, messenger RNA (mRNA) integrity, and genome structure. We summarized the mechanisms underlying the biogenesis and regulatory molecular functions of piRNAs. Among all piRNAs studied in cancer, this review offers a comprehensive analysis of the emerging roles of piR-823 in various types of cancer, including colorectal, gastric, liver, breast, and renal cancers, as well as multiple myeloma. piR-823 has emerged as a crucial modulator of various cancer hallmarks through regulating multiple pathways. In the current review, we analyzed several databases and conducted an extensive literature search to explore the influence of piR-823 in carcinogenesis in addition to describing the potential application of piR-823 as prognostic and diagnostic markers as well as the therapeutic potential toward ncRNA precision.
Collapse
Affiliation(s)
- Fatma H Shaker
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Eman F Sanad
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Hesham Elghazaly
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Shih-Min Hsia
- School of Food and Safety, Nutrition Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt.
| |
Collapse
|
26
|
Rad SG, Orang FN, Shadbad MA. MicroRNA networks in prolactinoma tumorigenesis: a scoping review. Cancer Cell Int 2024; 24:418. [PMID: 39702128 PMCID: PMC11660578 DOI: 10.1186/s12935-024-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Prolactinoma is the leading type of pituitary adenoma. Aside from the mass-like effect of prolactinoma, its hormonal effect is the main pathological cause of endocrine dysregulation and infertility. The dopamine agonist administration and surgical resection are the current mainstream anti-neoplastic treatments for affected patients; however, tumor fibrosis, tumor invasion, dopamine agonist resistance, and gain prolactinomas are clinical challenges for treating affected patients. Therefore, there is a need to develop novel treatments for these patients. Although growing evidence has highlighted the significance of dysregulated microRNA (miRNA) expression in various malignancies, no study has systematically investigated the significance of miRNA networks and their therapeutic potential in prolactinoma. For this aim, the current scoping review was performed according to the systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR) guideline. MAIN BODY The systematic study on PubMed, Web of Science, Scopus, and Embase databases has shown that miR-200c, miR-217, miR-93a, miR-93, miR-1299, and miR-9 are the oncogenic miRNAs and miR-137, miR-145-5p, miR-197-3p, miR-29a-3p, miR-489, miR-199a-5p, miR-124, miR-212, miR-129-5p, miR-130a-3p, miR-326, miR-432, miR-548c-3p, miR-570, miR-15, miR-16, miR-26a, miR-196a2, and let-7a are tumor-suppressive miRNAs in prolactinoma tumorigenesis. CONCLUSION In summary, inhibiting the oncogenic miRNAs and ectopic expression of tumor-suppressive miRNAs can decrease prolactin secretion, reduce tumor invasion and migration, enhance dopamine agonist efficacy, and inhibit prolactinoma development. These findings can serve as a blueprint for future translational studies investigating miR-based therapeutics for prolactinoma.
Collapse
Affiliation(s)
- Sevil Ghaffarzadeh Rad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Abdoli Shadbad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Anis A, Mostafa AM, Kerema MS, Hamdy NM, Sultan AS. In silico and cheminformatics prediction with experimental validation of an adipogenesis cocktail, sorafenib with rosiglitazone for HCC dedifferentiation. J Genet Eng Biotechnol 2024; 22:100429. [PMID: 39674644 PMCID: PMC11600669 DOI: 10.1016/j.jgeb.2024.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 12/16/2024]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) resistance to sorafenib treatment and other treatment strategies causes a higher mortality rate in patients diagnosed with HCC. RESEARCH QUESTION HCC often develops resistance to sorafenib treatment and other therapies, leading to increased mortality rates in diagnosed patients. Herein, we propose a combined therapeutic approach using rosiglitazone, a key factor in cellular differentiation, along with adipogenesis inducers such as dexamethasone, IBMX, and insulin. Additionally, we included sorafenib, a primary drug for liver cancer treatment, in this combination cocktail and carried out the differentiation process in the presence of sorafenib. RESULTS Our study demonstrates that this combination induces the formation of adipocytes from HCC cells over several days under specific conditions and steps. CONCLUSION findings suggest that supplementing sorafenib with rosiglitazone and adipogenesis inducers may potentially transform HCC cells into adipocyte-like cells. Fat could be "the good" in the story of liver cancer alleviation, demonstrating the role of rosiglitazone.
Collapse
Affiliation(s)
- Aya Anis
- Postgraduate Pharmacist at DataClin CRO, Giza, Egypt
| | - Ahmed M Mostafa
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Mariam S Kerema
- Postgraduate Pharmacist at Pharco Pharmaceuticals, Alexandria, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt.
| | - Ahmed S Sultan
- Biochemistry Department, Faculty of Science, Alexandria University, El-Shatbi, 21568, Alexandria, Egypt; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
28
|
Ishaq Y, Rauff B, Alzahrani B, Ikram A, Javed H, Abdullah I, Mujtaba G. Bioinformatics and Experimental Insights Into miR-182, hsa_circ_0070269, and circ-102,166 as Therapeutic Targets for HCV-Associated HCC. Cancer Rep (Hoboken) 2024; 7:e70049. [PMID: 39617640 PMCID: PMC11608829 DOI: 10.1002/cnr2.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 01/05/2025] Open
Abstract
AIMS Hepatocellular carcinoma (HCC) is a type of malignant tumor and the sixth leading cause of death worldwide. It is caused by HBV, HCV infection, and alcohol consumption. MicroRNAs are typically small, non-coding RNAs that are involved in the regulation of mRNA expression. Recent studies revealed miRNAs' regulatory roles in liver cancer, linked to risk factors like HCV, HBV infection, alcoholism, drug use, and auto-immune hepatic disorders. Circular RNAs also belong to the class of non-coding RNAs; they act as ceRNAs to regulate miRNA expression and regulate different oncogenic pathways in HCC progression. This study aimed to check the hsa_circ_0070269, circ-102,166 (hsa_circ_0004913), and miR-182 expression in HCV induced HCC patients. METHODS Data analysis was used to find out studies related to the role of hsa_circ_0070269, circ-102,166, and miR-182 in HCC; miR-182 targeted genes, their role in different diseases; and miR-182 interactions with hsa_circ_0070269 and circ-102,166 in the HCC. It was revealed that the hsa_circ_0070269, circ-102,166, and miR-182 correlations in HCV induced HCC have not been explored yet. Therefore, to validate data from literature mining, expression analysis of dysregulated hsa_circ_0070269, circ-102,166, and miR-182 was performed in HCV induced HCC patients using RT-PCR. RESULTS It was found that miR-182 was significantly upregulated and acts as an oncomiRNA in HCV induced HCC, and hsa_circ_0070269 and circ-102,166 were downregulated in HCV induced HCC. We have identified that miR-182 relative expression level was significantly high (p < 0.0029), while has_circ_0070269 (p < 0.002) and circ-102,166 (p < 0.002) were significantly downregulated in HCV-HCC patients as compared to expression in healthy individuals. CONCLUSION Our data revealed that miR-182 acts as an oncomiRNA in HCC development. Hsa_circ_0070269 and circ-102,166 are highly expressed in healthy controls compared to HCV induced HCC patients, can sponge miR-182 expression by acting as tumor suppressors, and can be used as biomarkers and targets for HCC treatment.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB)University of Lahore (UOL)LahorePakistan
| | - Bisma Rauff
- Department of Biomedical EngineeringUET LahoreNarowalPakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB)University of Lahore (UOL)LahorePakistan
| | - Hasnain Javed
- Provincial Public Health reference lab LahorePunjab AIDS Control ProgramLahorePakistan
| | - Imran Abdullah
- Institute of Nuclear Medicine & Oncology (INMOL) Cancer HospitalLahorePakistan
| | - Ghulam Mujtaba
- Institute of Nuclear Medicine & Oncology (INMOL) Cancer HospitalLahorePakistan
| |
Collapse
|
29
|
Tang H, Liu X, Ke J, Tang Y, Luo S, Li XK, Huang M. New perspectives of exosomes in urologic malignancies - Mainly focus on biomarkers and tumor microenvironment. Pathol Res Pract 2024; 263:155645. [PMID: 39476607 DOI: 10.1016/j.prp.2024.155645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/10/2024]
Abstract
Bladder cancer (BCa) and renal cell carcinoma (RCC) are prevalent urologic malignancies (UM) characterized by high morbidity and frequent recurrence. Current diagnostic approaches, often invasive, often indicate an advanced disease stage. And the complex tumor microenvironment often promotes tumor progression and induces resistance to chemotherapy. Current diagnostic and therapeutic modalities often fail to achieve satisfactory outcomes for patients. Exosomes transport diverse cargoes, including cytokines, proteins, lipids, non-coding RNAs, and microRNAs, crucial for intercellular communication. Exosomes have shown potential as biomarkers for UM, participating in tumor progression, especially within the tumor microenvironment (TME), including tumor cell apoptosis, proliferation, migration, invasion, depletion of immune cell function, epithelial-mesenchymal transition (EMT), angiogenesis, and more.In this review, we summarize research advances related to exosomes in UM, focusing on the role of exosomes as biomarkers in bladder and renal cancer, highlighting their significance within the TME.
Collapse
Affiliation(s)
- Hai Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xing Liu
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwei Ke
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiquan Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Songtao Luo
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xu Kun Li
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingwei Huang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
30
|
Yang W, Li Q, Wang F, Zhang X, Zhang X, Wang M, Xue D, Zhao Y, Tang L. Exosomal miR-155-5p promote the occurrence of carotid atherosclerosis. J Cell Mol Med 2024; 28:e70187. [PMID: 39495676 PMCID: PMC11534067 DOI: 10.1111/jcmm.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Periodontitis is a significant independent risk factor for atherosclerosis. Yet, the exact mechanism of action is still not fully understood. In this study, we investigated the effect of exosomes-miR-155-5p derived from periodontal endothelial cells on atherosclerosis in vitro and in vivo. Higher expression of miR-155-5p was detected in the plasma exosomes of patients with chronic periodontitis (CP) and carotid atherosclerosis (CAS) compared to patients with CP. Also, the expression level of miR-155-5p was associated with the severity of CP. miR-155-5p-enriched exosomes from HUVECs increased the angiogenesis and permeability of HAECs and promoted the expression of angiogenesis, permeability, and inflammation genes. Along with the overexpression or inhibition of miR-155-5p, the biological effect of HUVECs-derived exosomes on HAECs changed correspondingly. In ApoE-/- mouse models, miR-155-5p-enriched exosomes promoted the occurrence of carotid atherosclerosis by increasing permeable and angiogenic activity. Collectively, these findings highlight a molecular mechanism of periodontitis in CAS, uncovering exosomal miR-155-5p derived periodontitis affecting carotid endothelial cells in an 'exosomecrine' manner. Exosomal miR-155-5p may be used as a biomarker and target for clinical intervention to control this intractable disease in future, and the graphic abstract was shown in Figure S1.
Collapse
Affiliation(s)
- Wen‐Wen Yang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing‐Xiang Li
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Fei Wang
- Department of Vascular Surgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin‐Ran Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xian‐Li Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Meng Wang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dong Xue
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ying Zhao
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Lu Tang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
31
|
Abdelhamid AM, Zeinelabdeen Y, Manie T, Khallaf E, Assal RA, Youness RA. miR-17-5p/STAT3/H19: A novel regulatory axis tuning ULBP2 expression in young breast cancer patients. Pathol Res Pract 2024; 263:155638. [PMID: 39388743 DOI: 10.1016/j.prp.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM UL-16 binding protein 2 (ULBP2) is a highly altered ligand for the activating receptor, NKG2D in breast cancer (BC). However, the mechanism behind its de-regulation in BC patients remains to be explored. The sophisticated crosstalk between miR-17-5p, the lncRNA H19, and STAT3 as a possible upstream regulatory loop for ULBP2 in young BC patients and cell lines remains as an unexplored area. Therefore, this study aimed at unravelling the ncRNA circuit regulating ULBP2 in young BC patients and cell lines. PATIENTS AND METHODS A total of 30 BC patients were recruited for this study. The expression levels of miR-17-5p, lncRNA H19, and STAT3 were examined in 30 BC tissues compared to their normal counterparts. In addition, the expression signatures of those transcripts were compared in young (<40 years) and old BC (≥40 years) patients. miR-17-5p oligonucleotides, STAT3 and H19 siRNAs were transfected in MDA-MB-231 cells using HiPerfect® Transfection Reagent. miR-17-5p and the transcripts of the target genes quantified using RT-qPCR. Their relative expression was calculated using the 2-ΔΔCT method. RESULTS Through acting as a ceRNA circuit that antagonizes the function of miR-17-5p, H19 prevented the miR-17-5p-induced downregulation of STAT3; this mechanism further contributes to the pathogenesis of BC. Ectopic expression of miR-17-5p in MDA-MB-231 cells displayed its prominent role as an indirect potential activator of NK cells by significantly repressing the expression levels of the oncogenic mediator STAT3 and the oncogenic lncRNA H19 and inducing ULBP2 expression level by 3 folds in TNBC cell lines compared to mock cells. Furthermore, knocking down of STAT3 repressed the lncRNA H19 and increased ULBP2 expression levels, whereas siRNAs against H19 increased the expression levels of ULBP2. CONCLUSION This study highlighted the crosstalk between the novel regulatory network composed of miR-17-5p, H19 and STAT3, and their impact on ULBP2 in BC. Moreover, this study underscored the potential role of miR-17-5p in counteracting the immune evasion tactics, particularly the shedding of ULBP2 in young BC patients, through the modulation of the STAT3/H19/ULBP2 regulatory axis. Thus, targeting this novel regulatory network could potentially enhance our understanding and advance the future application of the innate system-mediated immunotherapy in BC.
Collapse
Affiliation(s)
- A M Abdelhamid
- Biotechnology School, Nile University, Giza 12588, Egypt
| | - Y Zeinelabdeen
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - T Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - E Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University, New Administrative Capital 11835, Egypt.
| |
Collapse
|
32
|
Ala M. Noncoding Ribonucleic Acids (RNAs) May Improve Response to Immunotherapy in Pancreatic Cancer. ACS Pharmacol Transl Sci 2024; 7:2557-2572. [PMID: 39296265 PMCID: PMC11406708 DOI: 10.1021/acsptsci.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the seventh most common cause of cancer-related mortality. Despite different methods of treatment, nearly more than 90% of patients with PDAC die shortly after diagnosis. Contrary to promising results in other cancers, immune checkpoint inhibitors (ICIs) showed limited success in PDAC. Recent studies have shown that noncoding RNAs (ncRNAs) are extensively involved in PDAC cell-immune cell interaction and mediate immune evasion in this vicious cancer. PDAC cells recruit numerous ncRNAs to widely affect the phenotype and function of immune cells through various mechanisms. For instance, PDAC cells upregulate miR-301a and downregulate miR-340 to induce M2 polarization of macrophages or overexpress miR-203, miR-146a, and miR-212-3p to downregulate toll-like receptor 4 (TLR4), CD80, CD86, CD1a, major histocompatibility complex (MHC) II, and CD83, thereby evading recognition by dendritic cells. By downregulating miR-4299 and miR-153, PDAC cells can decrease the expression of NK group 2D (NKG2D) and MHC class I chain-related molecules A and B (MICA/B) to blunt the natural killer (NK) cell response. PDAC cells also highly express lncRNA AL137789.1, hsa_circ_0046523, lncRNA LINC00460, and miR-155-5p to upregulate immune checkpoint proteins and escape T cell cytotoxicity. On the other hand, ncRNAs derived from suppressive immune cells promote proliferation, invasion, and drug resistance in PDAC cells. ncRNAs can be applied to overcome resistance to ICIs, monitor the immune microenvironment of PDAC, and predict response to ICIs. This Review article comprehensively discusses recent findings regarding the roles of ncRNAs in the immune evasion of PDAC.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), Tehran 1416634793, Iran
| |
Collapse
|
33
|
Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics 2024; 24:150. [PMID: 39222264 DOI: 10.1007/s10142-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.
Collapse
Affiliation(s)
- Fatemeh Ebadi Meinag
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Fatahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
35
|
Youness RA, Hassan HA, Abaza T, Hady AA, El Magdoub HM, Ali M, Vogel J, Thiersch M, Gassmann M, Hamdy NM, Aboouf MA. A Comprehensive Insight and In Silico Analysis of CircRNAs in Hepatocellular Carcinoma: A Step toward ncRNA-Based Precision Medicine. Cells 2024; 13:1245. [PMID: 39120276 PMCID: PMC11312109 DOI: 10.3390/cells13151245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Circular RNAs (circRNAs) are cardinal players in numerous physiological and pathological processes. CircRNAs play dual roles as tumor suppressors and oncogenes in different oncological contexts, including hepatocellular carcinoma (HCC). Their roles significantly impact the disease at all stages, including initiation, development, progression, invasion, and metastasis, in addition to the response to treatment. In this review, we discuss the biogenesis and regulatory functional roles of circRNAs, as well as circRNA-protein-mRNA ternary complex formation, elucidating the intricate pathways tuned by circRNAs to modulate gene expression and cellular processes through a comprehensive literature search, in silico search, and bioinformatics analysis. With a particular focus on the interplay between circRNAs, epigenetics, and HCC pathology, the article sets the stage for further exploration of circRNAs as novel investigational theranostic agents in the dynamic realm of HCC.
Collapse
Affiliation(s)
- Rana A. Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Hossam A. Hassan
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Tasneem Abaza
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
- Biotechnology Program, Institute of Basic and Applied Sciences (BAS), Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt
| | - Ahmed A. Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt;
| | - Hekmat M. El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 19648, Egypt;
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Johannes Vogel
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Markus Thiersch
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Mostafa A. Aboouf
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
36
|
Assal RA, Elemam NM, Mekky RY, Attia AA, Soliman AH, Gomaa AI, Efthimiadou EK, Braoudaki M, Fahmy SA, Youness RA. A Novel Epigenetic Strategy to Concurrently Block Immune Checkpoints PD-1/PD-L1 and CD155/TIGIT in Hepatocellular Carcinoma. Transl Oncol 2024; 45:101961. [PMID: 38631259 PMCID: PMC11040172 DOI: 10.1016/j.tranon.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tumor microenvironment is an intricate web of stromal and immune cells creating an immune suppressive cordon around the tumor. In hepatocellular carcinoma (HCC), Tumor microenvironment is a formidable barrier towards novel immune therapeutic approaches recently evading the oncology field. In this study, the main aim was to identify the intricate immune evasion tactics mediated by HCC cells and to study the epigenetic modulation of the immune checkpoints; Programmed death-1 (PD-1)/ Programmed death-Ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT)/Cluster of Differentiation 155 (CD155) at the tumor-immune synapse. Thus, liver tissues, PBMCs and sera were collected from Hepatitis C Virus (HCV), HCC as well as healthy individuals. Screening was performed to PD-L1/PD-1 and CD155/TIGIT axes in HCC patients. PDL1, CD155, PD-1 and TIGIT were found to be significantly upregulated in liver tissues and peripheral blood mononuclear cells (PBMCs) of HCC patients. An array of long non-coding RNAs (lncRNAs) and microRNAs validated to regulate such immune checkpoints were screened. The lncRNAs; CCAT-1, H19, and MALAT-1 were all significantly upregulated in the sera, PBMCs, and tissues of HCC patients as compared to HCV patients and healthy controls. However, miR-944-5p, miR-105-5p, miR-486-5p, miR-506-5p, and miR-30a-5p were downregulated in the sera and liver tissues of HCC patients. On the tumor cell side, knocking down of lncRNAs-CCAT-1, MALAT-1, or H19-markedly repressed the co-expression of PD-L1 and CD155 and accordingly induced the cytotoxicity of co-cultured primary immune cells. On the immune side, ectopic expression of the under-expressed microRNAs; miR-486-5p, miR-506-5p, and miR-30a-5p significantly decreased the transcript levels of PD-1 in PBMCs with no effect on TIGIT. On the other hand, ectopic expression of miR-944-5p and miR-105-5p in PBMCs dramatically reduced the co-expression of PD-1 and TIGIT. Finally, all studied miRNAs enhanced the cytotoxic effects of PBMCs against Huh7 cells. However, miR-105-5p showed the highest augmentation for PBMCs cytotoxicity against HCC cells. In conclusion, this study highlights a novel co-targeting strategy using miR-105-5p mimics, MALAT-1, CCAT-1 and H19 siRNAs to efficiently hampers the immune checkpoints; PD-L1/PD-1 and CD155/TIGIT immune evasion properties in HCC.
Collapse
Affiliation(s)
- Reem A Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development, Cairo-Ismailia Desert Road, 11785, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Radwa Y Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo, Egypt
| | - Abdelrahman A Attia
- General Surgery Department, Ain Shams University, Demerdash Hospital, Cairo, Egypt
| | - Aya Hesham Soliman
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Asmaa Ibrahim Gomaa
- Department of Hepatology, National Liver Institute, Menoufiya University, Shebin El-Kom, Egypt
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11835, Cairo, Egypt
| | - Rana A Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt; Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt.
| |
Collapse
|
37
|
Elmasri RA, Rashwan AA, Gaber SH, Rostom MM, Karousi P, Yasser MB, Kontos CK, Youness RA. Puzzling out the role of MIAT LncRNA in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:547-559. [PMID: 38515792 PMCID: PMC10955557 DOI: 10.1016/j.ncrna.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024] Open
Abstract
A non-negligible part of our DNA has been proven to be transcribed into non-protein coding RNA and its intricate involvement in several physiological processes has been highly evidenced. The significant biological role of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) has been variously reported. In the current review, the authors highlight the multifaceted role of myocardial infarction-associated transcript (MIAT), a well-known lncRNA, in hepatocellular carcinoma (HCC). Since its discovery, MIAT has been described as a regulator of carcinogenesis in several malignant tumors and its overexpression predicts poor prognosis in most of them. At the molecular level, MIAT is closely linked to the initiation of metastasis, invasion, cellular migration, and proliferation, as evidenced by several in-vitro and in-vivo models. Thus, MIAT is considered a possible theranostic agent and therapeutic target in several malignancies. In this review, the authors provide a comprehensive overview of the underlying molecular mechanisms of MIAT in terms of its downstream target genes, interaction with other classes of ncRNAs, and potential clinical implications as a diagnostic and/or prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Rawan Amr Elmasri
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Alaa A. Rashwan
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Sarah Hany Gaber
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Monica Mosaad Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), 11835, Cairo, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| |
Collapse
|
38
|
Abutalebi M, Li D, Ahmad W, Mokhtari K, Entezari M, Hashemi M, Fu J, Maghsoudloo M. Discovery of PELATON links to the INHBA gene in the TGF-β pathway in colorectal cancer using a combination of bioinformatics and experimental investigations. Int J Biol Macromol 2024; 270:132239. [PMID: 38735606 DOI: 10.1016/j.ijbiomac.2024.132239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Colorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-β) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression. The aim of this research is to explore the immunological roles of INHBA and PELATON in CRC through a combination of computational predictions and experimental validations, with the goal of enhancing diagnostic and therapeutic strategies. In this study, we utilized bioinformatics analyses, which involved examining differential gene expression (DEG) in the TCGA-COAD dataset and exploring the INHBA gene in relation to the TGF-β pathway. Additionally, we analyzed mutations of INHBA, evaluated the microenvironment and tumor purity, investigated the INHBA's connection to immune checkpoint inhibitors, and measured its potential as an immunotherapy target using the TIDE score. Utilizing bioinformatics analyses of the TCGA-COAD dataset beside experimental methodologies such as RT-qPCR, our investigation revealed significant upregulation of INHBA in CRC. As results, our analysis of the protein-protein interaction network associated with INHBA showed 10 interacting proteins that play a role in CRC-associated processes. We observed a notable prevalence of mutations within INHBA and explored its correlation with the response to immune checkpoint inhibitors. Our study highlights INHBA as a promising target for immunotherapy in CRC. Moreover, our study identified PELATON as a closely correlated lncRNA with INHBA, with experimental validation confirming their concurrent upregulation in CRC tissues. Thus, these findings highlight the importance of INHBA and PELATON in driving CRC progression, suggesting their potential utility as diagnostic and prognostic biomarkers. By integrating computational predictions with experimental validations, this research enhances our understanding of CRC pathogenesis and uncovers prospects for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Abutalebi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China
| | - Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran; Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
39
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
40
|
Ahmad I, Jasim SA, Sergeevna KN, Jyothi S R, Kumar A, Dusanov A, Shuhata Alubiady MH, Sinha A, Zain Al-Abdeen SH, Hjazi A. Emerging roles of long noncoding RNA H19 in human lung cancer. Cell Biochem Funct 2024; 42:e4072. [PMID: 39031589 DOI: 10.1002/cbf.4072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Lung cancer holds the position of being the primary cause of cancer-related fatalities on a global scale. Furthermore, it exhibits the highest mortality rate among all types of cancer. The survival rate within a span of 5 years is less than 20%, primarily due to the fact that the disease is often diagnosed at an advanced stage, resulting in less effective treatment options compared to earlier stages. There are two main types of primary lung cancer: nonsmall-cell lung cancer, which accounts for approximately 80%-85% of all cases, and small-cell lung cancer, which is categorized based on the specific type of cells in which the cancer originates. The understanding of the biology of this disease and the identification of oncogenic driver alterations have significantly transformed the landscape of therapeutic approaches. Long noncoding RNAs (lncRNAs) play a crucial role in regulating various physiological and pathological processes through diverse molecular mechanisms. Among these lncRNAs, lncRNA H19, initially identified as an oncofetal transcript, has garnered significant attention due to its elevated expression in numerous tumors. Extensive research has confirmed its involvement in tumorigenesis and malignant progression by promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and therapy resistance. This comprehensive review aims to provide an overview of the aberrant overexpression of lncRNA H19 and the molecular pathways through which it contributes to the advancement of lung cancer. The findings of this review highlight the potential for further investigation into the diagnosis and treatment of this disease, offering promising avenues for future research.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Klunko Nataliya Sergeevna
- Department of Training of Scientific and Scientific-Pedagogical Personnel, Russian New University, Moscow, Russia
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abdigafur Dusanov
- Department of Internal Medicine Number 4, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
41
|
Rashwan HH, Taher AM, Hassan HA, Awaji AA, Kiriacos CJ, Assal RA, Youness RA. Harnessing the supremacy of MEG3 LncRNA to defeat gastrointestinal malignancies. Pathol Res Pract 2024; 256:155223. [PMID: 38452587 DOI: 10.1016/j.prp.2024.155223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Evidence suggests that long non-coding RNAs (lncRNAs) play a pivotal role in the carcinogenesis and progression of various human malignancies including gastrointestinal malignancies. This comprehensive review reports the functions and mechanisms of the lncRNA maternally expressed gene 3 (MEG3) involved in gastrointestinal malignancies. It summarizes its roles in mediating the regulation of cellular proliferation, apoptosis, migration, invasiveness, epithelial-to-mesenchymal transition, and drug resistance in several gastrointestinal cancers such as colorectal cancer, gall bladder cancer, pancreatic cancer, gastric cancer, esophageal cancer, cholangiocarcinoma, gastrointestinal stromal tumors and most importantly, hepatocellular carcinoma. In addition, the authors briefly highlight its implicated mechanistic role and interactions with different non-coding RNAs and oncogenic signaling cascades. This review presents the rationale for developing non coding RNA-based anticancer therapy via harnessing the power of MEG3 in gastrointestinal malignancies.
Collapse
Affiliation(s)
- H H Rashwan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; Bioinformatics Group, Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, 12677, Giza, Egypt
| | - A M Taher
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - H A Hassan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - A A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - C J Kiriacos
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt.
| |
Collapse
|
42
|
Dong C, Hui P, Wu Z, Li J, Man X. CircRNA LOC729852 promotes bladder cancer progression by regulating macrophage polarization and recruitment via the miR-769-5p/IL-10 axis. J Cell Mol Med 2024; 28:e18225. [PMID: 38506082 PMCID: PMC10951884 DOI: 10.1111/jcmm.18225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Circular RNAs (circRNAs) function as tumour promoters or suppressors in bladder cancer (BLCA) by regulating genes involved in macrophage recruitment and polarization. However, the underlying mechanisms are largely unknown. The aim of this study was to determine the biological role of circLOC729852 in BLCA. CircLOC729852 was upregulated in BLCA tissues and correlated with increased proliferation, migration and epithelial mesenchymal transition (EMT) of BCLA cells. MiR-769-5p was identified as a target for circLOC729852, which can upregulate IL-10 expression by directly binding to and suppressing miR-769-5p. Furthermore, our results indicated that the circLOC729852/miR-769-5p/IL-10 axis modulates autophagy signalling in BLCA cells and promotes the recruitment and M2 polarization of TAMs by activating the JAK2/STAT3 signalling pathway. In addition, circLOC729852 also promoted the growth of BLCA xenografts and M2 macrophage infiltration in vivo. Thus, circLOC729852 functions as an oncogene in BLCA by inducing secretion of IL-10 by the M2 TAMs, which then facilitates tumour cell growth and migration. Taken together, circLOC729852 is a potential diagnostic biomarker and therapeutic target for BLCA.
Collapse
Affiliation(s)
- Changming Dong
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningPR China
| | - Pengyu Hui
- Department of UrologyThe Second Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Zhengqi Wu
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianfeng Li
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaojun Man
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningPR China
| |
Collapse
|
43
|
Dawoud A, Elmasri RA, Mohamed AH, Mahmoud A, Rostom MM, Youness RA. Involvement of CircRNAs in regulating The "New Generation of Cancer Hallmarks": A Special Depiction on Hepatocellular Carcinoma. Crit Rev Oncol Hematol 2024; 196:104312. [PMID: 38428701 DOI: 10.1016/j.critrevonc.2024.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
The concept of 'Hallmarks of Cancer' is an approach of reducing the enormous complexity of cancer to a set of guiding principles. As the underlying mechanism of cancer are portrayed, we find that we gain insight and additional aspects of the disease arise. The understanding of the tumor microenvironment (TME) brought a new dimension and led to the discovery of novel hallmarks such as senescent cells, non-mutational epigenetic reprogramming, polymorphic microbiomes and unlocked phenotypic plasticity. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across all species. Recent studies on the circRNAs have highlighted their crucial function in regulating the formation of human malignancies through a range of biological processes. The primary goal of this review is to clarify the role of circRNAs in the most common form of liver cancer, hepatocellular carcinoma (HCC). This review also addressed the topic of how circRNAs affect HCC hallmarks, including the new generation hallmarks. Finally, the enormous applications that these rapidly expanding ncRNA molecules serve in the functional and molecular development of effective HCC diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- A Dawoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; School of Medicine, University of North California, Chapel Hill, NC 27599, USA
| | - R A Elmasri
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt
| | - A H Mohamed
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - A Mahmoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Biotechnology School, Nile University, Giza 12677, Egypt
| | - M M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt.
| |
Collapse
|
44
|
Guo B, Zheng Q, Jiang Y, Zhan Y, Huang W, Chen Z. Long non-coding RNAFOXD1-AS1 modulated CTCs epithelial-mesenchymal transition and immune escape in hepatocellular carcinoma in vitro by sponging miR-615-3p. Cancer Rep (Hoboken) 2024; 7:e2050. [PMID: 38517478 PMCID: PMC10959247 DOI: 10.1002/cnr2.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is widely recognized as a globally prevalent malignancy. Immunotherapy is a promising therapy for HCC patients. Increasing evidence suggests that lncRNAs are involved in HCC progression and immunotherapy. AIM The study reveals the mechanistic role of long non-coding RNA (lncRNA) FOXD1-AS1 in regulating migration, invasion, circulating tumor cells (CTCs), epithelial-mesenchymal transition (EMT), and immune escape in HCC in vitro. METHODS This study employed real-time PCR (RT-qPCR) to measure FOXD1-AS1, miR-615-3p, and programmed death-ligand 1 (PD-L1). The interactions of FOXD1-AS1, miR-615-3p, and PD-L1 were validated via dual-luciferase reporter gene and ribonucleoprotein immunoprecipitation (RIP) assay. In vivo experimentation involves BALB/c mice and BALB/c nude mice to investigate the impact of HCC metastasis. RESULTS The upregulation of lncRNA FOXD1-AS1 in malignant tissues significantly correlates with poor prognosis. The investigation was implemented on the impact of lncRNA FOXD1-AS1 on the migratory, invasive, and EMT of HCC cells. It has been observed that the lncRNA FOXD1-AS1 significantly influences the generation and metastasis of MCTC in vivo analysis. In mechanistic analysis, lncRNA FOXD1-AS1 enhanced immune escape in HCC via upregulation of PD-L1, which acted as a ceRNA by sequestering miR-615-3p. Additionally, lncRNA FOXD1-AS1 was found to modulate the EMT of CTCs through the activation of the PI3K/AKT pathway. CONCLUSION This study presents compelling evidence supporting the role of lncRNA FOXD1-AS1 as a miRNA sponge that sequesters miR-655-3p and protects PD-L1 from suppression.
Collapse
Affiliation(s)
- Bao‐ling Guo
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Qiu‐xiang Zheng
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Yun‐shan Jiang
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Ying Zhan
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Wen‐jin Huang
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| | - Zhi‐yong Chen
- Department of OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPeople's Republic of China
| |
Collapse
|
45
|
Bao L. Roles, underlying mechanisms and clinical significances of LINC01503 in human cancers. Pathol Res Pract 2024; 254:155125. [PMID: 38241778 DOI: 10.1016/j.prp.2024.155125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Long intergenic non-coding RNA 01503 (LINC01503) is a long non-coding RNA (lncRNA) located on human chromosome 9q34.11. There is compelling evidence indicating that LINC01503 is upregulated in multiple types of tumors and functions as a tumor stimulator. The upregulation of LINC01503 was significantly associated with the risk of 12 tumors and showed a strong correlation with clinicopathological characteristics and poor prognosis in 9 tumors. The expression of LINC01503 is regulated by transcription factors such as TP63, EGR1, c-MYC, GATA1 and AR. The downstream regulatory mechanisms of LINC01503 are complex and multifaceted. LINC01503, as a competing endogenous RNA (ceRNA), regulates gene expression by competitively inhibiting miRNA. LINC01503 may also regulate gene expression via interacting with biomolecules or recruiting chromatin-modifying complexes. In addition, LINC01503 can abnormally activate the ERK/MAPK, PI3K/AKT and Wnt/β-catenin signaling pathways to enhance tumor progression. Here, this review presents an overview of the latest research progress of LINC01503 in the field of oncology, summarizes its comprehensive network involved in multiple cancer molecular mechanisms, and explores its potential applications in cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Lei Bao
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
46
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
47
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
48
|
Wang Q, Chen M, Tang X. Luteolin Inhibits Lung Cancer Cell Migration by Negatively Regulating TWIST1 and MMP2 Through Upregulation of miR-106a-5p. Integr Cancer Ther 2024; 23:15347354241247223. [PMID: 38646808 PMCID: PMC11034356 DOI: 10.1177/15347354241247223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Luteolin, a common dietary flavonoid found in plants, has been shown to have anti-cancer properties. However, its exact mechanisms of action in non-small cell lung cancer (NSCLC) are still not fully understood, particularly its role in regulating broader genomic networks and specific gene targets. In this study, we aimed to elucidate the role of microRNAs (miRNAs) in NSCLC treated with luteolin, using A549 cells as a model system. MATERIALS AND METHODS miRNA profiling was conducted on luteolin-treated A549 cells using Exiqon microarrays, with validation of selected miRNAs by qRT-PCR. Bioinformatic analysis identified the regulatory roles of miRNAs in biological processes and pathways following luteolin treatment. Computational algorithms were employed to identify potential target genes. A549 cells were transfected with miR-106a-5p mimic and inhibitor or their corresponding controls. The expression levels of 2 genes, twist basic helix-loop-helix transcription factor 1 (TWIST1) and matrix metallopeptidase 2 (MMP2), and cell migration were assessed. RESULTS miRNA profiling identified 341 miRNAs, with 18 exhibiting significantly altered expression (P < 0.05). Subsequent qRT-PCR analysis confirmed altered expression of 6 selected miRNAs. KEGG and GO analyses revealed significant alterations in pathways and biological processes crucial for tumor biology. TWIST1 and MMP2, which both contain conserved miR-106a-5p binding sites, exhibited an inverse correlation with the expression levels of miR-106a-5p. Dual-luciferase reporter assays confirmed TWIST1 and MMP2 as direct targets of miR-106a-5p. Luteolin treatment led to a reduction in A549 cell migration, and this reduction was further amplified by the overexpression of miR-106a-5p. CONCLUSION Luteolin inhibits A549 cell migration by modulating the miRNA landscape, shedding light on its mechanisms and laying the foundation for miRNA-based therapeutic approaches for NSCLC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, People’s Republic of China
| | - Mengyuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaofang Tang
- Department of Cadre Health Care, Zhejiang Hospital, Hangzhou, People’s Republic of China
| |
Collapse
|
49
|
Soliman AH, Youness RA, Sebak AA, Handoussa H. Phytochemical-derived tumor-associated macrophage remodeling strategy using Phoenix dactylifera L. boosted photodynamic therapy in melanoma via H19/iNOS/PD-L1 axis. Photodiagnosis Photodyn Ther 2023; 44:103792. [PMID: 37689125 DOI: 10.1016/j.pdpdt.2023.103792] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The tumor microenvironment (TME) represents a barrier to PDT efficacy among melanoma patients. The aim of this study is to employ a novel muti-tactic TME-remodeling strategy via repolarization of tumor-associated macrophages (TAMs), the main TME immune cells in melanoma, from the pro-tumor M2 into the antitumor M1 phenotype using Phoenix dactylifera L. (date palm) in combination with PDT. METHODS Screening of different date cultivars was employed to choose extracts of selective toxicity to melanoma and TAMs, not normal macrophages. Potential extracts were then fractionated and characterized by gas chromatography-mass spectrometry (GC-MS). Finally, the efficacy and the potential molecular mechanism of the co-treatment were portrayed via quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS Initial screening resulted in the selection of the two Phoenix dactylifera L. cultivars Safawi and Sukkari methanolic extracts. Sukkari showed superior capacity to revert TAM phenotype into M1 as well as more prominent upregulation of M1 markers and repression of melanoma immunosuppressive markers relative to positive control (resiquimod). Molecularly, it was shown that PDT of melanoma cells in the presence of the secretome of repolarized TAMs surpassed the monotherapy via the modulation of the H19/iNOS/PD-L1immune-regulatory axis. CONCLUSION This study highlights the potential utilization of nutraceuticals in combination with PDT in the treatment of melanoma to provide a dual activity through alleviating the immune suppressive TME and potentiating the anti-tumor responses.
Collapse
Affiliation(s)
- Aya H Soliman
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt.
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt; Department of Biology and Biochemistry, Faculty of Biotechnology, German International University, New Administrative Capital, New Cairo 11835, Egypt
| | - Aya A Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11511, Egypt.
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt
| |
Collapse
|
50
|
Abaza T, El-Aziz MKA, Daniel KA, Karousi P, Papatsirou M, Fahmy SA, Hamdy NM, Kontos CK, Youness RA. Emerging Role of Circular RNAs in Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2023; 24:16484. [PMID: 38003674 PMCID: PMC10671287 DOI: 10.3390/ijms242216484] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal malignancy with limited therapeutic options and high recurrence rates. Recently, immunotherapeutic agents such as immune checkpoint inhibitors (ICIs) have emerged as a new paradigm shift in oncology. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have provided a new source of hope for patients with advanced HCC. Yet, the eligibility criteria of HCC patients for ICIs are still a missing piece in the puzzle. Circular RNAs (circRNAs) have recently emerged as a new class of non-coding RNAs that play a fundamental role in cancer pathogenesis. Structurally, circRNAs are resistant to exonucleolytic degradation and have a longer half-life than their linear counterparts. Functionally, circRNAs possess the capability to influence various facets of the tumor microenvironment, especially at the HCC tumor-immune synapse. Notably, circRNAs have been observed to control the expression of immune checkpoint molecules within tumor cells, potentially impeding the therapeutic effectiveness of ICIs. Therefore, this renders them potential cancer-immune biomarkers for diagnosis, prognosis, and therapeutic regimen determinants. In this review, the authors shed light on the structure and functional roles of circRNAs and, most importantly, highlight the promising roles of circRNAs in HCC immunomodulation and their potential as promising biomarkers and immunotherapeutic regimen determinants.
Collapse
Affiliation(s)
- Tasneem Abaza
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa K. Abd El-Aziz
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71631, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt;
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Rana A. Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
| |
Collapse
|