1
|
Zheng H, Li J, Leung SSY. Inhalable polysorbates stabilized nintedanib nanocrystals to facilitate pulmonary nebulization and alveolar macrophage evasion. BIOMATERIALS ADVANCES 2024; 166:214084. [PMID: 39471574 DOI: 10.1016/j.bioadv.2024.214084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Pulmonary delivery of nintedanib has noticeable advantages over the current oral administration in managing idiopathic pulmonary fibrosis (IPF). However, it remains a challenge to construct an efficient lung delivery system for insoluble nintedanib to resist nebulization instabilities and alveolar macrophage clearance. Herein, we attempted to develop nintedanib as inhalable nanocrystals stabilized with polysorbates. Different types of polysorbates (polysorbate 20, 40, 60, 80) and various drug-surfactant molar ratios (DSR = 10, 30, 60) were screened to determine the optimal nintedanib nanocrystal formulation. Most formulations (except those stabilized by polysorbate 40) could tailor nintedanib nanocrystals with sizes around 600 nm, and the nebulization-caused drug loss could be significantly reduced when DSR increased to 60. Meanwhile, all nanocrystals boosted the in vitro drug dissolution rate and improved the aerosol performance of nintedanib. Although nebulization-caused particle aggregation was found in most formulations, the nanocrystal stabilized with polysorbate 80 at DSR 60 presented no apparent size change after nebulization. This formulation exhibited superior alveolar macrophage evasion, enhanced fibroblast cluster infiltration, and improved fibroblast cluster inhibition compared with other formulations, indicating its significant potential for pulmonary nintedanib delivery. Overall, this study explored the potential of polysorbates in stabilizing nintedanib nanocrystals for nebulization and proposed practical solutions to transfer nintedanib from oral to lung delivery.
Collapse
Affiliation(s)
- Huangliang Zheng
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiaqi Li
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | |
Collapse
|
2
|
Jin S, Paludetto MN, Kurkela M, Kahma H, Neuvonen M, Xiang X, Cai W, Backman JT. In vitro assessment of inhibitory effects of kinase inhibitors on CYP2C9, 3A and 1A2: Prediction of drug-drug interaction risk with warfarin and direct oral anticoagulants. Eur J Pharm Sci 2024; 203:106884. [PMID: 39218046 DOI: 10.1016/j.ejps.2024.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to evaluate the cytochrome P450 (CYP)-mediated drug-drug interaction (DDI) potential of kinase inhibitors with warfarin and direct oral anticoagulants (DOACs). METHODS An in vitro CYP probe substrate cocktail assay was used to study the inhibitory effects of fifteen kinase inhibitors on CYP2C9, 3A, and 1A2. Then, DDI predictions were performed using both mechanistic static and physiologically-based pharmacokinetic (PBPK) models. RESULTS Linsitinib, masitinib, regorafenib, tozasertib, trametinib, and vatalanib were identified as competitive CYP2C9 inhibitors (Ki = 1.4, 1.0, 1.1, 3.8, 0.5, and 0.1 μM, respectively). Masitinib and vatalanib were competitive CYP3A inhibitors (Ki = 1.3 and 0.2 μM), and vatalanib noncompetitively inhibited CYP1A2 (Ki = 2.0 μM). Moreover, linsitinib and tozasertib were CYP3A time-dependent inhibitors (KI = 26.5 and 400.3 μM, kinact = 0.060 and 0.026 min-1, respectively). Only linsitinib showed time-dependent inhibition of CYP1A2 (KI = 13.9 μM, kinact = 0.018 min-1). Mechanistic static models identified possible DDI risks for linsitinib and vatalanib with (S)-/(R)-warfarin, and for masitinib with (S)-warfarin. PBPK simulations further confirmed that vatalanib may increase (S)- and (R)-warfarin exposure by 4.37- and 1.80-fold, respectively, and that linsitinib may increase (R)-warfarin exposure by 3.10-fold. Mechanistic static models predicted a smaller risk of DDIs between kinase inhibitors and apixaban or rivaroxaban. The greatest AUC increases (1.50-1.74) were predicted for erlotinib in combination with apixaban and rivaroxaban. Linsitinib, masitinib, and vatalanib were predicted to have a smaller effect on apixaban and rivaroxaban AUCs (AUCR 1.22-1.53). No kinase inhibitor was predicted to increase edoxaban exposure. CONCLUSIONS Our results suggest that several kinase inhibitors, including vatalanib and linsitinib, can cause CYP-mediated drug-drug interactions with warfarin and, to a lesser extent, with apixaban and rivaroxaban. The work provides mechanistic insights into the risk of DDIs between kinase inhibitors and anticoagulants, which can be used to avoid preventable DDIs in the clinic.
Collapse
Affiliation(s)
- Shasha Jin
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Marie-Noëlle Paludetto
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Mika Kurkela
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Helinä Kahma
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weimin Cai
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Janne T Backman
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland.
| |
Collapse
|
3
|
Liu S, Chen H, Zhou F, Tiwari S, Zhuang K, Shan Y, Zhang J. Preparation, Characterization and Evaluation of Nintedanib Amorphous Solid Dispersions with Enhanced Oral Bioavailability. AAPS PharmSciTech 2024; 25:183. [PMID: 39138765 DOI: 10.1208/s12249-024-02902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
The dissolution and bioavailability challenges posed by poorly water-soluble drugs continue to drive innovation in pharmaceutical formulation design. Nintedanib (NDNB) is a typical BCS class II drug that has been utilized to treat idiopathic pulmonary fibrosis (IPF). Due to the low solubility, its oral bioavailability is relatively low, limiting its therapeutical effectiveness. It is crucial to enhance the dissolution and the oral bioavailability of NDNB. In this study, we focused on the preparation of amorphous solid dispersions (ASD) using hot melt extrusion (HME). The formulation employed Kollidon® VA64 (VA64) as the polymer matrix, blended with the NDNB at a ratio of 9:1. HME was conducted at temperatures ranging from 80 °C to 220 °C. The successful preparation of ASD was confirmed through various tests including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The in-vitro cumulative release of NDNB-ASD in 2 h in a pH 6.8 medium was 8.3-fold higher than that of NDNB (p < 0.0001). In a pH 7.4 medium, it was 10 times higher (p < 0.0001). In the in-vivo pharmacokinetic experiments, the area under curve (AUC) of NDNB-ASD was 5.3-fold higher than that of NDNB and 2.2 times higher than that of commercially available soft capsules (Ofev®) (p < 0.0001). There was no recrystallization after 6 months under accelarated storage test. Our study indicated that NDNB-ASD can enhance the absorption of NDNB, thus providing a promising method to improve NDNB bioavailability in oral dosages.
Collapse
Affiliation(s)
- Shuyin Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Hui Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Sandip Tiwari
- Pharma Solutions, BASF Corp., 500 White Plains Rd, Tarrytown, NY, 10591, USA
| | - Kai Zhuang
- Pharma Solutions, Nutrition and Health, BASF (China) Company, Ltd, 333 Jiang Xin Sha Road, Shanghai, 200137, China
| | - Yudong Shan
- Hangzhou Zhongmeihuadong Pharmaceutical Co., Ltd., 866 Moganshan Road, Hangzhou, 310011, China
| | - Jiantao Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China.
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China.
| |
Collapse
|
4
|
Thakkar D, Singh S, Wairkar S. Advanced Delivery Strategies of Nintedanib for Lung Disorders and Beyond: A Comprehensive Review. AAPS PharmSciTech 2024; 25:150. [PMID: 38954161 DOI: 10.1208/s12249-024-02869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Nintedanib, a primary treatment for lung fibrosis, has gathered substantial attention due to its multifaceted potential. A tyrosine kinase inhibitor, nintedanib, inhibits multiple signalling receptors, including endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR) and ultimately inhibits fibroblast proliferation and differentiation. Therefore, nintedanib has been studied widely for other ailments like cancers and hepatic fibrosis, apart from lung disorders. Commercially, nintedanib is available as soft gelatin capsules for treatment against idiopathic pulmonary fibrosis. Since it has very low oral bioavailability (4.7%), high doses of a drug, such as 100-150 mg, are administered, which can cause problems of gastrointestinal irritation and hepatotoxicity. The article begins with exploring the mechanism of action of nintedanib, elucidating its complex interactions within cellular pathways that govern fibrotic processes. It also emphasizes the pharmacokinetics of nintedanib, clinical trial insights, and the limitations of conventional formulations. The article mainly focuses on the emerging landscape of nanoparticle-based carriers such as hybrid liposome-exosome, nano liquid crystals, discoidal polymeric, and magnetic systems, offering promising avenues to optimize drug targeting, address its efficacy issues and minimise adverse effects. However, none of these delivery systems are commercialised, and further research is required to ensure safety and effectiveness in clinical settings. Yet, as research progresses, these advanced delivery systems promise to revolutionise the treatment landscape for various fibrotic disorders and cancers, potentially improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Dhruti Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sanskriti Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
5
|
Thakur A, Rana M, Mishra A, Kaur C, Pan CH, Nepali K. Recent advances and future directions on small molecule VEGFR inhibitors in oncological conditions. Eur J Med Chem 2024; 272:116472. [PMID: 38728867 DOI: 10.1016/j.ejmech.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
"A journey of mixed emotions" is a quote that best describes the progress chart of vascular endothelial growth factor receptor (VEGFR) inhibitors as cancer therapeutics in the last decade. Exhilarated with the Food and Drug Administration (FDA) approvals of numerous VEGFR inhibitors coupled with the annoyance of encountering the complications associated with their use, drug discovery enthusiasts are on their toes with an unswerving determination to enhance the rate of translation of VEGFR inhibitors from preclinical to clinical stage. The recently crafted armory of VEGFR inhibitors is a testament to their growing dominance over other antiangiogenic therapies for cancer treatment. This review perspicuously underscores the earnest attempts of the researchers to extract the antiproliferative potential of VEGFR inhibitors through the design of mechanistically diverse structural assemblages. Moreover, this review encompasses sections on structural/molecular properties and physiological functions of VEGFR, FDA-approved VEGFR inhibitors, and hurdles restricting the activity range/clinical applicability of VEGFR targeting antitumor agents. In addition, tactics to overcome the limitations of VEGFR inhibitors are discussed. A clear-cut viewpoint transmitted through this compilation can provide practical directions to push the cart of VEGFR inhibitors to advanced-stage clinical investigations in diverse malignancies.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
6
|
Inoue T, Maehara S, Maruyama M, Higaki K. Combination of co-amorphization with SNEDDS outperforms Ofev® in the oral absorption of nintedanib. Int J Pharm 2024; 657:124197. [PMID: 38703930 DOI: 10.1016/j.ijpharm.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/04/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Nintedanib (NTD), approved for the treatment of idiopathic pulmonary fibrosis and advanced non-small cell lung cancer, is one of brick dusts with high melting point. Although NTD has been marketed as Ofev®, a soft capsule of NTD ethanesulfonate (NTD-ESA) suspended in oil components, the oral bioavailability is quite low and highly variable. To improve the oral absorption behavior of NTD, we prepared SNEDDS formulation containing NTD-(+)-10-camphorsulfonic acid (CSA) complex with 2% HPMCP-50. CSA disrupted the high crystallinity of NTD-ESA and the formed complex, NTD-CSA, was found to be amorphous by DSC and XRPD. NTD-CSA provided solubilities in various vehicles much higher than NTD-ESA. Under the gastric luminal condition, NTD-CSA SNEDDS with or without 2% HPMCP-50 and NTD-CSA powder indicated very good dissolution of NTD from early time periods, while NTD was gradually dissolved until around 60 min from NTD-ESA and Ofev®. Under the small intestinal luminal condition, in contrast, both NTD-CSA SNEDDS formulations almost completely dissolved NTD throughout the experiments, while Ofev®, NTD-CSA, and NTD-ESA exhibited a very poor dissolution of NTD. In the in vivo absorption study, NTD-CSA SNEDDS with 2% HPMCP-50 significantly improved NTD absorption and reduced the inter-individual variation in oral absorption behavior compared with Ofev®.
Collapse
Affiliation(s)
- Tomoya Inoue
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Formulation Research, Biopharmaceutical Research, Pharmaceutical Technology Division, Taiho Pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Seito Maehara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
7
|
Jansook P, Loftsson T, Stefánsson E. Drug-like properties of tyrosine kinase inhibitors in ophthalmology: Formulation and topical availability. Int J Pharm 2024; 655:124018. [PMID: 38508428 DOI: 10.1016/j.ijpharm.2024.124018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) can inhibit edema and neovascularization, such as in age-related macular degeneration and diabetic retinopathy. However, their topical administration in ophthalmology is limited by their toxicity and poor aqueous solubility. There are multiple types of TKIs, and each TKI has an affinity to more than one type of receptor. Studies have shown that ocular toxicity can be addressed by selecting TKIs that have a high affinity for specific vascular endothelial growth factor receptors (VEGFRs) but a low affinity for epidermal growth factor receptors (EGFRs). Drugs permeate from the aqueous tear fluid into the eye via passive diffusion. Thus, a sustained high concentration of the dissolved drug in the aqueous tear fluid is essential for a successful delivery to posterior tissues such as the retina. Unfortunately, the aqueous solubility of the TKIs that have the most favorable VEGFR/EGFR affinity ratio, that is, axitinib and cabozantinib, is well below 1 µg/mL, making their topical delivery very challenging. This is a review of the drug-like properties of TKIs that are currently being evaluated or have been evaluated as ophthalmic drugs. These properties include their solubilization, cyclodextrin complexation, and ability to permeate from the aqueous tear fluid to the posterior eye segment.
Collapse
Affiliation(s)
- Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Payathai Road, Pathumwan, Bangkok, 10330, Thailand; Cyclodextrin Application and Nanotechnology-Based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Einar Stefánsson
- Department of Ophthalmology, Landspitali University Hospital, IS-101 Reykjavik, Iceland
| |
Collapse
|
8
|
Kaur R, Shaikh TB, Priya Sripadi H, Kuncha M, Vijaya Sarathi UVR, Kulhari H, Balaji Andugulapati S, Sistla R. Nintedanib solid lipid nanoparticles improve oral bioavailability and ameliorate pulmonary fibrosis in vitro and in vivo models. Int J Pharm 2024; 649:123644. [PMID: 38040396 DOI: 10.1016/j.ijpharm.2023.123644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Nintedanib (NIN) and pirfenidone are the only approved drugs for the treatment of Idiopathic Pulmonary Fibrosis (IPF). However, NIN and pirfenidone have low oral bioavailability and limited therapeutic potential, requiring higher dosages to increase their efficacy, which causes significant liver and gastrointestinal toxicities. In this study, we aimed to develop nintedanib-loaded solid lipid nanoparticles (NIN-SLN) to improve the oral bioavailability and therapeutic potential against TGF-β-induced differentiation in IPF fibroblasts and bleomycin (BLM)-induced lung fibrosis in rat models. NIN-SLN was prepared using a double-emulsification method and characterization studies (Particle size, zeta potential, entrapment efficiency and other parameters) were performed using various techniques. NIN-SLN treatment significantly (p < 0.001) downregulated α-SMA and COL3A1 expression in TGF-β stimulated DHLF and LL29 cells. NIN-SLN showed a 2.87-fold increase in the bioavailability of NIN and also improved the NIN levels in lung tissues compared to NIN alone. Pharmacodynamic investigation revealed that NIN-SLN (50 mg/Kg) treatment significantly attenuated BLM-induced lung fibrosis by inhibiting epithelial-to-mesenchymal-transition (EMT), extracellular matrix remodelling, and collagen deposition compared to free NIN. Additionally, in the BLM model of fibrosis, NIN-SLN greatly improved the BLM-caused pathological changes, attenuated the NIN-induced gastrointestinal abnormalities, and significantly improved the lung functional indices compared to free NIN. Collectively, NIN-SLN could be a promising nanoformulation for the management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Hari Priya Sripadi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Madhusudana Kuncha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - U V R Vijaya Sarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382 030, Gujarat, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
9
|
Dömötör O, Mathuber M, Kowol CR. In vitro biodistribution studies on clinically approved FGFR inhibitors ponatinib, nintedanib, erlotinib and the investigational inhibitor KP2692. Eur J Pharm Sci 2024; 192:106651. [PMID: 38013124 DOI: 10.1016/j.ejps.2023.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Binding towards human serum albumin (HSA) and α1-acid glycoprotein (AGP) of three approved fibroblast growth factor receptor (FGFR) inhibitors ponatinib (PON), nintedanib (NIN) and erdafitinib (ERD), as well as the experimental drug KP2692 was studied by means of spectrofluorometric and UV-visible spectrophotometric methods. Additionally, proton dissociation processes, lipophilicity, and fluorescence properties of these four molecules were investigated in detail. The FGFR inhibitors were predominantly presented in their single protonated form (HL+) at pH 7.4 (at blood pH). At gastric pH (pH 1-2) the protonated forms (+1 - +3) are present, which provide relatively good aqueous solubility of the drugs. All of the four inhibitors are highly or extremely lipophilic at pH 7.4 (logD7.4 ≥ 2.7). At acidic pH 2.0 PON and ERD are rather lipophilic, NIN is amphiphilic, while KP2692 is highly hydrophilic. All four compounds bind to HSA and AGP. Moderate binding of PON, KP2692 and NIN was found towards albumin (logK' = 4.5-4.7), while their affinity for AGP was about one order of magnitude higher (logK' = 5.2-5.7). ERD shows a larger affinity for both proteins (logK'HSA ≈ 5.2, logK'AGP ≈ 7.0). The computed constants were used to model the distribution of the FGFR inhibitors in blood plasma under physiological and pathological (acute phase) conditions. The changing levels of the two proteins under pathological conditions compensate each other for PON and NIN, so that the free drug fractions do not change considerably. In the case of ERD the higher AGP levels distinctly reduce the free available fraction of the drug. Comparison with clinical pharmacokinetic data indicates that the here presented solution distribution studies can very well predict the conditions in cancer patients.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary.
| | - Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Marchenko IV, Trushina DB. Local Drug Delivery in Bladder Cancer: Advances of Nano/Micro/Macro-Scale Drug Delivery Systems. Pharmaceutics 2023; 15:2724. [PMID: 38140065 PMCID: PMC10747982 DOI: 10.3390/pharmaceutics15122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Treatment of bladder cancer remains a critical unmet need and requires advanced approaches, particularly the development of local drug delivery systems. The physiology of the urinary bladder causes the main difficulties in the local treatment of bladder cancer: regular voiding prevents the maintenance of optimal concentration of the instilled drugs, while poor permeability of the urothelium limits the penetration of the drugs into the bladder wall. Therefore, great research efforts have been spent to overcome these hurdles, thereby improving the efficacy of available therapies. The explosive development of nanotechnology, polymer science, and related fields has contributed to the emergence of a number of nanostructured vehicles (nano- and micro-scale) applicable for intravesical drug delivery. Moreover, the engineering approach has facilitated the design of several macro-sized depot systems (centimeter scale) capable of remaining in the bladder for weeks and months. In this article, the main rationales and strategies for improved intravesical delivery are reviewed. Here, we focused on analysis of colloidal nano- and micro-sized drug carriers and indwelling macro-scale devices, which were evaluated for applicability in local therapy for bladder cancer in vivo.
Collapse
Affiliation(s)
- Irina V. Marchenko
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Daria B. Trushina
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia;
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Ferguson LT, Ma X, Myerson JW, Wu J, Glassman PM, Zamora ME, Hood ED, Zaleski M, Shen M, Essien EO, Shuvaev VV, Brenner JS. Mechanisms by Which Liposomes Improve Inhaled Drug Delivery for Alveolar Diseases. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200106. [PMID: 37266328 PMCID: PMC10231510 DOI: 10.1002/anbr.202200106] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/23/2022] [Indexed: 01/29/2023] Open
Abstract
Diseases of the pulmonary alveolus, such as pulmonary fibrosis, are leading causes of morbidity and mortality, but exceedingly few drugs are developed for them. A major reason for this gap is that after inhalation, drugs are quickly whisked away from alveoli due to their high perfusion. To solve this problem, the mechanisms by which nano-scale drug carriers dramatically improve lung pharmacokinetics using an inhalable liposome formulation containing nintedanib, an antifibrotic for pulmonary fibrosis, are studied. Direct instillation of liposomes in murine lung increases nintedanib's total lung delivery over time by 8000-fold and lung half life by tenfold, compared to oral nintedanib. Counterintuitively, it is shown that pulmonary surfactant neither lyses nor aggregates the liposomes. Instead, each lung compartment (alveolar fluid, alveolar leukocytes, and parenchyma) elutes liposomes over 24 h, likely serving as "drug depots." After deposition in the surfactant layer, liposomes are transferred over 3-6 h to alveolar leukocytes (which take up a surprisingly minor 1-5% of total lung dose instilled) in a nonsaturable fashion. Further, all cell layers of the lung parenchyma take up liposomes. These and other mechanisms elucidated here should guide engineering of future inhaled nanomedicine for alveolar diseases.
Collapse
Affiliation(s)
- Laura T. Ferguson
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xiaonan Ma
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jacob W. Myerson
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jichuan Wu
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Patrick M. Glassman
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Marco E. Zamora
- School of Biomedical Engineering, Science, and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Elizabeth D. Hood
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Michael Zaleski
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Mengwen Shen
- Emergency Medicine DepartmentYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine200437ShanghaiChina
- Department of MicrobiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Eno-Obong Essien
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jacob S. Brenner
- Department of MedicinePulmonary, Allergy, and Critical Care DivisionPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Penn-CHOP Lung Biology InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
12
|
Dhavale RP, Dhavale RP, Bhatia MS, Jadhav SU, Dhanavade MJ, Barale SS, Pathak S, Parale VG, Sonawane KD. Exploring anticancer potential of nintedanib conjugated magnetic nanoparticles: In-vitro and in-silico studies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Zinellu A, Carru C, Pirina P, Fois AG, Mangoni AA. A Systematic Review of the Prognostic Significance of the Body Mass Index in Idiopathic Pulmonary Fibrosis. J Clin Med 2023; 12:jcm12020498. [PMID: 36675428 PMCID: PMC9866551 DOI: 10.3390/jcm12020498] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The identification of novel prognostic biomarkers might enhance individualized management strategies in patients with idiopathic pulmonary fibrosis (IPF). Although several patient characteristics are currently used to predict outcomes, the prognostic significance of the body mass index (BMI), a surrogate measure of excess fat mass, has not been specifically investigated until recently. We systematically searched PubMed, Web of Science, and Scopus, from inception to July 2022, for studies investigating associations between the BMI and clinical endpoints in IPF. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the risk of bias. The PRISMA 2020 statement on the reporting of systematic reviews was followed. Thirty-six studies were identified (9958 IPF patients, low risk of bias in 20), of which 26 were published over the last five years. Significant associations between lower BMI values and adverse outcomes were reported in 10 out of 21 studies on mortality, four out of six studies on disease progression or hospitalization, and two out of three studies on nintedanib tolerability. In contrast, 10 out of 11 studies did not report any significant association between the BMI and disease exacerbation. Our systematic review suggests that the BMI might be useful to predict mortality, disease progression, hospitalization, and treatment-related toxicity in IPF (PROSPERO registration number: CRD42022353363).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU), 07100 Sassari, Italy
| | - Pietro Pirina
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Clinical and Interventional Pneumology, University Hospital Sassari (AOU), 07100 Sassari, Italy
| | - Alessandro G. Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Clinical and Interventional Pneumology, University Hospital Sassari (AOU), 07100 Sassari, Italy
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
- Correspondence:
| |
Collapse
|
14
|
Le Louedec F, Puisset F, Chatelut E, Tod M. Considering the Oral Bioavailability of Protein Kinase Inhibitors: Essential in Assessing the Extent of Drug-Drug Interaction and Improving Clinical Practice. Clin Pharmacokinet 2023; 62:55-66. [PMID: 36631685 DOI: 10.1007/s40262-022-01200-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 01/13/2023]
Abstract
Protein kinase inhibitors share pharmacokinetic (PK) pathways among themselves. They are all metabolized by several cytochromes P450 (CYP). For most of them, CYP3A4 is the predominant metabolic pathway. However, their oral bioavailability differs. For example, the oral bioavailability of imatinib has been estimated at nearly 100%, but that of ibrutinib averages 3% due to its high hepatic first-pass effect. Overall, the smaller the oral bioavailability, the larger its interindividual PK variability. Indeed, for drugs with low oral bioavailability, the extent of their absorption is an additional cause (along with elimination variability) of differences in drug exposure among patients. The impact of drug-drug interaction (DDI) also differs between drugs with low or high oral bioavailability. We describe and explain why the impact of CYP3A4 inhibitors and inducers is much greater for protein kinase inhibitors with low oral bioavailability. The effect of food on protein kinase inhibitors and DDIs corresponding to plasma protein binding will also be considered. Finally, the benefits of these concepts in clinical practice (including therapeutic drug monitoring) will be discussed. Overall, our main objective was to apply fundamental PK concepts to understanding the main clinical issues of these oral anticancer drugs.
Collapse
Affiliation(s)
- Félicien Le Louedec
- Institut Claudius-Regaud, Institut Universitaire du Cancer Toulouse, Oncopole, 31059, Toulouse, France
- CRCT, Cancer Research Center of Toulouse, Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Florent Puisset
- Institut Claudius-Regaud, Institut Universitaire du Cancer Toulouse, Oncopole, 31059, Toulouse, France
- CRCT, Cancer Research Center of Toulouse, Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Etienne Chatelut
- Institut Claudius-Regaud, Institut Universitaire du Cancer Toulouse, Oncopole, 31059, Toulouse, France.
- CRCT, Cancer Research Center of Toulouse, Inserm U1037, Université Paul Sabatier, Toulouse, France.
| | - Michel Tod
- Hospices Civils de Lyon, GH Nord, Service de Pharmacie, 69004, Lyon, France
- Université Claude Bernard Lyon 1, UMR CNRS 5558, LBBE-Laboratoire de Biométrie et Biologie Évolutive, 69622, Villeurbanne, France
| |
Collapse
|
15
|
K Shukla S, Nguyen V, Goyal M, Gupta V. Cationically modified inhalable nintedanib niosomes: enhancing therapeutic activity against non-small-cell lung cancer. Nanomedicine (Lond) 2022; 17:935-958. [PMID: 36004583 PMCID: PMC9583758 DOI: 10.2217/nnm-2022-0045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: This study was designed to develop and test nintedanib-loaded niosomes as inhalable carriers for enhancing its therapeutic efficacy via localized drug accumulation and addressing issues such as low bioavailability and severe toxicity. Methods: Niosomes were prepared by thin-film hydration method and were evaluated for in vitro therapeutic effectiveness in lung cancer cells. Results: The optimized niosomal formulation displayed optimized vesicle size, controlled and extended release of drug, and efficient aerodynamic properties indicating its suitability as an aerosolized formulation. In vitro studies revealed significantly superior cytotoxicity of nintedanib-loaded niosomes which was further validated by 3D spheroids. Conclusion: These findings establish the effectiveness of niosomes as inhalable delivery carriers which could serve as a promising strategy for delivery of nintedanib to treat several lung cancers.
Collapse
Affiliation(s)
- Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, NY 11439, USA
- Current Affiliation: Pfizer Worldwide R&D, Groton, CT 06340, USA
| | - Veronica Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, NY 11439, USA
| |
Collapse
|
16
|
Serra López-Matencio JM, Gómez M, Vicente-Rabaneda EF, González-Gay MA, Ancochea J, Castañeda S. Pharmacological Interactions of Nintedanib and Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis in Times of COVID-19 Pandemic. Pharmaceuticals (Basel) 2021; 14:ph14080819. [PMID: 34451916 PMCID: PMC8400767 DOI: 10.3390/ph14080819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of antifibrotic agents have resulted in advances in the therapeutic management of idiopathic pulmonary fibrosis (IPF). Currently, nintedanib and pirfenidone have become the basis of IPF therapy based on the results of large randomized clinical trials showing their safety and efficacy in reducing disease advancement. However, the goal of completely halting disease progress has not been reached yet. Administering nintedanib with add-on pirfenidone is supposed to enhance the therapeutic benefit by simultaneously acting on two different pathogenic pathways. All this becomes more important in the context of the ongoing global pandemic of coronavirus disease 2019 (COVID-19) because of the fibrotic consequences following SARS-CoV-2 infection in some patients. However, little information is available about their drug–drug interaction, which is important mainly in polymedicated patients. The aim of this review is to describe the current management of progressive fibrosing interstitial lung diseases (PF-ILDs) in general and of IPF in particular, focusing on the pharmacokinetic drug-drug interactions between these two drugs and their relationship with other medications in patients with IPF.
Collapse
Affiliation(s)
| | - Manuel Gómez
- Methodology Unit, Health Research Institute Princesa (IIS-IP), c/Diego de León 62, 28006 Madrid, Spain;
| | | | - Miguel A. González-Gay
- Rheumatology Service, Marqués de Valdecilla Universitary Hospital, University of Cantabria, Av. de Valdecilla 25, 39008 Santander, Spain;
| | - Julio Ancochea
- Pneumology Service, Princesa Hospital, Autonomous University of Madrid (UAM), IIS-Princesa, c/Diego de León 62, 28006 Madrid, Spain;
- Department of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain
| | - Santos Castañeda
- Rheumatology Service, Princesa Hospital, IIS-Princesa, c/Diego de León 62, 28006 Madrid, Spain;
- Department of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain
- Correspondence: or ; Tel.: +34-915-202-473; Fax: +34-914-018-752
| |
Collapse
|
17
|
Patel P, Patel M. Enhanced oral bioavailability of nintedanib esylate with nanostructured lipid carriers by lymphatic targeting: In vitro, cell line and in vivo evaluation. Eur J Pharm Sci 2021; 159:105715. [PMID: 33453388 DOI: 10.1016/j.ejps.2021.105715] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
The present research work was aimed to explore the ability of nanostructured lipid carriers (NLCs) to improve oral bioavailability of Nintedanib esylate (NE) via lymphatic uptake. The NE loaded NLCs (NE-NLCs) were fabricated using high speed homogenization followed by probe sonication method and physiochemically characterized. The NE-NLCs had particle size of 125.7 ± 5.5 nm, entrapment efficiency of 88.5 ± 2.5% and zeta potential of -17.3 ± 3.5 mV. DSC and XRD studies indicated that NE was converted to amorphous form. TEM images showed uniformly distributed spherical shaped particles. In vitro release study of NE-NLCs showed drug release of 6.87 ± 2.72% in pH 1.2 and 92.72 ± 3.40% in phosphate buffer pH 6.8 and obeyed higuchi model. Lipolysis study showed higher amount of drug in aqueous layer in NE-NLCs compared to NE-suspension. Tissue distribution study showed deeper penetration of FITC loaded NLCs compared to FITC solution. The cellular uptake across Caco-2 cells exhibited more uptake of FITC loaded NLCs. Cytotoxicity study using A549 cell line revealed higher potential of NE-NLCs in inhibiting tumor cell growth in comparison to that of suspension. The oral bioavailability of NE was ameliorated over 26.31 folds after inclusion into NLCs in contrast to NE-suspension. Intestinal lymphatic uptake of NE-NLCs in cycloheximide treated mice was lower as compared to control without cycloheximide treatment. Thus, the developed NE-NLCs can be an encouraging delivery strategy for increasing oral bioavailability of NE via lymphatic uptake.
Collapse
Affiliation(s)
- Priyanshi Patel
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, Gujarat, India
| | - Mitali Patel
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, Gujarat, India.
| |
Collapse
|
18
|
Tiwari SS, Dhiman V, Mukesh S, Sangamwar AT, Srinivas R, Talluri MVNK. Identification and characterization of novel metabolites of nintedanib by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry with in silico toxicological assessment. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8915. [PMID: 32761944 DOI: 10.1002/rcm.8915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Nintedanib, an oral, triple angiokinase inhibitor, is used alongside docetaxel in the management of locally recurrent non-small-cell lung cancer and idiopathic pulmonary fibrosis. The present study deals with the identification and characterization of in vitro and in vivo stable and reactive (if any) metabolites of nintedanib and sheds light on some novel metabolites of the drug which have not been reported previously. METHODS The study involved an oral administration of the drug to male Wistar rats, followed by collection of the biological matrices (urine, plasma and feces) at specific intervals for determination of in vivo metabolites. In addition, in vitro studies were performed on human and rat liver microsomes in the presence of appropriate co-factors. The samples were subjected to protein precipitation and nitrogen evaporation prior to ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry analysis. The toxicities of all the metabolites were assessed in silico, employing ADMET Predictor™. RESULTS A total of 18 metabolites of nintedanib were identified in all the matrices, of which nine were found to be novel and unreported previously. The unreported metabolites were elucidated as oxidative, demethylated and glucuronide conjugates of nintedanib. Interestingly, acetonitrile adducts of a few metabolites (low concentration) were also observed. No reactive metabolites were observed in this study. CONCLUSIONS Characterization of hitherto unknown in vitro and in vivo metabolites of nintedanib adds to the existing knowledge on the metabolism of the drug. Identification on the basis of the solvated adducts can be a useful approach for characterization of minor metabolites, which remain undetected owing to sensitivity issues.
Collapse
Affiliation(s)
- Shristy S Tiwari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D, Campus, Balanagar, Hyderabad, 500 037, India
| | - Vivek Dhiman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D, Campus, Balanagar, Hyderabad, 500 037, India
| | - Sumit Mukesh
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Abhay T Sangamwar
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ragampeta Srinivas
- Analytical Department, CSIR - Indian Institute of Chemical Technology (CSIRIICT), Uppal Road, Tarnaka, Hyderabad, Telangana State, 500 007, India
| | - M V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D, Campus, Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
19
|
Wind S, Schmid U, Freiwald M, Marzin K, Lotz R, Ebner T, Stopfer P, Dallinger C. Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib. Clin Pharmacokinet 2020; 58:1131-1147. [PMID: 31016670 PMCID: PMC6719436 DOI: 10.1007/s40262-019-00766-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nintedanib is an oral, small-molecule tyrosine kinase inhibitor approved for the treatment of idiopathic pulmonary fibrosis and patients with advanced non-small cell cancer of adenocarcinoma tumour histology. Nintedanib competitively binds to the kinase domains of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF). Studies in healthy volunteers and in patients with advanced cancer have shown that nintedanib has time-independent pharmacokinetic characteristics. Maximum plasma concentrations of nintedanib are reached approximately 2–4 h after oral administration and thereafter decline at least bi-exponentially. Over the investigated dose range of 50–450 mg once daily and 150–300 mg twice daily, nintedanib exposure increases are dose proportional. Nintedanib is metabolised via hydrolytic ester cleavage, resulting in the formation of the free acid moiety that is subsequently glucuronidated and excreted in the faeces. Less than 1% of drug-related radioactivity is eliminated in urine. The terminal elimination half-life of nintedanib is about 10–15 h. Accumulation after repeated twice-daily dosing is negligible. Sex and renal function have no influence on nintedanib pharmacokinetics, while effects of ethnicity, low body weight, older age and smoking are within the inter-patient variability range of nintedanib exposure and no dose adjustments are required. Administration of nintedanib in patients with moderate or severe hepatic impairment is not recommended, and patients with mild hepatic impairment should be monitored closely and the dose adjusted accordingly. Nintedanib has a low potential for drug–drug interactions, especially with drugs metabolised by cytochrome P450 enzymes. Concomitant treatment with potent inhibitors or inducers of the P-glycoprotein transporter can affect the pharmacokinetics of nintedanib. At an investigated dose of 200 mg twice daily, nintedanib does not have proarrhythmic potential.
Collapse
Affiliation(s)
- Sven Wind
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany.
| | - Ulrike Schmid
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Matthias Freiwald
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Kristell Marzin
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Ralf Lotz
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Thomas Ebner
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Peter Stopfer
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Claudia Dallinger
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| |
Collapse
|
20
|
Yamasaki Y, Kuwana M. Nintedanib for the treatment of systemic sclerosis-associated interstitial lung disease. Expert Rev Clin Immunol 2020; 16:547-560. [DOI: 10.1080/1744666x.2020.1777857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yoshioki Yamasaki
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
21
|
Guntner AS, Peyrl A, Mayr L, Englinger B, Berger W, Slavc I, Buchberger W, Gojo J. Cerebrospinal fluid penetration of targeted therapeutics in pediatric brain tumor patients. Acta Neuropathol Commun 2020; 8:78. [PMID: 32493453 PMCID: PMC7268320 DOI: 10.1186/s40478-020-00953-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Treatment with small-molecule inhibitors, guided by precision medicine has improved patient outcomes in multiple cancer types. However, these compounds are often not effective against central nervous system (CNS) tumors. The failure of precision medicine approaches for CNS tumors is frequently attributed to the inability of these compounds to cross the blood-brain barrier (BBB), which impedes intratumoral target engagement. This is complicated by the fact that information on CNS penetration in CNS-tumor patients is still very limited. Herein, we evaluated cerebrospinal fluid (CSF) drug penetration, a well-established surrogate for CNS-penetration, in pediatric brain tumor patients. We analyzed 7 different oral anti-cancer drugs and their metabolites by high performance liquid chromatography mass spectrometry (HPLC-MS) in 42 CSF samples obtained via Ommaya reservoirs of 9 different patients. Moreover, we related the resulting data to commonly applied predictors of BBB-penetration including ABCB1 substrate-character, physicochemical properties and in silico algorithms. First, the measured CSF drug concentrations depicted good intra- and interpatient precision. Interestingly, ribociclib, vorinostat and imatinib showed high (> 10 nM), regorafenib and dasatinib moderate (1-10 nM) penetrance. In contrast, panobinostat und nintedanib were not detected. In addition, we identified active metabolites of imatinib and ribociclib. Comparison to well-established BBB-penetrance predictors confirmed low molecular weight, high proportion of free-drug and low ABCB1-mediated efflux as central factors. However, evaluation of diverse in silico algorithms showed poor correlation within our dataset. In summary, our study proves the feasibility of measuring CSF concentration via Ommaya reservoirs thus setting the ground for utilization of this method in future clinical trials. Moreover, we demonstrate CNS presence of certain small-molecule inhibitors and even active metabolites in CSF of CNS-tumor patients and provide a potential guidance for physicochemical and biological factors favoring CNS-penetration.
Collapse
Affiliation(s)
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Bernhard Englinger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Wolfgang Buchberger
- Institute of Analytical Chemistry, Johannes Kepler University, Linz, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Hinderling PH, Papoian T. Why Collecting Pharmacokinetic Information After Intravenous Drug Administration Is Important. Clin Pharmacol Drug Dev 2020; 9:146-150. [PMID: 31943891 DOI: 10.1002/cpdd.763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 01/29/2023]
|
23
|
Zhou ZM, Wang YK, Yan DM, Fang JH, Xiao XR, Zhang T, Cheng Y, Xu KP, Li F. Metabolic profiling of tyrosine kinase inhibitor nintedanib using metabolomics. J Pharm Biomed Anal 2019; 180:113045. [PMID: 31887668 DOI: 10.1016/j.jpba.2019.113045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/15/2019] [Accepted: 12/14/2019] [Indexed: 01/23/2023]
Abstract
Nintedanib is a promising tyrosine kinase inhibitor for clinically treating idiopathic pulmonary fibrosis (IPF). Some clinical cases reported that nintedanib treatment can cause hepatotoxicity and myocardial toxicity. U. S. FDA warns the potential drug-drug interaction when it is co-administrated with other drugs. In order to understand the potential toxicity of nintedanib and avoid drug-drug interaction, the metabolism of nintedanib was systematically investigated in human liver microsomes and mice using metabolomics approach, and the toxicity of metabolites was predicted by ADMET lab. Nineteen metabolites were detected in vivo and in vitro metabolism, and 8 of them were undescribed. Calculated partition coefficients (Clog P) were used to distinguish the isomers of nintedanib metabolites in this study. The major metabolic pathways of nintedanib majorly included hydroxylation, demethylation, glucuronidation, and acetylation reactions. The ADMET prediction indicated that nintedanib was a substrate of the cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp). And nintedanib and most of its metabolites might possess potential hepatotoxicity and cardiotoxicity. This study provided a global view of nintedanib metabolism, which could be used to understand the mechanism of adverse effects related to nintedanib and its potential drug-drug interaction.
Collapse
Affiliation(s)
- Zi-Meng Zhou
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yi-Kun Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Mei Yan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jian-He Fang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
24
|
Liu H, Mei J, Xu Y, Tang L, Chen D, Zhu Y, Huang S, Webster TJ, Ding H. Improving The Oral Absorption Of Nintedanib By A Self-Microemulsion Drug Delivery System: Preparation And In Vitro/In Vivo Evaluation. Int J Nanomedicine 2019; 14:8739-8751. [PMID: 31806968 PMCID: PMC6847991 DOI: 10.2147/ijn.s224044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Nintedanib (NDNB) is a triple receptor tyrosine kinase inhibitor with poor solubility in neutral conditions and low bioavailability. A self-microemulsifying drug delivery system (SMEDDS) of NDNB was developed to improve drug solubility in physical conditions and absorption in vivo. METHODS The NDNB-SMEDDS formulation was optimized via pseudo-ternary phase diagrams. The physicochemical properties of NDNB-SMEDDS, viz., morphological observation, droplet size, stability, compatibility and in vitro release were investigated. The permeability of NDNB-SMEDDS was detected using both a Caco-2 cell monolayer in vitro and an intestinal perfusion study in vivo. Furthermore, the pharmacokinetic characteristics of NDNB-SMEDDS were evaluated. RESULTS The optimal formulation was composed of MCT as an oil phase, RH 40 as a surfactant and ethylene glycol as a co-surfactant. The average droplet size of the microemulsion was about 23 nm with good stability within 30 days. The formulation did not exhibit any obvious cytotoxic effect on Caco-2 cells. Permeability of nintedanib in a Caco-2 cell monolayer was enhanced by 2.8-fold upon incorporation in SMEDDS compared with the drug solution. The intestinal perfusion study demonstrated that the P app of NDNB-SMEDDS increased by 3.0-fold in the entire intestine and 3.2-fold in the colon in comparison with the drug solution. The pharmacokinetics study showed that the AUC of the NDNB-SMEDDS increased significantly. CONCLUSION This study showed that the self-microemulsion formulations could improve the absorption of nintedanib, and can thus serve as a promising carrier for the oral delivery of nintedanib.
Collapse
Affiliation(s)
- Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jiaao Mei
- College of Pharmacy, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Ying Xu
- College of Pharmacy, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Lei Tang
- College of Pharmacy, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai264005, People’s Republic of China
| | - Yating Zhu
- College of Pharmacy, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shuguang Huang
- College of Pharmacy, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Hui Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu214200, People’s Republic of China
| |
Collapse
|
25
|
Wongkarnjana A, Yanagihara T, Kolb MR. Treatment of idiopathic pulmonary fibrosis with Nintedanib: an update. Expert Rev Respir Med 2019; 13:1139-1146. [PMID: 31564185 DOI: 10.1080/17476348.2019.1673733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is an incurable, progressive and debilitating disease. Nintedanib is one of two anti-fibrotic therapies available for the treatment of IPF and has been approved since 2014. Together with pirfenidone and antacid medications it has received a conditional recommendation for the treatment for IPF by international clinical practice guidelines.Areas covered: The authors review the mechanisms of action, pharmacological profile and update scientific data and our opinions on efficacy, safety profile and tolerability of nintedanib.Expert opinion: Nintedanib significantly slows disease progression in IPF patients with tolerable and manageable side effects. Its potential future role in the treatment of progressive fibrosing interstitial lung diseases other than IPF is challenging.
Collapse
Affiliation(s)
- Amornpun Wongkarnjana
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Rj Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Laddha AP, Kulkarni YA. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med 2019; 156:33-46. [PMID: 31421589 DOI: 10.1016/j.rmed.2019.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The endothelial cells play a crucial role in the progression of angiogenesis, which causes cell re-modulation, proliferation, adhesion, migration, invasion and survival. Angiogenic factors like cytokines, cell adhesion molecules, growth factors, vasoactive peptides, proteolytic enzymes (metalloproteinases) and plasminogen activators bind to their receptors on endothelial cells and activate the signal transduction pathways like epidermal growth factor receptor (EGFR phosphatidylinositol 3-kinase and (PI3K)/AKT/mammalian target of rapamycin (mTOR) which initiate the process of angiogenesis. Cytokines that stimulate angiogenesis include direct and indirect proangiogenic markers. The direct proangiogenic group of markers consists of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) and hepatocyte growth factor (HGF) whereas the indirect proangiogenic markers include transforming growth factor-beta (TGF-β), interleukin 6 (IL-6), interleukin 8 (IL-8) and platelet-derived growth factor (PDGF). VEGF and FGF-2 are the strongest activators of angiogenesis which stimulate migration and proliferation of endothelial cells in existing vessels to generate and stabilize new blood vessels. VEGF is released in hypoxic conditions as an effect of the hypoxia-inducible factor (HIF-1α) and causes re-modulation and inflammation of bronchi cell. Cell re-modulation and inflammation leads to the development of various lung disorders like pulmonary hypertension, chronic obstructive pulmonary disease, asthma, fibrosis and lung cancer. This indicates that there is a firm link between overexpression of VEGF and FGF-2 with lung disorders. Various natural and synthetic drugs are available for reducing the overexpression of VEGF and FGF-2 which can be helpful in treating lung disorders. Researchers are still searching for new angiogenic inhibitors which can be helpful in the treatment of lung disorders. The present review emphasizes on molecular mechanisms and new drug discovery focused on VEGF and FGF-2 inhibitors and their role as anti-angiogenetic agents in lung disorders.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
27
|
Abstract
Objective: Provide information for pharmacists on idiopathic pulmonary fibrosis (IPF) and its treatment. Study Selection and Data Extraction: All articles with data from randomized controlled trials of nintedanib or pirfenidone were reviewed. Data Synthesis: IPF is a progressive and ultimately fatal interstitial lung disease characterized by decline in lung function and worsening dyspnea. It is uncommon and mainly occurs in individuals aged >60 years, particularly men with a history of smoking. Nintedanib and pirfenidone were approved in the United States for the treatment of IPF in 2014 and received conditional recommendations in the 2015 American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association treatment guidelines. These drugs slow the progression of IPF by reducing the rate of decline in lung function. Their adverse event profile is characterized mainly by gastrointestinal events, which can be managed through dose adjustment and symptom management. Management of IPF should also include smoking cessation, vaccinations, and supportive care such as patient education, pulmonary rehabilitation, and the use of supplemental oxygen as well as optimizing the management of comorbidities. Relevance to Patient Care and Clinical Practice: This review provides clinical pharmacists with information on the course of IPF, what can be expected of current treatments, and how to help patients manage their drug therapy. Conclusions: IPF is a progressive disease, but treatments are available that can slow the progression of the disease. Clinical pharmacists can play an important role in the care of patients with IPF through patient education, monitoring medication compliance and safety, ensuring drugs for comorbidities are optimized, and preventive strategies such as immunizations.
Collapse
Affiliation(s)
- Roy Pleasants
- The University of North Carolina at Chapel Hill, NC, USA.,Durham Veterans Administration Medical Center, Durham, NC, USA
| | | |
Collapse
|
28
|
Szabó É, Koványi-Lax G, Szénási G, Dancsó A, Kiss L, Kormány R, Simig G, Németh G, Volk B. A novel tool for structure assignment of hydroxylated metabolites of (arylpiperazinylbutyl)oxindole derivatives based on relative HPLC retention times. J Pharm Biomed Anal 2019; 170:102-111. [PMID: 30909055 DOI: 10.1016/j.jpba.2019.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
Abstract
Incubation of oxindole derivatives containing an arylpiperazine pharmacophore in rat liver microsomes in vitro formed several metabolites hydroxylated at various positions of the aromatic rings of the oxindole carbocycle or the arylpiperazine moiety. In order to substitute the sites of metabolic attack on these positional isomers, the exact structure of the molecules had to be identified. As polarities of the compounds depend on the site of hydroxylation, we measured retention times of the metabolites using reversed-phase HPLC. It was noted that the relative retention times (RRT, the ratio of the retention time of the metabolite and the parent compound) fell into distinct narrow ranges for metabolites identified by MS spectra as positional isomers. These RRT ranges correlated with the positions of hydroxylation. The hypothesis was validated by synthesis of hydroxy compounds of known structure and by determination of their RRT values. Change in the chromatographic parameters such as column type, eluent, gradient time and temperature did not impede the identification of the sites of hydroxylation as the RRT pattern remained similar to the original one. The new empirical method proposed in our study can be used for tentative identification of hydroxy metabolites and orient the direction of efforts to synthesize metabolically stable compounds.
Collapse
Affiliation(s)
- Éva Szabó
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P. O. Box 100, H-1475 Budapest, Hungary
| | - Györgyi Koványi-Lax
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P. O. Box 100, H-1475 Budapest, Hungary
| | - Gábor Szénási
- Institute of Pathophysiology, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - András Dancsó
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P. O. Box 100, H-1475 Budapest, Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, 6 Eötvös utca, H-6720 Szeged, Hungary
| | - Róbert Kormány
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P. O. Box 100, H-1475 Budapest, Hungary
| | - Gyula Simig
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P. O. Box 100, H-1475 Budapest, Hungary
| | - Gábor Németh
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P. O. Box 100, H-1475 Budapest, Hungary.
| | - Balázs Volk
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P. O. Box 100, H-1475 Budapest, Hungary.
| |
Collapse
|
29
|
Synthetic lethality guiding selection of drug combinations in ovarian cancer. PLoS One 2019; 14:e0210859. [PMID: 30682083 PMCID: PMC6347359 DOI: 10.1371/journal.pone.0210859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Synthetic lethality describes a relationship between two genes where single loss of either gene does not trigger significant impact on cell viability, but simultaneous loss of both gene functions results in lethality. Targeting synthetic lethal interactions with drug combinations promises increased efficacy in tumor therapy. MATERIALS AND METHODS We established a set of synthetic lethal interactions using publicly available data from yeast screens which were mapped to their respective human orthologs using information from orthology databases. This set of experimental synthetic lethal interactions was complemented by a set of predicted synthetic lethal interactions based on a set of protein meta-data like e.g. molecular pathway assignment. Based on the combined set, we evaluated drug combinations used in late stage clinical development (clinical phase III and IV trials) or already in clinical use for ovarian cancer with respect to their effect on synthetic lethal interactions. We furthermore identified a set of drug combinations currently not being tested in late stage ovarian cancer clinical trials that however have impact on synthetic lethal interactions thus being worth of further investigations regarding their therapeutic potential in ovarian cancer. RESULTS Twelve of the tested drug combinations addressed a synthetic lethal interaction with the anti-VEGF inhibitor bevacizumab in combination with paclitaxel being the most studied drug combination addressing the synthetic lethal pair between VEGFA and BCL2. The set of 84 predicted drug combinations for example holds the combination of the PARP inhibitor olaparib and paclitaxel, which showed efficacy in phase II clinical studies. CONCLUSION A set of drug combinations currently not tested in late stage ovarian cancer clinical trials was identified having impact on synthetic lethal interactions thus being worth of further investigations regarding their therapeutic potential in ovarian cancer.
Collapse
|
30
|
Effects of Ketoconazole and Rifampicin on the Pharmacokinetics of Nintedanib in Healthy Subjects. Eur J Drug Metab Pharmacokinet 2019; 43:533-541. [PMID: 29500603 PMCID: PMC6133080 DOI: 10.1007/s13318-018-0467-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Nintedanib is a substrate for p-glycoprotein which can impact bioavailability. We investigated the effects of ketoconazole, a p-glycoprotein inhibitor, and rifampicin, a p-glycoprotein inducer, on the pharmacokinetics of nintedanib. Methods In the ketoconazole study, 34 healthy subjects received nintedanib 50 mg orally alone and 1 h after the last dose of ketoconazole given orally at a dose of 400 mg once daily for 3 days in 1 of 2 randomized sequences. In the rifampicin study, 26 subjects received nintedanib 150 mg orally alone and the morning after the last dose of rifampicin given orally at a dose of 600 mg once daily for 7 days. The primary objective was to determine the relative bioavailability of nintedanib administered following multiple doses of ketoconazole or rifampicin versus alone, based on AUC from time 0 extrapolated to infinity (AUC0–∞) and maximum concentration (Cmax) calculated using an analysis of variance. Geometric mean ratios and 2-sided 90% CIs were calculated. Results Exposure to nintedanib increased when it was administered following ketoconazole versus alone (AUC0–∞: geometric mean ratio, 160.5% [90% CI, 148.2–173.7]; Cmax: geometric mean ratio, 179.6% [90% CI, 157.6–204.8]) and decreased when it was administered following rifampicin versus alone (AUC0–∞: geometric mean ratio, 50.1% [90% CI, 47.2–53.3]; Cmax: geometric mean ratio, 59.8% [90% CI, 53.8–66.4]). The time to reach Cmax (tmax) and half-life (t½) of nintedanib were unaffected by co-administration of ketoconazole or rifampicin. Conclusions Exposure to nintedanib is increased by co-administration of ketoconazole and decreased by co-administration of rifampicin, likely due to effects on bioavailability of the absorbed fraction. ClinicalTrials.govidentifiers:NCT01679613, NCT01770392.
Collapse
|
31
|
Richeldi L, Fletcher S, Adamali H, Chaudhuri N, Wiebe S, Wind S, Hohl K, Baker A, Schlenker-Herceg R, Stowasser S, Maher TM. No relevant pharmacokinetic drug-drug interaction between nintedanib and pirfenidone. Eur Respir J 2019; 53:13993003.01060-2018. [PMID: 30442716 DOI: 10.1183/13993003.01060-2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/28/2018] [Indexed: 01/08/2023]
Abstract
Nintedanib and pirfenidone are approved treatments for idiopathic pulmonary fibrosis (IPF). This open-label, two-group trial investigated the pharmacokinetic drug-drug interaction between these two drugs in patients with IPF.Subjects not treated with antifibrotics at screening (group 1, n=20) received a single nintedanib dose (150 mg) followed by pirfenidone (titrated to 801 mg thrice daily) for 3 weeks, with a further single nintedanib dose (150 mg) on the last day (day 23). Subjects treated with pirfenidone at screening (group 2, n=17) continued to receive pirfenidone alone (801 mg thrice daily) for 7 days, then co-administered with nintedanib (150 mg twice daily) for a further 7 days, before single doses of both treatments on day 16.In group 1, adjusted geometric mean (gMean) ratios (with/without pirfenidone) were 88.6% and 80.6% for nintedanib area under the plasma concentration-time curve (AUC) and maximum plasma concentration (Cmax), respectively. In group 2, gMean ratios (with/without nintedanib) were 97.2% and 99.5% for pirfenidone AUC and Cmax, respectively. For all parameters, the 90% confidence intervals included 100%, suggesting similar exposure for administration alone and when co-administered. Both treatments were well tolerated.These data indicate there is no relevant pharmacokinetic drug-drug interaction between nintedanib and pirfenidone when co-administered in IPF patients.
Collapse
Affiliation(s)
- Luca Richeldi
- Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy.,Dept of Respiratory Medicine, University Hospital Southampton and Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - Sophie Fletcher
- Dept of Respiratory Medicine, University Hospital Southampton and Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK.,Translational Research Collaboration - Inflammatory Respiratory Disease Centre, Manchester, UK
| | - Huzaifa Adamali
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Nazia Chaudhuri
- Translational Research Collaboration - Inflammatory Respiratory Disease Centre, Manchester, UK.,North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Sven Wind
- Boehringer Ingelheim Pharma, Biberach, Germany
| | | | | | | | | | - Toby M Maher
- Translational Research Collaboration - Inflammatory Respiratory Disease Centre, Manchester, UK.,National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research group, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
32
|
Pasciuto G, Inchingolo R, Condoluci C, Magnini D, Iovene B, Richeldi L. Approved and Experimental Therapies for Idiopathic Pulmonary Fibrosis. CURRENT PULMONOLOGY REPORTS 2018. [DOI: 10.1007/s13665-018-0209-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Vaidya B, Shukla SK, Kolluru S, Huen M, Mulla N, Mehra N, Kanabar D, Palakurthi S, Ayehunie S, Muth A, Gupta V. Nintedanib-cyclodextrin complex to improve bio-activity and intestinal permeability. Carbohydr Polym 2018; 204:68-77. [PMID: 30366544 DOI: 10.1016/j.carbpol.2018.09.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022]
Abstract
Cyclodextrin complex of nintedanib was prepared aiming for increased bio-activity and improved transport across intestinal membrane with reduced p-glycoprotein (p-gp) efflux. Based on preliminary phase solubility studies and molecular modeling, sulfobutyl ether derivative of β-cyclodextrin (SBE-β-CD, Captisol®) was selected to prepare inclusion complex. Complexation was confirmed using FTIR, 1H NMR, DSC, and XRD. Bioactivity of the formed complex was tested using lung fibroblast cells, WI-38 for anti-proliferative activity and effect on collagen deposition and cells migration. In-vitro permeability studies were performed using epiIntestinal tissue model to assess the effect of complexation on transport and p-gp efflux. Results of the study demonstrated that cyclodextrin complexation increased stability of nintedanib in PBS (pH 7.4) and simulated intestinal fluid (SIF). Further, bioactivity of nintedanib also improved. Interestingly, complexation has increased transport of nintedanib across intestinal membrane and reduced efflux ratio, suggesting the role of cyclodextrin complexation in modulating p-gp efflux.
Collapse
Affiliation(s)
- Bhuvaneshwar Vaidya
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Snehal K Shukla
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Srikanth Kolluru
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Melanie Huen
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Nihal Mulla
- College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311, United States
| | - Neelesh Mehra
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, United States
| | - Dipti Kanabar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Srinath Palakurthi
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, United States
| | | | - Aaron Muth
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States; College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| |
Collapse
|
34
|
Population pharmacokinetics of nintedanib in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2018; 48:136-143. [DOI: 10.1016/j.pupt.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
|
35
|
Varone F, Sgalla G, Iovene B, Bruni T, Richeldi L. Nintedanib for the treatment of idiopathic pulmonary fibrosis. Expert Opin Pharmacother 2018; 19:167-175. [DOI: 10.1080/14656566.2018.1425681] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Francesco Varone
- Polo Scienze Cardiovascolari e Toraciche, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Sgalla
- Polo Scienze Cardiovascolari e Toraciche, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bruno Iovene
- Polo Scienze Cardiovascolari e Toraciche, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Bruni
- Polo Scienze Cardiovascolari e Toraciche, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Richeldi
- Polo Scienze Cardiovascolari e Toraciche, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
36
|
Schmid U, Liesenfeld KH, Fleury A, Dallinger C, Freiwald M. Population pharmacokinetics of nintedanib, an inhibitor of tyrosine kinases, in patients with non-small cell lung cancer or idiopathic pulmonary fibrosis. Cancer Chemother Pharmacol 2017; 81:89-101. [PMID: 29119292 PMCID: PMC5754397 DOI: 10.1007/s00280-017-3452-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022]
Abstract
Purpose A population pharmacokinetic model was developed for nintedanib in patients with non-small cell lung cancer (NSCLC) or idiopathic pulmonary fibrosis (IPF). The effects of intrinsic and extrinsic patient factors on exposure of nintedanib and its main metabolite BIBF 1202 were studied. Methods Data from 1191 patients with NSCLC (n = 849) or IPF (n = 342) treated with oral nintedanib (once- or twice-daily, dose range 50–250 mg) in 4 Phase II or III studies were combined. Plasma concentrations of nintedanib (n = 5611) and BIBF 1202 (n = 5376) were analyzed using non-linear mixed-effects modeling. Results Pharmacokinetics of nintedanib were described by a one-compartment model with linear elimination, first-order absorption, and absorption lag time. For a typical patient, the absorption rate was 0.0827 h−1, apparent total clearance was 897 L/h, apparent volume of distribution at steady state was 465 L, and lag time was 25 min. Age, weight, smoking, and Asian race were statistically significant covariates influencing nintedanib exposure, but no individual covariate at extreme values (5th and 95th percentiles of baseline values for continuous covariates) resulted in a change of more than 33% relative to a typical patient. Pharmacokinetics and covariate effects for BIBF 1202 were similar to nintedanib. Mild or moderate renal impairment and mild hepatic impairment (classified by transaminase or bilirubin increase above the upper limit of normal) or underlying disease had no significant effects on nintedanib pharmacokinetics. Conclusions This model adequately described the pharmacokinetic profile of nintedanib in NSCLC and IPF populations and can be used for simulations exploring covariate effects and exposure–response analyses. Electronic supplementary material The online version of this article (doi:10.1007/s00280-017-3452-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrike Schmid
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany.
| | - Karl-Heinz Liesenfeld
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Angele Fleury
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Claudia Dallinger
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Matthias Freiwald
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| |
Collapse
|
37
|
Marzin K, Kretschmar G, Luedtke D, Kraemer S, Kuelzer R, Schlenker-Herceg R, Schmid U, Schnell D, Dallinger C. Pharmacokinetics of Nintedanib in Subjects With Hepatic Impairment. J Clin Pharmacol 2017; 58:357-363. [PMID: 29106740 PMCID: PMC5836871 DOI: 10.1002/jcph.1025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/06/2017] [Indexed: 11/29/2022]
Abstract
Nintedanib is an intracellular inhibitor of tyrosine kinases used in the treatment of non–small cell lung cancer and idiopathic pulmonary fibrosis (IPF). This phase 1 open‐label study investigated the influence of mild and moderate hepatic impairment on the pharmacokinetics (PK), safety, and tolerability of nintedanib following oral administration of a single 100‐mg dose. Subjects with hepatic impairment classified as Child‐Pugh A (mild hepatic impairment) or Child‐Pugh B (moderate hepatic impairment) were eligible. The control group comprised healthy matched subjects. Primary end points were Cmax and AUC0–∞ of nintedanib. Thirty‐three subjects received nintedanib (8 in each of the Child‐Pugh A and Child‐Pugh B groups and 17 controls). The shape of the plasma concentration–time curve for nintedanib was similar between Child‐Pugh A or B and healthy subjects. Nintedanib exposure was ∼2‐fold higher in Child‐Pugh A subjects and ∼8‐fold higher in Child‐Pugh B subjects than in healthy subjects. Adverse events were reported in 3 Child‐Pugh B subjects (37.5%), no Child‐Pugh A subjects, and 3 healthy subjects (17.6%). In conclusion, exposure to nintedanib was higher in Child‐Pugh A and B subjects than in matched healthy subjects. A single dose of nintedanib 100 mg had an acceptable safety and tolerability profile in subjects with hepatic impairment. Results of this dedicated phase 1 study are in line with exploratory investigations into the PK of nintedanib in patients with advanced solid tumors or IPF and hepatic impairment.
Collapse
Affiliation(s)
- Kristell Marzin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gunther Kretschmar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Doreen Luedtke
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Raimund Kuelzer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rozsa Schlenker-Herceg
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, The United States of America
| | - Ulrike Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - David Schnell
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Claudia Dallinger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
38
|
Englinger B, Kallus S, Senkiv J, Heilos D, Gabler L, van Schoonhoven S, Terenzi A, Moser P, Pirker C, Timelthaler G, Jäger W, Kowol CR, Heffeter P, Grusch M, Berger W. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:122. [PMID: 28882160 PMCID: PMC5590147 DOI: 10.1186/s13046-017-0592-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Background Studying the intracellular distribution of pharmacological agents, including anticancer compounds, is of central importance in biomedical research. It constitutes a prerequisite for a better understanding of the molecular mechanisms underlying drug action and resistance development. Hyperactivated fibroblast growth factor receptors (FGFRs) constitute a promising therapy target in several types of malignancies including lung cancer. The clinically approved small-molecule FGFR inhibitor nintedanib exerts strong cytotoxicity in FGFR-driven lung cancer cells. However, subcellular pharmacokinetics of this compound and its impact on therapeutic efficacy remain obscure. Methods 3-dimensional fluorescence spectroscopy was conducted to asses cell-free nintedanib fluorescence properties. MTT assay was used to determine the impact of the lysosome-targeting agents bafilomycin A1 and chloroquine combined with nintedanib on lung cancer cell viability. Flow cytometry and live cell as well as confocal microscopy were performed to analyze uptake kinetics as well as subcellular distribution of nintedanib. Western blot was conducted to investigate protein expression. Cryosections of subcutaneous tumor allografts were generated to detect intratumoral nintedanib in mice after oral drug administration. Results Here, we report for the first time drug-intrinsic fluorescence properties of nintedanib in living and fixed cancer cells as well as in cryosections derived from allograft tumors of orally treated mice. Using this feature in conjunction with flow cytometry and confocal microscopy allowed to determine cellular drug accumulation levels, impact of the ABCB1 efflux pump and to uncover nintedanib trapping into lysosomes. Lysosomal sequestration - resulting in an organelle-specific and pH-dependent nintedanib fluorescence - was identified as an intrinsic resistance mechanism in FGFR-driven lung cancer cells. Accordingly, combination of nintedanib with agents compromising lysosomal acidification (bafilomycin A1, chloroquine) exerted distinctly synergistic growth inhibitory effects. Conclusion Our findings provide a powerful tool to dissect molecular factors impacting organismal and intracellular pharmacokinetics of nintedanib. Regarding clinical application, prevention of lysosomal trapping via lysosome-alkalization might represent a promising strategy to circumvent cancer cell-intrinsic nintedanib resistance. Electronic supplementary material The online version of this article (10.1186/s13046-017-0592-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Sebastian Kallus
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Julia Senkiv
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Institute of Cell Biology NAS of Ukraine, Drahomanova str 14/16, 79005, Lviv, Ukraine
| | - Daniela Heilos
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Department of Pharmacology and Toxicology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Lisa Gabler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Sushilla van Schoonhoven
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Patrick Moser
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria. .,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria.
| |
Collapse
|
39
|
pH-dependent solubility and permeability profiles: A useful tool for prediction of oral bioavailability. Eur J Pharm Sci 2017; 105:82-90. [DOI: 10.1016/j.ejps.2017.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
|
40
|
Kókai E, Halász J, Dancsó A, Nagy J, Simig G, Volk B. Study on the Alkylation Reactions of N(7)-Unsubstituted 1,3-Diazaoxindoles. Molecules 2017; 22:molecules22050846. [PMID: 28534864 PMCID: PMC6154441 DOI: 10.3390/molecules22050846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 11/30/2022] Open
Abstract
The chemistry of the 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one (1,3-diazaoxindole) compound family, possessing a drug-like scaffold, is unexplored. In this study, the alkylation reactions of N(7)-unsubstituted 5-isopropyl-1,3-diazaoxindoles bearing various substituents at the C(2) position have been investigated. The starting compounds were synthesized from the C(5)-unsubstituted parent compounds by condensation with acetone and subsequent catalytic reduction of the 5-isopropylidene moiety. Alkylation of the thus obtained 5-isopropyl derivatives with methyl iodide or benzyl bromide in the presence of a large excess of sodium hydroxide led to 5,7-disubstituted derivatives. Use of butyllithium as the base rendered alkylation in the C(5) position possible with reasonable selectivity, without affecting the N(7) atom. During the study on the alkylation reactions, some interesting by-products were also isolated and characterized.
Collapse
Affiliation(s)
- Eszter Kókai
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, 1475 Budapest, Hungary.
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest, Hungary.
- Department of Materials Technology, GAMF Faculty of Engineering and Computer Science, Pallasz Athéné University, P.O. Box 700, 6001 Kecskemét, Hungary.
| | - Judit Halász
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, 1475 Budapest, Hungary.
| | - András Dancsó
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, 1475 Budapest, Hungary.
| | - József Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest, Hungary.
| | - Gyula Simig
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, 1475 Budapest, Hungary.
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, 1475 Budapest, Hungary.
| |
Collapse
|