1
|
Tang Y, Chen Z, Zuo Q, Kang Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol Immunol 2024; 21:1215-1230. [PMID: 39402302 PMCID: PMC11527989 DOI: 10.1038/s41423-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Ziqing Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
2
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
3
|
Nakajima H, Yamaguchi J, Takami H, Hayashi M, Kodera Y, Nishida Y, Watanabe N, Onoe S, Mizuno T, Yokoyama Y, Ebata T. Impact of skeletal muscle mass on the prognosis of patients undergoing neoadjuvant chemotherapy for resectable or borderline resectable pancreatic cancer. Int J Clin Oncol 2023; 28:688-697. [PMID: 36872415 DOI: 10.1007/s10147-023-02321-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Neoadjuvant chemotherapy is a common therapeutic procedure for patients with pancreatic cancer. This study aimed to investigate the association between the total psoas area (TPA) and prognosis in patients undergoing neoadjuvant chemotherapy for resectable or borderline resectable pancreatic cancer. STUDY DESIGN This retrospective study included patients who underwent neoadjuvant chemotherapy for pancreatic cancer. TPA was measured at the level of the L3 vertebra using computed tomography. The patients were divided into low-TPA and normal-TPA groups. These dichotomizations were separately performed in patients with resectable and those with borderline resectable pancreatic cancer. RESULTS In total, 44 patients had resectable pancreatic cancer and 71 patients had borderline resectable pancreatic cancer. Overall survival among patients with resectable pancreatic cancer did not differ between the normal- and low-TPA groups (median, 19.8 vs. 21.8 months, p = 0.447), whereas among patients with borderline resectable pancreatic cancer, the low-TPA group had shorter overall survival than the normal-TPA group (median, 21.8 vs. 32.9 months, p = 0.006). Among patients with borderline resectable pancreatic cancer, the low-TPA group was predictive of poor overall survival (adjusted hazard ratio, 2.57, p = 0.037). CONCLUSION Low TPA is a risk factor of poor survival in patients undergoing neoadjuvant chemotherapy for borderline resectable pancreatic cancer. TPA evaluation could potentially suggest the treatment strategy in this disease.
Collapse
Affiliation(s)
- Hiroki Nakajima
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showaku, Nagoya, Aichi, 466-8550, Japan
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showaku, Nagoya, Aichi, 466-8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Hospital, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Hospital, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Hospital, Nagoya, Japan
| | - Yoshihiro Nishida
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Nobuyuki Watanabe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showaku, Nagoya, Aichi, 466-8550, Japan
| | - Shunsuke Onoe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showaku, Nagoya, Aichi, 466-8550, Japan
| | - Takashi Mizuno
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showaku, Nagoya, Aichi, 466-8550, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showaku, Nagoya, Aichi, 466-8550, Japan.
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showaku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
4
|
The protective effect of cannabinoids against colorectal cancer cachexia through modulation of inflammation and immune responses. Biomed Pharmacother 2023; 161:114467. [PMID: 36871538 DOI: 10.1016/j.biopha.2023.114467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer cachexia is a multifactorial disorder characterized by weight loss and muscle wasting, and there are currently no FDA-approved medications. In the present study, upregulation of six cytokines was observed in serum samples from patients with colorectal cancer (CRC) and in mouse models. A negative correlation between the levels of the six cytokines and body mass index in CRC patients was seen. Gene Ontology analysis revealed that these cytokines were involved in regulating T cell proliferation. The infiltration of CD8+ T cells was found to be associated with muscle atrophy in mice with CRC. Adoptive transfer of CD8+ T cells isolated from CRC mice resulted in muscle wasting in recipients. The Genotype-Tissue Expression database showed that negative correlations between the expression of cachexia markers and cannabinoid receptor 2 (CB2) in human skeletal muscle tissues. Pharmacological treatment with Δ9-tetrahydrocannabinol (Δ9-THC), a selective CB2 agonist or overexpression of CB2 attenuated CRC-associated muscle atrophy. In contrast, knockout of CB2 with a CRISPR/Cas9-based strategy or depletion of CD8+ T cells in CRC mice abolished the Δ9-THC-mediated effects. This study demonstrates that cannabinoids ameliorate CD8+ T cell infiltration in CRC-associated skeletal muscle atrophy via a CB2-mediated pathway. Serum levels of the six-cytokine signature might serve as a potential biomarker to detect the therapeutic effects of cannabinoids in CRC-associated cachexia.
Collapse
|
5
|
Ferrara M, Samaden M, Ruggieri E, Vénéreau E. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front Cell Dev Biol 2022; 10:960341. [PMID: 36158184 PMCID: PMC9493094 DOI: 10.3389/fcell.2022.960341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cachexia is a devastating syndrome associated with the end-stage of several diseases, including cancer, and characterized by body weight loss and severe muscle and adipose tissue wasting. Although different cancer types are affected to diverse extents by cachexia, about 80% of all cancer patients experience this comorbidity, which highly reduces quality of life and response to therapy, and worsens prognosis, accounting for more than 25% of all cancer deaths. Cachexia represents an urgent medical need because, despite several molecular mechanisms have been identified, no effective therapy is currently available for this devastating syndrome. Most studies focus on skeletal muscle, which is indeed the main affected and clinically relevant organ, but cancer cachexia is characterized by a multiorgan failure. In this review, we focus on the current knowledge on the multiple tissues affected by cachexia and on the biomarkers with the attempt to define a chronological pathway, which might be useful for the early identification of patients who will undergo cachexia. Indeed, it is likely that the inefficiency of current therapies might be attributed, at least in part, to their administration in patients at the late stages of cachexia.
Collapse
Affiliation(s)
- Michele Ferrara
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Samaden
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Ruggieri
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emilie Vénéreau
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Souto EB, da Ana R, Vieira V, Fangueiro JF, Dias-Ferreira J, Cano A, Zielińska A, Silva AM, Staszewski R, Karczewski J. Non-melanoma skin cancers: physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia 2022; 30:100810. [PMID: 35649306 PMCID: PMC9160356 DOI: 10.1016/j.neo.2022.100810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Non-melanoma carcinoma has high incidence rates and has two most common subtypes: basal cell carcinoma and squamous cell carcinoma. This type of carcinoma is usually not fatal; however, it can destroy sensory organs such as the nose, ears, and lips. The treatment of these injuries using non-invasive methods is thus strongly recommended. Some treatments for non-melanoma carcinoma are already well defined, such as surgery, cryosurgery, curettage and electrode section, and radiotherapy; however, these conventional treatments cause inflammation and scarring. In the non-surgical treatment of non-melanoma carcinoma, the topical administration of chemotherapeutic drugs contributes for an effective treatment with reduced side effects. However, the penetration of anticancer drugs in the deeper layers of the skin is required. Lipid delivery systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers) have been developed to overcome epidermal barrier of the skin and to allow the drugs to reach tumor cells. These lipid nanoparticles contribute to control the release profile of the loaded chemotherapeutic drugs, maintaining their stability and increasing death of tumor cells. In this review, the characteristics of non-melanoma carcinoma will be discussed, describing the main existing treatments, together with the contribution of lipid delivery systems as an innovative approach to increase the effectiveness of topical therapies for non-melanoma carcinomas.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Raquel da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vânia Vieira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150, Porto, Porto, Portugal
| | - Joana F Fangueiro
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150, Porto, Porto, Portugal
| | - João Dias-Ferreira
- Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), 08007 Barcelona, Spain
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Amélia M Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Rafał Staszewski
- Department of Hypertension Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland; Department of Gastroenterology, Dietetics and Internal Diseases, H. Swiecicki University Hospital, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| |
Collapse
|
7
|
Wan Q, Wang Z, Zhao R, Tu T, Shen X, Shen Y, Li T, Chen Y, Song Y. CT-determined low skeletal muscle mass predicts worse overall survival of gastric cancer in patients with cachexia. Cancer Med 2022; 12:1492-1500. [PMID: 35848533 PMCID: PMC9883576 DOI: 10.1002/cam4.5040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND There were controversies for the association between computed tomography (CT)-determined low skeletal muscle mass (SMM) and overall survival (OS) in gastric cancer (GC). In this study, we investigated whether cachexia could be a potential confounding variable for this issue. METHODS We retrospectively collected the patients of GC in our institution between July 2016 and January 2021. Preoperative SMM was determined by analyzing the skeletal muscle index of L3 with abdominal CT, and the cut-offs for low SMM were defined as <52.4 (men) and < 38.5 cm2 /m2 (women), respectively. Overall survival (OS) was the primary endpoint. RESULTS Of the 255 included GC patients, 117 (46%) were classified as having low SMM. Those with low SMM were associated with a higher level of circulating interleukin 6 and C reactive protein but a lower level of albumin than those of normal SMM. The univariate analysis showed that low SMM, tumor-node-metastasis (TNM) stage, body mass index (BMI), postoperative chemotherapy, and cachexia were significantly associated with OS, while in the multivariate analysis, only low SMM and TNM stage were significantly associated with OS. Kaplan-Meier survival curves with log-rank tests indicated that low SMM significantly predicted worse OS of GC. After grouping by cachexia, the low SMM significantly predicted worse OS in patients with cachexia instead of those without cachexia. CONCLUSIONS CT-determined low SMM predicts worse OS of GC in patients with cachexia instead of those without cachexia, and greater attention should be paid to such patients with synchronous low SMM and cachexia.
Collapse
Affiliation(s)
- Qianyi Wan
- Department of Gastrointestinal SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Zhetao Wang
- Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
| | - Rui Zhao
- Department of Gastrointestinal SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Tingting Tu
- Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
| | - Xiaoding Shen
- Department of Gastrointestinal SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Yuhou Shen
- Department of Gastrointestinal SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Yi Chen
- Department of Gastrointestinal SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Yinghan Song
- Department of day surgery centerWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
8
|
Jiang X, Xu X, Ding L, Zhu H, Lu J, Zhao K, Zhu S, Xu Q. Predictive value of preoperative handgrip strength on postoperative outcomes in patients with gastrointestinal tumors: a systematic review and meta-analysis. Support Care Cancer 2022; 30:6451-6462. [PMID: 35316404 DOI: 10.1007/s00520-022-06983-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE This systematic review and meta-analysis aimed to explore the predictive value of preoperative handgrip strength on postoperative outcomes in patients with gastrointestinal tumors. METHODS Databases including Cochrane Library, Pubmed, Embase, Web of Science, and CINAHL Complete were searched for articles published from the establishment of database until August 7, 2021. Two researchers independently screened the literature, extracted the data, and evaluated the quality. RESULTS Eight studies were included, involving five prospective and three retrospective cohort studies with 2291 participants. The prevalence of preoperative low handgrip strength ranged from 11.8 to 62.7%. Preoperative low handgrip strength was associated with an increased risk of total complications (OR = 2.23, 95%CI = 1.43-3.50), pneumonia (OR = 5.16, 95%CI = 3.17-8.38), ileus (OR = 2.48, 95%CI = 1.09-5.65), and short-term mortality (OR = 7.28, 95%CI = 1.90-27.92). CONCLUSION This systematic review and meta-analysis indicated that preoperative HGS had important value to predict certain adverse postoperative outcomes among patients with GI tumors. Low handgrip strength criteria, definition of total complications, and country are the potential sources of heterogeneity, and more research are required to test and update these results.
Collapse
Affiliation(s)
- Xiaoman Jiang
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyi Xu
- Faculty of Health, Queensland University of Technology, Brisbane, 4702, Australia
| | - Lingyu Ding
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Hanfei Zhu
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Jinling Lu
- Department of Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Kang Zhao
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Shuqin Zhu
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Qin Xu
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Abstract
Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.
Collapse
|
10
|
Vecchio E, Caiazza C, Mimmi S, Avagliano A, Iaccino E, Brusco T, Nisticò N, Maisano D, Aloisio A, Quinto I, Renna M, Divisato G, Romano S, Tufano M, D’Agostino M, Vigliar E, Iaccarino A, Mignogna C, Andreozzi F, Mannino GC, Spiga R, Stornaiuolo M, Arcucci A, Mallardo M, Fiume G. Metabolites Profiling of Melanoma Interstitial Fluids Reveals Uridine Diphosphate as Potent Immune Modulator Capable of Limiting Tumor Growth. Front Cell Dev Biol 2021; 9:730726. [PMID: 34604232 PMCID: PMC8486041 DOI: 10.3389/fcell.2021.730726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor interstitial fluid (TIF) surrounds and perfuses tumors and collects ions, metabolites, proteins, and extracellular vesicles secreted by tumor and stromal cells. Specific metabolites, accumulated within the TIF, could induce metabolic alterations of immune cells and shape the tumor microenvironment. We deployed a metabolomic approach to analyze the composition of melanoma TIF and compared it to the plasma of C57BL6 mice, engrafted or not with B16-melanoma cells. Among the classes of metabolites analyzed, monophosphate and diphosphate nucleotides resulted enriched in TIF compared to plasma samples. The analysis of the effects exerted by guanosine diphosphate (GDP) and uridine diphosphate (UDP) on immune response revealed that GDP and UDP increased the percentage of CD4+CD25+FoxP3- and, on isolated CD4+ T-cells, induced the phosphorylation of ERK, STAT1, and STAT3; increased the activity of NF-κB subunits p65, p50, RelB, and p52; increased the expression of Th1/Th17 markers including IFNγ, IL17, T-bet, and RORγt; and reduced the expression of IL13, a Th2 marker. Finally, we observed that local administrations of UDP in B16-engrafted C57BL6 mice reduced tumor growth and necrotic areas. In addition, UDP-treated tumors showed a higher presence of MHCIIhi tumor-associated macrophage (TAM) and of CD3+CD8+ and CD3+CD4+ tumor-infiltrating T-lymphocytes (TILs), both markers of anti-tumor immune response. Consistent with this, intra-tumoral gene expression analysis revealed in UDP-treated tumors an increase in the expression of genes functionally linked to anti-tumor immune response. Our analysis revealed an important metabolite acting as mediator of immune response, which could potentially represent an additional tool to be used as an adjuvant in cancer immunotherapy.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Teresa Brusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Chiara Mignogna
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
11
|
HIENSCH ANOUKE, MIJWEL SARA, BARGIELA DAVID, WENGSTRÖM YVONNE, MAY ANNEM, RUNDQVIST HELENE. Inflammation Mediates Exercise Effects on Fatigue in Patients with Breast Cancer. Med Sci Sports Exerc 2021; 53:496-504. [PMID: 32910094 PMCID: PMC7886356 DOI: 10.1249/mss.0000000000002490] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The randomized controlled OptiTrain trial showed beneficial effects on fatigue after a 16-wk exercise intervention in patients with breast cancer undergoing adjuvant chemotherapy. We hypothesize that exercise alters systemic inflammation and that this partially mediates the beneficial effects of exercise on fatigue. METHODS Two hundred and forty women scheduled for chemotherapy were randomized to 16 wk of resistance and high-intensity interval training (RT-HIIT), moderate-intensity aerobic and high-intensity interval training (AT-HIIT), or usual care (UC). In the current mechanistic analyses, we included all participants with >60% attendance and a random selection of controls (RT-HIIT = 30, AT-HIIT = 27, UC = 29). Fatigue (Piper Fatigue Scale) and 92 markers (e.g., interleukin-6 [IL-6] and tumor necrosis factor α [TNF-α]) were assessed at baseline and postintervention. Mediation analyses were conducted to explore whether changes in inflammation markers mediated the effect of exercise on fatigue. RESULTS Overall, chemotherapy led to an increase in inflammation. The increases in IL-6 (pleiotropic cytokine) and CD8a (T-cell surface glycoprotein) were however significantly less pronounced after RT-HIIT compared with UC (-0.47, 95% confidence interval = -0.87 to -0.07, and -0.28, 95% confidence interval = -0.57 to 0.004, respectively). Changes in IL-6 and CD8a significantly mediated the exercise effects on both general and physical fatigue by 32.0% and 27.7%, and 31.2% and 26.4%, respectively. No significant between-group differences in inflammatory markers at 16 wk were found between AT-HIIT and UC. CONCLUSIONS This study is the first showing that supervised RT-HIIT partially counteracted the increase in inflammation during chemotherapy, i.e., IL-6 and soluble CD8a, which resulted in lower fatigue levels postintervention. Exercise, including both resistance and high-intensity aerobic training, might be put forward as an effective treatment to reduce chemotherapy-induced inflammation and subsequent fatigue.
Collapse
Affiliation(s)
- ANOUK E. HIENSCH
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, Utrecht, THE NETHERLANDS
| | - SARA MIJWEL
- Division of Nursing, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, SWEDEN
| | - DAVID BARGIELA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UNITED KINGDOM
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SWEDEN
| | - YVONNE WENGSTRÖM
- Division of Nursing, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, SWEDEN
- Theme Cancer, Karolinska University Hospital, Stockholm, SWEDEN
| | - ANNE M. MAY
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, Utrecht, THE NETHERLANDS
| | - HELENE RUNDQVIST
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SWEDEN
| |
Collapse
|
12
|
Hua X, Liao JF, Liu S, Zhang J, Huang HY, Wen W, Long ZQ, Zhang WW, Guo L, Lin HX. Low Skeletal Muscle Mass Impairs Quality of Life in Nasopharyngeal Carcinoma Patients Treated With Concurrent Chemoradiotherapy. Front Nutr 2020; 6:195. [PMID: 32010705 PMCID: PMC6974669 DOI: 10.3389/fnut.2019.00195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) patients receiving concurrent chemoradiotherapy (CCRT) frequently develop low skeletal muscle mass (SMM), but, little is known about the impacts of low SMM on health-related quality of life (QOL). Methods: We retrospectively assessed 56 patients with locoregionally advanced NPC enrolled in a prospective trial. Low SMM was determined on routine computed tomography simulation (CT-sim) scans taken before radiotherapy, at the third cervical (C3) vertebral level with validated sex-specific cutoffs. QOL was assessed using the World Health Organization Quality of Life Questionnaire-100 at baseline and after 3 weeks. Pain was scored every 24 h using a numerical rating scale (NRS). Characteristics related to low SMM were identified by logistic regression. The chi-square test was used to examine the association of low SMM with QOL and pain. Results: Of the 56 participants (mean age 44.20 ± 10.93 years), over half (60.71%) developed low SMM. Patients with low SMM were more likely to be older (P = 0.035), male (P = 0.066), have a lower body-mass index (BMI; P = 0.091), and have a higher pain score (P = 0.001). Older age (hazard ratio [HR] = 1.788, P = 0.016), being male (HR = 3.145, P = 0.010), lower BMI (HR = 0.761, P = 0.033), and lower prognostic nutritional index (HR = 0.186, P = 0.034) were associated with higher risk of low SMM. Low SMM was associated with poorer baseline QOL scores (P = 0.072), especially in the physical domain (P = 0.002) and its three facets: pain (P = 0.003), energy (P = 0.021), and sleep (P = 0.007). Low SMM was also associated with significantly worse QOL scores (P = 0.006) at 3 weeks, especially in the physical (P = 0.002), psychological (P = 0.046), independence (P = 0.003), social domains (P = 0.023), and in general health condition (P = 0.043). For pain score, low SMM group had worse overall changes from baseline to week 3 (P = 0.011). Conclusions: The incidence of low SMM, as evaluated using routine CT-sim scans, is high in patients receiving CCRT for locoregionally advanced NPC. Low SMM results in poorer QOL and higher pain scores, which underscores the requirement for nutritional and functional interventions to address low SMM early in the treatment course.
Collapse
Affiliation(s)
- Xin Hua
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Fang Liao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Shan Liu
- Department of Radiation Oncology, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Wen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Qing Long
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Wen Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan-Xin Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Anoveros-Barrera A, Bhullar AS, Stretch C, Dunichand-Hoedl AR, Martins KJB, Rieger A, Bigam D, McMullen T, Bathe OF, Putman CT, Field CJ, Baracos VE, Mazurak VC. Immunohistochemical phenotyping of T cells, granulocytes, and phagocytes in the muscle of cancer patients: association with radiologically defined muscle mass and gene expression. Skelet Muscle 2019; 9:24. [PMID: 31521204 PMCID: PMC6744687 DOI: 10.1186/s13395-019-0209-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation is a recognized contributor to muscle wasting. Research in injury and myopathy suggests that interactions between the skeletal muscle and immune cells confer a pro-inflammatory environment that influences muscle loss through several mechanisms; however, this has not been explored in the cancer setting. This study investigated the local immune environment of the muscle by identifying the phenotype of immune cell populations in the muscle and their relationship to muscle mass in cancer patients. METHODS Intraoperative muscle biopsies were collected from cancer patients (n = 30, 91% gastrointestinal malignancies). Muscle mass was assessed histologically (muscle fiber cross-sectional area, CSA; μm2) and radiologically (lumbar skeletal muscle index, SMI; cm2/m2 by computed tomography, CT). T cells (CD4 and CD8) and granulocytes/phagocytes (CD11b, CD14, and CD15) were assessed by immunohistochemistry. Microarray analysis was conducted in the muscle of a second cancer patient cohort. RESULTS T cells (CD3+), granulocytes/phagocytes (CD11b+), and CD3-CD4+ cells were identified. Muscle fiber CSA (μm2) was positively correlated (Spearman's r = > 0.45; p = < 0.05) with the total number of T cells, CD4, and CD8 T cells and granulocytes/phagocytes. In addition, patients with the smallest SMI exhibited fewer CD8 T cells within their muscle. Consistent with this, further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively associated (Pearson's r = ≥ 0.5; p = <0.0001) with key genes within muscle catabolic pathways for signaling (ACVR2B), ubiquitin proteasome (FOXO4, TRIM63, FBXO32, MUL1, UBC, UBB, UBE2L3), and apoptosis/autophagy (CASP8, BECN1, ATG13, SIVA1). CONCLUSION The skeletal muscle immune environment of cancer patients is comprised of immune cell populations from the adaptive and innate immunity. Correlations of T cells, granulocyte/phagocytes, and CD3-CD4+ cells with muscle mass measurements indicate a positive relationship between immune cell numbers and muscle mass status in cancer patients. Further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively correlated with components of muscle catabolism.
Collapse
Affiliation(s)
- Ana Anoveros-Barrera
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Amritpal S Bhullar
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Cynthia Stretch
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Abha R Dunichand-Hoedl
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Karen J B Martins
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Aja Rieger
- Flow Cytometry Facility, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David Bigam
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Todd McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Oliver F Bathe
- Department of Oncology and Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Charles T Putman
- Faculty of Kinesiology, Sport, and Recreation, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Vickie E Baracos
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vera C Mazurak
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
14
|
Narsale A, Moya R, Ma J, Anderson LJ, Wu D, Garcia JM, Davies JD. Cancer-driven changes link T cell frequency to muscle strength in people with cancer: a pilot study. J Cachexia Sarcopenia Muscle 2019; 10:827-843. [PMID: 30977974 PMCID: PMC6711422 DOI: 10.1002/jcsm.12424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumour growth can promote the loss of muscle mass and function. This is particularly disturbing because overall survival is significantly reduced in people with weaker and smaller skeletal muscle. The risk of cancer is also greater in people who are immune deficient. Muscle wasting in mice with cancer can be inhibited by infusion of CD4+ precursor T cells that restore balanced ratios of naïve, memory, and regulatory T cells. These data are consistent with the hypothesis that stronger anti-cancer T cell immunity leads to improved muscle mass and function. As a first step to testing this hypothesis, we determined whether levels of circulating T cell subsets correlate with levels of muscle strength in people with cancer. METHODS The frequency of circulating CD4+ and CD8+ naïve, memory, and regulatory T cell subsets was quantified in 11 men with gastrointestinal cancer (aged 59.3 ± 10.1 years) and nine men without cancer (aged 60 ± 13 years), using flow cytometry. T cell marker expression was determined using real-time PCR and western blot analyses in whole blood and peripheral blood mononuclear cells. Handgrip strength, one-repetition maximum chest press, and knee extension tests were used to determine muscle strength. Performance was determined using a stair climb test. Body composition was determined using dual-energy X-ray absorptiometry scan. The Karnofsky and ECOG scales were used to assess functional impairment. Correlations between frequencies of cell subsets with strength, performance, and body composition were determined using regression analyses. RESULTS Our data show significant correlations between (i) higher frequencies of CD8+ naïve (P = 0.02) and effector memory (P = 0.003) T cells and lower frequencies of CD8+ central memory T cells (P = 0.002) with stronger handgrip strength, (ii) lower frequency of regulatory cells with greater lean mass index (P = 0.04), (iii) lower frequency of CD8+ T cells that express CD95 with greater stair climb power (P = 0.003), (iv) higher frequency of T cells that co-express CD197 and CD45RA and greater one-repetition maximum knee extension strength (P = 0.008), and (iv) higher expression of CD4 in whole blood with greater functional impairment (P = 0.004) in people with cancer. CONCLUSIONS We have identified significant correlations between levels of T cell populations and muscle strength, performance, and body composition in people with cancer. These data justify a follow-up study with a larger cohort to test the validity of the findings.
Collapse
Affiliation(s)
- Aditi Narsale
- San Diego Biomedical Research Institute, San Diego, USA
| | - Rosa Moya
- San Diego Biomedical Research Institute, San Diego, USA
| | - Jasmin Ma
- San Diego Biomedical Research Institute, San Diego, USA
| | - Lindsey J Anderson
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Daniel Wu
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA.,Oncology Section, VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA.,Division of Diabetes, Endocrinology and Metabolism, MCL, Center for Translational Research in Inflammatory Diseases, Michael E DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|