1
|
VanderVeen BN, Cardaci TD, Bullard BM, Madden M, Li J, Velazquez KT, Kubinak JL, Fan D, Murphy EA. Involvement of the gut microbiota in cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C661-C670. [PMID: 38981609 PMCID: PMC11427007 DOI: 10.1152/ajpcell.00327.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Cancer cachexia, or the unintentional loss of body weight in patients with cancer, is a multiorgan and multifactorial syndrome with a complex and largely unknown etiology; however, metabolic dysfunction and inflammation remain hallmarks of cancer-associated wasting. Although cachexia manifests with muscle and adipose tissue loss, perturbations to the gastrointestinal tract may serve as the frontline for both impaired nutrient absorption and immune-activating gut dysbiosis. Investigations into the gut microbiota have exploded within the past two decades, demonstrating multiple gut-tissue axes; however, the link between adipose and skeletal muscle wasting and the gut microbiota with cancer is only beginning to be understood. Furthermore, the most used anticancer drugs (e.g. chemotherapy and immune checkpoint inhibitors) negatively impact gut homeostasis, potentially exacerbating wasting and contributing to poor patient outcomes and survival. In this review, we 1) highlight our current understanding of the microbial changes that occur with cachexia, 2) discuss how microbial changes may contribute to adipose and skeletal muscle wasting, and 3) outline study design considerations needed when examining the role of the microbiota in cancer-induced cachexia.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Thomas D Cardaci
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Brooke M Bullard
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Michael Madden
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States
| | - Kandy T Velazquez
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Jason L Kubinak
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
2
|
Kwon YY, Hui S. IL-6 promotes tumor growth through immune evasion but is dispensable for cachexia. EMBO Rep 2024; 25:2592-2609. [PMID: 38671295 PMCID: PMC11169252 DOI: 10.1038/s44319-024-00144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, deemed as a key cachectic factor in mice inoculated with colon carcinoma 26 (C26) cells, a widely used cancer cachexia model. Here we tested the causal role of IL-6 in cancer cachexia by knocking out the IL-6 gene in C26 cells. We found that the growth of IL-6 KO tumors was dramatically delayed. More strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. In addition, the knockout of leukemia inhibitory factor (LIF), another IL-6 family cytokine proposed as a cachectic factor in the model, also affected tumor growth but not cachexia. We further showed an increase in the infiltration of immune cell population in the IL-6 KO tumors compared with wild-type controls and the defective IL-6 KO tumor growth was rescued in immunodeficient mice while cachexia was not. Thus, IL-6 promotes tumor growth by facilitating immune evasion but is dispensable for cachexia.
Collapse
Affiliation(s)
- Young-Yon Kwon
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
3
|
Song M, Tang Y, Cao K, Qi L, Xie K. Unveiling the role of interleukin-6 in pancreatic cancer occurrence and progression. Front Endocrinol (Lausanne) 2024; 15:1408312. [PMID: 38828409 PMCID: PMC11140100 DOI: 10.3389/fendo.2024.1408312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Pancreatic cancer is difficult to diagnose early and progresses rapidly. Researchers have found that a cytokine called Interleukin-6 (IL-6) is involved in the entire course of pancreatic cancer, promoting its occurrence and development. From the earliest stages of pancreatic intraepithelial neoplasia to the invasion and metastasis of pancreatic cancer cells and the appearance of tumor cachexia, IL-6 drives oncogenic signal transduction pathways and immune escape that accelerate disease progression. IL-6 is considered a biomarker for pancreatic cancer diagnosis and prognosis, as well as a potential target for treatment. IL-6 antibodies are currently being explored as a hot topic in oncology. This article aims to systematically explain how IL-6 induces the deterioration of normal pancreatic cells, with the goal of finding a breakthrough in pancreatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Meihui Song
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Ying Tang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kaimei Cao
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
- School of Pharmaceutical Sciences, Dali University, Dali, Yunnan, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Keping Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Chen P, Lv H, Du M, Liu W, Che C, Zhao J, Liu H. Bacillus subtilis HW2 enhances growth performance and alleviates gut injury via attenuation of endoplasmic reticulum stress and regulation of gut microbiota in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103661. [PMID: 38547540 PMCID: PMC11000119 DOI: 10.1016/j.psj.2024.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
This study investigated the effects of Bacillus subtilis HW2 on the growth performance, immune response, endoplasmic reticulum (ER) stress, and intestinal health in broilers with necrotic enteritis. Three hundred 1-day-old male Cobb 500 broilers (33.88 ± 2.34 g) were randomly allocated to 5 groups including non-infected control (NC group), basal diet + necrotic enteritis challenge (NE group), basal diet + 1 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (L-Pro group), basal diet + 5 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (M-Pro group), and basal diet + 1 × 107 CFU/g B. subtilis HW2 + necrotic enteritis challenge (H-Pro group), with 6 replicates per group. All broilers except NC group were orally given with sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. Results showed that L-Pro and M-Pro groups improved growth performance and intestinal morphology in necrotic enteritis-challenged broilers, and L-Pro, M-Pro, and H-Pro groups improved intestinal barrier function and immune response and decreased ER stress in necrotic enteritis-challenged broilers. Analysis of the gut microbiota revealed that L-Pro group increased the abundances of Alistipes, Coprobacter, Barnesiella, and Limosilactobacillus, decreased Erysipelatoclostridium abundance on day 42 in necrotic enteritis-challenged broilers. M-Pro group increased Turicibacter abundance on day 28 and the abundances of Alistipes, Barnesiella, and Limosilactobacillus on day 42 in necrotic enteritis-challenged broilers. H-Pro group decreased Romboutsia abundance on day 28 and unidentified_Clostridia abundance on day 42 in necrotic enteritis-challenged broilers. Analysis of short-chain fatty acids (SCFAs) revealed higher isobutyric acid and isovaleric acid levels in L-Pro and M-Pro groups than NE group. Correlation analysis revealed the correlations between the biochemical parameters and gut microbiota as well as SCFAs, especially Romboutsia, Barnesiella, Coprobacter, isobutyric acid, and isovaleric acid. Overall, our results indicated that B. subtilis HW2 supplementation could ameliorate necrotic enteritis infection-induced gut injury. The optimal dietary supplementation dosage of Bacillus subtilis HW2 was 5 × 106 CFU/g.
Collapse
Affiliation(s)
- Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuanyan Che
- College of Animal Science and Technology, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
6
|
Fu C, Zhang X, Zhang X, Wang D, Han S, Ma Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals (Basel) 2024; 17:415. [PMID: 38675377 PMCID: PMC11054630 DOI: 10.3390/ph17040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-7 (IL-7) is a versatile cytokine that plays a crucial role in regulating the immune system's homeostasis. It is involved in the development, proliferation, and differentiation of B and T cells, as well as being essential for the differentiation and survival of naïve T cells and the production and maintenance of memory T cells. Given its potent biological functions, IL-7 is considered to have the potential to be widely used in the field of anti-tumour immunotherapy. Notably, IL-7 can improve the tumour microenvironment by promoting the development of Th17 cells, which can in turn promote the recruitment of effector T cells and NK cells. In addition, IL-7 can also down-regulate the expression of tumour growth factor-β and inhibit immunosuppression to promote anti-tumour efficacy, suggesting potential clinical applications for anti-tumour immunotherapy. This review aims to discuss the origin of IL-7 and its receptor IL-7R, its anti-tumour mechanism, and the recent advances in the application of IL-7 in tumour therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (C.F.); (X.Z.); (X.Z.); (D.W.); (S.H.)
| |
Collapse
|
7
|
Godala M, Gaszyńska E, Walczak K, Małecka-Wojciesko E. Role of Serum Interleukin-6, Interleukin-1β and Interleukin-10 in Assessment of Disease Activity and Nutritional Status in Patients with Inflammatory Bowel Disease. J Clin Med 2023; 12:5956. [PMID: 37762896 PMCID: PMC10532332 DOI: 10.3390/jcm12185956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are characterised by multifactorial and chronic inflammation. Much attention has been paid to immune dysfunction in inflammatory bowel diseases. The aim of this study was to assess the usefulness of serum IL-6, IL-1β and IL-10 in determining the activity and nutritional status in IBD patients. The case-control study was carried out on 82 patients with IBD; the control group consisted of 25 clinically healthy subjects. The serum concentrations of IL-6, IL-1 β and IL-10 were determined by the quantitative sandwich enzyme-linked immunosorbent assay. There were no significant differences in IL-6 and IL-1β levels in UC and CD patients according to disease activity as assessed by the Montreal classification, Partial Mayo Score and CDAI. Significantly higher IL-6 levels were found in patients with low body fat in comparison to patients with normal body fat. Furthermore, significantly higher mean IL-6 levels were observed in patients with excess body fat in comparison to patients with normal body fat, and also in comparison to patients with deficient body fat. IL-6 and IL-1β may provide extra information regarding the nutritional status of IBD patients. IL-10 can be considered a non-invasive biomarker of IBD activity.
Collapse
Affiliation(s)
- Małgorzata Godala
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Ewelina Gaszyńska
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
8
|
Cui L, Zeng H, Hou M, Li Z, Mu C, Zhu W, Hang S. Lactiplantibacillus plantarum L47 and inulin alleviate enterotoxigenic Escherichia coli induced ileal inflammation in piglets by upregulating the levels of α-linolenic acid and 12,13-epoxyoctadecenoic acid. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:370-382. [PMID: 37635926 PMCID: PMC10457428 DOI: 10.1016/j.aninu.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023]
Abstract
Alternatives to antibiotics for preventing bacteria-induced inflammation in early-weaned farm animals are sorely needed. Our previous study showed that Lactiplantibacillus plantarum L47 and inulin could alleviate dextran sulfate sodium (DSS)-induced colitis in mice. To explore the protective effects of L. plantarum L47 and inulin on the ileal inflammatory response in weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC), 28 weaned piglets were assigned into four groups, namely, CON group-orally given 10 mL/d phosphate buffer saline (PBS), LI47 group-orally given a mixture of 10 mL/d L. plantarum L47 and inulin, ECON group-orally given 10 mL/d PBS and challenged by ETEC, and ELI47 group-orally given 10 mL/d L. plantarum L47 and inulin mixture and challenged by ETEC. The results demonstrated that the combination of L. plantarum L47 and inulin reduced inflammatory responses and relieved the inflammatory damage caused by ETEC, including ileal morphological damage, reduced protein expression of ileal tight junction, decreased antioxidant capacity, and decreased anti-inflammatory factors. Transcriptome analysis revealed that L. plantarum L47 and inulin up-regulated the gene expression of phospholipase A2 group IIA (PLA2G2A) (P < 0.05) as well as affected alpha-linolenic acid (ALA) metabolism and linoleic acid metabolism. Moreover, L. plantarum L47 and inulin increased the levels of ALA (P < 0.05), lipoteichoic acid (LTA) (P < 0.05), and 12,13-epoxyoctadecenoic acid (12,13-EpOME) (P < 0.05) and the protein expression of Toll-like receptor 2 (TLR2) (P = 0.05) in the ileal mucosa. In conclusion, L. plantarum L47 and inulin together alleviated ETEC-induced ileal inflammation in piglets by up-regulating the levels of ALA and 12,13-EpOME via the LTA/TLR2/PLA2G2A pathway.
Collapse
Affiliation(s)
- Leihong Cui
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Zeng
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meixin Hou
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongxin Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Mu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, China
| | - Suqin Hang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Niño-Narvión J, Rojo-López MI, Martinez-Santos P, Rossell J, Ruiz-Alcaraz AJ, Alonso N, Ramos-Molina B, Mauricio D, Julve J. NAD+ Precursors and Intestinal Inflammation: Therapeutic Insights Involving Gut Microbiota. Nutrients 2023; 15:2992. [PMID: 37447318 DOI: 10.3390/nu15132992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oxidized form of nicotinamide adenine dinucleotide (NAD+) is a critical metabolite for living cells. NAD+ may act either as a cofactor for many cellular reactions as well as a coenzyme for different NAD+-consuming enzymes involved in the physiological homeostasis of different organs and systems. In mammals, NAD+ is synthesized from either tryptophan or other vitamin B3 intermediates that act as NAD+ precursors. Recent research suggests that NAD+ precursors play a crucial role in maintaining the integrity of the gut barrier. Indeed, its deficiency has been associated with enhanced gut inflammation and leakage, and dysbiosis. Conversely, NAD+-increasing therapies may confer protection against intestinal inflammation in experimental conditions and human patients, with accumulating evidence indicating that such favorable effects could be, at least in part, mediated by concomitant changes in the composition of intestinal microbiota. However, the mechanisms by which NAD+-based treatments affect the microbiota are still poorly understood. In this context, we have focused specifically on the impact of NAD+ deficiency on intestinal inflammation and dysbiosis in animal and human models. We have further explored the relationship between NAD+ and improved host intestinal metabolism and immunity and the composition of microbiota in vivo. Overall, this comprehensive review aims to provide a new perspective on the effect of NAD+-increasing strategies on host intestinal physiology.
Collapse
Affiliation(s)
- Julia Niño-Narvión
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | | | | | - Joana Rossell
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | - Núria Alonso
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias I Pujol, 08916 Badalona, Spain
| | - Bruno Ramos-Molina
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
| | - Didac Mauricio
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), 08500 Vic, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
| |
Collapse
|
10
|
Park MR, Lee HJ, Jang HM, Kim NH, Lee JS, Jeong YT, Kim I, Choi SH, Seo KS, Kim DH. Cytarabine induces cachexia with lipid malabsorption via zippering the junctions of lacteal in murine small intestine. J Lipid Res 2023; 64:100387. [PMID: 37201659 PMCID: PMC10323926 DOI: 10.1016/j.jlr.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Chemotherapy-induced cachexia causes severe metabolic abnormalities independently of cancer and reduces the therapeutic efficacy of chemotherapy. The underlying mechanism of chemotherapy-induced cachexia remains unclear. Here we investigated the cytarabine (CYT)-induced alteration in energy balance and its underlying mechanisms in mice. We compared energy balance-associated parameters among the three groups of mice: CON, CYT, and PF (pair-fed mice with the CYT group) that were intravenously administered vehicle or CYT. Weight gain, fat mass, skeletal muscle mass, grip strength, and nocturnal energy expenditure were significantly lowered in the CYT group than in the CON and PF groups. The CYT group demonstrated less energy intake than the CON group and higher respiratory quotient than the PF group, indicating that CYT induced cachexia independently from the anorexia-induced weight loss. Serum triglyceride was significantly lower in the CYT group than in the CON group, whereas the intestinal mucosal triglyceride levels and the lipid content within the small intestine enterocyte were higher after lipid loading in the CYT group than in the CON and PF groups, suggesting that CYT inhibited lipid uptake in the intestine. This was not associated with obvious intestinal damage. The CYT group showed increased zipper-like junctions of lymphatic endothelial vessel in duodenal villi compared to that in the CON and CYT groups, suggesting their imperative role in the CYT-induced inhibition of lipid uptake. CYT worsens cachexia independently of anorexia by inhibiting the intestinal lipid uptake, via the increased zipper-like junctions of lymphatic endothelial vessel.
Collapse
Affiliation(s)
- Mi-Rae Park
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye-Jin Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye-Min Jang
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Sik Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Roggiani S, Mengoli M, Conti G, Fabbrini M, Brigidi P, Barone M, D'Amico F, Turroni S. Gut microbiota resilience and recovery after anticancer chemotherapy. MICROBIOME RESEARCH REPORTS 2023; 2:16. [PMID: 38046820 PMCID: PMC10688789 DOI: 10.20517/mrr.2022.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 12/05/2023]
Abstract
Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, what a "healthy" gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its recovery with serious long-term consequences for patients' health. However, the distinguishing features of gut microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after such high-impact pharmacological treatments.
Collapse
Affiliation(s)
- Sara Roggiani
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
12
|
Kwon YY, Hui S. IL-6 is dispensable for causing cachexia in the colon carcinoma 26 model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539076. [PMID: 37205425 PMCID: PMC10187151 DOI: 10.1101/2023.05.02.539076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, which has been deemed a key cachectic factor in mice inoculated with the colon carcinoma 26 (C26) cells, one of the most widely used models of cancer cachexia. Here to test the causal role of IL-6 in cancer cachexia, we used CRISPR/Cas9 editing to knock out IL-6 in C26 cells. We found that growth of IL-6 KO C26 tumors was dramatically delayed. Most strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. We further showed an increase of immune cell populations in IL-6 KO tumors and the defective IL-6 KO tumor growth was rescued in immunodeficient mice. Thus, our results invalidated IL-6 as a necessary factor for causing cachexia in the C26 model and revealed instead its important role in regulating tumor growth via immune suppression.
Collapse
Affiliation(s)
- Young-Yon Kwon
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Liz-Pimenta J, Tavares V, Neto BV, Santos JMO, Guedes CB, Araújo A, Khorana AA, Medeiros R. Thrombosis and cachexia in cancer: two partners in crime? Crit Rev Oncol Hematol 2023; 186:103989. [PMID: 37061076 DOI: 10.1016/j.critrevonc.2023.103989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Among cancer patients, thrombosis and cachexia are major causes of morbidity and mortality. Although the two may occur together, little is known about their possible relationship. Thus, a literature review was conducted by screening the databases PubMed, Scopus, SciELO, Medline and Web of Science. To summarize, cancer-associated thrombosis (CAT) and cancer-associated cachexia (CAC) seem to share several patient-, tumour- and treatment-related risk factors. Inflammation alongside metabolic and endocrine derangement is the potential missing link between CAT, CAC and cancer. Many key players, including specific pro-inflammatory cytokines, immune cells and hormones, appear to be implicated in both thrombosis and cachexia, representing attractive predictive markers and potential therapeutic targets. Altogether, the current evidence suggests a link between CAT and CAC, however, epidemiological studies are required to explore this potential relationship. Given the high incidence and negative impact of both diseases, further studies are needed for the better management of cancer patients.
Collapse
Affiliation(s)
- Joana Liz-Pimenta
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal; FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Valéria Tavares
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Beatriz Vieira Neto
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Joana M O Santos
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Catarina Brandão Guedes
- Department of Imunohemotherapy, Hospital da Senhora da Oliveira, 4835-044 Guimarães, Portugal
| | - António Araújo
- Department of Medical Oncology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal; UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alok A Khorana
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States of America
| | - Rui Medeiros
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer - Regional Nucleus of the North, 4200-172 Porto, Portugal; Biomedical Research Center, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
14
|
The protective effect of cannabinoids against colorectal cancer cachexia through modulation of inflammation and immune responses. Biomed Pharmacother 2023; 161:114467. [PMID: 36871538 DOI: 10.1016/j.biopha.2023.114467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer cachexia is a multifactorial disorder characterized by weight loss and muscle wasting, and there are currently no FDA-approved medications. In the present study, upregulation of six cytokines was observed in serum samples from patients with colorectal cancer (CRC) and in mouse models. A negative correlation between the levels of the six cytokines and body mass index in CRC patients was seen. Gene Ontology analysis revealed that these cytokines were involved in regulating T cell proliferation. The infiltration of CD8+ T cells was found to be associated with muscle atrophy in mice with CRC. Adoptive transfer of CD8+ T cells isolated from CRC mice resulted in muscle wasting in recipients. The Genotype-Tissue Expression database showed that negative correlations between the expression of cachexia markers and cannabinoid receptor 2 (CB2) in human skeletal muscle tissues. Pharmacological treatment with Δ9-tetrahydrocannabinol (Δ9-THC), a selective CB2 agonist or overexpression of CB2 attenuated CRC-associated muscle atrophy. In contrast, knockout of CB2 with a CRISPR/Cas9-based strategy or depletion of CD8+ T cells in CRC mice abolished the Δ9-THC-mediated effects. This study demonstrates that cannabinoids ameliorate CD8+ T cell infiltration in CRC-associated skeletal muscle atrophy via a CB2-mediated pathway. Serum levels of the six-cytokine signature might serve as a potential biomarker to detect the therapeutic effects of cannabinoids in CRC-associated cachexia.
Collapse
|
15
|
Kong Q, Shang Z, Liu Y, Fakhar-e-Alam Kulyar M, Suo-lang S, Xu Y, Tan Z, Li J, Liu S. Preventive effect of Terminalia bellirica (Gaertn.) Roxb. extract on mice infected with Salmonella Typhimurium. Front Cell Infect Microbiol 2023; 12:1054205. [PMID: 36699727 PMCID: PMC9868565 DOI: 10.3389/fcimb.2022.1054205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional herbal combination used in Chinese medicine for the treatment of a broad range of diseases. In this study, thirty KM mice were randomly divided into control (N), infection group (NS), and the TB protection group (HS). Based on its digestive feature, intestinal physical barrier, immunological barrier and gut microbiota effects in vivo on challenged with S.typhimurium mice were investigated after oral administration of 600 mg/kg b.wt of TB for 13 days. The results show that the extract could improve the level of serum immunoglobulins (IgA and IgG), decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the V3-V4 region of the 16S rRNA analyzed, the results of the taxonomic structure of the intestinal microbiota demonstrated that the TB prevention effect transformed the key phylotypes of the gut microbiota in S. Typhimurium-challenged mice and promoted the multiplication of beneficial bacteria. Furthermore, the abundance of Firmicutes and Deferribacteres increased, while that of Bacteroidetes and Actinobacteria decreased. At the genus level, the abundance of Ruminococcus and Oscillospira was substantially enhanced, while the other dominant genera showed no significant change between the vehicle control groups and the TB prevention groups. In summary, these results provide evidence that the administration of TB extract can prevent S. Typhimurium infection by alleviating the intestinal physical and immunological barriers and normalizing the gut microbiota, highlighting a promising application in clinical treatment. Thus, our results provide new insights into the biological functions of TB for the preventive effect of intestinal inflammation.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| | - Yao Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | | | - Sizhu Suo-lang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Yefen Xu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Zhankun Tan
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| | - Jiakui Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Nyingchi, China
| |
Collapse
|
16
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
17
|
Ferrara M, Samaden M, Ruggieri E, Vénéreau E. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front Cell Dev Biol 2022; 10:960341. [PMID: 36158184 PMCID: PMC9493094 DOI: 10.3389/fcell.2022.960341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cachexia is a devastating syndrome associated with the end-stage of several diseases, including cancer, and characterized by body weight loss and severe muscle and adipose tissue wasting. Although different cancer types are affected to diverse extents by cachexia, about 80% of all cancer patients experience this comorbidity, which highly reduces quality of life and response to therapy, and worsens prognosis, accounting for more than 25% of all cancer deaths. Cachexia represents an urgent medical need because, despite several molecular mechanisms have been identified, no effective therapy is currently available for this devastating syndrome. Most studies focus on skeletal muscle, which is indeed the main affected and clinically relevant organ, but cancer cachexia is characterized by a multiorgan failure. In this review, we focus on the current knowledge on the multiple tissues affected by cachexia and on the biomarkers with the attempt to define a chronological pathway, which might be useful for the early identification of patients who will undergo cachexia. Indeed, it is likely that the inefficiency of current therapies might be attributed, at least in part, to their administration in patients at the late stages of cachexia.
Collapse
Affiliation(s)
- Michele Ferrara
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Samaden
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Ruggieri
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emilie Vénéreau
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Stalmach A, Boehm I, Fernandes M, Rutter A, Skipworth RJE, Husi H. Gene Ontology (GO)-Driven Inference of Candidate Proteomic Markers Associated with Muscle Atrophy Conditions. Molecules 2022; 27:5514. [PMID: 36080280 PMCID: PMC9457532 DOI: 10.3390/molecules27175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle homeostasis is essential for the maintenance of a healthy and active lifestyle. Imbalance in muscle homeostasis has significant consequences such as atrophy, loss of muscle mass, and progressive loss of functions. Aging-related muscle wasting, sarcopenia, and atrophy as a consequence of disease, such as cachexia, reduce the quality of life, increase morbidity and result in an overall poor prognosis. Investigating the muscle proteome related to muscle atrophy diseases has a great potential for diagnostic medicine to identify (i) potential protein biomarkers, and (ii) biological processes and functions common or unique to muscle wasting, cachexia, sarcopenia, and aging alone. We conducted a meta-analysis using gene ontology (GO) analysis of 24 human proteomic studies using tissue samples (skeletal muscle and adipose biopsies) and/or biofluids (serum, plasma, urine). Whilst there were few similarities in protein directionality across studies, biological processes common to conditions were identified. Here we demonstrate that the GO analysis of published human proteomics data can identify processes not revealed by single studies. We recommend the integration of proteomics data from tissue samples and biofluids to yield a comprehensive overview of the human skeletal muscle proteome. This will facilitate the identification of biomarkers and potential pathways of muscle-wasting conditions for use in clinics.
Collapse
Affiliation(s)
- Angelique Stalmach
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Ines Boehm
- Edinburgh Cancer Research UK Tissue Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Fernandes
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Alison Rutter
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Richard J. E. Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Holger Husi
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
19
|
Malla J, Zahra A, Venugopal S, Selvamani TY, Shoukrie SI, Selvaraj R, Dhanoa RK, Hamouda RK, Mostafa J. What Role Do Inflammatory Cytokines Play in Cancer Cachexia? Cureus 2022; 14:e26798. [PMID: 35971351 PMCID: PMC9372379 DOI: 10.7759/cureus.26798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022] Open
|
20
|
Qi M, Liao S, Wang J, Deng Y, Zha A, Shao Y, Cui Z, Song T, Tang Y, Tan B, Yin Y. MyD88 deficiency ameliorates weight loss caused by intestinal oxidative injury in an autophagy-dependent mechanism. J Cachexia Sarcopenia Muscle 2022; 13:677-695. [PMID: 34811946 PMCID: PMC8818611 DOI: 10.1002/jcsm.12858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gut health plays a vital role in the overall health and disease control of human and animals. Intestinal oxidative stress is a critical player in the induction and progression of cachexia which is conventionally diagnosed and classified by weight loss. Therefore, reduction of intestinal oxidative injury is a common and highly effective strategy for the maintenance of human and animal health. Here we identify intestinal myeloid differentiation primary response gene 88 (MyD88) as a novel target for intestinal oxidative stress using canonical oxidative stress model induced by paraquat (PQ) in vitro and in vivo. METHODS Intestinal oxidative stress was induced by administration of PQ in intestinal epithelial cells (IECs) and mouse model. Cell proliferation, apoptosis, DNA damage, mitochondrial function, oxidative status, and autophagy process were measured in wild-type and MyD88-deficient IECs during PQ exposure. Autophagy inhibitor (3-methyladenine) and activator (rapamycin) were employed to assess the role of autophagy in MyD88-deficient IECs during PQ exposure. MyD88 specific inhibitor, ST2825, was used to verify function of MyD88 during PQ exposure in mouse model. RESULTS MyD88 protein levels and apoptotic rate of IECs are increased in response to PQ exposure (P < 0.001). Intestinal deletion of MyD88 blocks PQ-induced apoptosis (~42% reduction) and DNA damage (~86% reduction), and improves mitochondrial fission (~37% reduction) and function including mitochondrial membrane potential (~23% increment) and respiratory metabolism capacity (~26% increment) (P < 0.01). Notably, there is a marked decrease in reactive oxygen species in MyD88-deficient IECs during PQ exposure (~70% reduction), which are consistent with high activity of antioxidative enzymes (~83% increment) (P < 0.001). Intestinal ablation of MyD88 inhibits mTOR signalling, and further phosphorylates p53 proteins during PQ exposure, which eventually promotes intestinal autophagy (~74% increment) (P < 0.01). Activation of autophagy (rapamycin) promotes IECs growth as compared with 3-methyladenine-treatment during PQ exposure (~173% increment), while inhibition of autophagy (3-methyladenine) exacerbates oxidative stress in MyD88-deficient IECs (P < 0.001). In mouse model, inhibition of MyD88 using specific inhibitor ST2825 followed by PQ treatment effectively ameliorates weight loss (~4% increment), decreased food intake (~92% increment), gastrocnemius and soleus loss (~24% and ~20% increment, respectively), and intestinal oxidative stress in an autophagy dependent manner (P < 0.01). CONCLUSIONS MyD88 modulates intestinal oxidative stress in an autophagy-dependent mechanism, which suggests that reducing MyD88 level may constitute a putative therapeutic target for intestinal oxidative injury-induced weight loss.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yirui Shao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhijuan Cui
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
High-Fat Diet Induces Disruption of the Tight Junction-Mediated Paracellular Barrier in the Proximal Small Intestine Before the Onset of Type 2 Diabetes and Endotoxemia. Dig Dis Sci 2021; 66:3359-3374. [PMID: 33104937 DOI: 10.1007/s10620-020-06664-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM A link between an impaired intestinal barrier, endotoxemia, and the pathogenesis of metabolic diseases, such as type 2 diabetes mellitus (T2DM), has been proposed. In previous work, we have demonstrated that the tight junction (TJ)-mediated intestinal barrier in ileum/colon was marginally changed in prediabetic mice; therefore, it does not seem to mainly contribute to the T2DM onset. In this study, the TJ-mediated epithelial barrier in the duodenum and jejunum was evaluated in mice during the development of type 2 prediabetes. METHODS/RESULTS HF diet induced prediabetes after 60 days associated with a significant rise in intestinal permeability to the small-sized marker Lucifer yellow in these mice, with no histological signs of mucosal inflammation or rupture of the proximal intestine epithelium. As revealed by immunofluorescence, TJ proteins, such as claudins-1, -2, -3, and ZO-1, showed a significant decrease in junctional content in duodenum and jejunum epithelia, already after 15 days of treatment, suggesting a rearrangement of the TJ structure. However, no significant change in total cell content of these proteins was observed in intestinal epithelium homogenates, as assessed by immunoblotting. Despite the changes in intestinal permeability and TJ structure, the prediabetic mice showed similar LPS, zonulin, and TNF-α levels in plasma or adipose tissue, and in intestinal segments as compared to the controls. CONCLUSION Disruption of the TJ-mediated paracellular barrier in the duodenum and jejunum is an early event in prediabetes development, which occurs in the absence of detectable endotoxemia/inflammation and may contribute to the HF diet-induced increase in intestinal permeability.
Collapse
|
22
|
Adamis D, van Gool WA, Eikelenboom P. Consistent patterns in the inconsistent associations of Insulin-like growth factor 1 (IGF-1), C-Reactive Protein (C-RP) and Interleukin 6 (IL-6) levels with delirium in surgical populations. A systematic review and meta-analysis. Arch Gerontol Geriatr 2021; 97:104518. [PMID: 34536657 DOI: 10.1016/j.archger.2021.104518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biomarkers for delirium could increase diagnostic accuracy and may help to identify pathological pathways. Until now study findings concerning cytokine levels have been inconsistent. AIMS Systematic review and meta-analysis investigating the association between peripheral levels of Insulin-like Growth Factor-1 (IGF-1), C-Reactive Protein (C-RP) and Interleukin-6 (IL-6) and delirium in surgical patients, and to explore if there are distinct/specific patterns that may potentially explain inconsistent results. METHODS PubMed, Scopus, CINAHL, Cochrane, and EMBASE databases were searched. Inclusion criteria were: prospective studies, surgical populations excluding preoperative delirium, available data. The following were collected: type of operation (orthopaedic, abdominal, etc), the timing of operation (acute, elective, both), demographics, number of participants with delirium, time of preoperative blood withdrawal, and preoperative levels of each biomarker. RESULTS Low levels of IGF-1 (n = 7 studies) are significantly associated with post-operative delirium in abdominal surgical samples. High levels of C-RP (n = 9) are associated with delirium in acute orthopaedic and elective abdominal operations. IL-6 (n = 14) is a significant predictor of post-operative delirium in a variety of surgical conditions (elective or acute). DISCUSSION A common pattern exists in the otherwise conflicting reported findings. This similarity may reflect different underling mechanisms and predisposing factors like cachexia and catabolic stages. It seems that delirium in abdominal surgery is triggered by IGF-1 disturbances, while in other surgeries by an inflammatory reaction. CONCLUSIONS Despite the contradictory results concerning the association of IGF-1, C-RP and IL-6 with postoperative delirium, the present meta-analysis shows that there are certain patterns. IL-6 seems a consistent predictor for delirium in surgical samples.
Collapse
Affiliation(s)
| | - Willem A van Gool
- Department of Population and Occupational Health, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Piet Eikelenboom
- GGZinGeest, Amsterdam, the Netherlands. Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Widner DB, Liu C, Zhao Q, Sharp S, Eber MR, Park SH, Files DC, Shiozawa Y. Activated mast cells in skeletal muscle can be a potential mediator for cancer-associated cachexia. J Cachexia Sarcopenia Muscle 2021; 12:1079-1097. [PMID: 34008339 PMCID: PMC8350201 DOI: 10.1002/jcsm.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Eighty per cent of United States advanced cancer patients faces a worsened prognosis due to cancer-associated cachexia. Inflammation is one driver of muscle atrophy in cachexia, and skeletal muscle-resident immune cells could be a source of inflammation. This study explores the efficacy of cancer activated skeletal muscle-resident mast cells as a biomarker and mediator of cachexia. METHODS Individual gene markers for immune cells were assessed in a publicly available colon carcinoma cohort of normal (n = 3), moderate cachexia (n = 3), and severe cachexia (n = 4) mice. Lewis lung carcinoma (LL/2) cells induced cachexia in C57BL/6 mice, and a combination of toluidine blue staining, immunofluorescence, quantitative polymerase chain reaction, and western blots measured innate immune cell expression in hind limb muscles. In vitro measurements included C2C12 myotube diameter before and after treatment with media from primary murine mast cells activated with LL/2 conditioned media. To assess translational potential in human samples, innate immune cell signatures were assessed for correlation with skeletal muscle atrophy and apoptosis, dietary excess, and cachexia signatures in normal skeletal muscle tissue. Gene set enrichment analysis was performed with innate immune cell signatures in publicly available cohorts for upper gastrointestinal (GI) cancer and pancreatic ductal adenocarcinoma (PDAC) patients (accession: GSE34111 and GSE130563, respectively). RESULTS Individual innate immunity genes (TPSAB1 and CD68) showed significant increases in severe cachexia (weight loss > 15%) mice in a C26 cohort (GSE24112). Induction of cachexia in C57BL/6 mice with LL/2 subcutaneous injection significantly increased the number of activated skeletal muscle-resident degranulating mast cells. Murine mast cells activated with LL/2 conditioned media decreased C2C12 myotube diameter (P ≤ 0.05). Normal human skeletal muscle showed significant positive correlations between innate immune cell signatures and muscle apoptosis and atrophy, dietary excess, and cachexia signatures. The mast cell signature was up-regulated (positive normalized enrichment score and false discovery rate ≤ 0.1) in upper GI cachectic patients (n = 12) compared with control (n = 6), as well as in cachectic PDAC patients (n = 17) compared with control patients (n = 16). CONCLUSIONS Activated skeletal muscle-resident mast cells are enriched in cachectic muscles, suggesting skeletal-muscle resident mast cells may serve as a biomarker and mediator for cachexia development to improve patient diagnosis and prognosis.
Collapse
Affiliation(s)
- D Brooke Widner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Chun Liu
- Internal Medicine-Sections in Pulmonary and Critical Care Medicine and Geriatrics and the Critical Illness Injury and Recovery Research Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Qingxia Zhao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sarah Sharp
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA.,Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew R Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sun H Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - D Clark Files
- Internal Medicine-Sections in Pulmonary and Critical Care Medicine and Geriatrics and the Critical Illness Injury and Recovery Research Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
24
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
25
|
Association of bowel radiation dose-volume with skeletal muscle loss during pelvic intensity-modulated radiotherapy in cervical cancer. Support Care Cancer 2021; 29:5497-5505. [PMID: 33712910 DOI: 10.1007/s00520-021-06131-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Radiation-induced bowel damage may compromise nutrient absorption and digestion and affect body composition during pelvic radiotherapy in patients with locally advanced cervical cancer (LACC). This study aimed to evaluate the relationship between bowel radiation dose-volume and body composition changes during pelvic radiotherapy. METHODS Data of 301 LACC patients treated with chemoradiotherapy were analyzed. Changes in skeletal muscle index (SMI) and density (SMD), and total adipose tissue index (TATI) were measured from computed tomography images at the L3 vertebral level. A reduction in SMI, SMD, or TATI of ≥10% was classified as "loss." Bowel V45 indicates the bowel volume (mL) receiving a radiation dose of ≥45 Gy. The relationship between body composition and bowel V45 was analyzed using logistic regression models. RESULTS After treatment, 61 (20.3%), 81 (26.9%), and 97 (32.2%) patients experienced SMI, SMD, and TATI loss, respectively. Increased bowel V45 was independently associated with increased odds of SMI loss (odds ratio [OR]: 1.012; 95% confidence interval [CI]: 1.007-1.018; p<0.001) and TATI loss (OR: 1.006; 95% CI: 1.001-1.010; p=0.01), but not with SMD loss (OR: 1.005; 95% CI: 1.000-1.009; p=0.054). The cut-off value with the highest accuracy for predicting SMI loss was V45 ≥222 mL; a higher rate of SMI loss was noted in 40.0% of patients with V45 ≥222 mL than in 13.7% of patients with V45 <222 mL (p<0.001). CONCLUSIONS Higher bowel dose-volume was significantly associated with muscle loss during pelvic radiotherapy. Bowel dose-volume consideration is required in individualized nutritional counseling and supportive care in clinical practice.
Collapse
|
26
|
Kasprzak A. The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. Int J Mol Sci 2021; 22:ijms22041565. [PMID: 33557173 PMCID: PMC7913937 DOI: 10.3390/ijms22041565] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cachexia (CC) is a multifactorial syndrome in patients with advanced cancer characterized by weight loss via skeletal-muscle and adipose-tissue atrophy, catabolic activity, and systemic inflammation. CC is correlated with functional impairment, reduced therapeutic responsiveness, and poor prognosis, and is a major cause of death in cancer patients. In colorectal cancer (CRC), cachexia affects around 50–61% of patients, but remains overlooked, understudied, and uncured. The mechanisms driving CC are not fully understood but are related, at least in part, to the local and systemic immune response to the tumor. Accumulating evidence demonstrates a significant role of tumor microenvironment (TME) cells (e.g., macrophages, neutrophils, and fibroblasts) in both cancer progression and tumor-induced cachexia, through the production of multiple procachectic factors. The most important role in CRC-associated cachexia is played by pro-inflammatory cytokines, including the tumor necrosis factor α (TNFα), originally known as cachectin, Interleukin (IL)-1, IL-6, and certain chemokines (e.g., IL-8). Heterogeneous CRC cells themselves also produce numerous cytokines (including chemokines), as well as novel factors called “cachexokines”. The tumor microenvironment (TME) contributes to systemic inflammation and increased oxidative stress and fibrosis. This review summarizes the current knowledge on the role of TME cellular components in CRC-associated cachexia, as well as discusses the potential role of selected mediators secreted by colorectal cancer cells in cooperation with tumor-associated immune and non-immune cells of tumor microenvironment in inducing or potentiating cancer cachexia. This knowledge serves to aid the understanding of the mechanisms of this process, as well as prevent its consequences.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
| |
Collapse
|
27
|
Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, Coletti D. A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics (Basel) 2021; 11:diagnostics11010116. [PMID: 33445790 PMCID: PMC7828214 DOI: 10.3390/diagnostics11010116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients’ quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.
Collapse
Affiliation(s)
- Emanuele Berardi
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
- Faculty of Rehabilitation Sciences, REVAL, Hasselt University (UHasselt), 3590 Diepenbeek, Belgium
| | - Luca Madaro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Biliana Lozanoska-Ochser
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
| | - Marina Bouche
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Correspondence: ; Tel.: +39-(6)-4976-6755/6573
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France
| |
Collapse
|
28
|
Affiliation(s)
- Sandra Palus
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
30
|
Wyart E, Bindels LB, Mina E, Menga A, Stanga S, Porporato PE. Cachexia, a Systemic Disease beyond Muscle Atrophy. Int J Mol Sci 2020; 21:E8592. [PMID: 33202621 PMCID: PMC7696729 DOI: 10.3390/ijms21228592] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a complication of dismal prognosis, which often represents the last step of several chronic diseases. For this reason, the comprehension of the molecular drivers of such a condition is crucial for the development of management approaches. Importantly, cachexia is a syndrome affecting various organs, which often results in systemic complications. To date, the majority of the research on cachexia has been focused on skeletal muscle, muscle atrophy being a pivotal cause of weight loss and the major feature associated with the steep reduction in quality of life. Nevertheless, defining the impact of cachexia on other organs is essential to properly comprehend the complexity of such a condition and potentially develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Erica Mina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Orbassano (TO), Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy;
| | - Paolo E. Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| |
Collapse
|
31
|
Lee J, Liu SH, Dai KY, Huang YM, Li CJ, Chen JCH, Leu YS, Liu CJ, Chen YJ. Sarcopenia and Systemic Inflammation Synergistically Impact Survival in Oral Cavity Cancer. Laryngoscope 2020; 131:E1530-E1538. [PMID: 33135827 DOI: 10.1002/lary.29221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Sarcopenia and systemic inflammation can affect survival of advanced-stage oral squamous cell carcinoma (OSCC) patients; however, their reciprocal associations with survival outcomes are yet to be investigated. STUDY DESIGN Retrospective review at a tertiary cancer center. METHODS Patients with stage III-IVB OSCC that underwent surgery and (chemo)radiotherapy at our institution between 2010 and 2015 were reviewed. Skeletal muscle index (SMI) was assessed using computed tomography scans at the C3 vertebra. Sarcopenia was defined at the lowest sex-specific tertile for SMI. Systemic inflammation was estimated using the modified Glasgow prognostic score (mGPS), which ranges from 0 to 2 based on serum C-reactive protein and albumin levels. The predictors of overall survival (OS) were evaluated using Cox regression models. RESULTS A total of 174 patients were included in the study. The cut-off values for sarcopenia were set at SMI <52.4 cm2 /m2 (men) and < 36.2 cm2 /m2 (women) corresponding to the lowest sex-specific tertile. An mGPS 1-2 was independently associated with sarcopenia (odds ratio: 2.05; 95% confidence interval: 1.06-3.97; P = .03). On multivariate analysis for OS, sarcopenia and mGPS 1-2 independently predicted OS (hazard ratio: 2.12; 95% confidence interval: 1.17-3.85; P = .01 and hazard ratio: 7.85; 95% confidence interval: 3.7-16.65; P < .001, respectively). Patients with both sarcopenia and mGPS 1-2 (vs. neither) had worse OS (hazard ratio: 16.80; 95% confidence interval: 6.01-46.99; P < .001). CONCLUSIONS Sarcopenia and systemic inflammation may exert a negative synergistic prognostic impact in advanced-stage OSCC patients. LEVEL OF EVIDENCE 4 Laryngoscope, 131:E1530-E1538, 2021.
Collapse
Affiliation(s)
- Jie Lee
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Shih-Hua Liu
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Kun-Yao Dai
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ming Huang
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Jung Li
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - John Chun-Hao Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Death Care Service, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Yi-Shing Leu
- Department of Otorhinolaryngology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Hadzibegovic S, Sikorski P, Potthoff SK, Springer J, Lena A, Anker MS. Clinical problems of patients with cachexia due to chronic illness: a congress report. ESC Heart Fail 2020; 7:3414-3420. [PMID: 33012131 PMCID: PMC7754899 DOI: 10.1002/ehf2.13052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Sara Hadzibegovic
- Division of Cardiology and Metabolism, Department of Cardiology, Charité - Campus Virchow Klinikum (CVK), Berlin, Germany.,Department of Cardiology, Campus Benjamin Franklin (CBF), Charité University Medicine, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Philipp Sikorski
- Division of Cardiology and Metabolism, Department of Cardiology, Charité - Campus Virchow Klinikum (CVK), Berlin, Germany.,Department of Cardiology, Campus Benjamin Franklin (CBF), Charité University Medicine, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Sophia K Potthoff
- Division of Cardiology and Metabolism, Department of Cardiology, Charité - Campus Virchow Klinikum (CVK), Berlin, Germany.,Department of Cardiology, Campus Benjamin Franklin (CBF), Charité University Medicine, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Alessia Lena
- Division of Cardiology and Metabolism, Department of Cardiology, Charité - Campus Virchow Klinikum (CVK), Berlin, Germany.,Department of Cardiology, Campus Benjamin Franklin (CBF), Charité University Medicine, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Markus S Anker
- Division of Cardiology and Metabolism, Department of Cardiology, Charité - Campus Virchow Klinikum (CVK), Berlin, Germany.,Department of Cardiology, Campus Benjamin Franklin (CBF), Charité University Medicine, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
33
|
Hayama T, Ozawa T, Okada Y, Tsukamoto M, Fukushima Y, Shimada R, Nozawa K, Matsuda K, Fujii S, Hashiguchi Y. The pretreatment Controlling Nutritional Status (CONUT) score is an independent prognostic factor in patients undergoing resection for colorectal cancer. Sci Rep 2020; 10:13239. [PMID: 32764671 PMCID: PMC7413386 DOI: 10.1038/s41598-020-70252-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
The Controlling Nutritional Status (CONUT) score is a marker of nutrition and is associated with poor survival in various kinds of cancers. However, no reports have yet compared risk factors for colorectal cancer recurrence using a nutritional index. We assessed the predictive value of the CONUT score compared with the modified Glasgow Prognostic Score (mGPS) and Prognostic Nutritional Index (PNI) in colorectal cancer (CRC) patients. We performed a retrospective cohort study of the medical records of 336 consecutive patients with stage I-I I I CRC who underwent curative resection at a single institution in 2012–2017. Univariate and multivariate analyses were conducted to identify prognostic factors associated with relapse-free survival (RFS) and overall survival (OS). The low CONUT score group exhibited higher RFS and longer OS compared to the high CONUT score group (82.2% vs. 63.3%, p = 0.002 and 95.5% and 86.2%, p = 0.005, respectively). The Akaike’s information criterion values of each index for RFS and OS were superior in CONUT score (723.71 and 315.46, respectively) compared to those of PNI (726.95 and 316.52) and mGPS (728.15 and 318.07, respectively). The CONUT score was found to be a good predictor of RFS and OS in patients with resectable CRC.
Collapse
Affiliation(s)
- Tamuro Hayama
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Tsuyoshi Ozawa
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yuka Okada
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Mitsuo Tsukamoto
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yoshihisa Fukushima
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Ryu Shimada
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Keijiro Nozawa
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Keiji Matsuda
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | | | - Yojiro Hashiguchi
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
34
|
Costa RG, Caro PL, de Matos‐Neto EM, Lima JD, Radloff K, Alves MJ, Camargo RG, Pessoa AFM, Simoes E, Gama P, Cara DC, da Silva AS, O. Pereira W, Maximiano LF, de Alcântara PS, Otoch JP, Trinchieri G, Laviano A, Muscaritoli M, Seelaender M. Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa. J Cachexia Sarcopenia Muscle 2019; 10:1116-1127. [PMID: 31307125 PMCID: PMC6818537 DOI: 10.1002/jcsm.12449] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cachexia is a multifactorial and multiorgan syndrome associated with cancer and other chronic diseases and characterized by severe involuntary body weight loss, disrupted metabolism, inflammation, anorexia, fatigue, and diminished quality of life. This syndrome affects around 50% of patients with colon cancer and is directly responsible for the death of at least 20% of all cancer patients. Systemic inflammation has been recently proposed to underline most of cachexia-related symptoms. Nevertheless, the exact mechanisms leading to the initiation of systemic inflammation have not yet been unveiled, as patients bearing the same tumour and disease stage may or may not present cachexia. We hypothesize a role for gut barrier disruption, which may elicit persistent immune activation in the host. To address this hypothesis, we analysed the healthy colon tissue, adjacent to the tumour. METHODS Blood and rectosigmoid colon samples (20 cm distal to tumour margin) obtained during surgery, from cachectic (CC = 25) or weight stable (WSC = 20) colon cancer patients, who signed the informed consent form, were submitted to morphological (light microscopy), immunological (immunohistochemistry and flow cytometry), and molecular (quantification of inflammatory factors by Luminex® xMAP) analyses. RESULTS There was no statistical difference in gender and age between groups. The content of plasma interleukin 6 (IL-6) and IL-8 was augmented in cachectic patients relative to those with stable weight (P = 0.047 and P = 0.009, respectively). The number of lymphocytic aggregates/field in the gut mucosa was higher in CC than in WSC (P = 0.019), in addition to those of the lamina propria (LP) eosinophils (P < 0.001) and fibroblasts (P < 0.001). The area occupied by goblet cells in the colon mucosa was decreased in CC (P = 0.016). The M1M2 macrophages percentage was increased in the colon of CC, in relation to WSC (P = 0.042). Protein expression of IL-7, IL-13, and transforming growth factor beta 3 in the colon was significantly increased in CC, compared with WSC (P = 0.02, P = 0.048, and P = 0.048, respectively), and a trend towards a higher content of granulocyte-colony stimulating factor in CC was also observed (P = 0.061). The results suggest an increased recruitment of immune cells to the colonic mucosa in CC, as compared with WSC, in a fashion that resembles repair response following injury, with higher tissue content of IL-13 and transforming growth factor beta 3. CONCLUSIONS The changes in the intestinal mucosa cellularity, along with modified cytokine expression in cachexia, indicate that gut barrier alterations are associated with the syndrome.
Collapse
Affiliation(s)
- Raquel G.F. Costa
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
- Cancer and Inflammation ProgramNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Paula L. Caro
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
| | - Emídio M. de Matos‐Neto
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
- Department of Physical EducationFederal University of PiauiTeresinaPIBrazil
| | - Joanna D.C.C. Lima
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
| | - Katrin Radloff
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
| | - Michele J. Alves
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
| | - Rodolfo G. Camargo
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
| | - Ana Flávia M. Pessoa
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
| | - Estefania Simoes
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
| | - Patrícia Gama
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
| | - Denise C. Cara
- Department of MorphologyFederal University of Minas GeraisBelo HorizonteMGBrazil
| | | | - Welbert O. Pereira
- School of Medicine, Faculdade Isaraelita de Ciências da Saúde Albert Einstein (FICSAE)São PauloBrazil
| | - Linda F. Maximiano
- Department of SurgeryUniversity Hospital, University of São PauloSão PauloBrazil
- Department of SurgeryUniversity of São Paulo Medical School (FMUSP)São PauloBrazil
| | | | - José P. Otoch
- Department of SurgeryUniversity Hospital, University of São PauloSão PauloBrazil
- Department of SurgeryUniversity of São Paulo Medical School (FMUSP)São PauloBrazil
| | - Giorgio Trinchieri
- Cancer and Inflammation ProgramNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | | | | | - Marília Seelaender
- Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
- Department of SurgeryUniversity of São Paulo Medical School (FMUSP)São PauloBrazil
| |
Collapse
|