1
|
Chen B, Zhou G, Chen A, Peng Q, Huang L, Liu S, Huang Y, Liu X, Wei S, Hou ZY, Li L, Qi L, Ma NF. The synchronous upregulation of a specific protein cluster in the blood predicts both colorectal cancer risk and patient immune status. Gene 2024; 930:148842. [PMID: 39134100 DOI: 10.1016/j.gene.2024.148842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Early detection and treatment of colorectal cancer (CRC) is crucial for improving patient survival rates. This study aims to identify signature molecules associated with CRC, which can serve as valuable indicators for clinical hematological screening. METHOD We have systematically searched the Human Protein Atlas database and the relevant literature for blood protein-coding genes. The CRC dataset from TCGA was used to compare the acquired genes and identify differentially expressed molecules (DEMs). Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify modules of co-expressed molecules and key molecules within the DEMs. Signature molecules of CRC were then identified from the key molecules using machine learning. These findings were further validated in clinical samples. Finally, Logistic regression was used to create a predictive model that calculated the likelihood of CRC in both healthy individuals and CRC patients. We evaluated the model's sensitivity and specificity using the ROC curve. RESULT By utilizing the CRC dataset, WGCNA analysis, and machine learning, we successfully identified seven signature molecules associated with CRC from 1478 blood protein-coding genes. These markers include S100A11, INHBA, QSOX2, MET, TGFBI, VEGFA and CD44. Analyzing the CRC dataset showed its potential to effectively discriminate between CRC and normal individuals. The up-regulated expression of these markers suggests the existence of an immune evasion mechanism in CRC patients and is strongly correlated with poor prognosis. CONCLUSION The combined detection of the seven signature molecules in CRC can significantly enhance diagnostic efficiency and serve as a novel index for hematological screening of CRC.
Collapse
Affiliation(s)
- Bingkun Chen
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guiqing Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Anming Chen
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Qian Peng
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Li Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xueyun Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Yao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Linhai Li
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China.
| | - Ning-Fang Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Liu Y, Zhou Q, Zou G, Zhang W. Inhibin subunit beta B (INHBB): an emerging role in tumor progression. J Physiol Biochem 2024:10.1007/s13105-024-01041-y. [PMID: 39183219 DOI: 10.1007/s13105-024-01041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
The gene inhibin subunit beta B (INHBB) encodes the inhibin βB subunit, which is involved in forming protein members of the transforming growth factor-β (TGF-β) superfamily. The TGF-β superfamily is extensively involved in cell proliferation, differentiation, adhesion, movement, metabolism, communication, and death. Activins and inhibins, which belong to the TGF-β superfamily, were first discovered in ovarian follicular fluid. They were initially described as regulators of pituitary follicle-stimulating hormone (FSH) secretion both in vivo and in vitro. Later studies found that INHBB is expressed not only in reproductive organs such as the ovary, uterus, and testis but also in numerous other organs, including the brain, spinal cord, liver, kidneys, and adrenal glands. This wide distribution implies its involvement in the normal physiological functions of various organs; however, the mechanisms underlying these functions have not yet been fully elucidated. Recent studies suggest that INHBB plays a significant, yet complex role in tumorigenesis. It appears to have dual effects, promoting tumor progression in some contexts while inhibiting it in others, although these roles are not yet fully understood. In this paper, we review the different expression patterns, functions, and mechanisms of INHBB in normal and tumor tissues to illustrate the research prospects of INHBB in tumor progression.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan, People's Republic of China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Guoying Zou
- Department of Clinical Laboratory, Brain Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Morena F, Cabrera AR, Greene NP. Exploring heterogeneity: a dive into preclinical models of cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C310-C328. [PMID: 38853648 PMCID: PMC11427020 DOI: 10.1152/ajpcell.00317.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Cancer cachexia (CC) is a multifactorial and complex syndrome experienced by up to 80% of patients with cancer and implicated in ∼40% of cancer-related deaths. Given its significant impact on patients' quality of life and prognosis, there has been a growing emphasis on elucidating the underlying mechanisms of CC using preclinical models. However, the mechanisms of cachexia appear to differ across several variables including tumor type and model and biologic variables such as sex. These differences may be exacerbated by variance in experimental approaches and data reporting. This review examines literature spanning from 2011 to March 2024, focusing on common preclinical models of CC, including Lewis Lung Carcinoma, pancreatic KPC, and colorectal colon-26 and Apcmin/+ models. Our analysis reveals considerable heterogeneity in phenotypic outcomes, and investigated mechanisms within each model, with particular attention to sex differences that may be exacerbated through methodological differences. Although searching for unified mechanisms is critical, we posit that effective treatment approaches are likely to leverage the heterogeneity presented by the tumor and pertinent biological variables to direct specific interventions. In exploring this heterogeneity, it becomes critical to consider methodological and data reporting approaches to best inform further research.
Collapse
Affiliation(s)
- Francielly Morena
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
4
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
5
|
Hu Y, Recouvreux MS, Haro M, Taylan E, Taylor-Harding B, Walts AE, Karlan BY, Orsulic S. INHBA(+) cancer-associated fibroblasts generate an immunosuppressive tumor microenvironment in ovarian cancer. NPJ Precis Oncol 2024; 8:35. [PMID: 38360876 PMCID: PMC10869703 DOI: 10.1038/s41698-024-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Effective targeting of cancer-associated fibroblasts (CAFs) is hindered by the lack of specific biomarkers and a poor understanding of the mechanisms by which different populations of CAFs contribute to cancer progression. While the role of TGFβ in CAFs is well-studied, less attention has been focused on a structurally and functionally similar protein, Activin A (encoded by INHBA). Here, we identified INHBA(+) CAFs as key players in tumor promotion and immunosuppression. Spatiotemporal analyses of patient-matched primary, metastatic, and recurrent ovarian carcinomas revealed that aggressive metastatic tumors enriched in INHBA(+) CAFs were also enriched in regulatory T cells (Tregs). In ovarian cancer mouse models, intraperitoneal injection of the Activin A neutralizing antibody attenuated tumor progression and infiltration with pro-tumorigenic subsets of myofibroblasts and macrophages. Downregulation of INHBA in human ovarian CAFs inhibited pro-tumorigenic CAF functions. Co-culture of human ovarian CAFs and T cells revealed the dependence of Treg differentiation on direct contact with INHBA(+) CAFs. Mechanistically, INHBA/recombinant Activin A in CAFs induced the autocrine expression of PD-L1 through SMAD2-dependent signaling, which promoted Treg differentiation. Collectively, our study identified an INHBA(+) subset of immunomodulatory pro-tumoral CAFs as a potential therapeutic target in advanced ovarian cancers which typically show a poor response to immunotherapy.
Collapse
Affiliation(s)
- Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marcela Haro
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Enes Taylan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Barbie Taylor-Harding
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- United States Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
6
|
Domaniku A, Bilgic SN, Kir S. Muscle wasting: emerging pathways and potential drug targets. Trends Pharmacol Sci 2023; 44:705-718. [PMID: 37596181 DOI: 10.1016/j.tips.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Muscle wasting is a serious comorbidity associated with many disorders, including cancer, kidney disease, heart failure, and aging. Progressive loss of skeletal muscle mass negatively influences prognosis and survival, and is often accompanied by frailty and poor quality of life. Clinical trials testing therapeutics against muscle wasting have yielded limited success. Some therapies improved muscle mass in patients without appreciable differences in physical performance. This review article discusses emerging pathways that regulate muscle atrophy, including oncostatin M (OSM) and ectodysplasin A2 (EDA2) receptor (EDA2R) signaling, outcomes of recent clinical trials, and potential drug targets for future therapies.
Collapse
Affiliation(s)
- Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
7
|
Liu F, Liu J, Shi X, Hu X, Wei L, Huo B, Chang L, Han Y, Liu G, Yang L. Identification of INHBA as a potential biomarker for gastric cancer through a comprehensive analysis. Sci Rep 2023; 13:12494. [PMID: 37528145 PMCID: PMC10394090 DOI: 10.1038/s41598-023-39784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
Inhibin subunit beta A (INHBA) is a member of the transforming growth factor-beta (TGF-β) superfamily that plays a fundamental role in various cancers. However, a systematic analysis of the exact role of INHBA in patients with gastric cancer (GC) has not yet been conducted. We evaluated the expression levels of INHBA and the correlation between INHBA and GC prognosis in GC. The relationship between INHBA expression, immune infiltration levels, and type markers of immune cells in GC was also explored. In addition, we studied INHBA mutations, promoter methylation, and functional enrichment analysis. Besides, high expression levels of INHBA in GC were significantly related to unfavorable prognosis. INHBA was negatively correlated with B cell infiltration, but positively correlated with macrophage and most anticancer immunity steps. INHBA expression was positively correlated with the type markers of CD8+ T cells, neutrophils, macrophages, and dendritic cells. INHBA has a weak significant methylation level change between tumor and normal tissues and mainly enriched in cancer-related signaling pathways. The present study implies that INHBA may serve as a potential biomarker for predicting the prognosis of patients with GC. INHBA is a promising predictor of immunotherapy response, with higher levels of INHBA indicating greater sensitivity.
Collapse
Affiliation(s)
- Fang Liu
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Jiayi Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Xinrui Shi
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Xiaojie Hu
- Department of General Surgery, Hebei Provincial People's Hospital, Shijiazhuang, 050055, Hebei, People's Republic of China
| | - Lai Wei
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Bingjie Huo
- Department of Chinese Medicine, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Liang Chang
- Department of Pathology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Yaqing Han
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China
| | - Guangjie Liu
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, 050001, Hebei, People's Republic of China.
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
8
|
Xiang M, Gao Y, Zhou Y, Wang M, Yao X. A novel nomogram based on cell cycle-related genes for predicting overall survival in early-onset colorectal cancer. BMC Cancer 2023; 23:595. [PMID: 37370046 DOI: 10.1186/s12885-023-11075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Although the incidence of late-onset colorectal cancer (LOCRC) has decreased, the incidence of early-onset colorectal cancer (EOCRC) is still rising dramatically. Heterogeneity in the genomic, biological, and clinicopathological characteristics between EOCRC and LOCRC has been revealed. Therefore, the previous prognostic models based on the total CRC patient population might not be suitable for EOCRC patients. Here, we constructed a prognostic classifier to enhance the precision of individualized treatment and management of EOCRC patients. METHODS EOCRC expression data were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The regulatory pathways were explored by gene set enrichment analysis (GSEA). The prognostic model was developed by univariate Cox-LASSO-multivariate Cox regression analyses of GEO samples. TCGA samples were used to verify the model. The expression and mutation profiles and immune landscape of the high-risk and low-risk cohorts were analyzed and compared. Finally, the expression and prognostic value of the model genes were verified by immunohistochemistry and qRT‒PCR analysis. RESULTS The cell cycle was identified as the most significantly enriched oncological signature of EOCRC. Then, a 4-gene prognostic signature comprising MCM2, INHBA, CGREF1, and KLF9 was constructed. The risk score was an independent predictor of overall survival. The area under the curve values of the classifier for 1-, 3-, and 5-year survival were 0.856, 0.893, and 0.826, respectively, in the training set and 0.749, 0.858, and 0.865, respectively, in the validation set. Impaired DNA damage repair capability (p < 0.05) and frequent PIK3CA mutations (p < 0.05) were found in the high-risk cohort. CD8 T cells (p < 0.05), activated memory CD4 T cells (p < 0.01), and activated dendritic cells (p < 0.05) were clustered in the low-risk group. Finally, we verified the expression of MCM2, INHBA, CGREF1, and KLF9. Their prognostic value was closely related to age. CONCLUSION In this study, a robust prognostic classifier for EOCRC was established and validated. The findings may provide a reference for individualized treatment and medical decision-making for patients with EOCRC.
Collapse
Affiliation(s)
- Meijuan Xiang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- Department of General Surgery, Foresea Life Insurance Shaoguan Hospital, Shaoguan, 512000, China
| | - Yuan Gao
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yue Zhou
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Muqing Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Yu S, Luan Y, Tang S, Abazarikia A, Dong R, Caffrey TC, Hollingsworth MA, Oupicky D, Kim S. Uncovering Tumor-Promoting Roles of Activin A in Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207010. [PMID: 37083240 PMCID: PMC10238186 DOI: 10.1002/advs.202207010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with high incidence rates of metastasis and cachexia. High circulating activin A, a homodimer of inhibin βA subunits that are encoded by INHBA gene, predicts poor survival among PDAC patients. However, it still raises the question of whether activin A suppression renders favorable PDAC outcomes. Here, the authors demonstrate that activin A is abundantly detected in tumor and stromal cells on PDAC tissue microarray and mouse PDAC sections. In orthotopic male mice, activin A suppression, which is acquired by tumor-targeted Inhba siRNA using cholesterol-modified polymeric nanoparticles, retards tumor growth/metastasis and cachexia and improves survival when compared to scramble siRNA-treated group. Histologically, activin A suppression coincides with decreased expression of proliferation marker Ki67 but increased accumulation of α-SMAhigh fibroblasts and cytotoxic T cells in the tumors. In vitro data demonstrate that activin A promotes KPC cell proliferation and induces the downregulation of α-SMA and upregulation of IL-6 in pancreatic stellate cells (PSC) in the SMAD3-dependent mechanism. Moreover, conditioned media from activin A-stimulated PSC promoted KPC cell growth. Collectively, our data provide a mechanistic basis for tumor-promoting roles of activin A and support therapeutic potentials of tumor activin A suppression for PDAC.
Collapse
Affiliation(s)
- Seok‐Yeong Yu
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Yi Luan
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Siyuan Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Amirhossein Abazarikia
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Rosemary Dong
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Thomas C. Caffrey
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - David Oupicky
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - So‐Youn Kim
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
10
|
Yu YC, Ahmed A, Lai HC, Cheng WC, Yang JC, Chang WC, Chen LM, Shan YS, Ma WL. Review of the endocrine organ-like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1057930. [PMID: 36465353 PMCID: PMC9713001 DOI: 10.3389/fonc.2022.1057930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of solid tumors, associated with a high prevalence of cachexia (~80%). PDAC-derived cachexia (PDAC-CC) is a systemic disease involving the complex interplay between the tumor and multiple organs. The endocrine organ-like tumor (EOLT) hypothesis may explain the systemic crosstalk underlying the deleterious homeostatic shifts that occur in PDAC-CC. Several studies have reported a markedly heterogeneous collection of cachectic mediators, signaling mechanisms, and metabolic pathways, including exocrine pancreatic insufficiency, hormonal disturbance, pro-inflammatory cytokine storm, digestive and tumor-derived factors, and PDAC progression. The complexities of PDAC-CC necessitate a careful review of recent literature summarizing cachectic mediators, corresponding metabolic functions, and the collateral impacts on wasting organs. The EOLT hypothesis suggests that metabolites, genetic instability, and epigenetic changes (microRNAs) are involved in cachexia development. Both tumors and host tissues can secrete multiple cachectic factors (beyond only inflammatory mediators). Some regulatory molecules, metabolites, and microRNAs are tissue-specific, resulting in insufficient energy production to support tumor/cachexia development. Due to these complexities, changes in a single factor can trigger bi-directional feedback circuits that exacerbate PDAC and result in the development of irreversible cachexia. We provide an integrated review based on 267 papers and 20 clinical trials from PubMed and ClinicalTrials.gov database proposed under the EOLT hypothesis that may provide a fundamental understanding of cachexia development and response to current treatments.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Chern Yang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lu-Min Chen
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yan-Shen Shan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan
| | - Wen-Lung Ma
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Wu HY, Trevino JG, Fang BL, Riner AN, Vudatha V, Zhang GH, Li YP. Patient-Derived Pancreatic Cancer Cells Induce C2C12 Myotube Atrophy by Releasing Hsp70 and Hsp90. Cells 2022; 11:cells11172756. [PMID: 36078164 PMCID: PMC9455268 DOI: 10.3390/cells11172756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer (PC) patients are highly prone to cachexia, a lethal wasting syndrome featuring muscle wasting with an undefined etiology. Recent data indicate that certain murine cancer cells induce muscle wasting by releasing Hsp70 and Hsp90 through extracellular vesicles (EVs) to activate p38β MAPK-mediated catabolic pathways primarily through Toll-like receptor 4 (TLR4). However, whether human PC induces cachexia through releasing Hsp70 and Hsp90 is undetermined. Here, we investigated whether patient-derived PC cells induce muscle cell atrophy directly through this mechanism. We compared cancer cells isolated from patient-derived xenografts (PDX) from three PC patients who had cachexia (PCC) with those of three early-stage lung cancer patients without cachexia (LCC) and two renal cancer patients who were not prone to cachexia (RCC). We observed small increases of Hsp70 and Hsp90 released by LCC and RCC in comparison to non-cancer control cells (NCC). However, PCC released markedly higher levels of Hsp70 and Hsp90 (~ 6-fold on average) than LCC and RCC. In addition, PCC released similarly increased levels of Hsp70/90-containing EVs. In contrast to RCC and LCC, PCC-conditioned media induced a potent catabolic response in C2C12 myotubes including the activation of p38 MAPK and transcription factor C/EBPβ, upregulation of E3 ligases UBR2 and MAFbx, and increase of autophagy marker LC3-II, resulting in the loss of the myosin heavy chain (MHC ~50%) and myotube diameter (~60%). Importantly, the catabolic response was attenuated by Hsp70- and Hsp90-neutralizing antibodies in a dose-dependent manner. These data suggest that human PC cells release high levels of Hsp70 and Hsp90 that induce muscle atrophy through a direct action on muscle cells.
Collapse
Affiliation(s)
- Hong-Yu Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bing-Liang Fang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea N. Riner
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guo-Hua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-500-6498; Fax: +1-(713)-500-0689
| |
Collapse
|
12
|
Cancer Cachexia: Signaling and Transcriptional Regulation of Muscle Catabolic Genes. Cancers (Basel) 2022; 14:cancers14174258. [PMID: 36077789 PMCID: PMC9454911 DOI: 10.3390/cancers14174258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary An uncontrollable loss in the skeletal muscle of cancer patients which leads to a significant reduction in body weight is clinically referred to as cancer cachexia (CC). While factors derived from the tumor environment which trigger various signaling pathways have been identified, not much progress has been made clinically to effectively prevent muscle loss. Deeper insights into the transcriptional and epigenetic regulation of muscle catabolic genes may shed light on key regulators which can be targeted to develop new therapeutic avenues. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterized by a significant reduction in body weight that is predominantly caused by the loss of skeletal muscle and adipose tissue. Although the ill effects of cachexia are well known, the condition has been largely overlooked, in part due to its complex etiology, heterogeneity in mediators, and the involvement of diverse signaling pathways. For a long time, inflammatory factors have been the focus when developing therapeutics for the treatment of CC. Despite promising pre-clinical results, they have not yet advanced to the clinic. Developing new therapies requires a comprehensive understanding of how deregulated signaling leads to catabolic gene expression that underlies muscle wasting. Here, we review CC-associated signaling pathways and the transcriptional cascade triggered by inflammatory cytokines. Further, we highlight epigenetic factors involved in the transcription of catabolic genes in muscle wasting. We conclude with reflections on the directions that might pave the way for new therapeutic approaches to treat CC.
Collapse
|
13
|
Transforming Growth Factor-Beta Signaling in Cancer-Induced Cachexia: From Molecular Pathways to the Clinics. Cells 2022; 11:cells11172671. [PMID: 36078078 PMCID: PMC9454487 DOI: 10.3390/cells11172671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a metabolic syndrome consisting of massive loss of muscle mass and function that has a severe impact on the quality of life and survival of cancer patients. Up to 20% of lung cancer patients and up to 80% of pancreatic cancer patients are diagnosed with cachexia, leading to death in 20% of them. The main drivers of cachexia are cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), macrophage inhibitory cytokine 1 (MIC-1/GDF15) and transforming growth factor-beta (TGF-β). Besides its double-edged role as a tumor suppressor and activator, TGF-β causes muscle loss through myostatin-based signaling, involved in the reduction in protein synthesis and enhanced protein degradation. Additionally, TGF-β induces inhibin and activin, causing weight loss and muscle depletion, while MIC-1/GDF15, a member of the TGF-β superfamily, leads to anorexia and so, indirectly, to muscle wasting, acting on the hypothalamus center. Against this background, the blockade of TGF-β is tested as a potential mechanism to revert cachexia, and antibodies against TGF-β reduced weight and muscle loss in murine models of pancreatic cancer. This article reviews the role of the TGF-β pathway and to a minor extent of other molecules including microRNA in cancer onset and progression with a special focus on their involvement in cachexia, to enlighten whether TGF-β and such other players could be potential targets for therapy.
Collapse
|
14
|
Zhong X, Narasimhan A, Silverman LM, Young AR, Shahda S, Liu S, Wan J, Liu Y, Koniaris LG, Zimmers TA. Sex specificity of pancreatic cancer cachexia phenotypes, mechanisms, and treatment in mice and humans: role of Activin. J Cachexia Sarcopenia Muscle 2022; 13:2146-2161. [PMID: 35510530 PMCID: PMC9397557 DOI: 10.1002/jcsm.12998] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cachexia is frequent, deadly, and untreatable for patients with pancreatic ductal adenocarcinoma (PDAC). The reproductive hormone and cytokine Activin is a mediator of PDAC cachexia, and Activin receptor targeting was clinically tested for cancer cachexia therapy. However, sex-specific manifestations and mechanisms are poorly understood, constraining development of effective treatments. METHODS Cachexia phenotypes, muscle gene/protein expression, and effects of the Activin blocker ACVR2B/Fc were assessed in LSL-KrasG12D/+ , LSL-Trp53R172H/+ , and Pdx-1-Cre (KPC) mice with autochthonic PDAC. Effects of PDAC and sex hormones were modelled by treating C2C12 myotubes with KPC-cell conditioned medium (CM) and estradiol. Muscle gene expression by RNAseq and change in muscle from serial CT scans were measured in patients with PDAC. RESULTS Despite equivalent tumour latency (median 17 weeks) and mortality (24.5 weeks), male KPC mice showed earlier and more severe cachexia than females. In early PDAC, male gastrocnemius, quadriceps, and tibialis anterior muscles were reduced (-21.7%, -18.9%, and -20.8%, respectively, all P < 0.001), with only gastrocnemius reduced in females (-16%, P < 0.01). Sex differences disappeared in late PDAC. Plasma Activin A was similarly elevated between sexes throughout, while oestrogen and testosterone levels suggested a virilizing effect of PDAC in females. Estradiol partially protected myotubes from KPC-CM induced atrophy and promoted expression of the potential Activin inhibitor Fstl1. Early-stage female mice showed greater muscle expression of Activin inhibitors Fst, Fstl1, and Fstl3; this sex difference disappeared by late-stage PDAC. ACVR2B/Fc initiated in early PDAC preserved muscle and fat only in male KPC mice, with increases of 41.2%, 52.6%, 39.3%, and 348.8%, respectively, in gastrocnemius, quadriceps, tibialis, and fat pad weights vs. vehicle controls, without effect on tumour. No protection was observed in females. At protein and RNA levels, pro-atrophy pathways were induced more strongly in early-stage males, with sex differences less evident in late-stage disease. As with mass, ACVR2B/Fc blunted atrophy-associated pathways only in males. In patients with resectable PDAC, muscle expression of Activin inhibitors FSTL1, FSLT3, and WFIKKN2/GASP2 were higher in women than men. Overall, among 124 patients on first-line gemcitabine/nab-paclitaxel for PDAC, only men displayed muscle loss (P < 0.001); average muscle wasting in men was greater (-6.63 ± 10.70% vs. -1.62 ± 12.00% mean ± SD, P = 0.038) and more rapid (-0.0098 ± 0.0742%/day vs. -0.0466 ± 0.1066%/day, P = 0.017) than in women. CONCLUSIONS Pancreatic ductal adenocarcinoma cachexia displays sex-specific phenotypes in mice and humans, with Activin a preferential driver of muscle wasting in males. Sex is a major modulator of cachexia mechanisms. Consideration of sexual dimorphism is essential for discovery and development of effective treatments.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Administration Medical CenterIndianapolisINUSA
| | - Ashok Narasimhan
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | | | - Andrew R. Young
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Safi Shahda
- Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Center for Computational Biology and BioinformaticsIndianapolisINUSA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Center for Computational Biology and BioinformaticsIndianapolisINUSA
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUSA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Center for Computational Biology and BioinformaticsIndianapolisINUSA
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
| | - Leonidas G. Koniaris
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Administration Medical CenterIndianapolisINUSA
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Administration Medical CenterIndianapolisINUSA
- Center for Computational Biology and BioinformaticsIndianapolisINUSA
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
| |
Collapse
|
15
|
Talbert EE, Guttridge DC. Emerging signaling mediators in the anorexia-cachexia syndrome of cancer. Trends Cancer 2022; 8:397-403. [PMID: 35190301 PMCID: PMC9035074 DOI: 10.1016/j.trecan.2022.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
The cachexia syndrome in cancer is characterized by weight loss resulting from the combination of anorexia and atrophy of adipose and skeletal muscle. For decades, inflammatory circulatory factors have been identified to regulate wasting, but inhibitors of these factors have not yielded the same clinical benefit as in animal models. Therefore, additional mediators of cachexia likely regulate this syndrome, and such factors might be more suitable for targeted intervention. We highlight several anorexia-cachexia signaling mediators, including activin A, myostatin, GDF15, and lipocalin-2. We discuss current evidence that these factors associate with cachexia in cancer patients, and summarize translational efforts including essential early-phase clinical trials. We conclude with thoughts on targeted and personalized approaches for future anti-cachexia treatments.
Collapse
Affiliation(s)
- Erin E Talbert
- Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University Iowa, Iowa City, IA 52242, USA
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, and the Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
16
|
Daitoku N, Miyamoto Y, Hiyoshi Y, Tokunaga R, Sakamoto Y, Sawayama H, Ishimoto T, Baba Y, Yoshida N, Baba H. Activin A promotes cell proliferation, invasion and migration and predicts poor prognosis in patients with colorectal cancer. Oncol Rep 2022; 47:107. [PMID: 35445735 PMCID: PMC9073419 DOI: 10.3892/or.2022.8318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Activin A is a member of the transforming growth factor‑β superfamily of cytokines and displays various pathophysiological activities, including regulation of muscle catabolism and atrophy. Activin A expression is upregulated in several human cancer types and in certain pathologies, its expression is associated with poor prognosis. In the present study, activin A expression was assessed in colorectal cancer (CRC) tissue specimens from 157 patients with primary CRC and the relationship between activin A levels and clinicopathological characteristics, including skeletal muscle mass, and prognosis, was determined. Furthermore, the effects of knockdown of endogenous or exposure to exogenous activin A on the malignant behavior of human CRC cell lines were investigated in vitro. The results indicated that activin A mRNA was significantly upregulated in CRC tumor tissues compared with normal intestinal epithelium. High activin A expression was significantly associated with shorter cancer‑specific survival (P=0.047) and overall survival (P=0.014). According to a multivariate analysis, tumor activin A levels were an independent prognostic factor for overall survival (P=0.001). However, activin A mRNA levels were not associated with the skeletal muscle index. The in vitro experiments demonstrated that exposure to exogenous activin A increased the proliferation, invasion and migration of CRC cell lines, whereas knockdown of endogenous activin A had the opposite effects. In conclusion, activin A is an autocrine and paracrine regulator of CRC cell proliferation and high tumor expression of activin A is associated with poor prognosis in patients with CRC.
Collapse
Affiliation(s)
- Nobuya Daitoku
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Ryuma Tokunaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Yuki Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860‑8556, Japan
| |
Collapse
|
17
|
Loumaye A, Lause P, Zhong X, Zimmers TA, Bindels LB, Thissen JP. Activin A Causes Muscle Atrophy through MEF2C-Dependent Impaired Myogenesis. Cells 2022; 11:cells11071119. [PMID: 35406681 PMCID: PMC8997966 DOI: 10.3390/cells11071119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Activin A (ActA) is considered to play a major role in cancer-induced cachexia (CC). Indeed, circulating ActA levels are elevated and predict survival in patients with CC. However, the mechanisms by which ActA mediates CC development and in particular skeletal muscle (SM) atrophy in humans are not yet fully understood. In this work, we aimed to investigate the effects of ActA on human SM and in mouse models of CC. We used a model of human muscle cells in culture to explore how ActA acts towards human SM. In this model, recombinant ActA induced myotube atrophy associated with the decline of MyHC-β/slow, the main myosin isoform in human muscle cells studied. Moreover, ActA inhibited the expression and activity of MEF2C, the transcription factor regulating MYH7, the gene which codes for MyHC-β/slow. This decrease in MEF2C was involved in the decline of MyHC-β/slow expression, since inhibition of MEF2C by a siRNA leads to the decrease in MyHC-β/slow expression. The relevance of this ActA/MEF2C pathway in vivo was supported by the parallel decline of MEF2C expression and SM mass, which are both blunted by ActA inhibition, in animal models of CC. In this work, we showed that ActA is a potent negative regulator of SM mass by inhibiting MyHC-β/slow synthesis through downregulation of MEF2C. This observation highlights a novel interaction between ActA signaling and MEF2C transcriptional activity which contributes to SM atrophy in CC models.
Collapse
Affiliation(s)
- Audrey Loumaye
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (P.L.); (J.-P.T.)
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-764-6001
| | - Pascale Lause
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (P.L.); (J.-P.T.)
| | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indiana University Simon and Bren Comprehensive Cancer Center, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA; (X.Z.); (T.A.Z.)
- Research Service, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indiana University Simon and Bren Comprehensive Cancer Center, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA; (X.Z.); (T.A.Z.)
- Research Service, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (P.L.); (J.-P.T.)
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
18
|
Metformin suppresses the growth of colorectal cancer by targeting INHBA to inhibit TGF-β/PI3K/AKT signaling transduction. Cell Death Dis 2022; 13:202. [PMID: 35236827 PMCID: PMC8891354 DOI: 10.1038/s41419-022-04649-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023]
Abstract
Multiple evidence shows that metformin serves as a potential agent for Colorectal Cancer (CRC) treatment, while its molecular mechanisms still require detailed investigation. Here, we revealed that metformin specifically suppressed the proliferation of CRC cells by causing G1/S arrest, and INHBA is a potential target for metformin to play an anti-proliferation effect in CRC. We verified the oncogene role of INHBA by knocking down and overexpressing INHBA in CRC cells. Silencing INHBA abrogated the cell growth, while overexpression INHBA promotes the proliferation of CRC cells. As an oncogene, INHBA was aberrant overexpression in CRC tissues and closely related to the poor prognosis of CRC patients. In mechanism, INHBA is an important ligand of TGF-β signaling and metformin blocked the activation of TGF-β signaling by targeting INHBA, and then down-regulated the activity of PI3K/Akt pathway, leading to the reduction of cyclinD1 and cell cycle arrest. Together, these findings indicate that metformin down-regulates the expression of INHBA, then attenuating TGF-β/PI3K/Akt signaling transduction, thus inhibiting the proliferation of CRC. Our study elucidated a novel molecular mechanism for the anti-proliferation effect of metformin, providing a theoretical basis for the application of metformin in CRC therapy.
Collapse
|
19
|
Xu PC, You M, Yu SY, Luan Y, Eldani M, Caffrey TC, Grandgenett PM, O'Connell KA, Shukla SK, Kattamuri C, Hollingsworth MA, Singh PK, Thompson TB, Chung S, Kim SY. Visceral adipose tissue remodeling in pancreatic ductal adenocarcinoma cachexia: the role of activin A signaling. Sci Rep 2022; 12:1659. [PMID: 35102236 PMCID: PMC8803848 DOI: 10.1038/s41598-022-05660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients display distinct phenotypes of cachexia development, with either adipose tissue loss preceding skeletal muscle wasting or loss of only adipose tissue. Activin A levels were measured in serum and analyzed in tumor specimens of both a cohort of Stage IV PDAC patients and the genetically engineered KPC mouse model. Our data revealed that serum activin A levels were significantly elevated in Stage IV PDAC patients in comparison to age-matched non-cancer patients. Little is known about the role of activin A in adipose tissue wasting in the setting of PDAC cancer cachexia. We established a correlation between elevated activin A and remodeling of visceral adipose tissue. Atrophy and fibrosis of visceral adipose tissue was examined in omental adipose tissue of Stage IV PDAC patients and gonadal adipose tissue of an orthotopic mouse model of PDAC. Remarkably, white visceral adipose tissue from both PDAC patients and mice exhibited decreased adipocyte diameter and increased fibrotic deposition. Strikingly, expression of thermogenic marker UCP1 in visceral adipose tissues of PDAC patients and mice remained unchanged. Thus, we propose that activin A signaling could be relevant to the acceleration of visceral adipose tissue wasting in PDAC-associated cachexia.
Collapse
Affiliation(s)
- Pauline C Xu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mikyoung You
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, 211 Chenoweth Laboratory, 100 Holdsworth Way, Amherst, MA, 01003-9282, USA
| | - Seok-Yeong Yu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maya Eldani
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kelly A O'Connell
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 68198, USA
| | - Soonkyu Chung
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, 211 Chenoweth Laboratory, 100 Holdsworth Way, Amherst, MA, 01003-9282, USA.
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
20
|
Trebska-McGowan K, Chaib M, Alvarez MA, Kansal R, Pingili AK, Shibata D, Makowski L, Glazer ES. TGF-β Alters the Proportion of Infiltrating Immune Cells in a Pancreatic Ductal Adenocarcinoma. J Gastrointest Surg 2022; 26:113-121. [PMID: 34260016 DOI: 10.1007/s11605-021-05087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/27/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE Immunotherapy, such as checkpoint inhibitors against anti-programmed death-ligand 1 (PD-L1), has not been successful in treating patients with pancreatic ductal adenocarcinoma (PDAC). Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and the TGF-β cytokine are critical in anti-cancer immunity. We hypothesized that TGF-β enhances the immunosuppressive effects of TAM, MDSC, and DC presence in tumors. METHODS Using a murine PDAC cell line derived from a genetically engineered mouse model, we orthotopically implanted treated cells plus drug embedded in Matrigel into immunocompetent mice. Treatments included saline control, TGF-β1, or a TGF-β receptor 1 small molecule inhibitor, galunisertib. We investigated TAM, MDSC, DC, and TAM PD-L1 expression with flow cytometry in tumors. Separately, we used the TIMER2.0 database to analyze TAM and PD-L1 gene expression in human PDAC tumors in TCGA database. RESULTS TGF-β did not alter MDSC or DC frequencies in the primary tumors. However, in PDAC metastases to the liver, TGF-β decreased the proportion of MDSCs (P=0.022) and DCs (P=0.005). TGF-β significantly increased the percent of high PD-L1 expressing TAMs (32 ± 6 % vs. 12 ± 5%, P=0.013) but not the proportion of TAMs in primary and metastatic tumors. TAM PD-L1 gene expression in TCGA PDAC database was significantly correlated with tgb1 and tgfbr1 gene expression (P<0.01). CONCLUSIONS TGF-β is important in PDAC anti-tumor immunity, demonstrating context-dependent impact on immune cells. TGF-β has an overall immunosuppressive effect mediated by TAM PD-L1 expression and decreased presence of DCs. Future investigations will focus on enhancing anti-cancer immune effects of TGF-β receptor inhibition.
Collapse
Affiliation(s)
- Kasia Trebska-McGowan
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Mehdi Chaib
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - Marcus A Alvarez
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Rita Kansal
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Ajeeth K Pingili
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - David Shibata
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA
| | - Liza Makowski
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA
| | - Evan S Glazer
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA.
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
21
|
Zhang G, Anderson LJ, Gao S, Sin TK, Zhang Z, Wu H, Jafri SH, Graf SA, Wu PC, Dash A, Garcia JM, Li YP. Weight Loss in Cancer Patients Correlates With p38β MAPK Activation in Skeletal Muscle. Front Cell Dev Biol 2021; 9:784424. [PMID: 34950660 PMCID: PMC8688918 DOI: 10.3389/fcell.2021.784424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Unintentional weight loss, a first clinical sign of muscle wasting, is a major threat to cancer survival without a defined etiology. We previously identified in mice that p38β MAPK mediates cancer-induced muscle wasting by stimulating protein catabolism. However, whether this mechanism is relevant to humans is unknown. In this study, we recruited men with cancer and weight loss (CWL) or weight stable (CWS), and non-cancer controls (NCC), who were consented to rectus abdominis (RA) biopsy and blood sampling (n = 20/group). In the RA of both CWS and CWL, levels of activated p38β MAPK and its effectors in the catabolic pathways were higher than in NCC, with progressively higher active p38β MAPK detected in CWL. Remarkably, levels of active p38β MAPK correlated with weight loss. Plasma analysis for factors that activate p38β MAPK revealed higher levels in some cytokines as well as Hsp70 and Hsp90 in CWS and/or CWL. Thus, p38β MAPK appears a biomarker of weight loss in cancer patients.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Lindsey J Anderson
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Medicine, Division of Gerontology and Geriatric Medicine, Seattle, WA, United States
| | - Song Gao
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Thomas K Sin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Hongyu Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Syed H Jafri
- Department of Medicine, Section of Oncology, University of Texas Health Science Center, Houston, TX, United States
| | - Solomon A Graf
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter C Wu
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, United States.,Department of Surgery, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States
| | - Atreya Dash
- Department of Surgery, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States.,Department of Urology, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Medicine, Division of Gerontology and Geriatric Medicine, Seattle, WA, United States
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
22
|
Gaafer OU, Zimmers TA. Nutrition challenges of cancer cachexia. JPEN J Parenter Enteral Nutr 2021; 45:16-25. [PMID: 34897740 DOI: 10.1002/jpen.2287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Cancer cachexia, or progressive weight loss, often despite adequate nutrition contributes greatly to cancer morbidity and mortality. Cachexia is metabolically distinct from starvation or protein malnutrition, although many patients with cancer and cachexia exhibit lowered appetite and food consumption. Tumors affect neural mechanisms that regulate appetite and energy expenditure, while promoting wasting of peripheral tissues via catabolism of cardiac and skeletal muscle, adipose, and bone. These multimodal actions of tumors on the host suggest a need for multimodal interventions. However, multiple recent consensus guidelines for management of cancer cachexia differ in treatment recommendations, highlighting the lack of effective, available therapies. Challenges to defining appropriate nutrition or other interventions for cancer cachexia include lack of consensus on definitions, low strength of evidence from clinical trials, and a scarcity of robust, rigorous, and mechanistic studies. However, efforts to diagnose, stage, and monitor cachexia are increasing along with clinical trial activity. Furthermore, preclinical models for cancer cachexia are growing more sophisticated, encompassing a greater number of tumor types in organ-appropriate contexts and for metastatic disease to model the clinical condition more accurately. It is expected that continued growth, investment, and coordination of research in this topic will ultimately yield robust biomarkers, clinically useful classification and staging algorithms, targetable pathways, pivotal clinical trials, and ultimately, cures. Here, we provide an overview of the clinical and scientific knowledge and its limitations around cancer cachexia.
Collapse
Affiliation(s)
- Omnia U Gaafer
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresa A Zimmers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Wang R, Bhat-Nakshatri P, Zhong X, Zimmers T, Nakshatri H. Hormonally Regulated Myogenic miR-486 Influences Sex-specific Differences in Cancer-induced Skeletal Muscle Defects. Endocrinology 2021; 162:6321973. [PMID: 34265069 PMCID: PMC8335968 DOI: 10.1210/endocr/bqab142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/20/2022]
Abstract
Cancer-induced skeletal muscle defects show sex-specific differences in severity with men performing poorly compared to women. Hormones and sex chromosomal differences are suggested to mediate these differences, but the functional skeletal muscle markers to document these differences are unknown. We show that the myogenic microRNA miR-486 is a marker of sex-specific differences in cancer-induced skeletal muscle defects. Cancer-induced loss of circulating miR-486 was more severe in men with bladder, lung, and pancreatic cancers compared to women with the same cancer types. In a syngeneic model of pancreatic cancer, circulating and skeletal muscle loss of miR-486 was more severe in male mice compared to female mice. Estradiol (E2) and the clinically used selective estrogen receptor modulator toremifene increased miR-486 in undifferentiated and differentiated myoblast cell line C2C12 and E2-inducible expression correlated with direct binding of estrogen receptor alpha (ERα) to the regulatory region of the miR-486 gene. E2 and toremifene reduced the actions of cytokines such as myostatin, transforming growth factor β, and tumor necrosis factor α, which mediate cancer-induced skeletal muscle wasting. E2- and toremifene-treated C2C12 myoblast/myotube cells contained elevated levels of active protein kinase B (AKT) with a corresponding decrease in the levels of its negative regulator PTEN, which is a target of miR-486. We propose an ERα:E2-miR-486-AKT signaling axis, which reduces the deleterious effects of cancer-induced cytokines/chemokines on skeletal muscle mass and/or function.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Corresponding Author: Harikrishna Nakshatri, BVSc., PhD, C218C, 980 West Walnut St., Indianapolis, IN 46202, USA, 317 278 2238,
| |
Collapse
|
25
|
Halle JL, Counts-Franch BR, Prince RM, Carson JA. The Effect of Mechanical Stretch on Myotube Growth Suppression by Colon-26 Tumor-Derived Factors. Front Cell Dev Biol 2021; 9:690452. [PMID: 34395422 PMCID: PMC8363303 DOI: 10.3389/fcell.2021.690452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Preclinical models and in vitro experiments have provided valuable insight into the regulation of cancer-induced muscle wasting. Colon-26 (C26) tumor cells induce cachexia in mice, and conditioned media (CM) from these cells promotes myotube atrophy and catabolic signaling. While mechanical stimuli can prevent some effects of tumor-derived factors on myotubes, the impact of mechanical signaling on tumor-derived factor regulation of myosin heavy chain (MyHC) expression is not well understood. Therefore, we examined the effects of stretch-induced mechanical signaling on C2C12 myotube growth and MyHC expression after C26 CM exposure. C26 CM was administered to myotubes on day 5 of differentiation for 48 h. During the last 4 or 24 h of C26 CM exposure, 5% static uniaxial stretch was administered. C26 CM suppressed myotube growth and MyHC protein and mRNA expression. Stretch for 24 h increased myotube size and prevented the C26 CM suppression of MyHC-Fast protein expression. Stretch did not change suppressed MyHC mRNA expression. Stretch for 24 h reduced Atrogin-1/MAFbx, MuRF-1, and LC3B II/I ratio and increased integrin β1D protein expression and the myogenin-to-MyoD protein ratio. Stretch in the last 4 h of CM increased ERK1/2 phosphorylation but did not alter the CM induction of STAT3 or p38 phosphorylation. These results provide evidence that in myotubes pre-incubated with CM, the induction of mechanical signaling can still provide a growth stimulus and preserve MyHC-Fast protein expression independent of changes in mRNA expression.
Collapse
Affiliation(s)
| | | | | | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
26
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
27
|
Pancreatic cancer cachexia: three dimensions of a complex syndrome. Br J Cancer 2021; 124:1623-1636. [PMID: 33742145 PMCID: PMC8110983 DOI: 10.1038/s41416-021-01301-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome that is characterised by a loss of skeletal muscle mass, is commonly associated with adipose tissue wasting and malaise, and responds poorly to therapeutic interventions. Although cachexia can affect patients who are severely ill with various malignant or non-malignant conditions, it is particularly common among patients with pancreatic cancer. Pancreatic cancer often leads to the development of cachexia through a combination of distinct factors, which, together, explain its high prevalence and clinical importance in this disease: systemic factors, including metabolic changes and pathogenic signals related to the tumour biology of pancreatic adenocarcinoma; factors resulting from the disruption of the digestive and endocrine functions of the pancreas; and factors related to the close anatomical and functional connection of the pancreas with the gut. In this review, we conceptualise the various insights into the mechanisms underlying pancreatic cancer cachexia according to these three dimensions to expose its particular complexity and the challenges that face clinicians in trying to devise therapeutic interventions.
Collapse
|
28
|
Narasimhan A, Zhong X, Au EP, Ceppa EP, Nakeeb A, House MG, Zyromski NJ, Schmidt CM, Schloss KNH, Schloss DEI, Liu Y, Jiang G, Hancock BA, Radovich M, Kays JK, Shahda S, Couch ME, Koniaris LG, Zimmers TA. Profiling of Adipose and Skeletal Muscle in Human Pancreatic Cancer Cachexia Reveals Distinct Gene Profiles with Convergent Pathways. Cancers (Basel) 2021; 13:1975. [PMID: 33923976 PMCID: PMC8073275 DOI: 10.3390/cancers13081975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023] Open
Abstract
The vast majority of patients with pancreatic ductal adenocarcinoma (PDAC) suffer cachexia. Although cachexia results from concurrent loss of adipose and muscle tissue, most studies focus on muscle alone. Emerging data demonstrate the prognostic value of fat loss in cachexia. Here we sought to identify the muscle and adipose gene profiles and pathways regulated in cachexia. Matched rectus abdominis muscle and subcutaneous adipose tissue were obtained at surgery from patients with benign conditions (n = 11) and patients with PDAC (n = 24). Self-reported weight loss and body composition measurements defined cachexia status. Gene profiling was done using ion proton sequencing. Results were queried against external datasets for validation. 961 DE genes were identified from muscle and 2000 from adipose tissue, demonstrating greater response of adipose than muscle. In addition to known cachexia genes such as FOXO1, novel genes from muscle, including PPP1R8 and AEN correlated with cancer weight loss. All the adipose correlated genes including SCGN and EDR17 are novel for PDAC cachexia. Pathway analysis demonstrated shared pathways but largely non-overlapping genes in both tissues. Age related muscle loss predominantly had a distinct gene profiles compared to cachexia. This analysis of matched, externally validate gene expression points to novel targets in cachexia.
Collapse
Affiliation(s)
- Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
| | - Ernie P. Au
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eugene P. Ceppa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Atilla Nakeeb
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Michael G. House
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Nicholas J. Zyromski
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - C. Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Katheryn N. H. Schloss
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Daniel E. I. Schloss
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Yunlong Liu
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Bradley A. Hancock
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Milan Radovich
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Joshua K. Kays
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Safi Shahda
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marion E. Couch
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Otolaryngology—Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
- Department of Otolaryngology—Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Matsui K, Kawakubo H, Hirata Y, Matsuda S, Mayanagi S, Irino T, Fukuda K, Nakamura R, Wada N, Kitagawa Y. Relationship Between Early Postoperative Change in Total Psoas Muscle Area and Long-term Prognosis in Esophagectomy for Patients with Esophageal Cancer. Ann Surg Oncol 2021; 28:6378-6387. [PMID: 33786679 DOI: 10.1245/s10434-021-09623-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Postoperative sarcopenia following esophagectomy for esophageal cancer has become a severe problem due to the increasing number of elderly patients undergoing surgery. This study aimed to clarify the relationship between early postoperative skeletal muscle change and cancer prognosis, and propose effective interventions to prevent sarcopenia. METHODS This study retrospectively analyzed 152 patients who underwent esophagectomy for esophageal cancer. Total psoas muscle area (TPA) was measured before surgery as baseline and on postoperative day 7 (± 2). The effect of early postoperative skeletal muscle loss on 5-year survival was investigated. Moreover, 5-year survival in patients with postoperative complications and a high inflammatory status, which were previously reported as poor prognostic factors of esophageal cancer, was also investigated. RESULTS Among the 152 patients, 52 (34.2%) showed a decrease in TPA, while 100 (65.8%) maintained their TPA. The TPA decreasing group exhibited poor 5-year overall survival (OS) (p = 0.003) and 5-year recurrence-free survival (RFS) (p < 0.001). The TPA decreasing group also showed a poor 5-year OS in patients who developed severe postoperative complications (p = 0.015). Multivariate analyses showed that decreased TPA was found to be independently associated with OS (p = 0.017) as well as RFS (p = 0.002). CONCLUSIONS Our findings suggested a relationship between decreased TPA within 1 week after esophagectomy and long-term prognosis among patients with esophageal cancer. If TPA can be maintained, the prognosis was better even in cases with serious complications.
Collapse
Affiliation(s)
- Kazuaki Matsui
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan.
| | - Yuki Hirata
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| | - Satoru Matsuda
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| | - Shuhei Mayanagi
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| | - Tomoyuki Irino
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| | - Rieko Nakamura
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| | - Norihito Wada
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35-banchiShinjuku-ku, Shinanomachi, Tokyo, 160-8582, Japan
| |
Collapse
|
30
|
Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments. Cells 2021; 10:cells10030516. [PMID: 33671024 PMCID: PMC7997313 DOI: 10.3390/cells10030516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle wasting, i.e., cachexia, frequently occurs in cancer and associates with poor prognosis and increased morbidity and mortality. Anticancer treatments have also been shown to contribute to sustainment or exacerbation of cachexia, thus affecting quality of life and overall survival in cancer patients. Pre-clinical studies have shown that blocking activin receptor type 2 (ACVR2) or its ligands and their downstream signaling can preserve muscle mass in rodents bearing experimental cancers, as well as in chemotherapy-treated animals. In tumor-bearing mice, the prevention of skeletal and respiratory muscle wasting was also associated with improved survival. However, the definitive proof that improved survival directly results from muscle preservation following blockade of ACVR2 signaling is still lacking, especially considering that concurrent beneficial effects in organs other than skeletal muscle have also been described in the presence of cancer or following chemotherapy treatments paired with counteraction of ACVR2 signaling. Hence, here, we aim to provide an up-to-date literature review on the multifaceted anti-cachectic effects of ACVR2 blockade in preclinical models of cancer, as well as in combination with anticancer treatments.
Collapse
|
31
|
Qi Y, Jiang L, Wu C, Li J, Wang H, Wang S, Chen X, Cui X, Liu Z. Activin A impairs ActRIIA + neutrophil recruitment into infected skin of mice. iScience 2021; 24:102080. [PMID: 33604525 PMCID: PMC7873648 DOI: 10.1016/j.isci.2021.102080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/10/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Activin A levels are elevated during multiple severe infections and associated with an increased risk of death. However, the role of activin A in bacterial infection is still unclear. Here, we found that activin A levels were increased during S. aureus skin infection in mice. Administration of activin A increased the bacterial burden and promoted the spread of bacteria in vivo. Moreover, activin A inhibited neutrophil chemotaxis to N-formylmethionine-leucyl-phenylalanine via the type IIA activin receptor (ActRIIA) in vitro and impaired ActRIIA+ neutrophil recruitment to infection foci in vivo. Additionally, we identified a novel subpopulation of neutrophils, ActRIIA+ neutrophils, which exhibit superior phagocytic capacity compared to ActRIIA− neutrophils and possess an N2-like immunoregulatory activity via secreting IL-10 and TGF-β. Taken together, these findings indicate that activin A inhibits the recruitment of ActRIIA+ neutrophils to infected foci, leading to the impairment of bacterial clearance, and thus may hamper early infection control. A novel activin A-responsitive subpopulation of neutrophils (ActRIIA+) was identified ActRIIA+ neutrophils exhibit N2-like immunoregulatory properties Activin A inhibits ActRIIA+ neutrophil recruitment to infected skin
Collapse
Affiliation(s)
- Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lingling Jiang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Oral Comprehensive Therapy, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chengdong Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Heyuan Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shiji Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xintong Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
32
|
Lenehan PJ, Cirella A, Uchida AM, Crowley SJ, Sharova T, Boland G, Dougan M, Dougan SK, Heckler M. Type 2 immunity is maintained during cancer-associated adipose tissue wasting. IMMUNOTHERAPY ADVANCES 2021; 1:ltab011. [PMID: 34291232 PMCID: PMC8286632 DOI: 10.1093/immadv/ltab011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Cachexia is a systemic metabolic disorder characterized by loss of fat and muscle mass, which disproportionately impacts patients with gastrointestinal malignancies such as pancreatic cancer. While the immunologic shifts contributing to the development of other adipose tissue (AT) pathologies such as obesity have been well described, the immune microenvironment has not been studied in the context of cachexia. METHODS We performed bulk RNA-sequencing, cytokine arrays, and flow cytometry to characterize the immune landscape of visceral AT (VAT) in the setting of pancreatic and colorectal cancers. RESULTS The cachexia inducing factor IL-6 is strongly elevated in the wasting VAT of cancer bearing mice, but the regulatory type 2 immune landscape which characterizes healthy VAT is maintained. Pathologic skewing toward Th1 and Th17 inflammation is absent. Similarly, the VAT of patients with colorectal cancer is characterized by a Th2 signature with abundant IL-33 and eotaxin-2, albeit also with high levels of IL-6. CONCLUSIONS Wasting AT during the development of cachexia may not undergo drastic changes in immune composition like those seen in obese AT. Our approach provides a framework for future immunologic analyses of cancer associated cachexia.
Collapse
Affiliation(s)
- Patrick J Lenehan
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Assunta Cirella
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Amiko M Uchida
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie J Crowley
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Max Heckler
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
33
|
Sin TK, Zhang G, Zhang Z, Zhu JZ, Zuo Y, Frost JA, Li M, Li YP. Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300. Cancer Res 2020; 81:885-897. [PMID: 33355181 DOI: 10.1158/0008-5472.can-19-3219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
Cancer-associated cachexia, characterized by muscle wasting, is a lethal metabolic syndrome without defined etiology or established treatment. We previously found that p300 mediates cancer-induced muscle wasting by activating C/EBPβ, which then upregulates key catabolic genes. However, the signaling mechanism that activates p300 in response to cancer is unknown. Here, we show that upon cancer-induced activation of Toll-like receptor 4 in skeletal muscle, p38β MAPK phosphorylates Ser-12 on p300 to stimulate C/EBPβ acetylation, which is necessary and sufficient to cause muscle wasting. Thus, p38β MAPK is a central mediator and therapeutic target of cancer-induced muscle wasting. In addition, nilotinib, an FDA-approved kinase inhibitor that preferentially binds p38β MAPK, inhibited p300 activation 20-fold more potently than the p38α/β MAPK inhibitor, SB202190, and abrogated cancer cell-induced muscle protein loss in C2C12 myotubes without suppressing p38α MAPK-dependent myogenesis. Systemic administration of nilotinib at a low dose (0.5 mg/kg/day, i.p.) in tumor-bearing mice not only alleviated muscle wasting, but also prolonged survival. Therefore, nilotinib appears to be a promising treatment for human cancer cachexia due to its selective inhibition of p38β MAPK. SIGNIFICANCE: These findings demonstrate that prevention of p38β MAPK-mediated activation of p300 by the FDA-approved kinase inhibitor, nilotinib, ameliorates cancer cachexia, representing a potential therapeutic strategy against this syndrome.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James Z Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yan Zuo
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
34
|
Identification of Potential Serum Protein Biomarkers and Pathways for Pancreatic Cancer Cachexia Using an Aptamer-Based Discovery Platform. Cancers (Basel) 2020; 12:cancers12123787. [PMID: 33334063 PMCID: PMC7765482 DOI: 10.3390/cancers12123787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Patients with pancreatic cancer and other advanced cancers suffer from progressive weight loss that reduces treatment response and quality of life and increases treatment toxicity and mortality. Effective interventions to prevent such weight loss, known as cachexia, require molecular markers to diagnose, stage, and monitor cachexia. No such markers are currently validated or in clinical use. This study used a discovery platform to measure changes in plasma proteins in patients with pancreatic cancer compared with normal controls. We found proteins specific to pancreatic cancer and cancer stage, as well as proteins that correlate with cachexia. These include some previously known proteins along with novel ones and implicates both well-known and new molecular mechanisms. Thus, this study provides novel insights into the molecular processes underpinning cancer and cachexia and affords a basis for future validation studies in larger numbers of patients with pancreatic cancer and cachexia. Abstract Patients with pancreatic ductal adenocarcinoma (PDAC) suffer debilitating and deadly weight loss, known as cachexia. Development of therapies requires biomarkers to diagnose, and monitor cachexia; however, no such markers are in use. Via Somascan, we measured ~1300 plasma proteins in 30 patients with PDAC vs. 11 controls. We found 60 proteins specific to local PDAC, 46 to metastatic, and 67 to presence of >5% cancer weight loss (FC ≥ |1.5|, p ≤ 0.05). Six were common for cancer stage (Up: GDF15, TIMP1, IL1RL1; Down: CCL22, APP, CLEC1B). Four were common for local/cachexia (C1R, PRKCG, ELANE, SOST: all oppositely regulated) and four for metastatic/cachexia (SERPINA6, PDGFRA, PRSS2, PRSS1: all consistently changed), suggesting that stage and cachexia status might be molecularly separable. We found 71 proteins that correlated with cachexia severity via weight loss grade, weight loss, skeletal muscle index and radiodensity (r ≥ |0.50|, p ≤ 0.05), including some known cachexia mediators/markers (LEP, MSTN, ALB) as well as novel proteins (e.g., LYVE1, C7, F2). Pathway, correlation, and upstream regulator analyses identified known (e.g., IL6, proteosome, mitochondrial dysfunction) and novel (e.g., Wnt signaling, NK cells) mechanisms. Overall, this study affords a basis for validation and provides insights into the processes underpinning cancer cachexia.
Collapse
|
35
|
Huot JR, Pin F, Narasimhan A, Novinger LJ, Keith AS, Zimmers TA, Willis MS, Bonetto A. ACVR2B antagonism as a countermeasure to multi-organ perturbations in metastatic colorectal cancer cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1779-1798. [PMID: 33200567 PMCID: PMC7749603 DOI: 10.1002/jcsm.12642] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. METHODS NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. RESULTS mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. CONCLUSIONS Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leah J Novinger
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
36
|
Affiliation(s)
- Sandra Palus
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Cachexia, a feature of cancer and other chronic diseases, is marked by progressive weight loss and skeletal muscle wasting. This review aims to highlight the sex differences in manifestations of cancer cachexia in patients, rodent models, and our current understanding of the potential mechanisms accounting for these differences. RECENT FINDINGS Male cancer patients generally have higher prevalence of cachexia, greater weight loss or muscle wasting, and worse outcomes compared with female cancer patients. Knowledge is increasing about sex differences in muscle fiber type and function, mitochondrial metabolism, global gene expression and signaling pathways, and regulatory mechanisms at the levels of sex chromosomes vs. sex hormones; however, it is largely undetermined how such sex differences directly affect the susceptibility to stressors leading to muscle wasting in cancer cachexia. Few studies have investigated basic mechanisms underlying sex differences in cancer cachexia. A better understanding of sex differences would improve cachexia treatment in both sexes.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
- Research Service, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
- Research Service, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- IU Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
38
|
Markov SD, Gonzalez D, Mehla K. Preclinical Models for Studying the Impact of Macrophages on Cancer Cachexia. CURRENT PROTOCOLS IN PHARMACOLOGY 2020; 91:e80. [PMID: 33264501 PMCID: PMC8099022 DOI: 10.1002/cpph.80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer-associated cachexia is defined by loss of weight and muscle mass, and by the potential loss of adipose tissue accompanied by insulin resistance and increased resting energy expenditure. Cachexia is most prevalent in pancreatic cancer, the third leading cause of cancer-related deaths. While various factors interact to induce cachexia, the precise mechanisms underlying this clinical condition are not fully understood. Clinically relevant animal models of cachexia are needed given the lack of standard diagnostic methods or treatments for this condition. Described in this article are in vitro and in vivo models used to study the role of macrophages in the induction of cachexia in pancreatic cancer. Included are procedures for isolating and culturing bone marrow-derived macrophages, harvesting tumor- and macrophage-derived conditioned medium, and studying the effect of conditioned medium on C2C12 myotubes. Also described are procedures involving the use of an orthotopic model of pancreatic cancer, including a method for examining skeletal muscle atrophy in this model. © 2020 Wiley Periodicals LLC. Basic Protocol 1: In vitro model of pancreatic tumor-induced cachexia using C2C12 cell lines (myotube model) Support Protocol 1: Molecular evaluation of cachectic markers in C2C12 myotubes using real-time PCR and immunoblotting Basic Protocol 2: In vivo model to study cachectic phenotype in pancreatic tumor-bearing mice Support Protocol 2: Evaluation of cachectic markers in the skeletal muscle of tumor-bearing mice.
Collapse
Affiliation(s)
- Spas Dimitrov Markov
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Daisy Gonzalez
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kamiya Mehla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
39
|
Liu D, Zhou D, Sun Y, Zhu J, Ghoneim D, Wu C, Yao Q, Gamazon ER, Cox NJ, Wu L. A Transcriptome-Wide Association Study Identifies Candidate Susceptibility Genes for Pancreatic Cancer Risk. Cancer Res 2020; 80:4346-4354. [PMID: 32907841 PMCID: PMC7572664 DOI: 10.1158/0008-5472.can-20-1353] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is among the most well-characterized cancer types, yet a large proportion of the heritability of pancreatic cancer risk remains unclear. Here, we performed a large transcriptome-wide association study to systematically investigate associations between genetically predicted gene expression in normal pancreas tissue and pancreatic cancer risk. Using data from 305 subjects of mostly European descent in the Genotype-Tissue Expression Project, we built comprehensive genetic models to predict normal pancreas tissue gene expression, modifying the UTMOST (unified test for molecular signatures). These prediction models were applied to the genetic data of 8,275 pancreatic cancer cases and 6,723 controls of European ancestry. Thirteen genes showed an association of genetically predicted expression with pancreatic cancer risk at an FDR ≤ 0.05, including seven previously reported genes (INHBA, SMC2, ABO, PDX1, RCCD1, CFDP1, and PGAP3) and six novel genes not yet reported for pancreatic cancer risk [6q27: SFT2D1 OR (95% confidence interval (CI), 1.54 (1.25-1.89); 13q12.13: MTMR6 OR (95% CI), 0.78 (0.70-0.88); 14q24.3: ACOT2 OR (95% CI), 1.35 (1.17-1.56); 17q12: STARD3 OR (95% CI), 6.49 (2.96-14.27); 17q21.1: GSDMB OR (95% CI), 1.94 (1.45-2.58); and 20p13: ADAM33 OR (95% CI): 1.41 (1.20-1.66)]. The associations for 10 of these genes (SFT2D1, MTMR6, ACOT2, STARD3, GSDMB, ADAM33, SMC2, RCCD1, CFDP1, and PGAP3) remained statistically significant even after adjusting for risk SNPs identified in previous genome-wide association study. Collectively, this analysis identified novel candidate susceptibility genes for pancreatic cancer that warrant further investigation. SIGNIFICANCE: A transcriptome-wide association analysis identified seven previously reported and six novel candidate susceptibility genes for pancreatic cancer risk.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Dan Zhou
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yanfa Sun
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
- College of Life Science, Longyan University, Longyan, Fujian, P.R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, P.R. China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, Fujian, P.R. China
| | - Jingjing Zhu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Dalia Ghoneim
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, Florida
| | - Qizhi Yao
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Clare Hall, University of Cambridge, Cambridge, United Kingdom
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nancy J Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lang Wu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii.
| |
Collapse
|
40
|
Martinez-Hackert E, Sundan A, Holien T. Receptor binding competition: A paradigm for regulating TGF-β family action. Cytokine Growth Factor Rev 2020; 57:39-54. [PMID: 33087301 DOI: 10.1016/j.cytogfr.2020.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The transforming growth factor (TGF)-β family is a group of structurally related, multifunctional growth factors, or ligands that are crucially involved in the development, regulation, and maintenance of animal tissues. In humans, the family counts over 33 members. These secreted ligands typically form multimeric complexes with two type I and two type II receptors to activate one of two distinct signal transduction branches. A striking feature of the family is its promiscuity, i.e., many ligands bind the same receptors and compete with each other for binding to these receptors. Although several explanations for this feature have been considered, its functional significance has remained puzzling. However, several recent reports have promoted the idea that ligand-receptor binding promiscuity and competition are critical features of the TGF-β family that provide an essential regulating function. Namely, they allow a cell to read and process multi-ligand inputs. This capability may be necessary for producing subtle, distinctive, or adaptive responses and, possibly, for facilitating developmental plasticity. Here, we review the molecular basis for ligand competition, with emphasis on molecular structures and binding affinities. We give an overview of methods that were used to establish experimentally ligand competition. Finally, we discuss how the concept of ligand competition may be fundamentally tied to human physiology, disease, and therapy.
Collapse
Affiliation(s)
- Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Hematology, St. Olav's University Hospital, 7030, Trondheim, Norway.
| |
Collapse
|
41
|
Ehlers L, Bannert K, Rohde S, Berlin P, Reiner J, Wiese M, Doller J, Lerch MM, Aghdassi AA, Meyer F, Valentini L, Agrifoglio O, Metges CC, Lamprecht G, Jaster R. Preclinical insights into the gut-skeletal muscle axis in chronic gastrointestinal diseases. J Cell Mol Med 2020; 24:8304-8314. [PMID: 32628812 PMCID: PMC7412689 DOI: 10.1111/jcmm.15554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.
Collapse
Affiliation(s)
- Luise Ehlers
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Karen Bannert
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Peggy Berlin
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Johannes Reiner
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Mats Wiese
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Doller
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Fatuma Meyer
- Department of Agriculture and Food Sciences, Neubrandenburg Institute of Evidence-Based Nutrition (NIED), University of Applied Sciences Neubrandenburg, Neubrandenburg, Germany
| | - Luzia Valentini
- Department of Agriculture and Food Sciences, Neubrandenburg Institute of Evidence-Based Nutrition (NIED), University of Applied Sciences Neubrandenburg, Neubrandenburg, Germany
| | - Ottavia Agrifoglio
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Georg Lamprecht
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
42
|
Razzaque MS, Atfi A. Regulatory Role of the Transcription Factor Twist1 in Cancer-Associated Muscle Cachexia. Front Physiol 2020; 11:662. [PMID: 32655411 PMCID: PMC7324683 DOI: 10.3389/fphys.2020.00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Muscle cachexia is a catabolic response, usually takes place in various fatal diseases, such as sepsis, burn injury, and chronic kidney disease. Muscle cachexia is also a common co-morbidity seen in the vast majority of advanced cancer patients, often associated with low quality of life and death due to general organ dysfunction. The triggering events and underlying molecular mechanisms of muscle wasting are not yet clearly defined. Our recent study has shown that the ectopic expression of Twist1 in muscle progenitor cells is sufficient to drive muscle structural protein breakdown and attendant muscle atrophy, reminiscent of muscle cachexia. Intriguingly, muscle Twist1 expression is highly induced in cachectic muscles from several mouse models of pancreatic ductal adenocarcinoma (PDAC), raising the interesting possibility that Twist1 may mediate PDAC-driven muscle cachexia. Along these lines, both genetic and pharmacological inactivation of Twist1 function was highly significant at protecting against cancer cachexia, which translated into a significant survival benefit in the experimental PDAC animals. From a translational perspective, elevated expression of Twist1 is also detected in cancer patients with severe muscle wasting, implicating a role of Twist1 in cancer cachexia, and further providing a possible target for therapeutic attenuation of cachexia to improve cancer patient survival. In this article, we will briefly summarize how Twist1 acts as a master regulator of tumor-induced cachexia, and discuss the relevance of our findings to muscle wasting diseases in general. The mechanism of decreased muscle mass in various catabolic conditions is thought to rely on similar pathways, and, therefore, Twist1-induced cancer cachexia may benefit diverse groups of patients with clinical complications associated with loss of muscle mass and functions, beyond the expected benefits for cancer patients.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Azeddine Atfi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
43
|
Rosa-Caldwell ME, Fix DK, Washington TA, Greene NP. Muscle alterations in the development and progression of cancer-induced muscle atrophy: a review. J Appl Physiol (1985) 2019; 128:25-41. [PMID: 31725360 DOI: 10.1152/japplphysiol.00622.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia-cancer-associated body weight and muscle loss-is a significant predictor of mortality and morbidity in cancer patients across a variety of cancer types. However, despite the negative prognosis associated with cachexia onset, there are no clinical therapies approved to treat or prevent cachexia. This lack of treatment may be partially due to the relative dearth of literature on mechanisms occurring within the muscle before the onset of muscle wasting. Therefore, the purpose of this review is to compile the current scientific literature on mechanisms contributing to the development and progression of cancer cachexia, including protein turnover, inflammatory signaling, and mitochondrial dysfunction. We define "development" as changes in cell function occurring before the onset of cachexia and "progression" as alterations to cell function that coincide with the exacerbation of muscle wasting. Overall, the current literature suggests that multiple aspects of cellular function, such as protein turnover, inflammatory signaling, and mitochondrial quality, are altered before the onset of muscle loss during cancer cachexia and clearly highlights the need to study more thoroughly the developmental stages of cachexia. The studying of these early aberrations will allow for the development of effective therapeutics to prevent the onset of cachexia and improve health outcomes in cancer patients.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Dennis K Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
44
|
Zhong X, Pons M, Poirier C, Jiang Y, Liu J, Sandusky GE, Shahda S, Nakeeb A, Schmidt CM, House MG, Ceppa EP, Zyromski NJ, Liu Y, Jiang G, Couch ME, Koniaris LG, Zimmers TA. The systemic activin response to pancreatic cancer: implications for effective cancer cachexia therapy. J Cachexia Sarcopenia Muscle 2019; 10:1083-1101. [PMID: 31286691 PMCID: PMC6818463 DOI: 10.1002/jcsm.12461] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/19/2019] [Accepted: 05/14/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a particularly lethal malignancy partly due to frequent, severe cachexia. Serum activin correlates with cachexia and mortality, while exogenous activin causes cachexia in mice. METHODS Isoform-specific activin expression and activities were queried in human and murine tumours and PDAC models. Activin inhibition was by administration of soluble activin type IIB receptor (ACVR2B/Fc) and by use of skeletal muscle specific dominant negative ACVR2B expressing transgenic mice. Feed-forward activin expression and muscle wasting activity were tested in vivo and in vitro on myotubes. RESULTS Murine PDAC tumour-derived cell lines expressed activin-βA but not activin-βB. Cachexia severity increased with activin expression. Orthotopic PDAC tumours expressed activins, induced activin expression by distant organs, and produced elevated serum activins. Soluble factors from PDAC elicited activin because conditioned medium from PDAC cells induced activin expression, activation of p38 MAP kinase, and atrophy of myotubes. The activin trap ACVR2B/Fc reduced tumour growth, prevented weight loss and muscle wasting, and prolonged survival in mice with orthotopic tumours made from activin-low cell lines. ACVR2B/Fc also reduced cachexia in mice with activin-high tumours. Activin inhibition did not affect activin expression in organs. Hypermuscular mice expressing dominant negative ACVR2B in muscle were protected for weight loss but not mortality when implanted with orthotopic tumours. Human tumours displayed staining for activin, and expression of the gene encoding activin-βA (INHBA) correlated with mortality in patients with PDAC, while INHBB and other related factors did not. CONCLUSIONS Pancreatic adenocarcinoma tumours are a source of activin and elicit a systemic activin response in hosts. Human tumours express activins and related factors, while mortality correlates with tumour activin A expression. PDAC tumours also choreograph a systemic activin response that induces organ-specific and gene-specific expression of activin isoforms and muscle wasting. Systemic blockade of activin signalling could preserve muscle and prolong survival, while skeletal muscle-specific activin blockade was only protective for weight loss. Our findings suggest the potential and need for gene-specific and organ-specific interventions. Finally, development of more effective cancer cachexia therapy might require identifying agents that effectively and/or selectively inhibit autocrine vs. paracrine activin signalling.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
| | - Marianne Pons
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Christophe Poirier
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Yanlin Jiang
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Jianguo Liu
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Safi Shahda
- IU Simon Cancer CenterIndianapolisINUSA
- Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Attila Nakeeb
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - C. Max Schmidt
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Michael G. House
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Eugene P. Ceppa
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Nicholas J. Zyromski
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Yunlong Liu
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Guanglong Jiang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Marion E. Couch
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology—Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Leonidas G. Koniaris
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology—Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
45
|
O'Connell TM, Pin F, Couch ME, Bonetto A. Treatment with Soluble Activin Receptor Type IIB Alters Metabolic Response in Chemotherapy-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091222. [PMID: 31438622 PMCID: PMC6770556 DOI: 10.3390/cancers11091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023] Open
Abstract
Some chemotherapeutic agents have been shown to lead to the severe wasting syndrome known as cachexia resulting in dramatic losses of both skeletal muscle and adipose tissue. Previous studies have shown that chemotherapy-induced cachexia is characterized by unique metabolic alterations. Recent results from our laboratory and others have shown that the use of ACVR2B/Fc, a soluble form of the activin receptor 2B (ACVR2B), can mitigate muscle wasting induced by chemotherapy, although the underlying mechanisms responsible for such protective effects are unclear. In order to understand the biochemical mechanisms through which ACVR2B/Fc functions, we employed a comprehensive, multi-platform metabolomics approach. Using both nuclear magnetic resonance (NMR) and mass-spectrometry (MS), we profiled the metabolome of both serum and muscle tissue from four groups of mice including (1) vehicle, (2) the chemotherapeutic agent, Folfiri, (3) ACVR2B/Fc alone, and (4) combined treatment with both Folfiri and ACVR2B/Fc. The metabolic profiles demonstrated large effects with Folfiri treatment and much weaker effects with ACVR2B/Fc treatment. Interestingly, a number of significant effects were observed in the co-treatment group, with the addition of ACVR2B/Fc providing some level of rescue to the perturbations induced by Folfiri alone. The most prominent of these were a normalization of systemic glucose and lipid metabolism. Identification of these pathways provides important insights into the mechanism by which ACVR2B/Fc protects against chemotherapy-induced cachexia.
Collapse
Affiliation(s)
- Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Fabrizio Pin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marion E Couch
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|