1
|
Feng L, Li B, Yong SS, Wu X, Tian Z. Exercise and nutrition benefit skeletal muscle: From influence factor and intervention strategy to molecular mechanism. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:302-314. [PMID: 39309454 PMCID: PMC11411340 DOI: 10.1016/j.smhs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 09/25/2024] Open
Abstract
Sarcopenia is a progressive systemic skeletal muscle disease induced by various physiological and pathological factors, including aging, malnutrition, denervation, and cardiovascular diseases, manifesting as the decline of skeletal muscle mass and function. Both exercise and nutrition produce beneficial effects on skeletal muscle growth and are viewed as feasible strategies to prevent sarcopenia. Mechanisms involve regulating blood flow, oxidative stress, inflammation, apoptosis, protein synthesis and degradation, and satellite cell activation through exerkines and gut microbiomes. In this review, we summarized and discussed the latest progress and future development of the above mechanisms for providing a theoretical basis and ideas for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Lili Feng
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Bowen Li
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Su Sean Yong
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Wu
- The Information and Communication College, National University of Defense Technology, Xi'an, 710106, China
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Gou Y, Lin F, Dan L, Zhang D. Exposure to toluene diisocyanate induces dysbiosis of gut-lung homeostasis: Involvement of gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125119. [PMID: 39414067 DOI: 10.1016/j.envpol.2024.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Toluene diisocyanate (TDI) is a major industrial compound that induces occupational asthma with steroid-resistant properties. Recent studies suggest that the gastrointestinal tract may be an effective target for the treatment of respiratory diseases. However, the alterations of the gut-lung axis in TDI-induced asthma remain unexplored. Therefore, in this study, a model of stable occupational asthma caused by TDI exposure was established to detect the alteration of the gut-lung axis. Exposure to TDI resulted in dysbiosis of the gut microbiome, with significant decreases in Barnesiella_intestinihominis, Faecalicoccus_pleomorphus, Lactobacillus_apodemi, and Lactobacillus_intestinalis, but increases in Alistipes_shahii and Odoribacter_laneus. The largest change in abundance was in Barnesiella_intestinihominis, which decreased from 12.14 per cent to 6.18 per cent. The histopathological abnormalities, including shorter length of intestinal villi, thinner thickness of muscularis, reduced number of goblet cells and inflammatory cell infiltration, were found in TDI-treated mice compared to control mice. In addition, increased permeability (evidenced by significantly reduced levels of ZO-1, Occludin and Claudin-1) and activation of TLR4/NF-κB signaling were observed in the intestine of these TDI-exposed mice. Concurrently, exposure to TDI resulted in airway hyperresponsiveness, overt cytokine production (e.g., IL-4, IL-5, IL-13, IL-25, and IL-33), and elevated IgE level within the respiratory tract. The expression of tight junction proteins is reduced and TLR4/NF-κB signaling is activated in the lung following TDI treatment. In addition, correlation analyses showed that changes in the gut microbiota were correlated with TDI exposure-induced airway inflammation. In conclusion, the present study suggests that the immune gut-lung axis may be involved in the development of TDI-induced asthma, which may have implications for potential interventions against steroid-resistant asthma.
Collapse
Affiliation(s)
- Yuxuan Gou
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China.
| | - Fu Lin
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Li Dan
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Dianyu Zhang
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| |
Collapse
|
3
|
Pegreffi F, Chiaramonte R, Donati Zeppa S, Lauretani F, Salvi M, Zucchini I, Veronese N, Vecchio M, Bartolacci A, Stocchi V, Maggio M. Optimizing the Preoperative Preparation of Sarcopenic Older People: The Role of Prehabilitation and Nutritional Supplementation before Knee Arthroplasty. Nutrients 2024; 16:3462. [PMID: 39458460 PMCID: PMC11510523 DOI: 10.3390/nu16203462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Age-related loss of skeletal muscle strength and mass is linked to adverse postoperative outcomes in older individuals with sarcopenia. Half of patients suffer from severe associated osteoarthritis requiring orthopedic interventions. Mitigating the onset and progression of sarcopenia before surgery is essential to improve the prognosis and reduce surgical complications. The aim of this research was to innovatively explore whether the preoperative period could be the appropriate timeframe to empower surgical resilience, through prehabilitation and dietary supplementation, in older sarcopenic patients undergoing knee arthroplasty. METHODS The current literature concerning the effectiveness of prehabilitation and dietary supplementation before knee arthroplasty in sarcopenic older individuals was reviewed, following the SANRA criteria, between December 2023 and February 2024. The study inclusion criteria were as follows: (1) prehabilitation and/or dietary supplementation interventions; (2) human participants aged 65 years and older; (3) relevant outcome reporting (functional status, postoperative complications, and patient-reported outcomes); and (4) articles written in English The extracted information included study characteristics, demographics, intervention details, outcomes, and the main findings. RESULTS Merged prehabilitation and dietary supplementation strategies extrapolated from the current literature and involving strength, resistance, balance, and flexibility training, as well as essential amino acids, iron, vitamin D, adenosine triphosphate, and glucosamine sulphate supplementation, could improve the functional capacity, ability to withstand the upcoming surgical stressors, and postoperative outcomes in older people undergoing knee arthroplasty. CONCLUSIONS Addressing complex links between knee osteoarthritis and sarcopenia in older individuals undergoing knee arthroplasty requires a multidimensional approach. Prehabilitation emerges as a crucial preliminary step, allowing the optimization of surgical outcomes. Nutraceutical integration, included in a comprehensive care plan, could have a synergic effect in achieving prehabilitation goals. Those interventions are essential for surgical resilience, in terms of muscle function preservation, recovery acceleration, and overall quality of life enhancement. Intensive collaboration among specialists could advance knowledge and the sharable consensus concerning the critical and evolutive field of perioperative care.
Collapse
Affiliation(s)
- Francesco Pegreffi
- Department of Medicine and Surgery, School of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
- Unit of Recovery and Functional Rehabilitation, P. Osp. Umberto I, 94100 Enna, Italy
| | - Rita Chiaramonte
- Unit of Disability, Handicap, Territorial Rehabilitation, and Prosthetic Assistance, Azienda, Sanitaria Provinciale (ASP), 95124 Catania, Italy;
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy;
| | - Sabrina Donati Zeppa
- Department of Biomolecular Science, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Fulvio Lauretani
- Geriatric Clinic Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (F.L.); (M.S.); (I.Z.); (M.M.)
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Marco Salvi
- Geriatric Clinic Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (F.L.); (M.S.); (I.Z.); (M.M.)
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Irene Zucchini
- Geriatric Clinic Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (F.L.); (M.S.); (I.Z.); (M.M.)
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Nicola Veronese
- Department of Internal Medicine, Geriatrics Section, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy;
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy;
| | - Alessia Bartolacci
- Department of Biomolecular Science, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, 20132 Rome, Italy;
| | - Marcello Maggio
- Geriatric Clinic Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy; (F.L.); (M.S.); (I.Z.); (M.M.)
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
4
|
Yan B, Luo L, Zhang Y, Men J, Guo Y, Wu S, Han J, Zhou B. Detrimental effects of glyphosate on muscle metabolism in grass carp (Ctenopharyngodon idellus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107122. [PMID: 39426364 DOI: 10.1016/j.aquatox.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Glyphosate, a commonly used herbicide, has been associated with environmental pollution and potential health risks to aquatic organisms. This study investigated the effects of glyphosate on the muscle metabolism of grass carp (Ctenopharyngodon idellus) following exposure to environmentally relevant concentrations. Over a 14-day exposure period to varying glyphosate levels, significant disruptions were observed in antioxidant capacity and muscle health. These disruptions were evidenced by reductions in total antioxidant capacity (T-AOC), increases in malondialdehyde (MDA) levels, and decreases in activities of glutathione peroxidase (GSH-PX) and catalase (CAT). Furthermore, exposure to glyphosate resulted in a reduction of vitamin E content and an elevation of hormonal levels, suggesting the potential for endocrine disruption. Metabolomics analysis identified 605 distinct metabolites, with notable alterations in amino acid, carbohydrate, and nucleotide metabolism pathways. Specifically, arginine and glutathione metabolisms were severely impacted, with decreases in key amino acids such as glycine and glutathione at higher glyphosate concentrations. Nucleotide metabolism, particularly purine synthesis, was also significantly affected, with reduced levels of deoxyguanosine and other purine-related compounds. The study further investigated the origins of these differential metabolites using the MetOrigin platform, suggesting a potential involvement of the intestinal microbiota in the metabolic response to glyphosate. These findings highlight the multifaceted adverse effects of glyphosate on fish muscle, including oxidative stress and metabolic dysregulation, which may contribute to diminished muscle quality and health risks for aquatic organisms.
Collapse
Affiliation(s)
- Biao Yan
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China; Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Lijun Luo
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, PR China
| | - Yindan Zhang
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Jun Men
- The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Jian Han
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| |
Collapse
|
5
|
Huang Q, Wen C, Gu S, Jie Y, Li G, Yan Y, Tian C, Wu G, Yang N. Synergy of gut microbiota and host genome in driving heterosis expression of chickens. J Genet Genomics 2024; 51:1121-1134. [PMID: 38950856 DOI: 10.1016/j.jgg.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Heterosis has been widely utilized in agricultural production. Despite over a century of extensive research, the underlying mechanisms of heterosis remain elusive. Most hypotheses and research have focused on the genetic basis of heterosis. However, the potential role of gut microbiota in heterosis has been largely ignored. Here, we carefully design a crossbreeding experiment with two distinct broiler breeds and conduct 16S rRNA amplicon and transcriptome sequencing to investigate the synergistic role of gut microbiota and host genes in driving heterosis. We find that the breast muscle weight of hybrids exhibits a high heterosis, 6.28% higher than the mid-parent value. A notable difference is observed in the composition and potential function of cecal microbiota between hybrids and their parents. Over 90% of differentially colonized microbiota and differentially expressed genes exhibit nonadditive patterns. Integrative analyses uncover associations between nonadditive genes and nonadditive microbiota, including a connection between the expression of cellular signaling pathways and metabolism-related genes and the abundance of Odoribacter, Oscillibacter, and Alistipes in hybrids. Moreover, higher abundances of these microbiota are related to better meat yield. In summary, these findings highlight the importance of gut microbiota in heterosis, serving as crucial factors that modulate heterosis expression in chickens.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuchen Jie
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangqi Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Yiyuan Yan
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Chuanyao Tian
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Guiqin Wu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| |
Collapse
|
6
|
Cheng Z, Huang H, Qiao G, Wang Y, Wang X, Yue Y, Gao Q, Peng S. Metagenomic and Metabolomic Analyses Reveal the Role of Gut Microbiome-Associated Metabolites in the Muscle Elasticity of the Large Yellow Croaker ( Larimichthys crocea). Animals (Basel) 2024; 14:2690. [PMID: 39335279 PMCID: PMC11428853 DOI: 10.3390/ani14182690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The large yellow croaker (LYC, Larimichthys crocea) is highly regarded for its delicious taste and unique flavor. The gut microbiota has the ability to affect the host muscle performance and elasticity by regulating nutrient metabolism. The purpose of this study is to establish the relationship between muscle quality and intestinal flora in order to provide reference for the improvement of the muscle elasticity of LYC. In this study, the intestinal contents of high muscle elasticity males (IEHM), females (IEHF), and low muscle elasticity males (IELM) and females (IELF) were collected and subjected to metagenomic and metabolomic analyses. Metagenomic sequencing results showed that the intestinal flora structures of LYCs with different muscle elasticities were significantly different. The abundance of Streptophyta in the IELM (24.63%) and IELF (29.68%) groups was significantly higher than that in the IEHM and IEHF groups. The abundance of Vibrio scophthalmi (66.66%) in the IEHF group was the highest. Based on metabolomic analysis by liquid chromatograph-mass spectrometry, 107 differentially abundant metabolites were identified between the IEHM and IELM groups, and 100 differentially abundant metabolites were identified between the IEHF and IELF groups. Based on these metabolites, a large number of enriched metabolic pathways related to muscle elasticity were identified. Significant differences in the intestinal metabolism between groups with different muscle elasticities were identified. Moreover, the model of the relationship between the intestinal flora and metabolites was constructed, and the molecular mechanism of intestinal flora regulation of the nutrient metabolism was further revealed. The results help to understand the molecular mechanism of different muscle elasticities of LYC and provide an important reference for the study of the mechanism of the effects of LYC intestinal symbiotic bacteria on muscle development, and the development and application of probiotics in LYC.
Collapse
Affiliation(s)
- Zhenheng Cheng
- College of Life Sciences, Huzhou University, 759 Erhuan East Road, Wuxing District, Huzhou 313000, China
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Hao Huang
- College of Life Sciences, Huzhou University, 759 Erhuan East Road, Wuxing District, Huzhou 313000, China
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Guangde Qiao
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Yabing Wang
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Xiaoshan Wang
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Yanfeng Yue
- East China Sea Fishery Research Institute, Shanghai 200090, China
| | - Quanxin Gao
- College of Life Sciences, Huzhou University, 759 Erhuan East Road, Wuxing District, Huzhou 313000, China
| | - Shiming Peng
- East China Sea Fishery Research Institute, Shanghai 200090, China
| |
Collapse
|
7
|
Wu Y, Nie Q, Wang Y, Liu Y, Liu W, Wang T, Zhang Y, Cao S, Li Z, Zheng J, Nie Z, Zhou L. Associations between temporal eating patterns and body composition in young adults: a cross-sectional study. Eur J Nutr 2024; 63:2071-2080. [PMID: 38700577 DOI: 10.1007/s00394-024-03414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/20/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The aim of this study was to examine the associations between body composition and temporal eating patterns, including time of first eating occasion, time of last eating occasion, eating window, and eating jet lag (the variability in meal timing between weekdays and weekends). METHODS A total of 131 participants were included in the study. Temporal eating pattern information was collected through consecutive 7-day eat timing questionnaires and photographic food records. Body composition was assessed by bioelectrical impedance analysis. Multiple linear regression models were used to evaluate the relationships of temporal eating patterns with body composition, and age was adjusted. Eating midpoint was additionally adjusted in the analysis of eating window. RESULTS On weekdays, both later first eating occasion and last eating occasion were associated with lower lean mass, and longer eating window was associated with lower body fat percentage. On weekends, both later first eating occasion and last eating occasion were associated with lower lean mass, and longer eating window was associated with higher FFMI. Longer first eating occasion jet lag was associated with lower lean mass. CONCLUSION Our study suggested that earlier and more regular eating patterns may have a benefit on body composition.
Collapse
Affiliation(s)
- Yuchi Wu
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Qi Nie
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Yuqian Wang
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Yuqin Liu
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Weibo Liu
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Tian Wang
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Yaling Zhang
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Sisi Cao
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Zhengrong Li
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Jianghong Zheng
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Zichun Nie
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Li Zhou
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China.
| |
Collapse
|
8
|
Yu J, Zheng C, Guo Q, Yin Y, Duan Y, Li F. LPS-related muscle loss is associated with the alteration of Bacteroidetes abundance, systemic inflammation, and mitochondrial morphology in a weaned piglet model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1970-1988. [PMID: 38913237 DOI: 10.1007/s11427-023-2552-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/19/2024] [Indexed: 06/25/2024]
Abstract
We previously demonstrated that lipopolysaccharide (LPS) injection-induced immune stress could impair muscle growth in weaned piglets, but the precise mechanisms behind this remain elusive. Here, we found that chronic immune stress induced by LPS resulted in a significant reduction of 36.86% in the total muscle mass of piglets at 5 d post-treatment compared with the control group. At 1 d, prior to muscle mass loss, multiple alterations were noted in response to LPS treatment. These included a reduction in the abundance of Bacteroidetes, an increase in serum concentrations of pro-inflammatory cytokines, compromised mitochondrial morphology, and an upregulation in the expression of dynamin-related protein 1 (Drp1), a critical protein involved in mitochondrial fission. We highlight a strong negative correlation between Bacteroidetes abundance and the levels of serum pro-inflammatory cytokines, corroborated by in vivo intervention strategies in the musculature of both pig and mouse models. Mechanistically, the effects of Bacteroidetes on inflammation and muscle mass loss may involve the signaling pathway of the tauro-β-muricholic acid-fibroblast growth factor 15. Furthermore, the induction of overexpression of inflammatory cytokines, achieved without LPS treatment through oral administration of recombinant human IL-6 (rhIL-6), led to increased levels of circulating cytokines, subsequently causing a decrease in muscle mass. Notably, pre-treatment with Mdivi-1, an inhibitor of Drp-1, markedly attenuated the LPS-induced elevation in reactive oxygen species levels and rescued the associated decline in muscle mass. Collectively, these data indicate that LPS-induced muscle mass loss was linked to the reduction of Bacteroidetes abundance, increased inflammation, and the disruption of mitochondrial morphology. These insights offer promising avenues for the identification of potential therapeutic targets aimed at mitigating muscle mass loss.
Collapse
Affiliation(s)
- Jiayi Yu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fengna Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
10
|
Zhang X, Yang G, Jiang S, Ji B, Xie W, Li H, Sun J, Li Y. Causal Relationship Between Gut Microbiota, Metabolites, and Sarcopenia: A Mendelian Randomization Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae173. [PMID: 38995073 PMCID: PMC11329623 DOI: 10.1093/gerona/glae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Gut microbiota imbalance and sarcopenia are frequently observed in older adults. Gut microbiota and their metabolites are considered risk factors contributing to the heightened risk of sarcopenia, but whether these associations are causal remains unclear. METHODS We conducted linkage disequilibrium score regression and 2-sample Mendelian randomization (MR) methods with single-nucleotide polymorphisms sourced from large-scale genome-wide association studies as instrumental variables to examine the causal associations linking gut microbiota with their metabolites to the sarcopenia. Following the MR analysis, subsequent sensitivity analyses were conducted to reinforce the robustness and credibility of the obtained results. RESULTS MR analysis yielded compelling evidence demonstrating the correlation between genetically predicted gut microbiota and metabolites and the risk of sarcopenia. The abundance of Porphyromonadaceae, Rikenellaceae, Terrisporobacter, and Victivallis was found to be associated with walking pace. Our study also found suggestive associations of 12 intestinal bacteria with appendicular lean mass, and of Streptococcaceae, Intestinibacter, Paraprevotella, Ruminococcaceae UCG009, and Sutterella with grip strength. Specifically, we identified 21 gut microbiota-derived metabolites that may be associated with the risk of sarcopenia. CONCLUSIONS Utilizing a 2-sample MR approach, our study elucidates the causal interplay among gut microbiota, gut microbiota-derived metabolites, and the occurrence of sarcopenia. These findings suggest that gut microbiota and metabolites may represent a potential underlying risk factor for sarcopenia, and offer the promise of novel therapeutic focal points.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Yang J, Hou L, Wang A, Shang L, Jia X, Xu R, Wang X. Prebiotics improve frailty status in community-dwelling older individuals in a double-blind, randomized, controlled trial. J Clin Invest 2024; 134:e176507. [PMID: 39286985 PMCID: PMC11405044 DOI: 10.1172/jci176507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDFrailty significantly affects morbidity and mortality rates in the older population (age >65 years). Age-related degenerative diseases are influenced by the intestinal microbiota. However, limited research exists on alterations in the intestinal microbiota in frail older individuals, and the effectiveness of prebiotic intervention for treating frailty remains uncertain.OBJECTIVEWe sought to examine the biological characteristics of the intestinal microbiome in frail older individuals and assess changes in both frailty status and gut microbiota following intervention with a prebiotic blend consisting of inulin and oligofructose.METHODSThe study consisted of 3 components: an observational analysis with a sample size of 1,693, a cross-sectional analysis (n = 300), and a multicenter double-blind, randomized, placebo-controlled trial (n = 200). Body composition, commonly used scales, biochemical markers, intestinal microbiota, and metabolites were examined in 3 groups of older individuals (nonfrail, prefrail, and frail). Subsequently, changes in these indicators were reevaluated after a 3-month intervention using the prebiotic mixture for the prefrail and frail groups.RESULTSThe intervention utilizing a combination of prebiotics significantly improved frailty and renal function among the older population, leading to notable increases in protein levels, body fat percentage, walking speed, and grip strength. Additionally, it stimulated an elevation in gut probiotic count and induced alterations in microbial metabolite expression levels as well as corresponding metabolic pathways.CONCLUSIONSThe findings suggest a potential link between changes in the gut microbiota and frailty in older adults. Prebiotics have the potential to modify the gut microbiota and metabolome, resulting in improved frailty status and prevention of its occurrence.TRIAL REGISTRATIONClinicalTrials.gov NCT03995342.
Collapse
Affiliation(s)
- Jie Yang
- Department of Geriatrics, Xijing Hospital
| | - Liming Hou
- Department of Geriatrics, Xijing Hospital
| | | | - Lei Shang
- Department of Health Statistics, Air Force Medical University, Xi’an, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital
| | | |
Collapse
|
12
|
Rousseau AF, Martindale R. Nutritional and metabolic modulation of inflammation in critically ill patients: a narrative review of rationale, evidence and grey areas. Ann Intensive Care 2024; 14:121. [PMID: 39088114 PMCID: PMC11294317 DOI: 10.1186/s13613-024-01350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Inflammation is the hallmark of critical illness and triggers the neuro-endocrine stress response and an oxidative stress. Acute inflammation is initially essential for patient's survival. However, ongoing or exaggerated inflammation, due to persistent organ dysfunction, immune dysfunction or poor inflammation resolution, is associated to subsequent hypermetabolism and hypercatabolism that severely impact short and long-term functional status, autonomy, as well as health-related costs. Modulation of inflammation is thus tempting, with the goal to improve the short- and long-term outcomes of critically ill patients. FINDINGS Inflammation can be modulated by nutritional strategies (including the timing of enteral nutrition initiation, the provision of some specific macronutrients or micronutrients, the use of probiotics) and metabolic treatments. The most interesting strategies seem to be n-3 polyunsaturated fatty acids, vitamin D, antioxidant micronutrients and propranolol, given their safety, their accessibility for clinical use, and their benefits in clinical studies in the specific context of critical care. However, the optimal doses, timing and route of administration are still unknown for most of them. Furthermore, their use in the recovery phase is not well studied and defined. CONCLUSION The rationale to use strategies of inflammation modulation is obvious, based on critical illness pathophysiology and based on the increasingly described effects of some nutritional and pharmacological strategies. Regretfully, there isn't always substantial proof from clinical research regarding the positive impacts directly brought about by inflammation modulation. Some arguments come from studies performed in severe burn patients, but such results should be transposed to non-burn patients with caution. Further studies are needed to explore how the modulation of inflammation can improve the long-term outcomes after a critical illness.
Collapse
Affiliation(s)
- Anne-Françoise Rousseau
- Intensive Care Department, University Hospital of Liège, University of Liège, Avenue de l'Hôpital, 1/B35, Liège, B-4000, Belgium.
- GIGA-I3 Thematic Unit, Inflammation and Enhanced Rehabilitation Laboratory (Intensive Care), GIGA-Research, University of Liège, Liège, Belgium.
| | - Robert Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
13
|
Wang X, Zhang C, Su J, Ren S, Wang X, Zhang Y, Yuan Z, He X, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Wang X, Sun Y, Shen J, Ji H, Hou Y, Xiao Z. Rejuvenation Strategy for Inducing and Enhancing Autoimmune Response to Eliminate Senescent Cells. Aging Dis 2024:AD.2024.0579. [PMID: 39122450 DOI: 10.14336/ad.2024.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The process of aging, which involves progressive changes in the body over time, is closely associated with the development of age-related diseases. Cellular senescence is a pivotal hallmark and mechanism of the aging process. The accumulation of senescent cells can significantly contribute to the onset of age-related diseases, thereby compromising overall health. Conversely, the elimination of senescent cells enhances the body's regenerative and reparative capacity, thereby retarding the aging process. Here, we present a brief overview of 12 Hallmarks of aging and subsequently emphasize the potential of immune checkpoint blockade, innate immune cell therapy (including T cells, iNKT cells, macrophages, and NK cells), as well as CAR-T cell therapy for inducing and augmenting immune responses aimed at eliminating senescent cells. In addition to CAR-T cells, we also explore the possibility of engineered immune cells such as CAR-NK and CAR-M cells to eliminate senescent cells. In summary, immunotherapy, as an emerging strategy for the treatment of aging, offers new prospects for age-related research.
Collapse
Affiliation(s)
- Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chengyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- LongmaTan District People's Hospital of Luzhou City, Luzhou 646600, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| |
Collapse
|
14
|
Yan K, Ma X, Li C, Zhang X, Shen M, Chen S, Zhao J, He W, Hong H, Gong Y, Yuan G. Higher dietary live microbe intake is associated with a lower risk of sarcopenia. Clin Nutr 2024; 43:1675-1682. [PMID: 38815493 DOI: 10.1016/j.clnu.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE This study aimed to investigate the potential association between dietary live microbe intake and sarcopenia. METHODS Data from 5368 participants were gathered from the National Health and Nutrition Examination Survey (NHANES). Dietary information was assessed using a self-report questionnaire. The participants were categorized into low, medium, and high dietary live microbe groups. Sarcopenia was defined according to the National Institutes of Health (NIH) definition (appendicular skeletal muscle mass/body mass index <0.789 for men and <0.512 for women). Multivariate regression analysis and stratified analyses were performed. RESULTS After adjusting for potential confounding factors, individuals in the high dietary live microbe group exhibited a lower prevalence of sarcopenia compared to those in the low dietary live microbe group. The adjusted odds ratio (with 95% confidence intervals) was 0.63 (0.44-0.89) (p for trend <0.05). Subgroup analyses indicated a potential difference in the impact of dietary live microbe intake on sarcopenia between individuals with and without diabetes (p for interaction = 0.094). CONCLUSION Higher dietary live microbe intake was associated with a lower risk of sarcopenia.
Collapse
Affiliation(s)
- Kemin Yan
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Li
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhang
- Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Manxuan Shen
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sai Chen
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Zhao
- Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Hong
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingying Gong
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Gang Yuan
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Private Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
She Y, Ma Y, Zou P, Peng Y, An Y, Chen H, Luo P, Wei S. The Role of Grifola frondosa Polysaccharide in Preventing Skeletal Muscle Atrophy in Type 2 Diabetes Mellitus. Life (Basel) 2024; 14:784. [PMID: 39063539 PMCID: PMC11278391 DOI: 10.3390/life14070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a burgeoning public health challenge worldwide. Individuals with T2DM are at increased risk for skeletal muscle atrophy, a serious complication that significantly compromises quality of life and for which effective prevention measures are currently inadequate. Emerging evidence indicates that systemic and local inflammation stemming from the compromised intestinal barrier is one of the crucial mechanisms contributing to skeletal muscle atrophy in T2DM patients. Notably, natural plant polysaccharides were found to be capable of enhancing intestinal barrier function and mitigating secondary inflammation in some diseases. Herein, we hypothesized that Grifola frondosa polysaccharide (GFP), one of the major plant polysaccharides, could prevent skeletal muscle atrophy in T2DM via regulating intestinal barrier function and inhibiting systemic and local inflammation. Using a well-established T2DM rat model, we demonstrated that GFP was able to not only prevent hyperglycemia and insulin resistance but also repair intestinal mucosal barrier damage and subsequent inflammation, thereby alleviating the skeletal muscle atrophy in the T2DM rat model. Additionally, the binding free energy analysis and molecular docking of monosaccharides constituting GFP were further expanded for related targets to uncover more potential mechanisms. These results provide a novel preventative and therapeutic strategy for T2DM patients.
Collapse
Affiliation(s)
- Ying She
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yun Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Pei Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yong An
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
16
|
Lee MC, Hsu YJ, Chen MT, Kuo YW, Lin JH, Hsu YC, Huang YY, Li CM, Tsai SY, Hsia KC, Ho HH, Huang CC. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. Nutrients 2024; 16:1921. [PMID: 38931275 PMCID: PMC11206817 DOI: 10.3390/nu16121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Mu-Tsung Chen
- Committee on General Studies, Shih Chien University, Taipei City 104, Taiwan;
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Yen-Yu Huang
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Ching-Min Li
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
17
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
18
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Valentino TR, Burke BI, Kang G, Goh J, Dungan CM, Ismaeel A, Mobley CB, Flythe MD, Wen Y, McCarthy JJ. Microbial-Derived Exerkines Prevent Skeletal Muscle Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596432. [PMID: 38854012 PMCID: PMC11160717 DOI: 10.1101/2024.05.29.596432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Regular exercise yields a multitude of systemic benefits, many of which may be mediated through the gut microbiome. Here, we report that cecal microbial transplants (CMTs) from exercise-trained vs. sedentary mice have modest benefits in reducing skeletal muscle atrophy using a mouse model of unilaterally hindlimb-immobilization. Direct administration of top microbial-derived exerkines from an exercise-trained gut microbiome preserved muscle function and prevented skeletal muscle atrophy.
Collapse
Affiliation(s)
- Taylor R Valentino
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: Buck Institute for Research on Aging, Novato, CA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - Cory M Dungan
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: Department of Health, Human Performance, and Recreation, Robbins College of Health & Human Sciences, Baylor University, Waco, TX
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| | - C Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Current Address: School of Kinesiology, Auburn University, Auburn, AL
| | - Michael D Flythe
- USDA Agriculture Research Service, Forage-Animal Production Research Unit, University of Kentucky, Lexington, KY
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
20
|
Aykut MN, Erdoğan EN, Çelik MN, Gürbüz M. An Updated View of the Effect of Probiotic Supplement on Sports Performance: A Detailed Review. Curr Nutr Rep 2024; 13:251-263. [PMID: 38470560 PMCID: PMC11133216 DOI: 10.1007/s13668-024-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW Modulation of the host microbiota through probiotics has been shown to have beneficial effects on health in the growing body of research. Exercise increases the amount and diversity of beneficial microorganisms in the host microbiome. Although low- and moderate-intensity exercise has been shown to reduce physiological stress and improve immune function, high-intensity prolonged exercise can suppress immune function and reduce microbial diversity due to intestinal hypoperfusion. The effect of probiotic supplementation on sports performance is still being studied; however, questions remain regarding the mechanisms of action, strain used, and dose. In this review, the aim was to investigate the effects of probiotic supplements on exercise performance through modulation of gut microbiota and alleviation of GI symptoms, promotion of the immune system, bioavailability of nutrients, and aerobic metabolism. RECENT FINDINGS Probiotic supplementation may improve sports performance by reducing the adverse effects of prolonged high-intensity exercise. Although probiotics have been reported to have positive effects on sports performance, information about the microbiome and nutrition of athletes has not been considered in most current studies. This may have limited the evaluation of the effects of probiotic supplementation on sports performance.
Collapse
Affiliation(s)
- Miray Nur Aykut
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Esma Nur Erdoğan
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Gürbüz
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey.
| |
Collapse
|
21
|
Xie S, Wu Q. Association between the systemic immune-inflammation index and sarcopenia: a systematic review and meta-analysis. J Orthop Surg Res 2024; 19:314. [PMID: 38802828 PMCID: PMC11131329 DOI: 10.1186/s13018-024-04808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Sarcopenia is associated with increased morbidity and mortality. The systemic immune-inflammation index (SII) has been correlated to a variety of disorders. The present study conducted a systematic review and meta-analysis to investigate the relationship between SII and sarcopenia. METHODS A literature search was performed in Web of Science, PubMed, Embase, Cochrane Library, CINAHL, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, Wanfang Database, and VIP Chinese Science and Technology Database, from inception to March 2024. Then, the literature quality was assessed. After the heterogeneity test, a random effects or fixed effects model was applied to establish the forest plot, and investigate the relationship between SII and sarcopenia. Then, the sensitivity analysis and publication bias were examined. RESULTS Nine articles, which included 18,634 adults, were analyzed. Sarcopenic adults had higher SII levels, when compared to non-sarcopenic adults (standardized mean difference [SMD] = 0.66, 95% confidence interval [CI] = 0.22 - 0.19, p = 0.003). The high SII level was associated to the increased risk of sarcopenia (odds ratio = 1.52, 95% CI = 1.09-2.13, p = 0.01). In addition, the subgroup analysis revealed that the SII levels were higher in the sarcopenic group, when compared to the non-sarcopenic group, in elderly adults, as well as in adults with or without gastrointestinal disorders. The analysis was robust with a low risk of publication bias. CONCLUSIONS SII is closely associated to sarcopenia. Sarcopenic adults had elevated SII levels. The high SII level increased the risk of sarcopenia. Large scale multi-center prospective studies are required to validate these study findings.
Collapse
Affiliation(s)
- Siye Xie
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Qi Wu
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
22
|
Yang K, Chen Y, Wang M, Zhang Y, Yuan Y, Hou H, Mao YH. The Improvement and Related Mechanism of Microecologics on the Sports Performance and Post-Exercise Recovery of Athletes: A Narrative Review. Nutrients 2024; 16:1602. [PMID: 38892536 PMCID: PMC11174581 DOI: 10.3390/nu16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The diversity and functionality of gut microbiota may play a crucial role in the function of human motor-related systems. In addition to traditional nutritional supplements, there is growing interest in microecologics due to their potential to enhance sports performance and facilitate post-exercise recovery by modulating the gut microecological environment. However, there is a lack of relevant reviews on this topic. This review provides a comprehensive overview of studies investigating the effects of various types of microecologics, such as probiotics, prebiotics, synbiotics, and postbiotics, on enhancing sports performance and facilitating post-exercise recovery by regulating energy metabolism, mitigating oxidative-stress-induced damage, modulating immune responses, and attenuating bone loss. Although further investigations are warranted to elucidate the underlying mechanisms through which microecologics exert their effects. In summary, this study aims to provide scientific evidence for the future development of microecologics in athletics.
Collapse
Affiliation(s)
- Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Minghan Wang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Haoyang Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
23
|
Mostosi D, Molinaro M, Saccone S, Torrente Y, Villa C, Farini A. Exploring the Gut Microbiota-Muscle Axis in Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:5589. [PMID: 38891777 PMCID: PMC11171690 DOI: 10.3390/ijms25115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota plays a pivotal role in maintaining the dynamic balance of intestinal epithelial and immune cells, crucial for overall organ homeostasis. Dysfunctions in these intricate relationships can lead to inflammation and contribute to the pathogenesis of various diseases. Recent findings uncovered the existence of a gut-muscle axis, revealing how alterations in the gut microbiota can disrupt regulatory mechanisms in muscular and adipose tissues, triggering immune-mediated inflammation. In the context of Duchenne muscular dystrophy (DMD), alterations in intestinal permeability stand as a potential origin of molecules that could trigger muscle degeneration via various pathways. Metabolites produced by gut bacteria, or fragments of bacteria themselves, may have the ability to migrate from the gut into the bloodstream and ultimately infiltrate distant muscle tissues, exacerbating localized pathologies. These insights highlight alternative pathological pathways in DMD beyond the musculoskeletal system, paving the way for nutraceutical supplementation as a potential adjuvant therapy. Understanding the complex interplay between the gut microbiota, immune system, and muscular health offers new perspectives for therapeutic interventions beyond conventional approaches to efficiently counteract the multifaceted nature of DMD.
Collapse
Affiliation(s)
- Debora Mostosi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
| | - Monica Molinaro
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Sabrina Saccone
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Yvan Torrente
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| |
Collapse
|
24
|
Visuthranukul C, Leelahavanichkul A, Tepaamorndech S, Chamni S, Mekangkul E, Chomtho S. Inulin supplementation exhibits increased muscle mass via gut-muscle axis in children with obesity: double evidence from clinical and in vitro studies. Sci Rep 2024; 14:11181. [PMID: 38755201 PMCID: PMC11099025 DOI: 10.1038/s41598-024-61781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Gut microbiota manipulation may reverse metabolic abnormalities in obesity. Our previous studies demonstrated that inulin supplementation significantly promoted Bifidobacterium and fat-free mass in obese children. We aimed to study gut-muscle axis from inulin supplementation in these children. In clinical phase, the plasma samples from 46 participants aged 7-15 years, were analyzed for muscle biomarkers before and after 6-month inulin supplementation. In parallel, the plausible mechanism of muscle production via gut-muscle axis was examined using macrophage cell line. Bifidobacterium was cultured in semi-refined medium with inulin used in the clinical phase. Cell-free supernatant was collected and used in lipopolysaccharide (LPS)-induced macrophage cell line to determine inflammatory and anti-inflammatory gene expression. In clinical phase, IL-15 and creatinine/cystatin C ratio significantly increased from baseline to the 6th month. In vitro study showed that metabolites derived from Bifidobacterium capable of utilizing inulin contained the abundance of SCFAs. In the presence of LPS, treatment from Bifidobacterium + inulin downregulated TNF-α, IL-6, IL-1β, and iNOS, but upregulated FIZZ-1 and TGF-β expression. Inulin supplementation promoted the muscle biomarkers in agreement with fat-free mass gain, elucidating by Bifidobacterium metabolites derived from inulin digestion showed in vitro anti-inflammatory activity and decreased systemic pro-inflammation, thus promoting muscle production via gut-muscle axis response.Clinical Trial Registry number: NCT03968003.
Collapse
Affiliation(s)
- Chonnikant Visuthranukul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Inflammation and Immunology Research Unit (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surapun Tepaamorndech
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Natural Products and Nanoparticles Research Unit (NP2), Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eakkarin Mekangkul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirinuch Chomtho
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
25
|
Li P, Feng X, Ma Z, Yuan Y, Jiang H, Xu G, Zhu Y, Yang X, Wang Y, Zhu C, Wang S, Gao P, Jiang Q, Shu G. Microbiota-derived 3-phenylpropionic acid promotes myotube hypertrophy by Foxo3/NAD + signaling pathway. Cell Biosci 2024; 14:62. [PMID: 38750565 PMCID: PMC11097579 DOI: 10.1186/s13578-024-01244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Gut microbiota and their metabolites play a regulatory role in skeletal muscle growth and development, which be known as gut-muscle axis. 3-phenylpropionic acid (3-PPA), a metabolite produced by colonic microorganisms from phenylalanine in the gut, presents in large quantities in the blood circulation. But few study revealed its function in skeletal muscle development. RESULTS Here, we demonstrated the beneficial effects of 3-PPA on muscle mass increase and myotubes hypertrophy both in vivo and vitro. Further, we discovered the 3-PPA effectively inhibited protein degradation and promoted protein acetylation in C2C12 and chick embryo primary skeletal muscle myotubes. Mechanistically, we supported that 3-PPA reduced NAD+ synthesis and subsequently suppressed tricarboxylic acid cycle and the mRNA expression of SIRT1/3, thus promoting the acetylation of total protein and Foxo3. Moreover, 3-PPA may inhibit Foxo3 activity by directly binding. CONCLUSIONS This study firstly revealed the effect of 3-PPA on skeletal muscle growth and development, and newly discovered the interaction between 3-PPA and Foxo3/NAD+ which mechanically promote myotubes hypertrophy. These results expand new understanding for the regulation of gut microbiota metabolites on skeletal muscle growth and development.
Collapse
Affiliation(s)
- Penglin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Xiaohua Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Zewei Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Yexian Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Hongfeng Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Guli Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Yunlong Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Xue Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Yujun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Canjun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Songbo Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Ping Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Qingyan Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.
- Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.
| | - Gang Shu
- State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agricultural and Guangdong Province, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.
- Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
26
|
Mo X, Cheng R, Shen L, Sun Y, Wang P, Jiang G, Wen L, Li X, Peng X, Liao Y, He R, Yan H, Liu L. High-fat diet induces sarcopenic obesity in natural aging rats through the gut-trimethylamine N-oxide-muscle axis. J Adv Res 2024:S2090-1232(24)00205-4. [PMID: 38744403 DOI: 10.1016/j.jare.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION The lack of suitable animal models for sarcopenic obesity (SO) limits in-depth research into the disease. Emerging studies have demonstrated that gut dysbiosis is involved in the development of SO. As the importance of microbial metabolites is starting to unveil, it is necessary to comprehend the specific metabolites associated with gut microbiota and SO. OBJECTIVES We aimed to investigate whether high-fat diet (HFD) causes SO in natural aging animal models and specific microbial metabolites that are involved in linking HFD and SO. METHODS Young rats received HFD or control diet for 80 weeks, and obesity-related metabolic disorders and sarcopenia were measured. 16S rRNA sequencing and non-targeted and targeted metabolomics methods were used to detect fecal gut microbiota and serum metabolites. Gut barrier function was evaluated by intestinal barrier integrity and intestinal permeability. Trimethylamine N-oxide (TMAO) treatment was further conducted for verification. RESULTS HFD resulted in body weight gain, dyslipidemia, impaired glucose tolerance, insulin resistance, and systemic inflammation in natural aging rats. HFD also caused decreases in muscle mass, strength, function, and fiber cross-sectional area and increase in muscle fatty infiltration in natural aging rats. 16S rRNA sequencing and nontargeted and targeted metabolomics analysis indicated that HFD contributed to gut dysbiosis, mainly characterized by increases in deleterious bacteria and TMAO. HFD destroyed intestinal barrier integrity and increased intestinal permeability, as evaluated by reducing levels of colonic mucin-2, tight junction proteins, goblet cells and elevating serum level of fluorescein isothiocyanate-dextran 4. Correlation analysis showed a positive association between TMAO and SO. In addition, TMAO treatment aggravated the development of SO in HFD-fed aged rats through regulating the ROS-AKT/mTOR signaling pathway. CONCLUSION HFD leads to SO in natural aging rats, partially through the gut-microbiota-TMAO-muscle axis.
Collapse
Affiliation(s)
- Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ruijie Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lihui Shen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yunhong Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lin Wen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ruikun He
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
27
|
Yang G, Zhang J, Liu Y, Sun J, Ge L, Lu L, Long K, Li X, Xu D, Ma J. Acetate Alleviates Gut Microbiota Depletion-Induced Retardation of Skeletal Muscle Growth and Development in Young Mice. Int J Mol Sci 2024; 25:5129. [PMID: 38791168 PMCID: PMC11121558 DOI: 10.3390/ijms25105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The normal growth and development of skeletal muscle is essential for the health of the body. The regulation of skeletal muscle by intestinal microorganisms and their metabolites has been continuously demonstrated. Acetate is the predominant short-chain fatty acids synthesized by gut microbiota through the fermentation of dietary fiber; however, the underlying molecular mechanisms governing the interaction between acetate and skeletal muscle during the rapid growth stage remains to be further elucidated. Herein, specific pathogen-free (SPF) mice, germ-free (GF) mice, and germ-free mice supplemented with sodium acetate (GS) were used to evaluate the effects of acetate on the skeletal muscle growth and development of young mice with gut microbiota deficiency. We found that the concentration of serum acetate, body mass gain, succinate dehydrogenase activity, and expression of the myogenesis maker gene of skeletal muscle in the GS group were higher than those in the GF group, following sodium acetate supplementation. Furthermore, the transcriptome analysis revealed that acetate activated the biological processes that regulate skeletal muscle growth and development in the GF group, which are otherwise inhibited due to a gut microbiota deficiency. The in vitro experiment showed that acetate up-regulated Gm16062 to promote skeletal muscle cell differentiation. Overall, our findings proved that acetate promotes skeletal muscle growth and development in young mice via increasing Gm16062 expression.
Collapse
Affiliation(s)
- Guitao Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Jinwei Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Yan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Jing Sun
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Dengfeng Xu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| |
Collapse
|
28
|
Kang M, Kang M, Yoo J, Lee J, Lee S, Yun B, Song M, Kim JM, Kim HW, Yang J, Kim Y, Oh S. Dietary supplementation with Lacticaseibacillus rhamnosus IDCC3201 alleviates sarcopenia by modulating the gut microbiota and metabolites in dexamethasone-induced models. Food Funct 2024; 15:4936-4953. [PMID: 38602003 DOI: 10.1039/d3fo05420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Probiotics can exert direct or indirect influences on various aspects of health claims by altering the composition of the gut microbiome and producing bioactive metabolites. The aim of this study was to examine the effect of Lacticaseibacillus rhamnosus IDCC3201 on skeletal muscle atrophy in dexamethasone-induced C2C12 cells and a mouse animal model. Dexamethasone treatment significantly reduced C2C12 muscle cell viability, myotube diameter, and levels of muscle atrophic markers (Atrogin-1 and MuRF-1). These effects were alleviated by conditioned media (CM) and cell extract (EX) derived from L. rhamnosus IDCC3201. In addition, we assessed the in vivo therapeutic effect of L. rhamnosus IDCC3201 in a mouse model of dexamethasone (DEX)-induced muscle atrophy. Supplementation with IDCC3201 resulted in significant enhancements in body composition, particularly in lean mass, muscle strength, and myofibril size, in DEX-induced muscle atrophy mice. In comparison to the DEX-treatment group, the normal and DEX + L. rhamnosus IDCC3201 groups showed a higher transcriptional level of myosin heavy chain family genes (MHC1, MHC1b, MHC2A, 2bB, and 2X) and a reduction in atrophic muscle makers. These analyses revealed that L. rhamnosus IDCC3201 supplementation led to increased production of branched-chain amino acids (BCAAs) and improved the Allobaculum genus within the gut microbiota of muscle atrophy-induced groups. Taken together, our findings suggest that L. rhamnosus IDCC3201 represents a promising dietary supplement with the potential to alleviate sarcopenia by modulating the gut microbiome and metabolites.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Minji Kang
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Jiseon Yoo
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Juyeon Lee
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Sujeong Lee
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| | - Bohyun Yun
- Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangnam Oh
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
29
|
Cailleaux PE, Déchelotte P, Coëffier M. Novel dietary strategies to manage sarcopenia. Curr Opin Clin Nutr Metab Care 2024; 27:234-243. [PMID: 38391396 DOI: 10.1097/mco.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW Sarcopenia is a wasting disease, mostly age-related in which muscle strength and mass decline, such as physical performance. With aging, both lower dietary protein intake and anabolic resistance lead to sarcopenia. Moreover, aging and sarcopenia display low-grade inflammation, which also worsen muscle condition. In this review, we focused on these two main targets to study dietary strategies. RECENT FINDINGS The better understanding in mechanisms involved in sarcopenia helps building combined dietary approaches including physical activity that would slow the disease progression. New approaches include better understanding in the choice of quality proteins, their amount and schedule and the association with antioxidative nutrients. SUMMARY First, anabolic resistance can be countered by increasing significantly protein intake. If increasing amount remains insufficient, the evenly delivery protein schedule provides interesting results on muscle strength. Quality of protein is also to consider for decreasing risk for sarcopenia, because varying sources of proteins appears relevant with increasing plant-based proteins ratio. Although new techniques have been developed, as plant-based proteins display a lower availability, we need to ensure an adapted overall amount of proteins. Finally, specific enrichment with leucine from whey protein remains the dietary combined approach most studied and studies on citrulline provide interesting results. As cofactor at the edge between anabolic and antioxidative properties, vitamin D supplementation is to recommend. Antioxidative dietary strategies include both fibers, vitamins, micronutrients and polyphenols from various sources for positive effects on physical performance. The ω 3 -polyunsaturated fatty acids also display positive modifications on body composition. Gut microbiota modifiers, such as prebiotics, are promising pathways to improve muscle mass and function and body composition in sarcopenic patients. Nutritional interventions could be enhanced by combination with physical activity on sarcopenia. In healthy older adults, promoting change in lifestyle to get near a Mediterranean diet could be one of the best options. In sarcopenia adults in which lifestyle changes appears unprobable, specific enrichement potentialized with physical activity will help in the struggle against sarcopenia. Longitudinal data are lacking, which makes it hard to draw strong conclusions. However, the effects of a physical activity combined with a set of nutrition interventions on sarcopenia seems promising.
Collapse
Affiliation(s)
| | - Pierre Déchelotte
- Univ Rouen Normandie, Inserm, ADEN UMR 1073, Nutrition, Inflammation and Microbiota Gut Brain Axis, CHU Rouen
| | - Moïse Coëffier
- Univ Rouen Normandie, Inserm, ADEN UMR 1073, Nutrition, inflammation and Microbiota Gut Brain Axis, CHU Rouen, Department of Nutrition and CIC-CRB 1404, Rouen, France
| |
Collapse
|
30
|
Lee HY, Lee J, Lim H, Kim HY, Koo YS, Lim JS, Yoon Y. Lactobacillus gasseri BNR17 Ameliorates Dexamethasone-Induced Muscle Loss in BALB/c Mice and C2C12 Myotubes. J Med Food 2024; 27:385-395. [PMID: 38574296 DOI: 10.1089/jmf.2023.k.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.
Collapse
Affiliation(s)
- Hyeon-Yeong Lee
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jongkyu Lee
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyemi Lim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hye-Young Kim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yeon-Su Koo
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ji-Su Lim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yoosik Yoon
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
31
|
Gao X, Zhang P. Exercise perspective: Benefits and mechanisms of gut microbiota on the body. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:508-515. [PMID: 39019779 PMCID: PMC11255194 DOI: 10.11817/j.issn.1672-7347.2024.230550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 07/19/2024]
Abstract
Gut microbiota refers to the vast and diverse community of microorganisms residing in the intestines. Factors such as genetics, environmental influences (e.g., exercise, diet), and early life experiences (e.g., infant feeding methods) can all affect the ecological balance of gut microbiota within the body. Dysbiosis of the gut microbiota is associated with extra-intestinal diseases such as Parkinson's syndrome, osteoporosis, and autoimmune diseases, suggesting that disturbances in gut microbiota may be one of the causes of these diseases. Exercise benefits various diseases, with gut microbiota playing a role in regulating the nervous, musculoskeletal, and immune systems. Gut microbiota can impact the body's health status through the gut-brain axis, gut-muscle axis, and immune pathways. Moderate-intensity aerobic exercise can increase the quantity of gut microbiota and change microbial abundance, although short-term exercise does not significantly affect the alpha diversity of the microbiota. Resistance exercise also does not have a significant regulatory effect on gut microbiota.
Collapse
Affiliation(s)
- Xin Gao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| | - Peizhen Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
32
|
Fu P, Wang C, Zheng S, Qiao L, Gao W, Gong L. Connection of pre-competition anxiety with gut microbiota and metabolites in wrestlers with varying sports performances based on brain-gut axis theory. BMC Microbiol 2024; 24:147. [PMID: 38678197 PMCID: PMC11055349 DOI: 10.1186/s12866-024-03279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE The purpose of this study is to investigate the connection of pre-competition anxiety with gut microbiota and metabolites in wrestlers with different sports performances. METHODS One week prior to a national competition, 12 wrestlers completed anxiety questionnaires. Faecal and urine samples were collected for the analysis of gut microbiota and metabolites through the high-throughput sequencing of the 16 S rRNA gene in conjunction with untargeted metabolomics technology. The subjects were divided into two groups, namely, achievement (CP) and no-achievement (CnP) wrestlers, on the basis of whether or not their performances placed them in the top 16 at the competition. The relationship amongst the variations in gut microbiota, metabolites, and anxiety indicators was analyzed. RESULTS (1) The CP group exhibited significantly higher levels of "state self-confidence," "self-confidence," and "somatic state anxiety" than the CnP group. Conversely, the CP group displayed lower levels of "individual failure anxiety" and "sports competition anxiety" than the CnP group. (2) The gut microbiota in the CP group was more diverse and abundant than that in the CnP group. Pre-competition anxiety was linked to Oscillospiraceae UCG_005, Paraprevotella, Ruminococcaceae and TM7x. (3) The functions of differential metabolites in faeces and urine of the CP/CnP group were mainly enriched in caffeine metabolism, lipopolysaccharide biosynthesis and VEGF and mTOR signaling pathways. Common differential metabolites in feces and urine were significantly associated with multiple anxiety indicators. CONCLUSIONS Wrestlers with different sports performance have different pre-competition anxiety states, gut microbiota distribution and abundance and differential metabolites in faeces and urine. A certain correlation exists between these psychological and physiological indicators.
Collapse
Affiliation(s)
- Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, 100084, China
| | - Cuiping Wang
- College of Sports and Health Sciences, Xi'an Physical Education University, Xi'an, 710068, Shaanxi, China
| | - Shuai Zheng
- Department of Physical Education, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Lei Qiao
- College of Life Science, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weiyang Gao
- School of Languages and Cultural Communication, English Department, Xi'An Mingde Institute of Technology, Xi'an, 710124, Shaanxi, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
33
|
De Spiegeleer A, Descamps A, Wynendaele E, Naumovski P, Crombez L, Planas M, Feliu L, Knappe D, Mouly V, Bigot A, Bielza R, Hoffmann R, Van Den Noortgate N, Elewaut D, De Spiegeleer B. Streptococcal quorum sensing peptide CSP-7 contributes to muscle inflammation and wasting. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167094. [PMID: 38428683 DOI: 10.1016/j.bbadis.2024.167094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Muscle wasting diseases, such as cancer cachexia and age-associated sarcopenia, have a profound and detrimental impact on functional independence, quality of life, and survival. Our understanding of the underlying mechanisms is currently limited, which has significantly hindered the development of targeted therapies. In this study, we explored the possibility that the streptococcal quorum sensing peptide Competence Stimulating Peptide 7 (CSP-7) might be a previously unidentified contributor to clinical muscle wasting. We found that CSP-7 selectively triggers muscle cell inflammation in vitro, specifically the release of IL-6. Furthermore, we demonstrated that CSP-7 can traverse the gastrointestinal barrier in vitro and is present in the systemic circulation in humans in vivo. Importantly, CSP-7 was associated with a muscle wasting phenotype in mice in vivo. Overall, our findings provide new mechanistic insights into the pathophysiology of muscle inflammation and wasting.
Collapse
Affiliation(s)
- Anton De Spiegeleer
- Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) Group, Ghent University Hospital, Ghent, Belgium; Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Amélie Descamps
- Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) Group, Ghent University Hospital, Ghent, Belgium; Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) Group, Ghent University Hospital, Ghent, Belgium; Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Petar Naumovski
- Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) Group, Ghent University Hospital, Ghent, Belgium; Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Liesbeth Crombez
- Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) Group, Ghent University Hospital, Ghent, Belgium; Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Marta Planas
- LIPPSO, Department of Chemistry, Universitat de Girona, Maria Aurèlia Capmany 69, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Universitat de Girona, Maria Aurèlia Capmany 69, Girona, Spain
| | - Daniel Knappe
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany; Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
| | - Vincent Mouly
- Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | - Anne Bigot
- Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | - Rafael Bielza
- Department of Geriatric Medicine, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - Ralf Hoffmann
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany; Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
| | - Nele Van Den Noortgate
- Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) Group, Ghent University Hospital, Ghent, Belgium; Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Dirk Elewaut
- Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) Group, Ghent University Hospital, Ghent, Belgium; VIB Inflammation Research Center, Unit for Molecular Immunology and Inflammation, Ghent University, Ghent, Belgium; Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Bart De Spiegeleer
- Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) Group, Ghent University Hospital, Ghent, Belgium; Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
34
|
Zheng Y, Feng J, Yu Y, Ling M, Wang X. Advances in sarcopenia: mechanisms, therapeutic targets, and intervention strategies. Arch Pharm Res 2024; 47:301-324. [PMID: 38592582 DOI: 10.1007/s12272-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
35
|
Kashiwagi R, Udono M, Katakura Y. Fructobacillus fructosus OS-1010 strain stimulates intestinal cells to secrete exosomes that activate muscle cells. Cytotechnology 2024; 76:209-216. [PMID: 38495295 PMCID: PMC10940565 DOI: 10.1007/s10616-023-00610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 03/19/2024] Open
Abstract
Fructobacillus is a lactic-acid bacterium recently identified in fructose-rich environments. Fructobacillus is also known to exhibit unusual growth characteristics due to an incomplete gene encoding alcohol/acetaldehyde hydrogenase, which results in an imbalance in the nicotinamide adenine mononucleotide (NAD+)/NADN levels. Recently, the addition of d-fructose to the culture medium of Fructobacillus strains increased the intracellular nicotinamide mononucleotide (NMN) content. In the present study, we evaluated the functionality of Fructobacillus that produces high levels of NMN, using one substrain (Fructobacillus fructosus OS-1010). Therefore, in this study, we examined its functionality in the interaction between intestinal cells and muscle cells. The results showed that supernatant derived from intestinal epithelial cells (Caco-2 cells) treated with F. fructosus OS-1010 activated muscle cells (C2C12 cells). Further analysis revealed that Caco-2 cells treated with F. fructosus OS-1010 secreted exosomes known as extracellular vesicles, which activated the muscle cells. Furthermore, pathway analysis of the target genes of miRNA in exosomes revealed that pathways involved in muscle cell activation, including insulin signaling and cardiac muscle regulation, neurotrophic factors, longevity, and anti-aging, can be activated by exosomes. In other words, F. fructosus OS-1010 could activate various cells such as the skin and muscle cells, by secreting functional exosomes from the intestinal tract.
Collapse
Affiliation(s)
- Riku Kashiwagi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 813-0395 Japan
| | - Miyako Udono
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 813-0395 Japan
| | - Yoshinori Katakura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 813-0395 Japan
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 813-0395 Japan
| |
Collapse
|
36
|
Zhu H, Zhao H, Qian H, Liu C. Urolithin A Ameliorates Athletic Ability and Intestinal Microbiota in Sleep Deprivation from the Perspective of the Gut-Muscle Axis. Mol Nutr Food Res 2024; 68:e2300599. [PMID: 38468112 DOI: 10.1002/mnfr.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/05/2024] [Indexed: 03/13/2024]
Abstract
SCOPE Urolithin A (UA), a gut-microbiota-derived metabolite of ellagic acid, presents various benefits to intestinal microecology. The presence of "gut-muscle axis" regulating the onset and progression of exercise-related physical frailty and sarcopenia has been recently hypothesized. This study aims to explore the underlying mechanism of gut-muscle axis by which UA enhances muscle strength and fatigue resistance of sleep-deprived (SD) mice. METHODS AND RESULTS UA is gavaged to C57BL/6 mice (50 mg kg-1 bw) before 48-h SD. The results indicate that pretreatment of UA significantly enhances motor ability and energy metabolism. The inflammation is suppressed, and intestinal permeability is improved after prophylactic treatment with UA. The decreased level of serum lipopolysaccharide (LPS) is concomitant with augmentation of the intestinal tight junction proteins. 16s rRNA analysis of colonic contents reveals that UA significantly reduces the abundance of Clostridia_UCG-014 and Candidatus_Saccharimonas, and upregulates Lactobacillus and Muribaculaceae. UA probably influences on gut microbial functions via several energy metabolism pathways, such as carbon metabolism, phosphotransferase system (PTS), and ATP binding cassette (ABC) transporters. CONCLUSIONS The dietary intervention of UA helps to create a systemic protection, a bidirectional communication connecting the gut microbiota with muscle system, able to alleviate SD-induced mobility impairment and gut dysbiosis.
Collapse
Affiliation(s)
- Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi, 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing, 100084, China
| |
Collapse
|
37
|
Kerksick CM, Moon JM, Jäger R. It's Dead! Can Postbiotics Really Help Performance and Recovery? A Systematic Review. Nutrients 2024; 16:720. [PMID: 38474848 PMCID: PMC10933997 DOI: 10.3390/nu16050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, postbiotics have increased in popularity, but the potential relevancy of postbiotics for augmenting exercise performance, recovery, and health is underexplored. A systematic literature search of Google Scholar and PubMed databases was performed with the main objective being to identify and summarize the current body of scientific literature on postbiotic supplementation and outcomes related to exercise performance and recovery. Inclusion criteria for this systematic review consisted of peer-reviewed, randomized, double-blind, and placebo-controlled trials, with a population including healthy men or women >18 years of age. Studies required the incorporation of a postbiotic supplementation regimen and an outcome linked to exercise. Search terms included paraprobiotics, Tyndallized probiotics, ghost biotics, heat-killed probiotics, inactivated probiotics, nonviable probiotics, exercise, exercise performance, and recovery. Only investigations written in English were considered. Nine peer-reviewed manuscripts and two published abstracts from conference proceedings were included and reviewed. Supplementation periods ranged from 13 days to 12 weeks. A total of 477 subjects participated in the studies (n = 16-105/study) with reported results spanning a variety of exercise outcomes including exercise performance, recovery of lost strength, body composition, perceptual fatigue and soreness, daily logs of physical conditions, changes in mood states, and biomarkers associated with muscle damage, inflammation, immune modulation, and oxidative stress. Early evidence has provided some indication that postbiotic supplementation may help to support mood, reduce fatigue, and increase the readiness of athletes across several weeks of exercise training. However, more research is needed to further understand how postbiotics may augment health, resiliency, performance, and recovery. Future investigations should include longer supplementation periods spanning a wider variety of competitive athletes and exercising populations.
Collapse
Affiliation(s)
- Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Jessica M. Moon
- Exercise Physiology, Intervention, and Collaboration Lab, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, 12494 University Blvd, Orlando, FL 32816, USA;
| | - Ralf Jäger
- Increnovo, LLC, Whitefish Bay, WI 53217, USA;
| |
Collapse
|
38
|
Cha RH. Pharmacologic therapeutics in sarcopenia with chronic kidney disease. Kidney Res Clin Pract 2024; 43:143-155. [PMID: 38389147 PMCID: PMC11016676 DOI: 10.23876/j.krcp.23.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 02/24/2024] Open
Abstract
Inflammation, metabolic acidosis, renin-angiotensin system activation, insulin resistance, and impaired perfusion to skeletal muscles, among others, are possible causes of uremic sarcopenia. These conditions induce the activation of the nuclear factor-kappa B and mitogen-activated protein kinase pathways, adenosine triphosphate ubiquitin-proteasome system, and reactive oxygen species system, resulting in protein catabolism. Strategies for the prevention and treatment of sarcopenia in chronic kidney disease (CKD) are aerobic and resistance exercises along with nutritional interventions. Anabolic hormones have shown beneficial effects. Megestrol acetate increased weight, protein catabolic rate, and albumin concentration, and it increased intracellular water component and muscle mass. Vitamin D supplementation showed improvement in physical function, muscle strength, and muscle mass. Correction of metabolic acidosis showed an increase in protein intake, serum albumin levels, body weight, and mid-arm circumference. The kidney- gut-muscle axis indicates that dysbiosis and changes in gut-derived uremic toxins and short-chain fatty acids affect muscle mass, composition, strength, and functional capacity. Biotic supplements, AST-120 administration, hemodiafiltration, and preservation of residual renal function are alleged to reduce uremic toxins, including indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Synbiotics reversed the microbiota change in CKD patients and decreased uremic toxins. AST-120 administration changed the overall gut microbiota composition in CKD. AST-120 prevented IS and PCS tissue accumulation, ameliorated muscle atrophy, improved exercise capacity and mitochondrial biogenesis, restored epithelial tight junction proteins, and reduced plasma endotoxin levels and markers of oxidative stress and inflammation. In a human study, the addition of AST-120 to standard treatment had modest beneficial effects on gait speed change and quality of life.
Collapse
Affiliation(s)
- Ran-hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| |
Collapse
|
39
|
Shama S, Ranade AV, Qaisar R, Khan NA, Tauseef I, Elmoselhi A, Siddiqui R. Enhancing microbial diversity as well as multi-organ health in hind-limb unloaded mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:62-71. [PMID: 38245349 DOI: 10.1016/j.lssr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 01/22/2024]
Abstract
During space travel, the gut microbiota is changed which can lead to health-related issues. Previously, we utilized the hind-limb unloaded (HU) mouse, which is an established ground-based in-vivo model of microgravity and observed altered gut microbiota. In this study, we evaluated the beneficial effects of novel bacterial conditioned media in HU mice to understand if they can offset the effects of unloading in the HU mouse model. We aimed to explore the influence of bacterial conditioned media on diversity and quantity of intestinal microbes in HU mice, and investigated the microarchitecture of mice retinas and kidneys to evaluate the potential systemic effects of bacterial conditioned media in HU mice. Four-month-old, male C57/Bl6 mice were separated into groups: including the ground-based control group, the HU group mice fed with vehicle as placebo (HU-placebo mice), and the HU group fed with bacterial conditioned media (HU-CP mice) and kept under controlled environmental conditions for three weeks. Next, mice were sacrificed; gut dissections were conducted, and metagenomic analysis of bacterial species was performed via DNA extraction and 16S rRNA analysis. The results revealed an HU-induced reduction in intestinal microbial diversity, and an increase in pathogenic bacteria dominated by Firmicutes (45%). In contrast, supplementation with bacterial conditioned media for three weeks led to a significant increase in gut microbial diversity with noticeable changes in the OTUs abundance in the HU mice. Additionally, HU-induced muscle weakness and structural abnormalities in the retina and kidney were partially prevented with bacterial conditioned media. Moreover, a greater diversity of several bacteria in the HU-CP was observed including, Bacteriodota, Firmicutes, Proteobacteria, Actionobacteriota, Verrucomicorbiota, Cyanobacteria, Gemmatimonadota, Acidobacteriota, Chloroflexi, Myxococcota, and others. Prospective research involving molecular mechanistic studies are needed to comprehend the systemic effects of bacterial metabolites conditioned media on experimental animal models under chronic stress.
Collapse
Affiliation(s)
- Shama Shama
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates; Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Anu V Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan.
| | - Adel Elmoselhi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey; College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
40
|
Lapaquette P, Terrat S, Proukhnitzky L, Martine L, Grégoire S, Buteau B, Cabaret S, Rieu A, Bermúdez-Humarán LG, Gabrielle PH, Creuzot-Garcher C, Berdeaux O, Acar N, Bringer MA. Long-term intake of Lactobacillus helveticus enhances bioavailability of omega-3 fatty acids in the mouse retina. NPJ Biofilms Microbiomes 2024; 10:4. [PMID: 38238339 PMCID: PMC10796366 DOI: 10.1038/s41522-023-00474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), are required for the structure and function of the retina. Several observational studies indicate that consumption of a diet with relatively high levels of n-3 PUFAs, such as those provided by fish oils, has a protective effect against the development of age-related macular degeneration. Given the accumulating evidence showing the role of gut microbiota in regulating retinal physiology and host lipid metabolism, we evaluated the potential of long-term dietary supplementation with the Gram-positive bacterium Lactobacillus helveticus strain VEL12193 to modulate the retinal n-3 PUFA content. A set of complementary approaches was used to study the impact of such a supplementation on the gut microbiota and host lipid/fatty acid (FA) metabolism. L. helveticus-supplementation was associated with a decrease in retinal saturated FAs (SFAs) and monounsaturated FAs (MUFAs) as well as an increase in retinal n-3 and omega-6 (n-6) PUFAs. Interestingly, supplementation with L. helveticus enriched the retina in C22:5n-3 (docosapentaenoic acid, DPA), C22:6n-3 (DHA), C18:2n-6 (linoleic acid, LA) and C20:3n-6 (dihomo gamma-linolenic acid, DGLA). Long-term consumption of L. helveticus also modulated gut microbiota composition and some changes in OTUs abundance correlated with the retinal FA content. This study provides a proof of concept that targeting the gut microbiota could be an effective strategy to modulate the retinal FA content, including that of protective n-3 PUFAs, thus opening paths for the design of novel preventive and/or therapeutical strategies for retinopathies.
Collapse
Affiliation(s)
- Pierre Lapaquette
- Univ. Bourgogne, UMR PAM A 02.102, Institut Agro Dijon, INRAE, F-21000 Dijon, France
| | - Sébastien Terrat
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lil Proukhnitzky
- Univ. Bourgogne, UMR PAM A 02.102, Institut Agro Dijon, INRAE, F-21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
| | - Bénédicte Buteau
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
| | - Stéphanie Cabaret
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Université Bourgogne Franche-Comté, Institut Agro; INRAE, PROBE Research infrastructure, ChemoSens facility, F-21000, Dijon, France
| | - Aurélie Rieu
- Univ. Bourgogne, UMR PAM A 02.102, Institut Agro Dijon, INRAE, F-21000 Dijon, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, F-78350, Jouy-en-Josas, France
| | - Pierre-Henry Gabrielle
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
- Department of Ophthalmology, University Hospital, F-21000, Dijon, France
| | - Catherine Creuzot-Garcher
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
- Department of Ophthalmology, University Hospital, F-21000, Dijon, France
| | - Olivier Berdeaux
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Université Bourgogne Franche-Comté, Institut Agro; INRAE, PROBE Research infrastructure, ChemoSens facility, F-21000, Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
| | - Marie-Agnès Bringer
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France.
| |
Collapse
|
41
|
Ahn JS, Koo BC, Choi YJ, Jung WW, Kim HS, Lee SJ, Hong ST, Chung HJ. Identification of Muscle Strength-Related Gut Microbes through Human Fecal Microbiome Transplantation. Int J Mol Sci 2024; 25:662. [PMID: 38203833 PMCID: PMC10779158 DOI: 10.3390/ijms25010662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The gut microbiome is well known for its influence on human physiology and aging. Therefore, we speculate that the gut microbiome may affect muscle strength in the same way as the host's own genes. To demonstrate candidates for gut microbes affecting muscle strength, we remodeled the original gut microbiome of mice into human intestinal microbiome through fecal microbiome transplantation (FMT), using human feces and compared the changes in muscle strength in the same mice before and three months after FMT. After comparing before and after FMT, the mice were divided into three groups based on the observed changes in muscle strength: positive, none, and negative changes in muscle strength. As a result of analyzing the α-diversity, β-diversity, and co-occurrence network of the intestinal microbial community before and after FMT, it was observed that a more diverse intestinal microbial community was established after FMT in all groups. In particular, the group with increased muscle strength had more gut microbiome species and communities than the other groups. Fold-change comparison showed that Eisenbergiella massiliensis and Anaeroplasma abactoclasticum from the gut microbiome had positive contributions to muscle strength, while Ileibacterium valens and Ethanoligenens harbinense had negative effects. This study identifies candidates for the gut microbiome that contribute positively and those that contribute negatively to muscle strength.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Jeolla, Republic of Korea; (J.-S.A.); (Y.-J.C.)
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Bon-Chul Koo
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Chungbuk, Republic of Korea;
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju 28503, Chungbuk, Republic of Korea; (W.-W.J.); (H.-S.K.); (S.-J.L.)
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Jeolla, Republic of Korea; (J.-S.A.); (Y.-J.C.)
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju 28503, Chungbuk, Republic of Korea; (W.-W.J.); (H.-S.K.); (S.-J.L.)
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju 28503, Chungbuk, Republic of Korea; (W.-W.J.); (H.-S.K.); (S.-J.L.)
| | - Suk-Jun Lee
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju 28503, Chungbuk, Republic of Korea; (W.-W.J.); (H.-S.K.); (S.-J.L.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Jeolla, Republic of Korea; (J.-S.A.); (Y.-J.C.)
| |
Collapse
|
42
|
Li Z, Wang Q, Huang X, Wu Y, Shan D. Microbiome's role in musculoskeletal health through the gut-bone axis insights. Gut Microbes 2024; 16:2410478. [PMID: 39387683 PMCID: PMC11469435 DOI: 10.1080/19490976.2024.2410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The interplay between the human microbiome and the musculoskeletal system represents a burgeoning field of research with profound implications for understanding and treating musculoskeletal disorders. This review articulates the pivotal role of the microbiome in modulating bone health, highlighting the gut-bone axis as a critical nexus for potential therapeutic intervention. Through a meticulous analysis of recent clinical research, we underscore the microbiome's influence on osteoporosis, sarcopenia, osteoarthritis, and rheumatoid arthritis, delineating both the direct and indirect mechanisms by which microbiota could impact musculoskeletal integrity and function. Our investigation reveals novel insights into the microbiota's contribution to bone density regulation, hormone production, immune modulation, and nutrient absorption, laying the groundwork for innovative microbiome-based strategies in musculoskeletal disease management. Significantly, we identify the challenges hindering the translation of research into clinical practice, including the limitations of current microbial sequencing techniques and the need for standardized methodologies in microbiome studies. Furthermore, we highlight promising directions for future research, particularly in the realm of personalized medicine, where the microbiome's variability offers unique opportunities for tailored treatment approaches. This review sets a new agenda for leveraging gut microbiota in the diagnosis, prevention, and treatment of musculoskeletal conditions, marking a pivotal step toward integrating microbiome science into clinical musculoskeletal care.
Collapse
Affiliation(s)
- Zhengrui Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Noordine ML, Seyoum Y, Bruneau A, Baye K, Lefebvre T, Cherbuy C, Canonne-Hergaux F, Nicolas G, Humblot C, Thomas M. The microbiota and the host organism switch between cooperation and competition based on dietary iron levels. Gut Microbes 2024; 16:2361660. [PMID: 38935764 PMCID: PMC11212566 DOI: 10.1080/19490976.2024.2361660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.
Collapse
Affiliation(s)
- Marie-Louise Noordine
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Yohannes Seyoum
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier Cedex, France
| | - Aurélia Bruneau
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thibaud Lefebvre
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
- Institut National de la Santé et de la Recherche Médicale, U1149, Centre de Recherches sur l’Inflammation, Paris, France
| | - Claire Cherbuy
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - François Canonne-Hergaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- U1188 DéTROI, Université de La Réunion, Paris, France
| | - Gaël Nicolas
- Institut National de la Santé et de la Recherche Médicale, U1149, Centre de Recherches sur l’Inflammation, Paris, France
- Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, Ile-de-France, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier Cedex, France
| | - Muriel Thomas
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| |
Collapse
|
44
|
Abdel-Halim NHM, Farrag EAE, Hammad MO, Habotta OA, Hassan HM. Probiotics Attenuate Myopathic Changes in Aging Rats via Activation of the Myogenic Stellate Cells. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10202-2. [PMID: 38112993 DOI: 10.1007/s12602-023-10202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Aging represents a complex biological process associated with decline in skeletal muscle functions. Aging impairs satellite cells that serve as muscle progenitor cells. Probiotic supplementation may have many beneficial effects via various mechanisms. We examined the possible effects of probiotics in stimulating the proliferation of myogenic stellate cells in aging rats. Twenty-four male albino Sprague-Dawley rats were classified equally into four groups: adult control, old control, adult + probiotics, and old + probiotics. Probiotics (Lactobacillus LB) were administered gavage at a dose of 1 ml (1 × 109 CFU/ml/day) for 4 weeks. A significant increase in the relative gastrocnemius weight ratio and improvement of contractile parameters was detected in the old + probiotics group (0.6 ± 0.01) compared to the old control group (0.47 ± 0.01; P < 0.001). Probiotics significantly upregulated the activities of GSH, while NO and MDA were markedly decreased compared to control groups (P ≤ 0.001). Also, probiotics increased the mRNA and protein expressions of myogenin and CD34 (P < 0.05) as determined by real-time PCR and immunohistochemistry. Moreover, the old + probiotics group showed apparent restoration of the connective tissue spaces, reflecting the all-beneficial effects of probiotics. Our findings indicated that probiotics attenuated myopathic changes in aging rats probably through activation of the myogenic stellate cells. Probiotics improved the muscle weight, function, antioxidant activity, and myogenic transcription factors of the skeletal muscle.
Collapse
Affiliation(s)
- Nehal H M Abdel-Halim
- Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Eman A E Farrag
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt.
| | - Maha O Hammad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Ola Ali Habotta
- Forensic and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Hend M Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
45
|
Pittia P, Blanc S, Heer M. Unraveling the intricate connection between dietary factors and the success in long-term space missions. NPJ Microgravity 2023; 9:89. [PMID: 38092789 PMCID: PMC10719368 DOI: 10.1038/s41526-023-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
In recent decades of spaceflight, inadequate caloric intake has posed significant nutritional challenges, contributing to muscle degradation, weakened immune and cardiovascular systems during and after space missions. This challenge becomes more acute on longer exploration missions, where transporting all food for the entire mission becomes a logistical challenge. This places immense pressure on the food system, requiring energy-dense, varied, stable, and palatable food options. Prolonged storage can lead to nutrient degradation, reducing their bioavailability and bioaccessibility to astronauts. Research is essential not only to improve the quality and stability of space food but also to enhance nutrient bioavailability, thereby reducing weight and volume of food. Muscle and bone loss represent major risks during extended spaceflight, prompting extensive efforts to find exercise countermeasures. However, increased exercise requires additional energy intake, and finding the optimal balance between energy needs and the preservation of muscle and bone mass is challenging. Currently, there is no reliable way to measure total energy expenditure and activity-related energy expenditures in real-time. Systematic research is necessary to develop onboard technology for accurate energy expenditure and body composition monitoring. This research should aim to establish an optimal exercise regimen that balances energy requirements while maintaining astronaut strength and minimizing food transport. In summary, this overview outlines key actions needed for future exploration missions to maintain body mass and physical strength of space travellers. It addresses the requirements for food processing and preservation, considerations for space food formulation and production, and the essential measures to be implemented.
Collapse
Affiliation(s)
| | | | - Martina Heer
- IU International University of Applied Sciences, Erfurt, Germany.
- University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany.
| |
Collapse
|
46
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
47
|
Rehman SU, Ali R, Zhang H, Zafar MH, Wang M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front Physiol 2023; 14:1252089. [PMID: 38046946 PMCID: PMC10691278 DOI: 10.3389/fphys.2023.1252089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Leucine, a branched-chain amino acid, is essential in regulating animal growth and development. Recent research has uncovered the mechanisms underlying Leucine's anabolic effects on muscle and other tissues, including its ability to stimulate protein synthesis by activating the mTORC1 signaling pathway. The co-ingestion of carbohydrates and essential amino acids enhances Leucine's anabolic effects. Moreover, Leucine has been shown to benefit lipid metabolism, and insulin sensitivity, making it a promising strategy for preventing and treating metabolic diseases, including type 2 diabetes and obesity. While emerging evidence indicates that epigenetic mechanisms may mediate Leucine's effects on growth and development, more research is needed to elucidate its mechanisms of action fully. Specific studies have demonstrated that Leucine promotes muscle growth and metabolic health in animals and humans, making it a promising therapeutic agent. However, it is essential to note that Leucine supplementation may cause digestive issues or interact with certain medications, and More study is required to determine definitively optimal dosages. Therefore, it is important to understand how Leucine interacts with other nutrients, dietary factors, and lifestyle habits to maximize its benefits. Overall, Leucine's importance in human nutrition is far-reaching, and its potential to prevent muscle loss and enhance athletic performance warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
48
|
Liu H, Xi Q, Tan S, Qu Y, Meng Q, Zhang Y, Cheng Y, Wu G. The metabolite butyrate produced by gut microbiota inhibits cachexia-associated skeletal muscle atrophy by regulating intestinal barrier function and macrophage polarization. Int Immunopharmacol 2023; 124:111001. [PMID: 37804658 DOI: 10.1016/j.intimp.2023.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE Cachexia, marked by muscle atrophy, poses substantial challenges for prevention and treatment. This study delves into the unclear role of butyrate, a gut microbiota metabolite, in cachexia by examining gut microbiota and short-chain fatty acid (SCFA) profiles in human and mouse fecal samples. METHODS We analyzed cachexia-associated gut microbiota and SCFA profiles using 16S rRNA sequencing and metabolomic techniques. Mouse cachexia models were developed with C26 cells, and LPS was used to induce muscle cell atrophy in C2C12 cells. We evaluated butyrate's in vivo effects on intestinal health, muscle preservation, inflammation, and macrophage activity. In vitro studies focused on butyrate's influence on macrophage polarization and the subsequent effects on muscle cells. RESULTS Both cachexia patients and mice exhibited gut microbiota imbalances, irregular butyrate concentrations, and a decline in butyrate-producing bacteria. In vivo tests showed that butyrate counteract cachexia-induced muscle atrophy by adjusting the Akt/mTOR/Foxo3a and Fbox32/Trim63 pathways. These butyrate also bolstered intestinal barrier integrity, minimized endotoxin migration, and mitigated oxidative stress. Furthermore, butyrate curtailed inflammation and macrophage penetration in muscles. In vitro experimental results demonstrate that butyrate inhibit macrophage polarization towards the M1 phenotype and promote polarization towards the M2 phenotype. Both M1 and M2 macrophages influence the aforementioned pathways and oxidative stress, participating in the regulation of muscle cell atrophy. CONCLUSION Our study delineates the intricate interplay between gut microbiota dysbiosis, butyrate fluctuations, and cachexia progression. Butyrate not only reinforces the intestinal barrier but also orchestrates macrophage polarization, mitigating muscle atrophy and averting cachexia-induced muscle deterioration. Concurrently, the M1 and M2 macrophages play pivotal roles in modulating skeletal muscle cell atrophy. This highlights the potential of utilizing the gut-derived metabolite butyrate as a promising therapeutic approach for addressing cachexia-related issues.
Collapse
Affiliation(s)
- Hao Liu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiulei Xi
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yidan Qu
- Department of Medicine, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qingyang Meng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanni Zhang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxi Cheng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Han S, Seo KH, Gyu Lee H, Kim H. Effect of Cucumis melo L. peel extract supplemented postbiotics on reprograming gut microbiota and sarcopenia in hindlimb-immobilized mice. Food Res Int 2023; 173:113476. [PMID: 37803799 DOI: 10.1016/j.foodres.2023.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
Postbiotics made from lactic acid bacteria may ameliorate sarcopenia via the metabolic reprogramming of gut dysbiosis. This study investigated the anti-sarcopenic effect of postbiotics (WDK) produced from polyphenol-rich melon peel extract (Cucumis melo L. var. makuwa, KEE) and whey with Lentilactobacillus kefiri DH5 (DH5) in C2C12 skeletal muscle cells and hindlimb-immobilized mice. WDK significantly ameliorated palmitate-induced atrophy of C2C12 cells, restoring myotube length and diameter. It also upregulated the expression of myogenic genes including Atrogin-1, Igf-1, and MyoD. Hindlimb-immobilized C57BL/6J mice were randomly divided and orally administered 10 mL/kg body weight of saline (CON), Whey, Whey + DH5 (WD), DH5 + KEE, Whey + DH5 + KEE postbiotic (WDK) for three weeks (n = 10/group). Interestingly, WDK significantly improved muscle function in hindlimb-immobilized mice by restoring both the grip strength and the mass of the soleus muscle, which was closely related to the upregulation of the myoD gene. WDK increased microbial diversity and modulated the distribution of intestinal bacteria, particularly those involved in protein synthesis and the production of butyrate. There was a significant correlation between myogenic biomarkers and butyrate producing gut microbiota. Restoration of muscle mass and function following postbiotic WDK is strongly related to the regulation of myogenic genes by in part remodulating gut microbiota. In conclusion, these findings suggest that polyphenol- and whey-based postbiotics WDK may have potential as an effective manner to combat the progression of sarcopenia.
Collapse
Affiliation(s)
- Sanghoon Han
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyeon Gyu Lee
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea.
| |
Collapse
|
50
|
Fourati S, de Dreuille B, Bettolo J, Hutinet C, Le Gall M, Bado A, Joly F, Le Beyec J. Hyperphagia is prominent in adult patients with short bowel syndrome: A role for the colon? Clin Nutr 2023; 42:2109-2115. [PMID: 37751660 DOI: 10.1016/j.clnu.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
RATIONALE Short Bowel Syndrome (SBS) is the major cause of chronic intestinal failure (IF) and requires parenteral nutrition (PN). After bowel resection, some patients develop spontaneous intestinal adaptations and hyperphagia. Since promoting oral energy intake contributes to PN weaning, this study aims to characterize hyperphagia in patients with SBS and identify its determinants. METHODS This observational retrospective study included adult patients with SBS who were followed at an expert PN center between 2006 and 2019, with at least 2 separate nutritional assessments. Exclusion criteria were: active neoplasia, alternative treatment for IF or appetite-affecting medication. Resting energy expenditure (REE) was calculated for each patient using the Harris-Benedict equation. Food Intake Ratio (FIR) was calculated by dividing the highest caloric oral intake by REE and hyperphagia was defined as FIR >1.5. RESULTS Among the 59 patients with SBS included in this study, 82.6% had a FIR >1.5, including 15.5% with a FIR >3. Protein supplied approximately 16% of total energy intake while fat and carbohydrates provided 36% and 48%, respectively. The FIR was independent of gender and whether patients received oral nutrition alone (n = 28) or combined with PN (n = 31). The FIR was also not associated with residual small bowel length, nor the proportion of preserved colon. However, it was negatively correlated with the body mass index (BMI) of these patients (r = -0.533, p < 0.001), whether they had PN support or not. Patients with either a jejuno-colonic (n = 31) or a jejuno-ileal anastomosis (n = 9), had a significantly higher FIR compared to those with an end-jejunostomy (n = 18) (p < 0.05). However, no difference was found in the proportion of calories provided by protein, fat and carbohydrate between the 3 patients groups divided according to the SBS anatomical type. CONCLUSION A large majority of patients with SBS exhibited a hyperphagia regardless of PN dependence or bowel length, which was inversely correlated with BMI. The presence of the colon in continuity, thus in contact with the nutritional flow, seems to favor a higher oral intake which is beneficial for the nutritional autonomy of patients. This raises the question of a role of colonic microbiota and hormones in this behavior. Finally, this study also revealed an unexpected discrepancy between recommended energy intakes from protein, fat and carbohydrate and the actual intake of patients with SBS.
Collapse
Affiliation(s)
- Salma Fourati
- UMR-S 1149 Centre de Recherche sur l'Inflammation Inserm, Université Paris Cité, 75018 Paris, France; Service de Biochimie Endocrinienne et Oncologique, Hôpital de la Pitié-Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France.
| | - Brune de Dreuille
- UMR-S 1149 Centre de Recherche sur l'Inflammation Inserm, Université Paris Cité, 75018 Paris, France
| | - Joanna Bettolo
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre of Rare Disease MarDI, AP-HP Beaujon Hospital, University of Paris Inserm UMR 1149, Paris, France
| | - Coralie Hutinet
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre of Rare Disease MarDI, AP-HP Beaujon Hospital, University of Paris Inserm UMR 1149, Paris, France
| | - Maude Le Gall
- UMR-S 1149 Centre de Recherche sur l'Inflammation Inserm, Université Paris Cité, 75018 Paris, France
| | - André Bado
- UMR-S 1149 Centre de Recherche sur l'Inflammation Inserm, Université Paris Cité, 75018 Paris, France
| | - Francisca Joly
- UMR-S 1149 Centre de Recherche sur l'Inflammation Inserm, Université Paris Cité, 75018 Paris, France; Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre of Rare Disease MarDI, AP-HP Beaujon Hospital, University of Paris Inserm UMR 1149, Paris, France
| | - Johanne Le Beyec
- UMR-S 1149 Centre de Recherche sur l'Inflammation Inserm, Université Paris Cité, 75018 Paris, France; Service de Biochimie Endocrinienne et Oncologique, Hôpital de la Pitié-Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
| |
Collapse
|