1
|
Hernández-García F, Fernández-Iglesias Á, Rodríguez Suárez J, Gil Peña H, López JM, Pérez RF. The Crosstalk Between Cartilage and Bone in Skeletal Growth. Biomedicines 2024; 12:2662. [PMID: 39767569 PMCID: PMC11727353 DOI: 10.3390/biomedicines12122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells. A deeper understanding of these signaling pathways is crucial not only for normal skeletal growth and maturation but also for their potential relevance to pathophysiological processes in bones and joints. Due to limited information on the communication between chondrocytes and other cell types in developing bones, this review examines the current knowledge of how interactions between chondrocytes and bone-forming cells modulate bone growth.
Collapse
Affiliation(s)
- Frank Hernández-García
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Ángela Fernández-Iglesias
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Julián Rodríguez Suárez
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS-SAMID (RD21/0012), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Helena Gil Peña
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS2040 (RD21/0005/0011), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M. López
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- Departamento de Morfología y Biología Celular, Oviedo University, 33003 Oviedo, Spain
| | - Rocío Fuente Pérez
- Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain
| |
Collapse
|
2
|
Deng D, Liu X, Huang W, Yuan S, Liu G, Ai S, Fu Y, Xu H, Zhang X, Li S, Xu S, Bai X, Zhang Y. Osteoclasts control endochondral ossification via regulating acetyl-CoA availability. Bone Res 2024; 12:49. [PMID: 39198395 PMCID: PMC11358419 DOI: 10.1038/s41413-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.
Collapse
Affiliation(s)
- Daizhao Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenlan Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Sirui Yuan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Genming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shanshan Ai
- Department of Physiology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yijie Fu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haokun Xu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinyi Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Song Xu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Iwata E, Sah SK, Chen IP, Reichenberger E. Dental abnormalities in rare genetic bone diseases: Literature review. Clin Anat 2024; 37:304-320. [PMID: 37737444 PMCID: PMC11068025 DOI: 10.1002/ca.24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Currently, over 500 rare genetic bone disorders are identified. These diseases are often accompanied by dental abnormalities, which are sometimes the first clue for an early diagnosis. However, not many dentists are sufficiently familiar with phenotypic abnormalities and treatment approaches when they encounter patients with rare diseases. Such patients often need dental treatment but have difficulties in finding a dentist who can treat them appropriately. Herein we focus on major dental phenotypes and summarize their potential causes and mechanisms, if known. We discuss representative diseases, dental treatments, and their effect on the oral health of patients and on oral health-related quality of life. This review can serve as a starting point for dentists to contribute to early diagnosis and further investigate the best treatment options for patients with rare disorders, with the goal of optimizing treatment outcomes.
Collapse
Affiliation(s)
- Eiji Iwata
- Department of Oral and Maxillofacial Surgery, Kakogawa Central City Hospital, Kakogawa, Japan
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shyam Kishor Sah
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ernst Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Louka P, Orriss IR, Pitsillides AA. Stable Sulforaphane Targets the Early Stages of Osteoclast Formation to Engender a Lasting Functional Blockade of Osteoclastogenesis. Cells 2024; 13:165. [PMID: 38247857 PMCID: PMC10814088 DOI: 10.3390/cells13020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Sulforaphane, the native but unstable form of SFX-01, is an antioxidant that activates the NRF2 and inhibits the NF-KB pathways to achieve its actions. Resolving the mechanism(s) by which SFX-01 serves to control the various osteoclastogenic stages may expose pathways that could be explored for therapeutic use. Here we seek to identify the stage of osteoclastogenesis targeted by SFX-01 and explore whether, like SFN, it exerts its actions via the NRF2 and NF-KB pathways. Osteoclasts generated from the bone marrow (BM) of mice were cultured with SFX-01 at different timepoints to examine each phase of osteoclastogenesis separately. This showed that SFX-01 exerted actions throughout the process of osteoclastogenesis, but had its largest effects in the early osteoclast precursor differentiation stage. Thus, treatment with SFX-01 for the duration of culture, for the initial 3 days differentiation or for as little as the first 24 h was sufficient for effective inhibition. This aligned with data suggesting that SFX-01 reduced DC-STAMP levels, osteoclast nuclear number and modified cytoskeletal architecture. Pharmacological regulation of the NRF2 pathways, via selective inhibitors/activators, supported the anti-osteoclastogenic roles of an SFX-01-mediated by NRF2 activation, as well as the need for tight NF-KB pathway regulation in osteoclast formation/function.
Collapse
Affiliation(s)
| | | | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK; (P.L.); (I.R.O.)
| |
Collapse
|
5
|
Cao G, Ning R, Zhao J, Yao J, Chang L, Mu H, Zhang R, Chen Z, Gong F, He S, Jiang M, Zhao W. Dihydro-β-agarofuran-type sesquiterpenoids from the seeds of Tripterygium wilfordii (Thunder God Vine) and evaluation of their anti-osteoclastogenesis and immunosuppressive activities. Bioorg Chem 2023; 141:106886. [PMID: 37778191 DOI: 10.1016/j.bioorg.2023.106886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Extensive phytochemical investigation of the seeds of Tripterygium wilfordii led to the identification of 54 polyesterified dihydro-β-agarofuran-type sesquiterpenoids, including 27 previously undescribed ones, named Tripwilin I-XXVII (1-27). Comprehensive spectroscopic and single-crystal X-ray diffraction analyses, along with electronic circular dichroism (ECD) calculations were used for the structural elucidation of the new compounds. Biological assay revealed that 37 compounds among the isolates exhibited significant inhibition against osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL) at 10 µM. Further investigation indicated that Triptogelin C-3 (54), with the most potent osteoclastogenesis inhibitory activity, regulated the osteoclast marker genes (MMP-9, c-Fos, CTSK, and TRAP) and proteins in a dose-dependent manner in vitro. Besides, celaforin D-1 (28), 1α,6β,15-triacetoxy-8α,9α-dibenzoyloxy-2α-hydroxydihydro-β-agarofuran (34), triptogelin A-2 (37), and chiapen D (49) showed moderate suppressive effects on the proliferation of T and B lymphocytes with IC50 values ranging between 8.1 ± 0.8 and 19.0 ± 0.9 μM.
Collapse
Affiliation(s)
- Guangchao Cao
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruonan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Zhao
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiaying Yao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Linyue Chang
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hongyan Mu
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rujun Zhang
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhenhua Chen
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Fengbei Gong
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shijun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China.
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| | - Weimin Zhao
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
6
|
Zebaze R, Ebeling PR. Disorganization and Musculoskeletal Diseases: Novel Insights into the Enigma of Unexplained Bone Abnormalities and Fragility Fractures. Curr Osteoporos Rep 2022; 21:154-166. [PMID: 36494594 DOI: 10.1007/s11914-022-00759-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Describe the potential contribution of disorganized tissue to the pathogenesis of bone abnormalities and fractures. Especially, fractures that are unexplained by bone loss (osteoporosis) or structural deterioration. RECENT FINDINGS Currently, bone fragility is primarily viewed as due to loss, or decay (osteoporosis). However, it is also acknowledged that this view is limited because it does not explain many fractures or abnormalities such as necrosis, sclerosis, or infarcts. Atypical femoral fractures (AFFs) during antiresorptive therapy are an example. Hence, it is proposed that another distinct mechanism is responsible for bone diseases. A remarkable bone property distinct from mass and decay is the organization (arrangement) of its components. Components must be perfectly assembled or well-stacked to ensure "the right amount of bone, at the right place". Disorganization is an aberration that is conspicuous in many diseases, more so in conditions poorly associated with bone mass and decay such as osteogenesis imperfecta, hypophosphatasia, and AFFs. However, despite the likely critical role of disorganization, this feature has received limited clinical attention. This review focuses on the potential contribution of disorganization to bone in health and diseases. Particularly, we propose that disorganization, by causing ineffective transfer of loads, may produce not only bone abnormalities (pain, necrosis, infarct, sclerosis, delayed healing) but also fractures, especially AFFs or stress fractures. A disorganized element is one that is where it shouldn't be (improperly stacked elements). Hence, disorganization can be measured by quantifying the extent to which a tissue (pixel within an image) is at an incorrect location.
Collapse
Affiliation(s)
- Roger Zebaze
- Department of Medicine, School of Clinical Sciences, Monash University, Level 5, Block E, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia.
| | - Peter Robert Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Level 5, Block E, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia
- Department of Endocrinology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Miao KZ, Cozzone A, Caetano-Lopes J, Harris MP, Fisher S. Osteoclast activity sculpts craniofacial form to permit sensorineural patterning in the zebrafish skull. Front Endocrinol (Lausanne) 2022; 13:969481. [PMID: 36387889 PMCID: PMC9664155 DOI: 10.3389/fendo.2022.969481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Efforts to understand the morphogenesis of complex craniofacial structures have largely focused on the role of chondrocytes and osteoblasts. Along with these bone-creating cells, bone-resorbing osteoclasts are critical in homeostasis of adult skeletal structures, but there is currently limited information on their role in the complex morphogenetic events of craniofacial development. Fundamental aspects of skull formation and general skeletal development are conserved from zebrafish to mammals. Using a cathepsinK reporter, we documented osteoclast location in the developing zebrafish skull over several weeks, from 5.18 mm to 9.6 mm standard length (approximately 15 to 34 days post fertilization). While broad distribution of osteoclasts is consistent across individuals, they are sparse and the exact locations vary among fish and across developmental time points. Interestingly, we observed osteoclasts concentrating at areas associated with neuromasts and their associated nerves, in particular the hyomandibular foramina and around the supraorbital lateral line. These are areas of active remodeling. In contrast, other areas of rapid bone growth, such as the osteogenic fronts of the frontal and parietal bones, show no particular concentration of osteoclasts, suggesting that they play a special role in shaping bone near neuromasts and nerves. In csf1ra mutants lacking functional osteoclasts, the morphology of the cranial bone was disrupted in both areas. The hyomandibular foramen is present in the initial cartilage template, but after the initiation of ossification, the diameter of the canal is significantly smaller in the absence of osteoclasts. The diameter of the supraorbital lateral line canals was also reduced in the mutants, as was the number of pores associated with neuromasts, which allow for the passage of associated nerves through the bone. Our findings define important and previously unappreciated roles for osteoclast activity in shaping craniofacial skeletal structures with a particular role in bone modeling around peripheral cranial nerves, providing a scaffold for wiring the sensioneural system during craniofacial development. This has important implications for the formation of the evolutionarily diverse lateral line system, as well understanding the mechanism of neurologic sequelae of congenital osteoclast dysfunction in human craniofacial development.
Collapse
Affiliation(s)
- Kelly Z. Miao
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Austin Cozzone
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Joana Caetano-Lopes
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Hofstaetter JG, Atkins GJ, Kato H, Kogawa M, Blouin S, Misof BM, Roschger P, Evdokiou A, Yang D, Solomon LB, Findlay DM, Ito N. A Mild Case of Autosomal Recessive Osteopetrosis Masquerading as the Dominant Form Involving Homozygous Deep Intronic Variations in the CLCN7 Gene. Calcif Tissue Int 2022; 111:430-444. [PMID: 35618777 PMCID: PMC9474465 DOI: 10.1007/s00223-022-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
Osteopetrosis is a heterogeneous group of rare hereditary diseases characterized by increased bone mass of poor quality. Autosomal-dominant osteopetrosis type II (ADOII) is most often caused by mutation of the CLCN7 gene leading to impaired bone resorption. Autosomal recessive osteopetrosis (ARO) is a more severe form and is frequently accompanied by additional morbidities. We report an adult male presenting with classical clinical and radiological features of ADOII. Genetic analyses showed no amino-acid-converting mutation in CLCN7 but an apparent haploinsufficiency and suppression of CLCN7 mRNA levels in peripheral blood mononuclear cells. Next generation sequencing revealed low-frequency intronic homozygous variations in CLCN7, suggesting recessive inheritance. In silico analysis of an intronic duplication c.595-120_595-86dup revealed additional binding sites for Serine- and Arginine-rich Splicing Factors (SRSF), which is predicted to impair CLCN7 expression. Quantitative backscattered electron imaging and histomorphometric analyses revealed bone tissue and material abnormalities. Giant osteoclasts were present and additionally to lamellar bone, and abundant woven bone and mineralized cartilage were observed, together with increased frequency and thickness of cement lines. Bone mineralization density distribution (BMDD) analysis revealed markedly increased average mineral content of the dense bone (CaMean T-score + 10.1) and frequency of bone with highest mineral content (CaHigh T-score + 19.6), suggesting continued mineral accumulation and lack of bone remodelling. Osteocyte lacunae sections (OLS) characteristics were unremarkable except for an unusually circular shape. Together, our findings suggest that the reduced expression of CLCN7 mRNA in osteoclasts, and possibly also osteocytes, causes poorly remodelled bone with abnormal bone matrix with high mineral content. This together with the lack of adequate bone repair mechanisms makes the material brittle and prone to fracture. While the skeletal phenotype and medical history were suggestive of ADOII, genetic analysis revealed that this is a possible mild case of ARO due to deep intronic mutation.
Collapse
Affiliation(s)
- Jochen G Hofstaetter
- 1st Medical Dept., Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
- Michael Ogon Laboratory, Orthopaedic Hospital Vienna-Speising, Vienna, Austria
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| | - Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masakazu Kogawa
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Stéphane Blouin
- 1st Medical Dept., Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Barbara M Misof
- 1st Medical Dept., Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Paul Roschger
- 1st Medical Dept., Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Andreas Evdokiou
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Dongqing Yang
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Nobuaki Ito
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Duarte C, Yamada C, Garcia C, Akkaoui J, Ho A, Nichols F, Movila A. Crosstalk between dihydroceramides produced by Porphyromonas gingivalis and host lysosomal cathepsin B in the promotion of osteoclastogenesis. J Cell Mol Med 2022; 26:2841-2851. [PMID: 35429112 PMCID: PMC9097840 DOI: 10.1111/jcmm.17299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
Abstract
Emerging studies indicate that intracellular eukaryotic ceramide species directly activate cathepsin B (CatB), a lysosomal-cysteine-protease, in the cytoplasm of osteoclast precursors (OCPs) leading to elevated RANKL-mediated osteoclastogenesis and inflammatory osteolysis. However, the possible impact of CatB on osteoclastogenesis elevated by non-eukaryotic ceramides is largely unknown. It was reported that a novel class of phosphoglycerol dihydroceramide (PGDHC), produced by the key periodontal pathogen Porphyromonas gingivalis upregulated RANKL-mediated osteoclastogenesis in vitro and in vivo. Therefore, the aim of this study was to evaluate a crosstalk between host CatB and non-eukaryotic PGDHC on the promotion of osteoclastogenesis. According to a pulldown assay, high affinity between PGDHC and CatB was observed in RANKL-stimulated RAW264.7 cells in vitro. It was also demonstrated that PGDHC promotes enzymatic activity of recombinant CatB protein ex vivo and in RANKL-stimulated osteoclast precursors in vitro. Furthermore, no or little effect of PGDHC on the RANKL-primed osteoclastogenesis was observed in male and female CatB-knock out mice compared with their wild type counterparts. Altogether, these findings demonstrate that bacterial dihydroceramides produced by P. gingivalis elevate RANKL-primed osteoclastogenesis via direct activation of intracellular CatB in OCPs.
Collapse
Affiliation(s)
- Carolina Duarte
- Department of Oral Sciences and Translational ResearchCollege of Dental MedicineNova Southeastern UniversityDavieFloridaUSA
| | - Chiaki Yamada
- Department of Oral Sciences and Translational ResearchCollege of Dental MedicineNova Southeastern UniversityDavieFloridaUSA
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
| | - Christopher Garcia
- Department of Oral Sciences and Translational ResearchCollege of Dental MedicineNova Southeastern UniversityDavieFloridaUSA
| | - Juliet Akkaoui
- Department of Oral Sciences and Translational ResearchCollege of Dental MedicineNova Southeastern UniversityDavieFloridaUSA
| | - Anny Ho
- Department of Oral Sciences and Translational ResearchCollege of Dental MedicineNova Southeastern UniversityDavieFloridaUSA
| | - Frank Nichols
- Department of Oral Health and Diagnostic SciencesUniversity of Connecticut School of Dental MedicineFarmingtonConnecticutUSA
| | - Alexandru Movila
- Department of Oral Sciences and Translational ResearchCollege of Dental MedicineNova Southeastern UniversityDavieFloridaUSA
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
10
|
Chakraborty R, Acharya TK, Tiwari N, Majhi RK, Kumar S, Goswami L, Goswami C. Hydrogel-Mediated Release of TRPV1 Modulators to Fine Tune Osteoclastogenesis. ACS OMEGA 2022; 7:9537-9550. [PMID: 35350319 PMCID: PMC8945112 DOI: 10.1021/acsomega.1c06915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Bone defects, including bone loss due to increased osteoclast activity, have become a global health-related issue. Osteoclasts attach to the bone matrix and resorb the same, playing a vital role in bone remodeling. Ca2+ homeostasis plays a pivotal role in the differentiation and maturation of osteoclasts. In this work, we examined the role of TRPV1, a nonselective cation channel, in osteoclast function and differentiation. We demonstrate that endogenous TRPV1 is functional and causes Ca2+ influx upon activation with pharmacological activators [resiniferatoxin (RTX) and capsaicin] at nanomolar concentration, which enhances the generation of osteoclasts, whereas the TRPV1 inhibitor (5'-IRTX) reduces osteoclast differentiation. Activation of TRPV1 upregulates tartrate-resistant acid phosphatase activity and the expression of cathepsin K and calcitonin receptor genes, whereas TRPV1 inhibition reverses this effect. The slow release of capsaicin or RTX at a nanomolar concentration from a polysaccharide-based hydrogel enhances bone marrow macrophage (BMM) differentiation into osteoclasts whereas release of 5'-IRTX, an inhibitor of TRPV1, prevents macrophage fusion and osteoclast formation. We also characterize several subcellular parameters, including reactive oxygen (ROS) and nitrogen (RNS) species in the cytosol, mitochondrial, and lysosomal profiles in BMMs. ROS were found to be unaltered upon TRPV1 modulation. NO, however, had elevated levels upon RTX-mediated TRPV1 activation. Capsaicin altered mitochondrial membrane potential (ΔΨm) of BMMs but not 5'-IRTX. Channel modulation had no significant impact on cytosolic pH but significantly altered the pH of lysosomes, making these organelles less acidic. Since BMMs are precursors for osteoclasts, our findings of the cellular physiology of these cells may have broad implications in understanding the role of thermosensitive ion channels in bone formation and functions, and the TRPV1 modulator-releasing hydrogel may have application in bone tissue engineering and other biomedical sectors.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
| | - Tusar Kanta Acharya
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nikhil Tiwari
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rakesh Kumar Majhi
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satish Kumar
- School
of Biotechnology, Kalinga Institute of Industrial
Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Luna Goswami
- School
of Biotechnology, Kalinga Institute of Industrial
Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha 751024, India
- School of
Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chandan Goswami
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
11
|
Chen Z, Cho E, Ding M, Seong J, Che X, Lee S, Park BJ, Choi JY, Lee TH. N-[2-(4-benzoyl-1-piperazinyl)phenyl]-2-(4-chlorophenoxy) acetamide is a novel inhibitor of resorptive bone loss in mice. J Cell Mol Med 2020; 25:1425-1438. [PMID: 33369010 PMCID: PMC7875930 DOI: 10.1111/jcmm.16228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The dynamic balance between bone formation and bone resorption is vital for the retention of bone mass. The abnormal activation of osteoclasts, unique cells that degrade the bone matrix, may result in many bone diseases such as osteoporosis. Osteoporosis, a bone metabolism disease, occurs when extreme osteoclast‐mediated bone resorption outstrips osteoblast‐related bone synthesis. Therefore, it is of great interest to identify agents that can regulate the activity of osteoclasts and prevent bone loss‐induced bone diseases. In this study, we found that N‐[2‐(4‐benzoyl‐1‐piperazinyl)phenyl]‐2‐(4‐chlorophenoxy) acetamide (PPOAC‐Bz) exerted a strong inhibitory effect on osteoclastogenesis. PPOAC‐Bz altered the mRNA expressions of several osteoclast‐specific marker genes and blocked the formation of mature osteoclasts, suppressing F‐actin belt formation and bone resorption activity in vitro. In addition, PPOAC‐Bz prevented OVX‐induced bone loss in vivo. These findings highlighted the potential of PPOAC‐Bz as a prospective drug for the treatment of osteolytic disorders.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, Korea
| | - Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, Korea Mouse Phenotyping Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Mina Ding
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, Korea
| | - Jihyoun Seong
- Department of Oral Biochemistry, Dental Science Research Institute, Korea Mouse Phenotyping Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, Korea
| | - Byung-Ju Park
- Department of Oral Biochemistry, Dental Science Research Institute, Korea Mouse Phenotyping Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae-Hoon Lee
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, Korea.,Department of Oral Biochemistry, Dental Science Research Institute, Korea Mouse Phenotyping Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
12
|
Beaton Comulada D, Rivera L, Echegaray G, Colón R, Rodríguez-Santiago S, Otero A. Bilateral Posterior-Stabilized Total Knee Arthroplasty in a Patient With Osteopetrosis and Literature Review. Arthroplast Today 2020; 6:866-871. [PMID: 33163601 PMCID: PMC7606532 DOI: 10.1016/j.artd.2020.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022] Open
Abstract
We present a case report of a patient with osteopetrosis and refractory bilateral knees osteoarthritis who underwent bilateral total knee arthroplasties (TKAs). After conservative management has failed, surgical treatment with arthroplasty is an excellent alternative with satisfactory outcomes. TKA in patients with osteopetrosis has only been described in 6 other case studies, none of which underwent bilateral TKA. To perform this procedure, additional attention should be directed toward the presurgical planning because of the amplified difficulty of the procedure and the altered bone biology that increases the risks of intraoperative fractures and markedly extends the time of surgery. This report describes a case of osteopetrosis with refractory osteoarthritis managed with bilateral TKA, the surgical technique and special considerations, complications, and future recommendations.
Collapse
Affiliation(s)
- David Beaton Comulada
- Department of Orthopaedic Surgery, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Lenny Rivera
- Department of Orthopaedic Surgery, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Gabriel Echegaray
- Department of Orthopaedic Surgery, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Roberto Colón
- Department of Orthopaedic Surgery, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | | | - Antonio Otero
- Department of Orthopaedic Surgery, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
13
|
Sharma S, Mahajan A, Mittal A, Gohil R, Sachdeva S, Khan S, Dhillon M. Epigenetic and transcriptional regulation of osteoclastogenesis in the pathogenesis of skeletal diseases: A systematic review. Bone 2020; 138:115507. [PMID: 32610074 DOI: 10.1016/j.bone.2020.115507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To identify epigenetic and transcriptional factors controlling osteoclastogenesis (OCG), that have been shown to play a role in the pathogenesis of skeletal diseases. METHODS A systematic review was conducted in accordance with the PRISMA guidelines. The PubMed and EMBASE databases were searched up to 30th April 2020; references of included articles and pertinent review articles were also screened to identify eligible studies. Studies were included if they described epigenetic and/or transcriptional regulation of OCG in a specific skeletal disorder, and quantified alterations in OCG by any well-described experimental method. Risk of bias was assessed by a previously described modification of the CAMARADES tool. RESULTS The combined searches yielded 2265 records. Out of these, 24 studies investigating 12 different skeletal disorders were included in the review. Osteoporosis, followed by osteopetrosis, was the most commonly evaluated disorder. A total of 22 different epigenetic and transcriptional regulators of OCG were identified; key epigenetic regulators included DNA methylation, histone methylation, histone acetylation, miRNAs and lncRNAs. In majority of the disorders, dysregulated OCG was noted to occur at the stage of formation of committed osteoclast from preosteoclast. Dysregulation the stage of formation of the preosteoclast from late monocyte was noted in rheumatoid arthritis and fracture, whereas dysregulation at stage of formation of late monocyte from early monocyte was noted in osteopetrosis and spondyloarthritis. Quality assessment revealed a high risk of bias in domains pertaining to randomization, allocation concealment, blinding of outcome assessors and determination of sample size. CONCLUSIONS A variety of epigenetic and transcriptional factors can result in dysregulated osteoclastogenesis in different skeletal disorders. Dysregulation can occur at any stage; however, the formation of committed osteoclasts from preosteoclasts is the most common target. Although the published literature on this subject seems promising, the overall strength of evidence is limited by the small number of studies evaluating individual skeletal disorders, and also by deficiencies in key aspects of study design.
Collapse
Affiliation(s)
- Siddhartha Sharma
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Mahajan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Mittal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India..
| | - Riddhi Gohil
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunny Sachdeva
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shahnawaz Khan
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Dhillon
- Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Vacher J, Bruccoleri M, Pata M. Ostm1 from Mouse to Human: Insights into Osteoclast Maturation. Int J Mol Sci 2020; 21:ijms21165600. [PMID: 32764302 PMCID: PMC7460669 DOI: 10.3390/ijms21165600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The maintenance of bone mass is a dynamic process that requires a strict balance between bone formation and resorption. Bone formation is controlled by osteoblasts, while osteoclasts are responsible for resorption of the bone matrix. The opposite functions of these cell types have to be tightly regulated not only during normal bone development, but also during adult life, to maintain serum calcium homeostasis and sustain bone integrity to prevent bone fractures. Disruption of the control of bone synthesis or resorption can lead to an over accumulation of bone tissue in osteopetrosis or conversely to a net depletion of the bone mass in osteoporosis. Moreover, high levels of bone resorption with focal bone formation can cause Paget’s disease. Here, we summarize the steps toward isolation and characterization of the osteopetrosis associated trans-membrane protein 1 (Ostm1) gene and protein, essential for proper osteoclast maturation, and responsible when mutated for the most severe form of osteopetrosis in mice and humans.
Collapse
Affiliation(s)
- Jean Vacher
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
- Departement de Medecine, Universite de Montreal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
- Correspondence:
| | - Michael Bruccoleri
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
- Departement de Medecine, Universite de Montreal, Montreal, QC H2W 1R7, Canada
| | - Monica Pata
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
| |
Collapse
|
15
|
Rauwel B, Degboé Y, Diallo K, Sayegh S, Baron M, Boyer JF, Constantin A, Cantagrel A, Davignon JL. Inhibition of Osteoclastogenesis by the RNA-Binding Protein QKI5: a Novel Approach to Protect from Bone Resorption. J Bone Miner Res 2020; 35:753-765. [PMID: 31834954 DOI: 10.1002/jbmr.3943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Increased osteoclastogenesis is a common feature of bone erosion, notably in osteoporosis but also in inflammatory diseases such as rheumatoid arthritis (RA) and osteoarticular infections. Human cytomegalovirus (HCMV) infection has been described to impair monocyte differentiation into macrophages and dendritic cells. However, its effect on monocyte-derived osteoclasts is yet to be determined. We showed here that in vitro HCMV infection is associated with an inhibition of osteoclastogenesis through decreased expression of colony stimulating factor 1 receptor (CSF-1R) and RANK in monocytes, which was mediated by an upregulation of quaking I-5 protein (QKI-5), a cellular RNA-interacting protein. We found that deliberate QKI5 overexpression in the absence of HCMV infection is able to decrease CSF-1R and RANK expression, leading to osteoclastogenesis inhibition. Finally, by using lentiviral vectors in a calvarial bone erosion mouse model, we showed that QKI5 inhibits bone degradation. This work identifies QKI5 as a strong inhibitor of bone resorption. Future research will point out whether QKI5 could be a target for bone pathologies. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Katy Diallo
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Souraya Sayegh
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Michel Baron
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Jean-Frédéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Alain Cantagrel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| |
Collapse
|
16
|
Zhang Y, Wang H, Zhu G, Qian A, Chen W. F2r negatively regulates osteoclastogenesis through inhibiting the Akt and NFκB signaling pathways. Int J Biol Sci 2020; 16:1629-1639. [PMID: 32226307 PMCID: PMC7097923 DOI: 10.7150/ijbs.41867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are pivotal drug targets for many diseases. Coagulation Factor II Thrombin Receptor (F2R) is an important member of GPCR family that is highly expressed in osteoclasts. However, the role of F2r in osteoclasts is still unclear. Here, to examine the functions of F2r on osteoclast formation, differentiation, activation, survival, and acidification, we employed loss-of-function and gain-of-function approaches to study F2r using F2r-targeted short hairpin RNA (sh-F2r) lentivirus and overexpression plasmid pLX304-F2r lentivirus respectively, in mouse bone marrow cells (MBMs) induced osteoclasts. We used three shRNAs targeting F2r which had the ability to efficiently and consistently knock down the expression of F2r at different levels. Notably, F2r knockdown trigged a significant increase in osteoclast activity, number, and size, as well as promoted bone resorption and F-actin ring formation with increased osteoclast marker gene expression. Moreover, F2r overexpression blocked osteoclast formation, maturation, and acidification, indicating that F2r negatively regulates osteoclast formation and function. Furthermore, we investigated the mechanism(s) underlying the role of F2r in osteoclasts. We detected RANKL-induced signaling pathways related protein changes F2r knockdown cells and found significantly increased pAkt levels in sh-F2r infected cells, as well as significantly enhanced phosphorylation of p65 and IKBα in early stages of RANKL stimulation. These data demonstrated that F2r responds to RANKL stimulation to attenuate osteoclastogenesis through inhibiting the both F2r-Akt and F2r-NFκB signaling pathways, which lead a reduction in the expression of osteoclast genes. Our study suggests that targeting F2r may be a novel therapeutic approach for bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Department of Pathology, The School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - He Wang
- Department of Pathology, The School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guochun Zhu
- Department of Pathology, The School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Department of Pathology, The School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Ma Q, Liang M, Wang Y, Ding N, Wu Y, Duan L, Yu T, Lu Y, Xu J, Kang F, Dou C. Non-coenzyme role of vitamin B1 in RANKL-induced osteoclastogenesis and ovariectomy induced osteoporosis. J Cell Biochem 2020; 121:3526-3536. [PMID: 32100911 DOI: 10.1002/jcb.29632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/09/2019] [Indexed: 01/29/2023]
Abstract
Vitamins B are co-enzymes participating in energy metabolic pathways. While some vitamins B are known affecting bone homeostasis, the effects of vitamin B1 (thiamine) on bone health remains unclear. In our study, we used cell counting kit-8, tartrate-resistant acid phosphatase stain, actin cytoskeleton stain, and pit formation assay to evaluate the effect of thiamine on osteoclast differentiation, formation, and function, respectively. Then we used dichloro-dihydro-fluorescein diacetate assay to investigate reactive oxygen species (ROS) generation and removal. Osteoporosis model by ovariectomy was established for animal experiments. We found that thiamine had inhibitory effect on osteoclast differentiation. And its inhibitory role on osteoclast differentiation is in a dose-dependent way. Mechanistically, ThDP suppresses intracellular ROS accumulation and unfolded protein response signaling during osteoclastogenesis via inhibiting Rac-Nox1/2/4 and intracellular inositol-requiring protein-1α/X-box-binding protein pathways, respectively. Osteoporotic mice treated with thiamine rich dietary showed better bone strength relative to thiamine deficient dietary. Our study explored the non-coenzyme inhibitory functions of B1 vitamin in receptor activator of nuclear factor κB ligand induced osteoclastogenesis and uncovered the significance of B1 vitamin in bone health.
Collapse
Affiliation(s)
- Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Yaxi Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ning Ding
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Yutong Wu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lianli Duan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanzhu Lu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Liu Y, Wang Z, Ma C, Wei Z, Chen K, Wang C, Zhou C, Chen L, Zhang Q, Chen Z, He W, Xu J. Dracorhodin perchlorate inhibits osteoclastogenesis through repressing RANKL-stimulated NFATc1 activity. J Cell Mol Med 2020; 24:3303-3313. [PMID: 31965715 PMCID: PMC7131942 DOI: 10.1111/jcmm.15003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Osteolytic skeletal disorders are caused by an imbalance in the osteoclast and osteoblast function. Suppressing the differentiation and resorptive function of osteoclast is a key strategy for treating osteolytic diseases. Dracorhodin perchlorate (D.P), an active component from dragon blood resin, has been used for facilitating wound healing and anti‐cancer treatments. In this study, we determined the effect of D.P on osteoclast differentiation and function. We have found that D.P inhibited RANKL‐induced osteoclast formation and resorbed pits of hydroxyapatite‐coated plate in a dose‐dependent manner. D.P also disrupted the formation of intact actin‐rich podosome structures in mature osteoclasts and inhibited osteoclast‐specific gene and protein expressions. Further, D.P was able to suppress RANKL‐activated JNK, NF‐κB and Ca2+ signalling pathways and reduces the expression level of NFATc1 as well as the nucleus translocation of NFATc1. Overall, these results indicated a potential therapeutic effect of D.P on osteoclast‐related conditions.
Collapse
Affiliation(s)
- Yuhao Liu
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Chao Ma
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenquan Wei
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Chi Zhou
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leilei Chen
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingwen Zhang
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenqiu Chen
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Lab of Orthopaedics of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiake Xu
- Department of Joint Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Elford J, Parry AT, Behr S. Osteopetrosis in a young adult dog causing multiple cranial nerve deficits. VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2019-000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- James Elford
- Neurology ServiceWillows Veterinary Centre and Referral CentreSolihullUK
| | - Andrew T Parry
- Diagnostic ImagingWillows Veterinary Centre and Referral CentreSolihullUK
| | - Sebastien Behr
- Neurology ServiceWillows Veterinary Centre and Referral CentreSolihullUK
| |
Collapse
|
20
|
TCIRG1 and SNX10 gene mutations in the patients with autosomal recessive osteopetrosis. Gene 2019; 702:83-88. [PMID: 30898715 DOI: 10.1016/j.gene.2019.02.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022]
Abstract
Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease characterized by dense and fragile bone, caused by a defect in osteoclasts responsible for the bone destruction. In this study, we aimed to investigate the mutations in TCIRG1 and SNX10 that are responsible for 50% and 4% of the cases, respectively. All amplicons were sequenced by Sanger sequencing following PCR amplification. As a result, six different mutations of the TCIRG1 gene were found in five of the twelve unrelated cases. These include two novel mutations, namely c.630 + 1G > T mutation and c.1778_1779delTG mutation of the gene which are identified as homozygous. A compound heterozygosity of known mutations c.649_674del26 and c.1372G > A and homozygous presence of the known c.2235 + 1G > A mutation were also observed in different patients. In addition, as a result of the prenatal testing in a family with osteopetrosis infant, the c.1674-1G > A mutation was detected as homozygous for the fetus. In TCIRG1, c.166C > T change, which is indicated as likely benign according to ClinVar database, was heterozygous. Several known polymorphisms; c.117 + 83 T > C, c.417 + 11A > G and c.714-19C > A in TCIRG1 gene; c.24 + 36 T > A and c.112-84G > A in SNX10 gene were also detected. In conclusion, our study revealed that five of the twelve cases carry at least one mutation of TCIRG1 gene. Further studies with more patients and other genes would help better understanding of genetic etiology of the disease.
Collapse
|
21
|
Shen M, Lin M, Zhu M, Zhang W, Lu D, Liu H, Deng J, Que K, Zhang X. MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro. Biochim Biophys Acta Gen Subj 2019; 1863:167-181. [DOI: 10.1016/j.bbagen.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
|
22
|
Ahn SH, Chen Z, Lee J, Lee SW, Min SH, Kim ND, Lee TH. Inhibitory Effects of 2N1HIA (2-(3-(2-Fluoro-4-Methoxyphenyl)-6-Oxo-1(6H)-Pyridazinyl)- N-1H-Indol-5-Ylacetamide) on Osteoclast Differentiation via Suppressing Cathepsin K Expression. Molecules 2018; 23:molecules23123139. [PMID: 30501117 PMCID: PMC6321589 DOI: 10.3390/molecules23123139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Osteoclasts are large multinucleated cells which are induced by the regulation of the receptor activator of nuclear factor kappa-Β ligand (RANKL), which is important in bone resorption. Excessive osteoclast differentiation can cause pathologic bone loss and destruction. Numerous studies have targeted molecules inhibiting RANKL signaling or bone resorption activity. In this study, 11 compounds from commercial libraries were examined for their effect on RANKL-induced osteoclast differentiation. Of these compounds, only 2-(3-(2-fluoro-4-methoxyphenyl)-6-oxo-1(6H)-pyridazinyl)-N-1H-indol-5-ylacetamide (2N1HIA) caused a significant decrease in multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cell formation in a dose-dependent manner, without inducing cytotoxicity. The 2N1HIA compound neither affected the expression of osteoclast-specific gene markers such as TRAF6, NFATc1, RANK, OC-STAMP, and DC-STAMP, nor the RANKL signaling pathways, including p38, ERK, JNK, and NF-κB. However, 2N1HIA exhibited a significant impact on the expression levels of CD47 and cathepsin K, the early fusion marker and critical protease for bone resorption, respectively. The activity of matrix metalloprotease-9 (MMP-9) decreased due to 2N1HIA treatment. Accordingly, bone resorption activity and actin ring formation decreased in the presence of 2N1HIA. Taken together, 2N1HIA acts as an inhibitor of osteoclast differentiation by attenuating bone resorption activity and may serve as a potential candidate in preventing and/or treating osteoporosis, or other bone diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- Sun-Hee Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
| | - Zhihao Chen
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186, Korea.
| | - Jinkyung Lee
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186, Korea.
| | - Seok-Woo Lee
- Department of Dental Education and Periodontology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
| | - Sang Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Dong-gu, Daegu 41061, Korea.
| | - Nam Doo Kim
- NDBio Therapeutics Inc., S24 Floor, Songdogwahak-ro 32, Yeonsu-gu, Incheon 21984, Korea.
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186, Korea.
| |
Collapse
|
23
|
Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone 2017; 102:50-59. [PMID: 28167345 DOI: 10.1016/j.bone.2017.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures. Osteopetroses vary in severity and are caused by mutations in a variety of genes involved in bone resorption or in osteoclastogenesis. Frequent signs and symptoms include osteosclerosis, deformity, dwarfism and narrowing of the bony canals, including the nerve foramina, leading to hematological and neural failures. The disease is autosomal, with only one extremely rare form associated so far to the X-chromosome, and can have either recessive or dominant inheritance. Recessive ostepetroses are generally lethal in infancy or childhood, with a few milder forms clinically denominated intermediate osteopetroses. Dominant osteopetrosis is so far associated only with mutations in the CLCN7 gene and, although described as a benign form, it can be severely debilitating, although not at the same level as recessive forms, and can rarely result in reduced life expectancy. Severe osteopetroses due to osteoclast autonomous defects can be treated by Hematopoietic Stem Cell Transplant (HSCT), but those due to deficiency of the pro-osteoclastogenic cytokine, RANKL, are not suitable for this procedure. Likewise, it is unclear as to whether HSCT, which has high intrinsic risks, results in clinical improvement in autosomal dominant osteopetrosis. Therefore, there is an unmet medical need to identify new therapies and studies are currently in progress to test gene and cell therapies, small interfering RNA approach and novel pharmacologic treatments.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio-Coppito 2, 67100 L'Aquila, Italy.
| | - Michael J Econs
- Department of Medicine, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
24
|
A FKBP5 mutation is associated with Paget's disease of bone and enhances osteoclastogenesis. Exp Mol Med 2017; 49:e336. [PMID: 28524179 PMCID: PMC5454451 DOI: 10.1038/emm.2017.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Paget's disease of bone (PDB) is a common metabolic bone disease that is characterized by aberrant focal bone remodeling, which is caused by excessive osteoclastic bone resorption followed by disorganized osteoblastic bone formation. Genetic factors are a critical determinant of PDB pathogenesis, and several susceptibility genes and loci have been reported, including SQSTM1, TNFSF11A, TNFRSF11B, VCP, OPTN, CSF1 and DCSTAMP. Herein, we report a case of Chinese familial PDB without mutations in known genes and identify a novel c.163G>C (p.Val55Leu) mutation in FKBP5 (encodes FK506-binding protein 51, FKBP51) associated with PDB using whole-exome sequencing. Mutant FKBP51 enhanced the Akt phosphorylation and kinase activity in cells. A study of osteoclast function using FKBP51V55L KI transgenic mice proved that osteoclast precursors from FKBP51V55L mice were hyperresponsive to RANKL, and osteoclasts derived from FKBP51V55L mice displayed more intensive bone resorbing activity than did FKBP51WT controls. The osteoclast-specific molecules tartrate-resistant acid phosphatase, osteoclast-associated receptor and transcription factor NFATC1 were increased in bone marrow-derived monocyte/macrophage cells (BMMs) from FKBP51V55L mice during osteoclast differentiation. However, c-fos expression showed no significant difference in the wild-type and mutant groups. Akt phosphorylation in FKBP51V55L BMMs was elevated in response to RANKL. In contrast, IκB degradation, ERK phosphorylation and LC3II expression showed no difference in wild-type and mutant BMMs. Micro-CT analysis revealed an intensive trabecular bone resorption pattern in FKBP51V55L mice, and suspicious osteolytic bone lesions were noted in three-dimensional reconstruction of distal femurs from mutant mice. These results demonstrate that the mutant FKBP51V55L promotes osteoclastogenesis and function, which could subsequently participate in PDB development.
Collapse
|
25
|
Murakami A, Matsuda M, Harada Y, Hirata M. Phospholipase C-related, but catalytically inactive protein (PRIP) up-regulates osteoclast differentiation via calcium-calcineurin-NFATc1 signaling. J Biol Chem 2017; 292:7994-8006. [PMID: 28341745 PMCID: PMC5427276 DOI: 10.1074/jbc.m117.784777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C-related, but catalytically inactive protein (PRIP) was previously identified as a novel inositol 1,4,5-trisphosphate-binding protein with a domain organization similar to that of phospholipase C-δ but lacking phospholipase activity. We recently showed that PRIP gene knock-out (KO) in mice increases bone formation and concomitantly decreases bone resorption, resulting in increased bone mineral density and trabecular bone volume. However, the role of PRIP in osteoclastogenesis has not yet been fully elucidated. Here, we investigated the effects of PRIP on bone remodeling by investigating dynamic tooth movement in mice fitted with orthodontic devices. Morphological analysis indicated that the extent of tooth movement was smaller in the PRIP-KO mice than in wild-type mice. Histological analysis revealed fewer osteoclasts on the bone-resorption side in maxillary bones of PRIP-KO mice, and osteoclast formation assays and flow cytometry indicated lower osteoclast differentiation in bone marrow cells isolated from these mice. The expression of genes implicated in bone resorption was lower in differentiated PRIP-KO cells, and genes involved in osteoclast differentiation, such as the transcription factor NFATc1, exhibited lower expression in immature PRIP-KO cells initiated by M-CSF. Moreover, calcineurin expression and activity were also lower in the PRIP-KO cells. The PRIP-KO cells also displayed fewer M-CSF-induced changes in intracellular Ca2+ and exhibited reduced nuclear localization of NFATc1. Up-regulation of intracellular Ca2+ restored osteoclastogenesis of the PRIP-KO cells. These results indicate that PRIP deficiency impairs osteoclast differentiation, particularly at the early stages, and that PRIP stimulates osteoclast differentiation through calcium-calcineurin-NFATc1 signaling via regulating intracellular Ca2.
Collapse
Affiliation(s)
- Ayako Murakami
- From the Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, and
| | - Miho Matsuda
- From the Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, and
| | - Yui Harada
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| | - Masato Hirata
- From the Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, and
- the Fukuoka Dental College, Fukuoka 814-0175, Japan
| |
Collapse
|
26
|
He LH, Liu M, He Y, Xiao E, Zhao L, Zhang T, Yang HQ, Zhang Y. TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation. Sci Rep 2017; 7:42385. [PMID: 28225019 PMCID: PMC5320507 DOI: 10.1038/srep42385] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/09/2017] [Indexed: 12/24/2022] Open
Abstract
Fracture healing, in which osteoclasts and osteoblasts play important roles, has drawn much clinical attention. Osteoclast deficiency or decreased osteoblast activity will impair fracture healing. TRPV1 is a member of the Ca2+ permeable cation channel subfamily, and pharmacological inhibition of TRPV1 prevents ovariectomy-induced bone loss, which makes TRPV1 a potential target for osteoporosis. However, whether long term TRPV1 inhibition or TRPV1 deletion will affect the fracture healing process is unclear. In this study, we found that the wild-type mice showed a well-remodeled fracture callus, whereas TRPV1 knockout mice still had an obvious fracture gap with unresorbed soft-callus 4 weeks post-fracture. The number of osteoclasts was reduced in the TRPV1 knockout fracture callus, and osteoclast formation and resorption activity were also impaired in vitro. TRPV1 deletion decreased the calcium oscillation frequency and peak cytoplasmic concentration in osteoclast precursors, subsequently reducing the expression and nuclear translocation of NFATc1 and downregulating DC-stamp, cathepsin K, and ATP6V. In addition, TRPV1 deletion caused reduced mRNA and protein expression of Runx2 and ALP in bone marrow stromal cells (BMSCs) and reduced calcium deposition in vitro. Our results suggest that TRPV1 deletion impairs fracture healing, and inhibited osteoclastogenesis and osteogenesis.
Collapse
Affiliation(s)
- Lin-Hai He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of digital Stomatology, Beijing, China
| | - Meng Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of digital Stomatology, Beijing, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of digital Stomatology, Beijing, China
| | - E. Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of digital Stomatology, Beijing, China
| | - Lu Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of digital Stomatology, Beijing, China
| | - Ting Zhang
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of digital Stomatology, Beijing, China
| | - Hua-Qian Yang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of digital Stomatology, Beijing, China
| |
Collapse
|
27
|
Deepak V, Wang B, Koot D, Kasonga A, Stander XX, Coetzee M, Stander A. In silico design and bioevaluation of selective benzotriazepine BRD4 inhibitors with potent antiosteoclastogenic activity. Chem Biol Drug Des 2017; 90:97-111. [DOI: 10.1111/cbdd.12930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Vishwa Deepak
- Department of Physiology; Faculty of Health Sciences; University of Pretoria; Pretoria South Africa
| | | | - Dwayne Koot
- Department of Chemistry; Faculty of Natural and Agricultural Sciences; University of Pretoria; Pretoria South Africa
| | - Abe Kasonga
- Department of Physiology; Faculty of Health Sciences; University of Pretoria; Pretoria South Africa
| | - Xiao Xing Stander
- Department of General Surgery; Faculty of Health Sciences; University of Pretoria; Pretoria South Africa
| | - Magdalena Coetzee
- Department of Physiology; Faculty of Health Sciences; University of Pretoria; Pretoria South Africa
- Institute for Food; Nutrition and Well-being; University of Pretoria; Pretoria South Africa
| | - Andre Stander
- Department of Physiology; Faculty of Health Sciences; University of Pretoria; Pretoria South Africa
| |
Collapse
|
28
|
Bo T, Yan F, Guo J, Lin X, Zhang H, Guan Q, Wang H, Fang L, Gao L, Zhao J, Xu C. Characterization of a Relatively Malignant Form of Osteopetrosis Caused by a Novel Mutation in the PLEKHM1 Gene. J Bone Miner Res 2016; 31:1979-1987. [PMID: 27291868 DOI: 10.1002/jbmr.2885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Osteopetrosis (OMIM: 611497), literally "stone bone," is a group of inherited bone disorders characterized by increased skeletal mass due to defective osteoclast function. A patient who reported a history of frequent fractures, weakness and fatigue was admitted to our hospital in 2011. The patient presented with the typical features of osteopetrosis: fractures after minor trauma, early tooth loss, anemia, hepatosplenomegaly, and a generalized increase in bone mineral density (BMD). Aside from his father's complaint of excessive tooth loss, his mother, two sisters, son, and daughter were healthy. Blood samples of the family members were drawn for genetic analyses. The entire coding region and adjacent splice sites of the pleckstrin homology domain-containing family M (with RUN domain) member 1 (PLEKHM1) gene were sequenced. One mutation, a heterozygous deletion mutation in exon 11 (c.3051_3052delCA), was identified in the patient but not in his relatives. The mutation leads to a translation product with a highly impaired Rubicon homology domain. Co-immunoprecipitation and immunofluorescence analyses using HEK293 cells showed that overexpression of a PLEKHM1 CA-deletion mutant resulted in a dramatic decrease in the interaction between PLEKHM1 and the small GTPase Rab7 compared to wild-type PLEKHM1. The normal processes of endocytosis and autophagy were disturbed in cells expressing the mutant (transfected HEK293 and U937 cells), as indicated by epidermal growth factor receptor (EGFR) degradation and an altered LC3-I/II ratio, respectively, which may lead to a defect in osteoclast function. A four-year follow-up study of the patient showed that the PLEKHM1-dependent osteopetrosis was relatively malignant, with significant symptoms of pancytopenia and hepatosplenomegaly. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Fang Yan
- Department of Pain Management, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Jun Guo
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoyan Lin
- Pathology Department, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Haiqing Zhang
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Qingbo Guan
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Hai Wang
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Li Fang
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Ling Gao
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Jiajun Zhao
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Chao Xu
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
29
|
Rantlha M, Sagar T, Kruger MC, Coetzee M, Deepak V. Ellagic acid inhibits RANKL-induced osteoclast differentiation by suppressing the p38 MAP kinase pathway. Arch Pharm Res 2016; 40:79-87. [PMID: 27384064 DOI: 10.1007/s12272-016-0790-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/29/2016] [Indexed: 02/02/2023]
Abstract
Bone undergoes continuous remodeling by a coupled action between osteoblasts and osteoclasts. During osteoporosis, osteoclast activity is often elevated leading to increased bone destruction. Hence, osteoclasts are deemed as potential therapeutic targets to alleviate bone loss. Ellagic acid (EA) is a polyphenol reported to possess anticancer, antioxidant and anti-inflammatory properties. However, its effects on osteoclast formation and function have not yet been examined. Here, we explored the effects of EA on RANKL-induced osteoclast differentiation in RAW264.7 murine macrophages (in vitro) and human CD14+monocytes (ex vivo). EA dose-dependently attenuated RANKL-induced TRAP+ osteoclast formation in osteoclast progenitors with maximal inhibition seen at 1 µM concentration without cytotoxicity. Moreover, owing to perturbed osteoclastogenesis, EA disrupted actin ring formation and bone resorptive function of osteoclasts. Analysis of the underlying molecular mechanisms revealed that EA suppressed the phosphorylation and activation of the p38 MAP kinase pathway which subsequently impaired the RANKL-induced differentiation of osteoclast progenitors. Taken together, these novel results indicate that EA alleviates osteoclastogenesis by suppressing the p38 signaling pathway downstream of RANKL and exerts inhibitory effects on bone resorption and actin ring formation.
Collapse
Affiliation(s)
- Mpho Rantlha
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Travers Sagar
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Marlena C Kruger
- School of Food and Nutrition, Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
- Department of Human Nutrition, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Associate of the Institute for Food, Nutrition and Well-being, University of Pretoria, Pretoria, South Africa
| | - Magdalena Coetzee
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
- Associate of the Institute for Food, Nutrition and Well-being, University of Pretoria, Pretoria, South Africa.
| | - Vishwa Deepak
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
- Biomechanics Research Centre, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
30
|
Deepak V, Kasonga A, Kruger MC, Coetzee M. Carvacrol Inhibits Osteoclastogenesis and Negatively Regulates the Survival of Mature Osteoclasts. Biol Pharm Bull 2016; 39:1150-8. [PMID: 27170515 DOI: 10.1248/bpb.b16-00117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone is a dynamic tissue that undergoes continuous remodeling coupled with the action of osteoblasts and osteoclasts. Osteoclast activity is elevated during osteoporosis and periodontitis resulting in excessive loss of trabecular and alveolar bone. Osteoclasts are formed in an inflammatory response to cytokine production receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL) and bacterial challenge lipopolysaccharide (LPS). Carvacrol, a monoterpenic phenol present in Origanum vulgare and Thymus vulgaris, is a natural compound with known medicinal properties. We investigated the effects of carvacrol on osteoclast formation induced by RANKL and LPS. Carvacrol suppressed RANKL-induced formation of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells in RAW264.7 macrophages and human CD14(+) monocytes. Furthermore, carvacrol inhibited LPS-induced osteoclast formation in RAW264.7 macrophages. Investigation of the underlying molecular mechanisms revealed that carvacrol downregulated RANKL-induced NF-κB activation in a dose-dependent manner. Furthermore, the suppression of NF-κB activation correlated with inhibition of inhibitor of kappaB (IκB) kinase (IKK) activation and attenuation of inhibitor of NF-κB (IκBa) degradation. Carvacrol potentiated apoptosis in mature osteoclasts by caspase-3 activation and DNA fragmentation. Moreover, carvacrol did not affect the viability of proliferating MC3T3-E1 osteoblast-like cells. Collectively, these results demonstrate that carvacrol mitigates osteoclastogenesis by impairing the NF-κB pathway and induction of apoptosis in mature osteoclasts.
Collapse
|
31
|
To TT, Witten PE, Huysseune A, Winkler C. An adult osteopetrosis model in medaka reveals the importance of osteoclast function for bone remodeling in teleost fish. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:68-75. [PMID: 26334373 DOI: 10.1016/j.cbpc.2015.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
Osteoclasts play important roles during bone growth and in maintaining bone health and bone homeostasis. Dysfunction or lack of osteoclasts leads to increased bone mass and osteopetrosis phenotypes in mouse and human. Here we report a severe osteopetrosis-like phenotype in transgenic medaka fish, in which membrane bound EGFP (mEGFP) was expressed in osteoclasts under control of the cathepsin K promoter (ctsk:mEGFP). In contrast to reporter lines with GFP expression in the cytoplasm of osteoclasts, adult fish of the mEGFP line developed bone defects indicative for an osteoclast dysfunction. Activity of tartrate-resistant acid phosphatase (TRAP) was down-regulated and excess bone was observed in most parts of the skeleton. The osteopetrotic phenotype was particularly obvious at the neural and haemal arches that failed to increase their volume in growing fish. Excess bone caused severe constriction of the spinal cord and the ventral aorta. The continuation of tooth development and the failure to shed teeth resulted in severe hyperdontia. Interestingly, at the vertebral column vertebral body arches displayed a severe osteopetrosis, while vertebral centra had no or only a mild osteopetrotic phenotype. This confirms previous reports from cichlids that, different from the arches, allometric growth of fish vertebral centra initially does not depend on the action of osteoclasts. Independent developmental mechanism that shapes arches and vertebral centra can also lend support to the hypothesis that vertebral centra and arches function as independent developmental modules. Together, this medaka osteopetrosis model confirms the importance of proper osteoclast function during normal skeletal development in teleost fish that requires bone modeling and remodeling.
Collapse
Affiliation(s)
- Thuy Thanh To
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; NUS Centre for Bioimaging Sciences (CBIS), Singapore
| | | | | | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; NUS Centre for Bioimaging Sciences (CBIS), Singapore.
| |
Collapse
|
32
|
Deepak V, Kruger MC, Joubert A, Coetzee M. Piperine alleviates osteoclast formation through the p38/c-Fos/NFATc1 signaling axis. Biofactors 2015; 41:403-13. [PMID: 26627060 DOI: 10.1002/biof.1241] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/25/2015] [Indexed: 11/07/2022]
Abstract
Increased bone fracture is one of the health risk factors in patients with bone loss related disorders such as osteoporosis and breast cancer metastasis to bone. Over activity of osteoclasts leads to uncoupling of bone remodeling favoring bone loss over bone formation. Receptor activator of nuclear factor-κβ ligand (RANKL) triggers the differentiation pathway leading to multinucleated osteoclast formation. Modulation of RANKL or its downstream signaling pathways involved in osteoclast formation is of significant interest in the development of anti-resorptive agents. In this study, the effects of piperine, an alkaloid present in Piper nigrum L. on osteoclast formation was investigated. Piperine inhibited tartrate-resistant acid phosphatase-positive multinucleated osteoclast formation in murine RAW264.7 macrophages and human CD14+ monocytes induced by RANKL and breast cancer cells. Piperine attenuated the p38-mitogen activated protein kinase pathway activation, while the extracellular-signal-regulated kinase, c-Jun N-terminal kinase, or NF-κβ pathways downstream of RANKL remained unaffected. Concomitantly, expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), the key transcription factors involved in osteoclastogenesis were remarkably inhibited by piperine. Furthermore, piperine disrupted the actin ring structure and bone resorption, a characteristic hallmark of osteoclasts. Collectively, these results suggested that piperine inhibited osteoclast differentiation by suppressing the p38/NFATc1/c-Fos signaling axis..
Collapse
Affiliation(s)
- Vishwa Deepak
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marlena C Kruger
- School of Food and Nutrition, Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
- Department of Human Nutrition, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Associate of the Institute for Food, Nutrition and Well-Being, University of Pretoria, Pretoria, South Africa
| | - Annie Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Magdalena Coetzee
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Associate of the Institute for Food, Nutrition and Well-Being, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
He LH, Xiao E, Duan DH, Gan YH, Zhang Y. Osteoclast Deficiency Contributes to Temporomandibular Joint Ankylosed Bone Mass Formation. J Dent Res 2015; 94:1392-400. [PMID: 26250572 DOI: 10.1177/0022034515599149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ankylosed bone mass in temporomandibular joint ankylosis (TMJA) is an important factor affecting mouth-opening limitation. However, the mechanism underlying the occurrence of ankylosed bone mass remains unknown. Research has shown that osteoblasts and osteoclasts maintain balance in bone remodeling. Thus, we hypothesized that aberrant osteoclastogenesis and osteogenesis may be involved in the occurrence of ankylosed bone mass in TMJA. In this study, we characterized the osteogenesis of bone marrow stem cells and the osteoclastogenesis of myelomonocyte in clinical specimens of TMJA and normal controls. Results showed that, compared with control bone marrow stem cells, TMJA bone marrow stem cells had lower proliferative and osteogenic capacities. The number of osteoclasts in the ankylosed bone mass group dramatically decreased, and myelomonocyte osteoclastogenic potential was impaired. The RANKL/OPG ratio of the ankylosed bone mass group was lower than that of the control group. Thus, our study suggests that osteoclast deficiency may be an important factor affecting bone mass ankylosis.
Collapse
Affiliation(s)
- L H He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - E Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - D H Duan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - Y H Gan
- Central Laboratory and Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - Y Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| |
Collapse
|
34
|
Deepak V, Kasonga A, Kruger MC, Coetzee M. Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-κB and MAPK pathways. Connect Tissue Res 2015; 56:195-203. [PMID: 25405641 DOI: 10.3109/03008207.2014.989320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone loss diseases are often associated with increased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. Compounds that can attenuate RANKL-mediated osteoclast formation are of great biomedical interest. Eugenol, a phenolic constituent of clove oil possesses medicinal properties; however, its anti-osteoclastogenic potential is unexplored hitherto. Here, we found that eugenol dose-dependently inhibited the RANKL-induced multinucleated osteoclast formation and TRAP activity in RAW264.7 macrophages. The underlying molecular mechanisms included the attenuation of RANKL-mediated degradation of IκBα and subsequent activation of NF-κB pathway. Furthermore, increase in phosphorylation and activation of RANKL-induced mitogen-activated protein kinase pathways (MAPK) was perturbed by eugenol. RANKL-induced expression of osteoclast-specific marker genes such as TRAP, cathepsin K (CtsK) and matrix metalloproteinase-9 (MMP-9) was remarkably downregulated by eugenol. These findings provide the first line of evidence that eugenol mediated attenuation of RANKL-induced NF-κB and MAPK pathways could synergistically contribute to the inhibition of osteoclast formation. Eugenol could be developed as therapeutic agent against diseases with excessive osteoclast activity.
Collapse
Affiliation(s)
- Vishwa Deepak
- Department of Physiology, University of Pretoria , Pretoria , South Africa
| | | | | | | |
Collapse
|
35
|
Coudert AE, de Vernejoul MC, Muraca M, Del Fattore A. Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton. Int J Endocrinol 2015; 2015:372156. [PMID: 25873953 PMCID: PMC4385565 DOI: 10.1155/2015/372156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/16/2014] [Accepted: 10/30/2014] [Indexed: 01/29/2023] Open
Abstract
Osteopetrosis is a rare genetic disorder characterized by an increase of bone mass due to defective osteoclast function. Patients typically displayed spontaneous fractures, anemia, and in the most severe forms hepatosplenomegaly and compression of cranial facial nerves leading to deafness and blindness. Osteopetrosis comprises a heterogeneous group of diseases as several forms are known with different models of inheritance and severity from asymptomatic to lethal. This review summarizes the genetic and clinical features of osteopetrosis, emphasizing how recent studies of this disease have contributed to understanding the central role of the skeleton in the whole body physiology. In particular, the interplay of bone with the stomach, insulin metabolism, male fertility, the immune system, bone marrow, and fat is described.
Collapse
Affiliation(s)
- Amélie E. Coudert
- Institut National de la Santé et de la Recherche Médicale U1138, Centre de Recherche des Cordeliers, Paris, France
| | | | - Maurizio Muraca
- Regenerative Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Andrea Del Fattore
- Regenerative Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
- *Andrea Del Fattore:
| |
Collapse
|
36
|
Islam R, Bae HS, Yoon WJ, Woo KM, Baek JH, Kim HH, Uchida T, Ryoo HM. Pin1 regulates osteoclast fusion through suppression of the master regulator of cell fusion DC-STAMP. J Cell Physiol 2014; 229:2166-74. [PMID: 24891219 DOI: 10.1002/jcp.24679] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 12/25/2022]
Abstract
Cell fusion is a fundamental biological event that is essential for the development of multinucleated cells such as osteoclasts. Fusion failure leads to the accumulation of dense bone such as in osteopetrosis, demonstrating the importance of fusion in osteoclast maturity and bone remodeling. In a recent study, we reported that Pin1 plays a role in the regulation of bone formation and Runx2 regulation. In this study, we explored the role of Pin1 in osteoclast formation and bone resorption. Pin1 null mice have low bone mass and increased TRAP staining in histological sections of long bones, compared to Pin1 wild-type mice. In vitro osteoclast forming assays with bone marrow-derived monocyte/macrophage revealed that Pin1-deficient osteoclasts are larger than wild-type osteoclasts and have higher nuclei numbers, indicating greater extent of fusion. Pin1 deficiency also highly enhanced foreign body giant cell formation both in vitro and in vivo. Among the known fusion proteins, only DC-STAMP was significantly increased in Pin1(-/-) osteoclasts. Immunohistochemistry showed that DC-STAMP expression was also significantly increased in tibial metaphysis of Pin1 KO mice. We found that Pin1 binds and isomerizes DC-STAMP and affects its expression levels and localization at the plasma membrane. Taken together, our data indicate that Pin1 is a determinant of bone mass through the regulation of the osteoclast fusion protein DC-STAMP. The identification of Pin1 as a factor involved in cell fusion contributes to the understanding of osteoclast-associated diseases, including osteoporosis, and opens new avenues for therapeutic targets.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Waterval JJ, Borra VM, Van Hul W, Stokroos RJ, Manni JJ. Sclerosing bone dysplasias with involvement of the craniofacial skeleton. Bone 2014; 60:48-67. [PMID: 24325978 DOI: 10.1016/j.bone.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 01/13/2023]
Abstract
In this review we provide a complete overview of the existing sclerosing bone dysplasias with craniofacial involvement. Clinical presentation, disease course, the craniofacial symptoms, genetic transmission pattern and pathophysiology are discussed. There is an emphasis on radiologic features with a large collection of CT and MRI images. In previous reviews the craniofacial area of the sclerosing bone dysplasias was underexposed. However, craniofacial symptoms are often the first symptoms to address a physician. The embryology of the skull and skull base is explained and illustrated for a better understanding of the affected areas.
Collapse
Affiliation(s)
- J J Waterval
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| | - V M Borra
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium.
| | - W Van Hul
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium.
| | - R J Stokroos
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| | - J J Manni
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| |
Collapse
|
38
|
Courtial N, Mücke C, Herkt S, Kolodziej S, Hussong H, Lausen J. The T-cell oncogene Tal2 Is a Target of PU.1 and upregulated during osteoclastogenesis. PLoS One 2013; 8:e76637. [PMID: 24086757 PMCID: PMC3784441 DOI: 10.1371/journal.pone.0076637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Transcription factors play a crucial role in regulating differentiation processes during human life and are important in disease. The basic helix-loop-helix transcription factors Tal1 and Lyl1 play a major role in the regulation of gene expression in the hematopoietic system and are involved in human leukemia. Tal2, which belongs to the same family of transcription factors as Tal1 and Lyl1, is also involved in human leukaemia. However, little is known regarding the expression and regulation of Tal2 in hematopoietic cells. Here we show that Tal2 is expressed in hematopoietic cells of the myeloid lineage. Interestingly, we found that usage of the Tal2 promoter is different in human and mouse cells. Two promoters, hP1 and hP2 drive Tal2 expression in human erythroleukemia K562 cells, however in mouse RAW cells only the mP1 promoter is used. Furthermore, we found that Tal2 expression is upregulated during oesteoclastogenesis. We show that Tal2 is a direct target gene of the myeloid transcription factor PU.1, which is a key transcription factor for osteoclast gene expression. Strikingly, PU.1 binding to the P1 promoter is conserved between mouse and human, but PU.1 binding to P2 was only detected in human K562 cells. Additionally, we provide evidence that Tal2 influences the expression of the osteoclastic differentiation gene TRACP. These findings provide novel insight into the expression control of Tal2 in hematopoietic cells and reveal a function of Tal2 as a regulator of gene expression during osteoclast differentiation.
Collapse
Affiliation(s)
- Nadine Courtial
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Christian Mücke
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Stefanie Herkt
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Helge Hussong
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
39
|
Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 2013; 9:522-36. [PMID: 23877423 DOI: 10.1038/nrendo.2013.137] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Unit Of Support/Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Italy
| | | | | | | | | |
Collapse
|
40
|
Zhou J, Ye S, Fujiwara T, Manolagas SC, Zhao H. Steap4 plays a critical role in osteoclastogenesis in vitro by regulating cellular iron/reactive oxygen species (ROS) levels and cAMP response element-binding protein (CREB) activation. J Biol Chem 2013; 288:30064-30074. [PMID: 23990467 DOI: 10.1074/jbc.m113.478750] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function.
Collapse
Affiliation(s)
- Jian Zhou
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Shiqiao Ye
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Toshifumi Fujiwara
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Stavros C Manolagas
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Haibo Zhao
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205.
| |
Collapse
|
41
|
Bille MLB, Thomsen B, Andersen TL, Kjær I. Immunolocalization of RANK and RANKL along the root surface and in the periodontal membrane of human primary and permanent teeth. Acta Odontol Scand 2012; 70:265-71. [PMID: 22397362 DOI: 10.3109/00016357.2011.641585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Root resorption, impaired tooth eruption and early tooth loss have been described in relation to diseases that involve defects in the RANK-RANKL-OPG-expression. The aim of the present immunhistochemical study was to localize and compare the reactions for RANK and membrane-bound RANKL along root surfaces and in the periodontal membrane in close proximity to the root surface of human primary and permanent teeth. MATERIALS AND METHODS The material comprised extracted human teeth (11 primary teeth and six permanent teeth) from 10 different patients. Paraffin sections were prepared of each tooth and sections of each tooth were immunohistochemically stained with antibodies specific for membrane-bound RANKL and RANK. RESULTS The root surface and the periodontal membrane in close proximity to the root surface did not show immunoreactivity for RANKL. RANKL was only located in odontoblasts and in cells along denticles in one primary tooth. RANK was located in mononuclear cells in the pulp and in multinucleated odontoclasts along resorbed root surfaces and along resorbed dentin surfaces in the pulp in primary teeth and one permanent tooth. CONCLUSIONS This study demonstrated RANK positivity in resorption areas in primary and permanent teeth. RANKL was positive in the pulp of one primary tooth. RANK expression in odontoclasts and RANKL expression in the pulp may indicate that RANK/RANKL play a role during resorption.
Collapse
Affiliation(s)
- Marie-Louise Bastholm Bille
- Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
42
|
Bronckers ALJJ, Lyaruu DM, Bervoets TJ, Medina JF, DenBesten P, Richter J, Everts V. Murine ameloblasts are immunonegative for Tcirg1, the v-H-ATPase subunit essential for the osteoclast plasma proton pump. Bone 2012; 50:901-8. [PMID: 22245629 PMCID: PMC3345336 DOI: 10.1016/j.bone.2011.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 12/14/2022]
Abstract
Maturation stage ameloblasts of rodents express vacuolar type-H-ATPase in the ruffled border of their plasma membrane in contact with forming dental enamel, similar to osteoclasts that resorb bone. It has been proposed that in ameloblasts this v-H-ATPase acts as proton pump to acidify the enamel space, required to complete enamel mineralization. To examine whether this v-H-ATPase in mouse ameloblasts is a proton pump, we determined whether these cells express the lysosomal, T-cell, immune regulator 1 (Tcirg1, v-H-Atp6v(0)a(3)), which is an essential part of the plasma membrane proton pump that is present in osteoclasts. Mutation of this subunit in Tcirg1 null (or oc/oc) mice leads to severe osteopetrosis. No immunohistochemically detectable Tcirg1 was seen in mouse maturation stage ameloblasts. Strong positive staining in secretory and maturation stage ameloblasts however was found for another subunit of v-H-ATPase, subunit b, brain isoform (v-H-Atp6v(1)b(2)). Mouse osteoclasts and renal tubular epithelium stained strongly for both Tcirg1 and v-H-Atp6v(1)b(2). In Tcirg1 null mice osteoclasts and renal epithelium were negative for Tcirg1 but remained positive for v-H-Atp6v(1)b(2). The bone in these mutant mice was osteopetrotic, tooth eruption was inhibited or delayed, and teeth were often morphologically disfigured. However, enamel formation in these mutant mice was normal, ameloblasts structurally unaffected and the mineral content of enamel similar to that of wild type mice. We concluded that Tcirg1, which is essential for osteoclasts to pump protons into the bone, is not appreciably expressed in maturation stage mouse ameloblasts. Our data suggest that the reported v-H-ATPase in maturation stage ameloblasts is not the typical osteoclast-type plasma membrane associated proton pump which acidifies the extracellular space, but rather a v-H-ATPase potentially involved in intracellular acidification.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Dept of Oral Cell Biology ACTA, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Courtial N, Smink JJ, Kuvardina ON, Leutz A, Göthert JR, Lausen J. Tal1 regulates osteoclast differentiation through suppression of the master regulator of cell fusion DC-STAMP. FASEB J 2011; 26:523-32. [PMID: 21990371 DOI: 10.1096/fj.11-190850] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The balance between bone-forming osteoblasts and bone-resorbing osteoclasts is crucial to bone homeostasis, an equilibrium that is disturbed in many bone diseases. The transcription factor Tal1 is involved in the establishment of hematopoietic stem cells in the embryo and is a master regulator of hematopoietic gene expression in the adult. Here, we show that Tal1 is expressed in osteoclasts and that loss of Tal1 in osteoclast progenitors leads to altered expression of >1200 genes. We found that DC-STAMP, a key regulator of osteoclast cell fusion, is a direct target gene of Tal1 and show that Tal1 represses DC-STAMP expression by counteracting the activating function of the transcription factors PU.1 and MITF. The identification of Tal1 as a factor involved in cell fusion contributes to the understanding of osteoclast-associated diseases, including osteoporosis.
Collapse
Affiliation(s)
- Nadine Courtial
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Athanasou NA. The osteoclast--what's new? Skeletal Radiol 2011; 40:1137-40. [PMID: 21847745 DOI: 10.1007/s00256-011-1180-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 02/02/2023]
Abstract
Bone resorption is required for skeletal modelling during bone growth and for mineral homeostasis and bone remodelling throughout life. Osteoclasts are multinucleated cells that are uniquely specialised to carry out this physiological bone resorption. As osteolysis is a feature of most diseases of bone and joint, osteoclasts also play a role in pathological bone resorption, the extent of which is a function of the cellular and molecular mechanisms that govern their formation and function.
Collapse
Affiliation(s)
- Nicolas A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.
| |
Collapse
|
45
|
Bidirectional interactions between bone metabolism and hematopoiesis. Exp Hematol 2011; 39:809-16. [PMID: 21609752 DOI: 10.1016/j.exphem.2011.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/19/2011] [Accepted: 04/30/2011] [Indexed: 01/04/2023]
Abstract
Interactions between hematopoiesis and bone metabolism have been described in various developmental and pathological situations. Here we review this evidence from the literature with a focus on microenvironmental regulation of hematopoiesis and bone metabolism. Our hypothesis is that this process occurs by bidirectional signaling between hematopoietic and mesenchymal cells through cell adhesion molecules, membrane-bound growth factors, and secreted matrix proteins. Examples of steady-state hematopoiesis and pathologies are presented and support our view that hematopoietic and mesenchymal cell functions are modulated by specific microenvironments in the bone marrow.
Collapse
|
46
|
Neutzsky-Wulff A, Sims N, Supanchart C, Kornak U, Felsenberg D, Poulton I, Martin T, Karsdal M, Henriksen K. Severe developmental bone phenotype in ClC-7 deficient mice. Dev Biol 2010; 344:1001-10. [DOI: 10.1016/j.ydbio.2010.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 12/31/2022]
|
47
|
Rothenbühler A, Piquard C, Gueorguieva I, Lahlou N, Linglart A, Bougnères P. Near normalization of adult height and body proportions by growth hormone in pycnodysostosis. J Clin Endocrinol Metab 2010; 95:2827-31. [PMID: 20357177 DOI: 10.1210/jc.2009-2531] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Mutations in the cathepsin K gene (CTSK) cause a very rare form of short-limb dwarfism called pyknodysostosis (online inheritance in man 265800) that reduces adult height to 130-150 cm. OBJECTIVE To study the effects of GH in children with pyknodysostosis. DESIGN AND METHODS This was a pilot open study of three children with pyknodysostosis (P1, P2, P3) and 16 age-matched children with idiopathic short stature (ISS) treated with a similar IGF-I-based dosing of GH therapy. P1, P2, and P3 received a mean GH dose of 29, 67, and 120 microg/kg x d, respectively, during 12, 6.5, and 5 yr, whereas the ISS group received a mean dose of 62 +/- 21 microg/kg x d during 5.4 +/- 2 yr. RESULTS P1, P2, and P3 had the typical clinical and radiological features of pyknodysostosis. They were shown to carry three different homozygous missense mutations of the CTSK gene. After onset of GH at 4.5, 5.4, and 10.9 yr of age, respectively, height increased from -2, -4.2, and -3 SD score to -1, -0.5, and -1 SD score after a 12, 6.5, and 5 yr GH treatment. Remarkably, body disproportion was largely corrected by GH treatment. IGF-I levels in P1, P2, and P3 were within the range of the ISS group. CONCLUSIONS Pyknodysostotic patients can reach near-normal stature and skeletal proportions with a personalized GH treatment targeted at appropriate IGF-I levels. Given the severity of this rare dwarfism, we propose that GH should be offered to affected children.
Collapse
Affiliation(s)
- Anya Rothenbühler
- Department of Pediatric Endocrinology, Hôpital Saint Vincent de Paul, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
Bronckers ALJJ, Lyaruu DM, Jansen IDC, Medina JF, Kellokumpu S, Hoeben KA, Gawenis LR, Oude-Elferink RPJ, Everts V. Localization and function of the anion exchanger Ae2 in developing teeth and orofacial bone in rodents. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:375-87. [PMID: 19206174 DOI: 10.1002/jez.b.21267] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To explore the functions of the anion exchanger 2 (Ae2) in the development of bones and teeth we examined the distribution of Ae2 in cells involved in the formation of teeth and surrounding bone in young hamsters, mice and rats. In all three species strongest immunostaining for Ae2 was obtained in basolateral membranes of maturation ameloblasts and in osteoclasts resorbing bone. In hamsters a weaker staining was also seen in the Golgi apparatus of secretory ameloblasts, young osteoblasts and osteocytes, odontoblasts and fibroblasts of the forming periodontal ligament. In adult Ae2(a,b) (-/-) mice, in which Ae2-targeted disruption precluded the expression of Ae2a, Ae2b1 and Ae2b2 isoforms, the immunostaining for Ae2 in ameloblasts and osteoclasts was totally abolished. The enamel formation was abnormal but teeth erupted, osteoclasts in jaw bone were functional and structure of dentin and bone was normal. In another mouse model, Ae2(-/-) mice in which the expression of all five Ae2 isoforms was disrupted, teeth failed to erupt and the alveolar bone proved poorly formed with giant but apparently functional osteoclasts. Our data indicate that basolaterally located Ae2a, Ae2b1 or Ae2b2 (or a combination of these) is present in maturation ameloblasts critical for the cells' normal functioning. Although isoforms of Ae2 were also present in basolateral membranes of osteoclasts, they proved to be not critical to osteoclast resorption of orofacial bone. Poorly formed bone and the failure of teeth to erupt seen in the Ae2(-/-) mice with gene disruption affecting all isoforms may result from secondary (systemic) changes that are different from Ae2(a,b) (-/-) mice.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Witten PE, Huysseune A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 2009; 84:315-46. [PMID: 19382934 DOI: 10.1111/j.1469-185x.2009.00077.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resorption and remodelling of skeletal tissues is required for development and growth, mechanical adaptation, repair, and mineral homeostasis of the vertebrate skeleton. Here we review for the first time the current knowledge about resorption and remodelling of the skeleton in teleost fish, the largest and most diverse group of extant vertebrates. Teleost species are increasingly used in aquaculture and as models in biomedical skeletal research. Thus, detailed knowledge is required to establish the differences and similarities between mammalian and teleost skeletal remodelling, and between distantly related species such as zebrafish (Danio rerio) and medaka (Oryzias latipes). The cellular mechanisms of differentiation and activation of osteoclasts and the functions of teleost skeletal remodelling are described. Several characteristics, related to skeletal remodelling, distinguish teleosts from mammals. These characteristics include (a) the absence of osteocytes in most species; (b) the absence of haematopoietic bone marrow tissue; (c) the abundance of small mononucleated osteoclasts performing non-lacunar (smooth) bone resorption, in addition to or instead of multinucleated osteoclasts; and (d) a phosphorus- rather than calcium-driven mineral homeostasis (mainly affecting the postcranial dermal skeleton). Furthermore, (e) skeletal resorption is often absent from particular sites, due to sparse or lacking endochondral ossification. Based on the mode of skeletal remodelling in early ontogeny of all teleosts and in later stages of development of teleosts with acellular bone we suggest a link between acellular bone and the predominance of mononucleated osteoclasts, on the one hand, and cellular bone and multinucleated osteoclasts on the other. The evolutionary origin of skeletal remodelling is discussed and whether mononucleated osteoclasts represent an ancestral type of resorbing cells. Revealing the differentiation and activation of teleost skeletal resorbing cells, in the absence of several factors that trigger mammalian osteoclast differentiation, is a current challenge. Understanding which characters of teleost bone remodelling are derived and which characters are conserved should enhance our understanding of the process in fish and may provide insights into alternative pathways of bone remodelling in mammals.
Collapse
|
50
|
Jansen IDC, Mardones P, Lecanda F, de Vries TJ, Recalde S, Hoeben KA, Schoenmaker T, Ravesloot JH, van Borren MMGJ, van Eijden TM, Bronckers ALJJ, Kellokumpu S, Medina JF, Everts V, Oude Elferink RPJ. Ae2(a,b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J 2009; 23:3470-81. [PMID: 19564250 DOI: 10.1096/fj.08-122598] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular acidification by osteoclasts is essential to bone resorption. During proton pumping, intracellular pH (pH(i)) is thought to be kept at a near-neutral level by chloride/bicarbonate exchange. Here we show that the Na(+)-independent chloride/bicarbonate anion exchanger 2 (Ae2) is relevant for this process in the osteoclasts from the long bones of Ae2(a,b)(-/-) mice (deficient in the main isoforms Ae2a, Ae2b(1), and Ae2b(2)). Although the long bones of these mice had normal numbers of multinucleated osteoclasts, these cells lacked a ruffled border and displayed impaired bone resorption activity, resulting in an osteopetrotic phenotype of long bones. Moreover, in vitro osteoclastogenesis assays using long-bone marrow cells from Ae2(a,b)(-/-) mice suggested a role for Ae2 in osteoclast formation, as fusion of preosteoclasts for the generation of active multinucleated osteoclasts was found to be slightly delayed. In contrast to the abnormalities observed in the long bones, the skull of Ae2(a,b)(-/-) mice showed no alterations, indicating that calvaria osteoclasts may display normal resorptive activity. Microfluorimetric analysis of osteoclasts from normal mice showed that, in addition to Ae2 activity, calvaria osteoclasts--but not long-bone osteoclasts--possess a sodium-dependent bicarbonate transporting activity. Possibly, this might compensate for the absence of Ae2 in calvaria osteoclasts of Ae2(a,b)(-/-) mice.
Collapse
Affiliation(s)
- Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam, van der Boechorststraat 7, Amsterdam, Netherlands 1081 BT.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|