1
|
Favilla LD, Herman TS, Goersch CDS, de Andrade RV, Felipe MSS, Bocca AL, Fernandes L. Expanding the Toolbox for Functional Genomics in Fonsecaea pedrosoi: The Use of Split-Marker and Biolistic Transformation for Inactivation of Tryptophan Synthase ( trpB) Gene. J Fungi (Basel) 2023; 9:jof9020224. [PMID: 36836338 PMCID: PMC9963410 DOI: 10.3390/jof9020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Chromoblastomycosis (CBM) is a disease caused by several dematiaceous fungi from different genera, and Fonsecaea is the most common which has been clinically isolated. Genetic transformation methods have recently been described; however, molecular tools for the functional study of genes have been scarcely reported for those fungi. In this work, we demonstrated that gene deletion and generation of the null mutant by homologous recombination are achievable for Fonsecaea pedrosoi by the use of two approaches: use of double-joint PCR for cassette construction, followed by delivery of the split-marker by biolistic transformation. Through in silico analyses, we identified that F. pedrosoi presents the complete enzymatic apparatus required for tryptophan (trp) biosynthesis. The gene encoding a tryptophan synthase trpB -which converts chorismate to trp-was disrupted. The ΔtrpB auxotrophic mutant can grow with external trp supply, but germination, viability of conidia, and radial growth are defective compared to the wild-type and reconstituted strains. The use of 5-FAA for selection of trp- phenotypes and for counter-selection of strains carrying the trp gene was also demonstrated. The molecular tools for the functional study of genes, allied to the genetic information from genomic databases, significantly boost our understanding of the biology and pathogenicity of CBM causative agents.
Collapse
Affiliation(s)
- Luísa Dan Favilla
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Tatiana Sobianski Herman
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Camila da Silva Goersch
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Rosangela Vieira de Andrade
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Maria Sueli Soares Felipe
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Centro Metropolitano, Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Federal District, Brasilia 72220-275, Brazil
- Correspondence:
| |
Collapse
|
2
|
Guegan H, Poirier W, Ravenel K, Dion S, Delabarre A, Desvillechabrol D, Pinson X, Sergent O, Gallais I, Gangneux JP, Giraud S, Gastebois A. Deciphering the Role of PIG1 and DHN-Melanin in Scedosporium apiospermum Conidia. J Fungi (Basel) 2023; 9:jof9020134. [PMID: 36836250 PMCID: PMC9965090 DOI: 10.3390/jof9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
- Correspondence: ; Tel.: +33-223233496
| | - Wilfried Poirier
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Kevin Ravenel
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Sarah Dion
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Aymeric Delabarre
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Dimitri Desvillechabrol
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Xavier Pinson
- CNRS, INSERM, Biosit UAR 3480 US_S 018, MRic Core Facility, 35000 Rennes, France
| | - Odile Sergent
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Isabelle Gallais
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Jean-Pierre Gangneux
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Sandrine Giraud
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Amandine Gastebois
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| |
Collapse
|
3
|
Mathew D, G Bhat S. Pseudomonas Stutzeri as Biofactories for Melanin Nanoparticle Synthesis and Its Anti-Oxidative and Antibiofilm Potential Evaluation. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Li M, Huang H, Liu J, Zhang X, Li Q, Li D, Luo M, Wang X, Zeng W, Sun J, Liu H, Xi L. Deletion C-terminal thioesterase abolishes melanin biosynthesis, affects metabolism and reduces the pathogenesis of Fonsecaea monophora. PLoS Negl Trop Dis 2022; 16:e0010485. [PMID: 35696422 PMCID: PMC9255740 DOI: 10.1371/journal.pntd.0010485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
Dematiaceous Fonsecaea monophora is one of the major pathogens of chromoblastomycosis. It has been well established that melanization is catalyzed by the type I polyketide synthase (PKS) in F. monophora. Multidomain protein Type I PKS is encoded by six genes, in which the last enzyme thioesterase (TE) catalyzes the cyclization and releases polyketide. Two PKS genes AYO21_03016 (pks1) and AYO21_10638 have been found in F. monophora and both PKS loci have the same gene arrangement but the TE domain in AYO21_10638 is truncated at 3’- end. TE may be the key enzyme to maintain the function of pks1. To test this hypothesis, we constructed a 3’-end 500 bp deletion mutant of AYO21_03016 (Δpks1-TE-C500) and its complemented strain. We profiled metabolome of this mutant and analyzed the consequences of impaired metabolism in this mutant by fungal growth in vitro and by pathogenesis in vivo. Compared with wild-type strain, we found that the mutant repressed pks1 expression and other 5 genes expression levels were reduced by more than 50%, perhaps leading to a corresponding melanin loss. The mutant also reduced sporulation and delayed germination, became vulnerable to various environmental stresses and was less resistance to macrophage or neutrophil killings in vitro, and less virulence in mice footpad model. Metabolomic analysis indicated that many metabolites were remarkably affected in Δpks1-TE-C500, in particular, an increased nicotinamide and antioxidant glutathione. In conclusion, we confirmed the crucial role of C-terminal TE in maintaining fully function of pks1 in F. monophora. Deletion of TE negatively impacts on the synthesis of melanin and metabolites that eventually affect growth and virulence of F. monophora. Any potential inhibitor of TE then could be a novel antifungal target for drug development. F. monophora is a fungal pathogen that causes chromoblastomycosis. Melanin of F. monophora was synthesized through PKS in which TE is the last enzyme to catalyze the cyclization and release polyketide. Few studies have investigated the effect of TE on the metabolism and pathogenesis of F. monophora. In this study, TE deletion leads to albino phenotype, decreases the expression of other domains of the pks1, and reduces biosynthesis of metabolites. The Δpks1-TE-C500 strain exhibits a changed morphogenesis and becomes less resistant to various environmental stresses. In vitro study, the Δpks1-TE-C500 strain is avirulent and less resistant to macrophages and neutrophils. In conclusion, we demonstrate that the 500 bp C-terminal of TE is essential for the function of pks1, perhaps through its effects on melanin and metabolites to regulate the growth and virulence of F. monophora. Data from this study could inspire an exploration in development of clinical therapy for CBM.
Collapse
Affiliation(s)
- Minying Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Huan Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jun Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohui Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qian Li
- Guangdong Clinical College of Dermatology, Anhui Medical University, Guangzhou, China
| | - Dongmei Li
- Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Mingfen Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyue Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weiying Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, Guangzhou, China
| | - Hongfang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (HL); (LX)
| | - Liyan Xi
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (HL); (LX)
| |
Collapse
|
5
|
Lim W, Verbon A, van de Sande W. Identifying novel drugs with new modes of action for neglected tropical fungal skin diseases (fungal skinNTDs) using an Open Source Drug discovery approach. Expert Opin Drug Discov 2022; 17:641-659. [PMID: 35612364 DOI: 10.1080/17460441.2022.2080195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The three fungal skin neglected tropical diseases (NTD) mycetoma, chromoblastomycosis and sporotrichosis currently lack prioritization and support to establish drug discovery programs in search for novel treatment options. This has made the efforts to identify novel drugs for these skinNTDs fragmented. AREAS COVERED To help escalate the discovery of novel drugs to treat these fungal skinNTDs, the authors have prepared an overview of the compounds with activity against fungal skinNTDs by analyzing data from individual drug discovery studies including those performed on the Medicines for Malaria Venture (MMV) open access boxes. EXPERT OPINION The authors were unable to identify studies in which causative agents of all three skinNTDs were included, indicating that an integrated approach is currently lacking. From the currently available data, the azoles and iodoquinol were the only compounds with activity against causative agents from the three different fungal skinNTDs. Fungal melanin inhibition enhanced the activity of antifungal agents. For mycetoma, the fenarimols, aminothiazoles and benzimidazole carbamates are currently being investigated in the MycetOS initiative. To come to a more integrated approach to identify drugs active against all three fungal skinNTDs, compounds made in the MycetOS initiative could also be explored for chromoblastomycosis and sporotrichosis.
Collapse
Affiliation(s)
- Wilson Lim
- Department of Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wendy van de Sande
- Department of Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Li Z, Heng H, Qin Q, Chen L, Wang Y, Zhou Z. Physicochemical properties, molecular structure, antioxidant activity, and biological function of extracellular melanin from Ascosphaera apis. J Zhejiang Univ Sci B 2022; 23:365-381. [PMID: 35557038 DOI: 10.1631/jzus.b2100718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ascosphaera apis spores containing a dark-colored pigment infect honeybee larvae, resulting in a large-scale collapse of the bee colony due to chalkbrood disease. However, little is known about the pigment or whether it plays a role in bee infection caused by A. apis. In this study, the pigment was isolated by alkali extraction, acid hydrolysis, and repeated precipitation. Ultraviolet (UV) analysis revealed that the pigment had a color value of 273, a maximum absorption peak at 195 nm, and a high alkaline solubility (7.67%) and acid precipitability. Further chemical structure analysis of the pigment, including elemental composition, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, mass spectrometry, and nuclear magnetic resonance (NMR), proved that it was a eumelanin with a typical indole structure. The molecular formula of melanin is C10H6O4N2, and its molecular weight is 409 Da. Melanin has hydroxyl, carboxyl, amino, and phenolic groups that can potentially chelate to metal ions. Antioxidant function analyses showed that A. apis melanin had a high scavenging activity against superoxide, hydroxyl, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, and a high reducing ability to Fe3+. Indirect immunofluorescence assay (IFA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses showed that A. apis melanin was located on the spore wall. The spore wall localization, antioxidant activity, and metal ion chelating properties of fungal melanin have been suggested to contribute to spore pathogenicity. However, further infection experiments showed that melanin-deficient spores did not reduce the mortality of bee larvae, indicating that melanin does not increase the virulence of A. apis spores. This study is the first report on melanin produced by A. apis, providing an important background reference for further study on its role in A. apis.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China. .,Chongqing Key Laboratory of Vector Insects, Chongqing 401331, China. .,Chongqing Key Laboratory of Animal Biology, Chongqing 401331, China.
| | - Hui Heng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiqian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lanchun Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuedi Wang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Chongqing 400715, China.,The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Does DHN-Melanin Always Protect Fungi against Antifungal Drugs? The Fonsecaea/Micafungin Paradigm. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several human pathogenic fungi produce melanin. One of its properties during parasitism is the protection against antifungal drugs. This occurs with the agents of chromoblastomycosis, in which DHN-melanin reduces antifungal susceptibility to terbinafine and itraconazole. Since these agents are resistant to some antifungal drugs, we investigated the role of DHN-melanin on the Fonsecaea susceptibility to amphotericin B, micafungin, fluconazole, and flucytosine, drugs that usually present high minimal inhibitory concentrations (MIC) to this genus. Seven strains from three Fonsecaea human pathogenic species were treated with tricyclazole, a DHN-melanin inhibitor, and the MIC of the treated and untreated cells were compared. A survival assay was performed to confirm the alterations in the susceptibility of strains with reduced melanization, and the chitin levels of the strains were estimated by fluorescence. Tricyclazole did not affect fluconazole and flucytosine MIC, while melanin inhibition increased susceptibility to amphotericin B. Surprisingly, DHN-melanin inhibition decreased the susceptibility to micafungin. Survival assays confirmed this result on five strains. Cell wall chitin levels of the strains were not associated with the decrease in micafungin susceptibility. The results show that DHN-melanin does not have a role in the intrinsic resistance of Fonseacaea spp. to amphotericin B, fluconazole, and flucytosine, and its inhibition may promote micafungin resistance.
Collapse
|
8
|
Lim W, Konings M, Parel F, Eadie K, Strepis N, Fahal A, Verbon A, van de Sande WWJ. OUP accepted manuscript. Med Mycol 2022; 60:6513817. [PMID: 35064672 PMCID: PMC9295015 DOI: 10.1093/mmy/myac003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 01/08/2022] [Indexed: 11/13/2022] Open
Abstract
Eumycetoma is a neglected tropical disease, and Madurella mycetomatis, the most common causative agent of this disease forms black grains in hosts. Melanin was discovered to be one of the constituents in grains. Melanins are hydrophobic, macromolecular pigments formed by oxidative polymerisation of phenolic or indolic compounds. M. mycetomatis was previously known to produce DHN-melanin and pyomelanin in vitro. These melanin was also discovered to decrease M. mycetomatis’s susceptibility to antifungals itraconazole and ketoconazole in vitro. These findings, however, have not been confirmed in vivo. To discover the melanin biosynthesis pathways used by M. mycetomatis in vivo and to determine if inhibiting melanin production would increase M. mycetomatis's susceptibility to itraconazole, inhibitors targeting DHN-, DOPA- and pyomelanin were used. Treatment with DHN-melanin inhibitors tricyclazole, carpropamid, fenoxanil and DOPA-melanin inhibitor glyphosate in M. mycetomatis infected Galleria mellonella larvae resulted in presence of non-melanized grains. Our finding suggested that M. mycetomatis is able to produce DOPA-melanin in vivo. Inhibiting DHN-melanin with carpropamid in combination with the antifungal itraconazole also significantly increased larvae survival. Our results suggested that combination treatment of antifungals and melanin inhibitors can be an alternative treatment strategy that can be further explored. Since the common black-grain eumycetoma causing agents uses similar melanin biosynthesis pathways, this strategy may be applied to them and other eumycetoma causative agents.
Collapse
Affiliation(s)
- Wilson Lim
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Mickey Konings
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Florianne Parel
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Kimberly Eadie
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Nikolaos Strepis
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Ahmed Fahal
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
| | - Annelies Verbon
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Wendy W J van de Sande
- To whom correspondence should be addressed. Wendy van de Sande, Assoc Prof. Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands. Tel: +31 10 703 35 10; E-mail:
| |
Collapse
|
9
|
Lim W, Parel F, de Hoog S, Verbon A, van de Sande WWJ. Melanin production in coelomycetous agents of black grain eumycetoma. Trans R Soc Trop Med Hyg 2021; 115:324-327. [PMID: 33463687 PMCID: PMC8046406 DOI: 10.1093/trstmh/traa168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
Background Eumycetoma is a fungal infection characterised by the formation of black grains by causative agents. The melanin biosynthetic pathways used by the most common causative agents of black-grain mycetoma are unknown and unravelling them could identify potential new therapeutic targets. Method Melanin biosynthetic pathways in the causative fungi were identified by the use of specific melanin inhibitors. Results In Trematosphaeria grisea and Falciformispora tompkinsii, 1,8-dihydroxynaphthalene (DHN)-melanin synthesis was inhibited, while DHN-, 3,4-dihydroxyphenylalanine (DOPA)- and pyo-melanin were inhibited in Medicopsis romeroi and Falciformispora senegalensis. Conclusion Our data suggest that Me. romeroi and F. senegalensis synthesise DHN-, DOPA- and pyo-melanin, while T. grisea and F. tompkinsii only synthesise DHN-melanin.
Collapse
Affiliation(s)
- Wilson Lim
- Erasmus MC , University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Florianne Parel
- Erasmus MC , University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Annelies Verbon
- Erasmus MC , University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Wendy W J van de Sande
- Erasmus MC , University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| |
Collapse
|
10
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Koehler A, Heidrich D, Pagani DM, Corbellini VA, Scroferneker ML. Melanin and chromoblastomycosis agents: Characterization, functions, and relation with antifungals. J Basic Microbiol 2021; 61:203-211. [PMID: 33576034 DOI: 10.1002/jobm.202000664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Melanins are a diverse group of dark pigments with similar properties. In fungi, the most studied is the dihydroxynaphtalene (DHN)-melanin, present in several species including all the chromoblastomycosis agents, a chronic, disabling, and recalcitrant subcutaneous mycosis. It is synthesized in a pathway known as the pentaketide pathway, which has the agrochemical tricyclazole as an inhibitor, widely used in in vitro studies because it does not prevent the growth of fungi. There are different methodologies for qualitative and quantitative analyses of DHN-melanin, which made it possible to discover its important structural and antioxidant functions, with melanin acting as a protective factor against the host's immune system. Also, it can interact with some of the main antifungals of medical interest, reducing its activity and the susceptibility of fungi to these agents. This review aims to discuss the aspects of DHN-melanin, focusing on chromoblastomycosis, bringing the main findings of the published scientific studies, and highlighting the need for further research to understand this important fungal pathogenicity and a virulence factor.
Collapse
Affiliation(s)
- Alessandra Koehler
- Department of Internal Medicine, Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daiane Heidrich
- Department of Internal Medicine, Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danielle M Pagani
- Department of Microbiology, Postgraduate Program in Agricultural and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Valeriano A Corbellini
- Department of Chemistry and Physics, Postgraduate Program in Health Promotion, Postgraduate Program in Environmental Technology, Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Maria L Scroferneker
- Department of Internal Medicine, Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Microbiology, Immunology, and Parasitology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Breda LCD, Menezes IG, Paulo LNM, de Almeida SR. Immune Sensing and Potential Immunotherapeutic Approaches to Control Chromoblastomycosis. J Fungi (Basel) 2020; 7:jof7010003. [PMID: 33375204 PMCID: PMC7822212 DOI: 10.3390/jof7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Chromoblastomycosis (CBM) is a neglected, chronic, and progressive subcutaneous mycosis caused by different species of fungi from the Herpotrichiellaceae family. CBM disease is usually associated with agricultural activities, and its infection is characterized by verrucous, erythematous papules, and atrophic lesions on the upper and lower limbs, leading to social stigma and impacts on patients' welfare. The economic aspect of disease treatment is another relevant issue. There is no specific treatment for CBM, and different anti-fungal drug associations are used to treat the patients. However, the long period of the disease and the high cost of the treatment lead to treatment interruption and, consequently, relapse of the disease. In previous years, great progress had been made in the comprehension of the CBM pathophysiology. In this review, we discuss the differences in the cell wall composition of conidia, hyphae, and muriform cells, with a particular focus on the activation of the host immune response. We also highlight the importance of studies about the host skin immunology in CBM. Finally, we explore different immunotherapeutic studies, highlighting the importance of these approaches for future treatment strategies for CBM.
Collapse
|
13
|
Glucosylceramide Plays a Role in Fungal Germination, Lipid Raft Organization and Biofilm Adhesion of the Pathogenic Fungus Scedosporium aurantiacum. J Fungi (Basel) 2020; 6:jof6040345. [PMID: 33302332 PMCID: PMC7762401 DOI: 10.3390/jof6040345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023] Open
Abstract
Infections caused by Scedosporium species present a wide range of clinical manifestations, from superficial to disseminated, especially in immunocompromised patients. Glucosylceramides (GlcCer) are glycosphingolipids found on the fungal cell surface and play an important role in growth and pathogenicity processes in different fungi. The present study aimed to evaluate the structure of GlcCer and its role during growth in two S. aurantiacum isolates. Purified GlcCer from both isolates were obtained and its chemical structure identified by mass spectrometry. Using ELISA and immunofluorescence techniques it was observed that germination and NaOH-treatment of conidia favor GlcCer exposure. Monoclonal anti-GlcCer antibody reduced germination when cultivated with the inhibitor of melanin synthesis tricyclazole and also reduced germ tube length of conidia, both cultivated or not with tricyclazole. It was also demonstrated that anti-GlcCer altered lipid rafts organization, as shown by using the fluorescent stain filipin, but did not affect the susceptibility of the cell surface to damaging agents. Anti-GlcCer reduced total biomass and viability in biofilms formed on polystyrene plates. In the presence of anti-GlcCer, germinated S. aurantiacum conidia and biofilms could not adhere to polystyrene with the same efficacy as control cells. These results highlight the relevance of GlcCer in growth processes of S. aurantiacum.
Collapse
|
14
|
Bombassaro A, Schneider GX, Costa FF, Leão ACR, Soley BS, Medeiros F, da Silva NM, Lima BJFS, Castro RJA, Bocca AL, Baura VA, Balsanelli E, Pankievicz VCS, Hrysay NMC, Scola RH, Moreno LF, Azevedo CMPS, Souza EM, Gomes RR, de Hoog S, Vicente VA. Genomics and Virulence of Fonsecaea pugnacius, Agent of Disseminated Chromoblastomycosis. Front Genet 2020; 11:822. [PMID: 32849816 PMCID: PMC7417343 DOI: 10.3389/fgene.2020.00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
Among agents of chromoblastomycosis, Fonsecaea pugnacius presents a unique type of infection because of its secondary neurotropic dissemination from a chronic cutaneous case in an immunocompetent patient. Neurotropism occurs with remarkable frequency in the fungal family Herpotrichiellaceae, possibly associated with the ability of some species to metabolize aromatic hydrocarbons. In an attempt to understand this new disease pattern, were conducted genomic analysis of Fonsecaea pugnacius (CBS 139214) performed with de novo assembly, gene prediction, annotation and mitochondrial genome assembly, supplemented with animal infection models performed with Tenebrio molitor in Mus musculus lineages BALB/c and C57BL/6. The genome draft of 34.8 Mb was assembled with a total of 12,217 protein-coding genes. Several proteins, enzymes and metabolic pathways related to extremotolerance and virulence were recognized. The enzyme profiles of black fungi involved in chromoblastomycosis and brain infection were analyzed with the Carbohydrate-Active Enzymes (CAZY) and peptidases database (MEROPS). The capacity of the fungus to survive inside Tenebrio molitor animal model was confirmed by histopathological analysis and by presence of melanin and hyphae in host tissue. Although F. pugnacius was isolated from brain in a murine model following intraperitoneal infection, cytokine levels were not statistically significant, indicating a profile of an opportunistic agent. A dual ecological ability can be concluded from presence of metabolic pathways for nutrient scavenging and extremotolerance, combined with a capacity to infect human hosts.
Collapse
Affiliation(s)
- Amanda Bombassaro
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Gabriela X Schneider
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Flávia F Costa
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Aniele C R Leão
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Bruna S Soley
- Pharmacology Post-graduation Program, Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - Fernanda Medeiros
- Graduation in Biology Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Nickolas M da Silva
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Bruna J F S Lima
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Anamélia L Bocca
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Valter A Baura
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | | | - Nyvia M C Hrysay
- Service of Neuromuscular and Demyelinating Diseases, Complex Histochemistry-Immunity Laboratory, Hospital of Clinics, Federal University of Paraná, Curitiba, Brazil
| | - Rosana H Scola
- Service of Neuromuscular and Demyelinating Diseases, Complex Histochemistry-Immunity Laboratory, Hospital of Clinics, Federal University of Paraná, Curitiba, Brazil
| | - Leandro F Moreno
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | | | - Emanuel M Souza
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Sybren de Hoog
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Vânia A Vicente
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
15
|
Wang J, Ma Y, Liu Y, Tong S, Zhu S, Jin D, Pei Y, Fan Y. A polyketide synthase, BbpksP, contributes to conidial cell wall structure and UV tolerance in Beauveria bassiana. J Invertebr Pathol 2019; 169:107280. [PMID: 31751556 DOI: 10.1016/j.jip.2019.107280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Conidial pigments of filamentous fungi play vital roles in fungal biotic/abiotic stress tolerance and are usually synthesized by polyketide synthases or other pigment synthesis proteins. Beauveria bassiana, an important insect pathogenic fungus used worldwide for pest biocontrol, produces white conidia on artificial media, while no conidial pigment has been observed or reported in it. However, real-time PCR and promoter-report analyses reveal a polyketide gene of B. bassiana (named BbpksP), homologous to melanin synthesis genes, is specifically expressed in aerial conidia. We show that deletion of BbpksP does not result in changes in conidial yield, germination rate or colony radial growth; however, the defect impairs conidial cell wall structure. A dense electron layer appears in the outer edge of the cell envelope in wild-type conidia, as observed by TEM, but this dense layer is absent in the ΔBbpksP mutant. The lack of BbpksP gene also reduces the UV-B tolerance of B. bassiana conidia. Bioassay reveals that deletion of BbpksP decreased virulence of B. bassiana against Galleria mellonella larvae via topical infection. These data indicate that the product(s) of BbpksP contributes to the integrity of the B. bassiana conidial cell wall and further affects the tolerance of UV-B stress and insecticidal activity.
Collapse
Affiliation(s)
- Junyao Wang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, PR China
| | - Yuge Ma
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, PR China
| | - Yu Liu
- College of Biotechnology, Southwest University, Beibei, Chongqing, PR China
| | - Sheng Tong
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, PR China
| | - Shengan Zhu
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, PR China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, PR China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, PR China
| | - Yanhua Fan
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, PR China.
| |
Collapse
|
16
|
Chongkae S, Nosanchuk JD, Pruksaphon K, Laliam A, Pornsuwan S, Youngchim S. Production of melanin pigments in saprophytic fungi in vitro and during infection. J Basic Microbiol 2019; 59:1092-1104. [PMID: 31613011 DOI: 10.1002/jobm.201900295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023]
Abstract
Melanins are one of the great natural pigments produced by a wide variety of fungal species that promote fitness and cell survival in diverse hostile environments, including during mammalian infection. In this study, we sought to demonstrate the production of melanin in the conidia and hyphae of saprophytic fungi, including dematiaceous and hyaline fungi. We showed that a melanin-specific monoclonal antibody (MAb) avidly labeled the cell walls of hyphae and conidia, consistent with the presence of melanin in these structures, in 14 diverse fungal species. The conidia of saprophytic fungi were treated with proteolytic enzymes, denaturant, and concentrated hot acid to yield dark particles, which were shown to be stable free radicals, consistent with their identification as melanins. Samples obtained from patients with fungal keratitis due to Fusarium falciforme, Aspergillus fumigatus, Aspergillus flavus, Curvularia lunata, Exserohilum rostratum, or Fonsecaea pedrosoi were found to be intensely labeled by the melanin-specific MAb at the fungal hyphal cell walls. These results support the hypothesis that melanin is a common component that promotes survival under harsh conditions and facilitates fungal virulence. Increased understanding of the processes of melanization and the development of methods to interfere with pigment formation may lead to novel approaches to combat these complex pathogens that are associated with high rates of morbidity and mortality.
Collapse
Affiliation(s)
- Siriporn Chongkae
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx
| | - Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Angkana Laliam
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
17
|
The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr Top Microbiol Immunol 2019; 422:1-30. [PMID: 31278515 DOI: 10.1007/82_2019_173] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.
Collapse
|
18
|
Liu Y, Huang X, Liu H, Xi L, Cooper CR. Increased virulence of albino mutant of Fonsecaea monophora in Galleria mellonella. Med Mycol 2019; 57:1018-1023. [PMID: 30759240 DOI: 10.1093/mmy/myz007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 01/07/2023] Open
Abstract
Abstract
Fonsecaea monophora has been the predominant pathogen of chromoblastomycosis in Southern China, but its pathogenic mechanism remains unclear. New models are needed to study this infection. In the current study, we examined the role of melanin on the pathogenicity of F. monophora in Galleria mellonella model using melanin and albino strain. Interestingly, the albino mutant strain displayed higher pathogenicity compared to the melanin stain and restoration of melanin of albino mutant could reverse the pathogenicity. Histopathology showed that inflammatory nodules were bigger than that infected with albino cells, which suggested that melanized cells could trigger a robust cellular immune response of G. mellonella than albino cells. The activated immune response in G. mellonella induced by melanized cells might explain the decreased virulence of melanized cells in larvae model. While further study was needed to gain full insights into the molecular immunological mechanism in G. mellonella activated by melanin.
Collapse
Affiliation(s)
- Yinghui Liu
- Dermatology department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-Sun Memorial Hospital, Sun Yat-Sun University, Guangzhou, China
- Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongfang Liu
- Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | - Liyan Xi
- Dermatology department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-Sun Memorial Hospital, Sun Yat-Sun University, Guangzhou, China
| | - Chester R Cooper
- Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| |
Collapse
|
19
|
Meng Z, Chen X, Guan L, Xu Z, Zhang Q, Song Y, Liu F, Fan T. Dissipation kinetics and risk assessments of tricyclazole during Oryza sativa L. growing, processing and storage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35249-35256. [PMID: 30341752 DOI: 10.1007/s11356-018-3445-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Because of the increase of people's attention to food safety, monitoring the residue of pesticide in rice is becoming more and more important. Commercial and home processing techniques have been used to transform paddy rice into rice products for human or animal consumption, which may reduce the pesticide content in rice. The degradation of tricyclazole during different stages of commercial and home processing and storage was assessed in this paper. Many researches studying the occurrence and distribution of pesticide residues during rice cropping and processing have been reported. Rice samples were extracted with acetonitrile, the extracts were enriched, and then residues were analyzed by liquid chromatography/tandem mass spectrometry method. The dissipation dynamics of tricyclazole in rice plant, soil, and paddy water fitted the first-order kinetic equations. The dissipation half-lives of tricyclazole in the rice plant, water, and soil at dosage of 300~450 g a.i. hm -2 were 4.84~5.16, 4.64~4.85, and 3.57~3.82 days, respectively. The residue levels of tricyclazole gradually reduced with different processing procedures. What is more, decladding process could effectively remove the residues of tricyclazole in raw rice, and washing process could further remove the residues of tricyclazole in polished rice. Degradation dynamic equations of tricyclazole in the raw rice and polished rice were based on the first-order reaction dynamic equations, and the half-lives of the degradation of tricyclazole was 43.32~58.24 days and 46.83~56.35 days in raw rice and polished rice. These results provide information regarding the fate of tricyclazole in the rice food chain, while it provides a theoretical basis for systematic evaluation of the potential residual risk of tricyclazole.
Collapse
Affiliation(s)
- Zhiyuan Meng
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Lingjun Guan
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhiying Xu
- Yangzhou Polytechnic University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Qingxia Zhang
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yueyi Song
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Fang Liu
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Tianle Fan
- School of Horticulture and Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Pinto L, Granja LFZ, Almeida MAD, Alviano DS, Silva MHD, Ejzemberg R, Rozental S, Alviano CS. Melanin particles isolated from the fungus Fonsecaea pedrosoi activates the human complement system. Mem Inst Oswaldo Cruz 2018; 113:e180120. [PMID: 29947713 PMCID: PMC6014723 DOI: 10.1590/0074-02760180120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/23/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Melanin production has been associated with virulence in various pathogenic fungi, including Fonsecaea pedrosoi, the major etiological agent for chromoblastomycosis, a subcutaneous fungal disease that occurs in South America. OBJECTIVE The aim of this study was to evaluate the effects of acid-basic extracted F. pedrosoi melanin particles and fungal cell ghosts obtained by Novozym 234 treatment on their ability to activate the human complement system. METHODS The ability of melanin particles and fungal cell ghosts to activate the human complement system was evaluated by complement consumption, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). FINDINGS Unsensitised melanin particles and melanin ghosts presented complement consumption of 82.67 ± 2.08% and 96.04 ± 1.13%, respectively. Immunofluorescence assays revealed intense deposition of the C3 and C4 fragments on the surface of melanin particles and ghosts extracted from F. pedrosoi. Deposition of the C3, C4, and C5 fragments onto melanin samples and zymosan was confirmed by ELISA. Deposition of small amounts of C1q and C9 onto melanin samples and zymosan was detected by ELISA. CONCLUSION Fonsecaea pedrosoi melanin particles and fungal cell ghosts activated the complement system mainly through an alternative pathway.
Collapse
Affiliation(s)
- Lysianne Pinto
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, RJ, Brasil
| | - Luiz Fernando Zmetek Granja
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, RJ, Brasil
| | - Mariana Amorim de Almeida
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, Rio de Janeiro, RJ, Brasil
| | - Daniela Sales Alviano
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, RJ, Brasil
| | - Maria Helena da Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, RJ, Brasil
| | - Regina Ejzemberg
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, RJ, Brasil
| | - Sonia Rozental
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - Celuta Sales Alviano
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
21
|
Garcia Silva-Bailão M, Lobato Potenciano da Silva K, Raniere Borges dos Anjos L, de Sousa Lima P, de Melo Teixeira M, Maria de Almeida Soares C, Melo Bailão A. Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fungal Biol 2018; 122:526-537. [DOI: 10.1016/j.funbio.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023]
|
22
|
Abstract
Chromoblastomycosis (CBM), also known as chromomycosis, is one of the most prevalent implantation fungal infections, being the most common of the gamut of mycoses caused by melanized or brown-pigmented fungi. CBM is mainly a tropical or subtropical disease that may affect individuals with certain risk factors around the world. The following characteristics are associated with this disease: (i) traumatic inoculation by implantation from an environmental source, leading to an initial cutaneous lesion at the inoculation site; (ii) chronic and progressive cutaneous and subcutaneous tissular involvement associated with fibrotic and granulomatous reactions associated with microabscesses and often with tissue proliferation; (iii) a nonprotective T helper type 2 (Th2) immune response with ineffective humoral involvement; and (iv) the presence of muriform (sclerotic) cells embedded in the affected tissue. CBM lesions are clinically polymorphic and are commonly misdiagnosed as various other infectious and noninfectious diseases. In its more severe clinical forms, CBM may cause an incapacity for labor due to fibrotic sequelae and also due to a series of clinical complications, and if not recognized at an early stage, this disease can be refractory to antifungal therapy.
Collapse
|
23
|
Palmeira VF, Alviano DS, Braga-Silva LA, Goulart FRV, Granato MQ, Rozental S, Alviano CS, Santos ALS, Kneipp LF. HIV Aspartic Peptidase Inhibitors Modulate Surface Molecules and Enzyme Activities Involved with Physiopathological Events in Fonsecaea pedrosoi. Front Microbiol 2017; 8:918. [PMID: 28579986 PMCID: PMC5437157 DOI: 10.3389/fmicb.2017.00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/04/2017] [Indexed: 01/19/2023] Open
Abstract
Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs) currently used in the treatment of human immunodeficiency virus (HIV) have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 μM) for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i) reduction on the conidial granularity; (ii) irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii) a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv) inhibition of ergosterol and lanosterol production; (v) reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi) significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.
Collapse
Affiliation(s)
- Vanila F Palmeira
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Daniela S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Fátima R V Goulart
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marcela Q Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| |
Collapse
|
24
|
Pacelli C, Bryan RA, Onofri S, Selbmann L, Shuryak I, Dadachova E. Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environ Microbiol 2017; 19:1612-1624. [DOI: 10.1111/1462-2920.13681] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/21/2017] [Accepted: 01/21/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Pacelli
- Department of Ecological and Biological ScienceUniversity of TusciaViterbo Italy
- Department of RadiologyAlbert Einstein College of MedicineBronx NY USA
| | - Ruth A. Bryan
- Department of RadiologyAlbert Einstein College of MedicineBronx NY USA
| | - Silvano Onofri
- Department of Ecological and Biological ScienceUniversity of TusciaViterbo Italy
| | - Laura Selbmann
- Department of Ecological and Biological ScienceUniversity of TusciaViterbo Italy
| | - Igor Shuryak
- Center for Radiological ResearchColumbia UniversityNew York NY USA
| | | |
Collapse
|
25
|
Kumaran S, Abdelhamid HN, Wu HF. Quantification analysis of protein and mycelium contents upon inhibition of melanin for Aspergillus niger: a study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Adv 2017. [DOI: 10.1039/c7ra03741d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry (MS) provides a simple discrimination method for microorganisms.
Collapse
Affiliation(s)
- Sekar Kumaran
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| | - Hani Nasser Abdelhamid
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| | - Hui-Fen Wu
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|
26
|
Li XQ, Guo BL, Cai WY, Zhang JM, Huang HQ, Zhan P, Xi LY, Vicente VA, Stielow B, Sun JF, de Hoog GS. The role of melanin pathways in extremotolerance and virulence of Fonsecaea revealed by de novo assembly transcriptomics using illumina paired-end sequencing. Stud Mycol 2016; 83:1-18. [PMID: 27504027 PMCID: PMC4969264 DOI: 10.1016/j.simyco.2016.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Melanisation has been considered to be an important virulence factor of Fonsecaea monophora. However, the biosynthetic mechanisms of melanisation remain unknown. We therefore used next generation sequencing technology to investigate the transcriptome and digital gene expression data, which are valuable resources to better understand the molecular and biological mechanisms regulating melanisation in F. monophora. We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of parent (CBS 122845) and albino (CBS 125194) strains using the Illumina RNA-seq system. A total of 17 352 annotated unigenes were found by BLAST search of NR, Swiss-Prot, Gene Ontology, Clusters of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) (E-value <1e‒5). A total of 2 283 unigenes were judged to be the differentially expressed between the two genotypes. We identified most of the genes coding for key enzymes involved in melanin biosynthesis pathways, including polyketide synthase (pks), multicopper oxidase (mco), laccase, tyrosinase and homogentisate 1,2-dioxygenase (hmgA). DEG analysis showed extensive down-regulation of key genes in the DHN pathway, while up-regulation was noted in the DOPA pathway of the albino mutant. The transcript levels of partial genes were confirmed by real time RT-PCR, while the crucial role of key enzymes was confirmed by either inhibitor or substrate tests in vitro. Meanwhile, numbers of genes involved in light sensing, cell wall synthesis, morphology and environmental stress were identified in the transcriptome of F. monophora. In addition, 3 353 SSRs (Simple Sequence Repeats) markers were identified from 21 600 consensus sequences. Blocking of the DNH pathway is the most likely reason of melanin deficiency in the albino strain, while the production of pheomelanin and pyomelanin were probably regulated by unknown transcription factors on upstream of both pathways. Most of genes involved in environmental tolerance to oxidants, irradiation and extreme temperatures were also assembled and annotated in transcriptomes of F. monophora. In addition, thousands of identified cSSR (combined SSR) markers will favour further genetic linkage studies. In conclusion, these data will contribute to understanding the regulation of melanin biosynthesis and help to improve the studies of pathogenicity of F. monophora.
Collapse
Affiliation(s)
- X Q Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - B L Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - W Y Cai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - J M Zhang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - H Q Huang
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - P Zhan
- Dermatology Hospital of Jiangxi Province, Nanchang, China; CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - L Y Xi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - V A Vicente
- Basic Pathology Department, Federal University of Paraná State, Curitiba, Paraná, Brazil
| | - B Stielow
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - J F Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - G S de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; Basic Pathology Department, Federal University of Paraná State, Curitiba, Paraná, Brazil; Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Dermatology, First Hospital of Peking University, Beijing, China
| |
Collapse
|
27
|
Zhan F, He Y, Yang Y, Li Y, Li T, Zhao Z. Effects of Tricyclazole on Cadmium Tolerance and Accumulation Characteristics of a Dark Septate Endophyte (DSE), Exophiala pisciphila. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:235-241. [PMID: 26467568 DOI: 10.1007/s00128-015-1676-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Exophiala pisciphila is a cadmium-tolerant fungus, and produces 1,8-dihydroxynaphthalene melanin which can be inhibited by tricyclazole. Tricyclazole at higher levels (20 and 40 µg mL−1) reduced the growth and sporulation of E. pisciphila, but toxicity was not observed at a low concentration (2.5 µg mL−1). Under cadmium (Cd) stress (50, 100 and 200 mg L−1), 2.5 µg mL−1 of tricyclazole reduced fungal growth and sporulation. These reduces indicated a decrease on Cd tolerance of E. pisciphila. For both the 0 and 2.5 µg mL−1 tricyclazole treatments, Cd was associated mostly with cell walls and was extracted by 2 % acetic acid and 1 M NaCl. The FTIR spectra of the E. pisciphila mycelia were similar for both 0 and 2.5 µg mL−1 tricyclazole treatments, which showed hydroxyl, amine, carboxyl and phosphate groups. Thus inhibition of melanin synthesis by tricyclazole did not change Cd accumulation characteristics in E. pisciphila. Results suggested that melanin played a protective role for E. pisciphila against Cd stress, but inhibition of melanin synthesis did not have a remarkable impact on Cd accumulation in E. pisciphila.
Collapse
|
28
|
Tam EWT, Tsang CC, Lau SKP, Woo PCY. Polyketides, toxins and pigments in Penicillium marneffei. Toxins (Basel) 2015; 7:4421-36. [PMID: 26529013 PMCID: PMC4663511 DOI: 10.3390/toxins7114421] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 09/18/2015] [Accepted: 10/22/2015] [Indexed: 11/17/2022] Open
Abstract
Penicillium marneffei (synonym: Talaromyces marneffei) is the most important pathogenic thermally dimorphic fungus in China and Southeastern Asia. The HIV/AIDS pandemic, particularly in China and other Southeast Asian countries, has led to the emergence of P. marneffei infection as an important AIDS-defining condition. Recently, we published the genome sequence of P. marneffei. In the P. marneffei genome, 23 polyketide synthase genes and two polyketide synthase-non-ribosomal peptide synthase hybrid genes were identified. This number is much higher than those of Coccidioides immitis and Histoplasma capsulatum, important pathogenic thermally dimorphic fungi in the Western world. Phylogenetically, these polyketide synthase genes were distributed evenly with their counterparts found in Aspergillus species and other fungi, suggesting that polyketide synthases in P. marneffei did not diverge from lineage-specific gene duplication through a recent expansion. Gene knockdown experiments and ultra-high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry analysis confirmed that at least four of the polyketide synthase genes were involved in the biosynthesis of various pigments in P. marneffei, including melanin, mitorubrinic acid, mitorubrinol, monascorubrin, rubropunctatin, citrinin and ankaflavin, some of which were mycotoxins and virulence factors of the fungus.
Collapse
Affiliation(s)
- Emily W T Tam
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Chi-Ching Tsang
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
29
|
Ji Z, Zhou F, Wei S. Synthesis and herbicidal activities of benzothiazole N,O-acetals. Bioorg Med Chem Lett 2015; 25:4065-8. [DOI: 10.1016/j.bmcl.2015.08.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/01/2022]
|
30
|
Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I. Melanin-Like Pigment Synthesis by Soil Bacillus weihenstephanensis Isolates from Northeastern Poland. PLoS One 2015; 10:e0125428. [PMID: 25909751 PMCID: PMC4409349 DOI: 10.1371/journal.pone.0125428] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/18/2015] [Indexed: 11/22/2022] Open
Abstract
Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR) spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR) and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests) and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis) characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment.
Collapse
Affiliation(s)
- Justyna M. Drewnowska
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Monika Zambrzycka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Beata Kalska-Szostko
- Department of Physicochemical Analysis, Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
- * E-mail:
| |
Collapse
|
31
|
Ghamrawi S, Rénier G, Saulnier P, Cuenot S, Zykwinska A, Dutilh BE, Thornton C, Faure S, Bouchara JP. Cell wall modifications during conidial maturation of the human pathogenic fungus Pseudallescheria boydii. PLoS One 2014; 9:e100290. [PMID: 24950099 PMCID: PMC4065047 DOI: 10.1371/journal.pone.0100290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/22/2014] [Indexed: 01/27/2023] Open
Abstract
Progress in extending the life expectancy of cystic fibrosis (CF) patients remains jeopardized by the increasing incidence of fungal respiratory infections. Pseudallescheria boydii (P. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated from the respiratory secretions of CF patients. It is commonly believed that infection by this fungus occurs through inhalation of airborne conidia, but the mechanisms allowing the adherence of Pseudallescheria to the host epithelial cells and its escape from the host immune defenses remain largely unknown. Given that the cell wall orchestrates all these processes, we were interested in studying its dynamic changes in conidia as function of the age of cultures. We found that the surface hydrophobicity and electronegative charge of conidia increased with the age of culture. Melanin that can influence the cell surface properties, was extracted from conidia and estimated using UV-visible spectrophotometry. Cells were also directly examined and compared using electron paramagnetic resonance (EPR) that determines the production of free radicals. Consistent with the increased amount of melanin, the EPR signal intensity decreased suggesting polymerization of melanin. These results were confirmed by flow cytometry after studying the effect of melanin polymerization on the surface accessibility of mannose-containing glycoconjugates to fluorescent concanavalin A. In the absence of melanin, conidia showed a marked increase in fluorescence intensity as the age of culture increased. Using atomic force microscopy, we were unable to find rodlet-forming hydrophobins, molecules that can also affect conidial surface properties. In conclusion, the changes in surface properties and biochemical composition of the conidial wall with the age of culture highlight the process of conidial maturation. Mannose-containing glycoconjugates that are involved in immune recognition, are progressively masked by polymerization of melanin, an antioxidant that is commonly thought to allow fungal escape from the host immune defenses.
Collapse
Affiliation(s)
- Sarah Ghamrawi
- L’UNAM Université, Université d’Angers, Groupe d’Etude des Interactions Hôte-Pathogène EA 3142, Angers, France
- * E-mail:
| | - Gilles Rénier
- L’UNAM Université, Université d’Angers, Groupe d’Etude des Interactions Hôte-Pathogène EA 3142, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Patrick Saulnier
- L’UNAM Université, University d’Angers, INSERM U646, Angers, France
| | - Stéphane Cuenot
- L’UNAM Université, Université de Nantes, Institut des Matériaux Jean Rouxel, Nantes, France
| | - Agata Zykwinska
- L’UNAM Université, Université de Nantes, Institut des Matériaux Jean Rouxel, Nantes, France
| | - Bas E. Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christopher Thornton
- Department of Biosciences, University of Exeter, Biosciences, Exeter, United Kingdom
| | | | - Jean-Philippe Bouchara
- L’UNAM Université, Université d’Angers, Groupe d’Etude des Interactions Hôte-Pathogène EA 3142, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
32
|
Tseng MN, Chung CL, Tzean SS. Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen. PLoS One 2014; 9:e90473. [PMID: 24662974 PMCID: PMC3963850 DOI: 10.1371/journal.pone.0090473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022] Open
Abstract
The entomopathogenic fungus Metarhizium anisopliae MA05-169 is a transformant strain that has been metabolically engineered to express dihydroxynaphthalene-melanin biosynthesis genes. In contrast to the wild type strain, the transformant displays a greater resistance to environmental stress and a higher virulence toward target insect host. However, the underlying mechanisms for these characteristics remain unclear; hence experiments were initiated to explore the possible mechanism(s) through physiological and molecular approaches. Although both transformant and wild type strains could infect and share the same insect host range, the former germinated faster and produced more appressoria than the latter, both in vivo and in vitro. The transformant showed a significantly shorter median lethal time (LT50) when infecting the diamondback moth (Plutella xylostella) and the striped flea beetle (Phyllotreta striolata), than the wild type. Additionally, the transformant was more tolerant to reactive oxygen species (ROS), produced 40-fold more orthosporin and notably overexpressed the transcripts of the pathogenicity-relevant hydrolytic enzymes (chitinase, protease, and phospholipase) genes in vivo. In contrast, appressorium turgor pressure and destruxin A content were slightly decreased compared to the wild type. The transformant's high anti-stress tolerance, its high virulence against five important insect pests (cowpea aphid Aphis craccivora, diamondback moth Pl. xylostella, striped flea beetle Ph. striolata, and silverleaf whitefly Bemisia argentifolii) and its capacity to colonize the root system are key properties for its potential bio-control field application.
Collapse
Affiliation(s)
- Min-Nan Tseng
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Division of Plant Protection, Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Pingtung, Taiwan
| | - Chia-Ling Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Shean-Shong Tzean
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Messaoudi C, Aschman N, Cunha M, Oikawa T, Sorzano COS, Marco S. Three-dimensional chemical mapping by EFTEM-TomoJ including improvement of SNR by PCA and ART reconstruction of volume by noise suppression. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1669-1677. [PMID: 23981296 DOI: 10.1017/s1431927613013317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electron tomography is becoming one of the most used methods for structural analysis at nanometric scale in biological and materials sciences. Combined with chemical mapping, it provides qualitative and semiquantitative information on the distribution of chemical elements on a given sample. Due to the current difficulties in obtaining three-dimensional (3D) maps by energy-filtered transmission electron microscopy (EFTEM), the use of 3D chemical mapping has not been widely adopted by the electron microscopy community. The lack of specialized software further complicates the issue, especially in the case of data with a low signal-to-noise ratio (SNR). Moreover, data interpretation is rendered difficult by the absence of efficient segmentation tools. Thus, specialized software for the computation of 3D maps by EFTEM needs to include optimized methods for image series alignment, algorithms to improve SNR, different background subtraction models, and methods to facilitate map segmentation. Here we present a software package (EFTEM-TomoJ, which can be downloaded from http://u759.curie.fr/fr/download/softwares/EFTEM-TomoJ), specifically dedicated to computation of EFTEM 3D chemical maps including noise filtering by image reconstitution based on multivariate statistical analysis. We also present an algorithm named BgART (for background removing algebraic reconstruction technique) allowing the discrimination between background and signal and improving the reconstructed volume in an iterative way.
Collapse
Affiliation(s)
- Cédric Messaoudi
- Institut Curie, Centre de Recherche, Bat 112, Centre Universitaire, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Dornelas-Ribeiro M, Pinheiro EO, Guerra C, Braga-Silva LA, Carvalho SMFD, Santos ALSD, Rozental S, Fracalanzza SEL. Cellular characterisation of Candida tropicalis presenting fluconazole-related trailing growth. Mem Inst Oswaldo Cruz 2012; 107:31-8. [DOI: 10.1590/s0074-02762012000100005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 08/16/2011] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marcos Dornelas-Ribeiro
- Instituto de Biologia do Exército, Brasil; Instituto Estadual de Hematologia, Brasil; Hospital Adventista Silvestre, Brasil; Instituto de Microbiologia Paulo de Góes
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Eisenman HC, Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 2011; 93:931-40. [PMID: 22173481 DOI: 10.1007/s00253-011-3777-2] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
Abstract
Melanin is a unique pigment with myriad functions that is found in all biological kingdoms. It is multifunctional, providing defense against environmental stresses such as ultraviolet (UV) light, oxidizing agents and ionizing radiation. Melanin contributes to the ability of fungi to survive in harsh environments. In addition, it plays a role in fungal pathogenesis. Melanin is an amorphous polymer that is produced by one of two synthetic pathways. Fungi may synthesize melanin from endogenous substrate via a 1,8-dihydroxynaphthalene (DHN) intermediate. Alternatively, some fungi produce melanin from L-3,4-dihydroxyphenylalanine (L-dopa). The detailed chemical structure of melanin is not known. However, microscopic studies show that it has an overall granular structure. In fungi, melanin granules are localized to the cell wall where they are likely cross-linked to polysaccharides. Recent studies suggest the fungal melanin may be synthesized in internal vesicles akin to mammalian melanosomes and transported to the cell wall. Potential applications of melanin take advantage of melanin's radioprotective properties and propensity to bind to a variety of substances.
Collapse
Affiliation(s)
- Helene C Eisenman
- Department of Natural Sciences, Baruch College and Graduate Center, the City University of New York, 17 Lexington Avenue, Box A-506, New York, NY 10010, USA.
| | | |
Collapse
|
36
|
Sun J, Zhang J, Najafzadeh MJ, Badali H, Li X, Xi L, de Hoog GS. Melanization of a meristematic mutant of Fonsecaea monophora increases tolerance to stress factors while no effects on antifungal susceptibility. Mycopathologia 2011; 172:373-80. [PMID: 21706309 DOI: 10.1007/s11046-011-9439-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/09/2011] [Indexed: 01/22/2023]
Abstract
Melanin is a complex polymer, which is widely distributed in nature, and is known as an important virulence factor in opportunistic and pathogenic fungi. In this study, three melanin mutants of Fonsecaea monophora from a case of chromoblastomycosis were generated from a parent strain that lacked hyphal morphology but was meristematic instead. Two albino mutants, one of which (CBS 125187) produced secreted melanin and another (CBS 125149) lacked melanin, grew faster than a mutant with cell-wall-associated and secreted melanin (CBS 125188) and than the meristematic parent strain (CBS 122845) (P < 0.05). The albino strains were also more sensitive to low pH, high UV radiation, and oxidative stress (P < 0.05). However, susceptibility testing against eight antifungal agents showed no statistical difference (P > 0.05). The discovery of three melanin mutants of a single meristematic mutant provided an alternative way to study the role of cell-wall-associated and secreted melanins in the pathogenesis of black fungi.
Collapse
Affiliation(s)
- Jiufeng Sun
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Rd, Guangzhou, 510120, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Teixeira PAC, De Castro RA, Ferreira FRL, Cunha MML, Torres AP, Penha CVLY, Rozental S, Lopes-Bezerra LM. L-DOPA accessibility in culture medium increases melanin expression and virulence ofSporothrix schenckiiyeast cells. Med Mycol 2010; 48:687-95. [DOI: 10.3109/13693780903453287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
38
|
A fast and cost-effective methodology for Fonsecaea pedrosoi ATCC46428 staining using ESIPT fluorescent dyes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 99:126-32. [DOI: 10.1016/j.jphotobiol.2010.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
39
|
Cunha MML, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, de Souza W, Rozental S. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol 2010; 10:80. [PMID: 20233438 PMCID: PMC2845570 DOI: 10.1186/1471-2180-10-80] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 03/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background The pathogenic fungus Fonsecaea pedrosoi constitutively produces the pigment melanin, an important virulence factor in fungi. Melanin is incorporated in the cell wall structure and provides chemical and physical protection for the fungus. We evaluated the production of nitric oxide (NO) in macrophages, the oxidative burst and the inducible nitric oxide synthase (i-NOS) activity in interactions between activated murine macrophages and F. pedrosoi. Experiments were carried out with or without tricyclazole (TC) treatment, a selective inhibitor of the dihydroxynaphthalene (DHN)-melanin biosynthesis pathway in F. pedrosoi. The paramagnetisms of melanin and the TC-melanin were analysed by electron spin resonance. The fungal growth responses to H2O2 and to S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide donor, were also evaluated. Results Melanised F. pedrosoi cells were more resistant to both H2O2 and NO. Nitrite was not detected in the supernatant of macrophages incubated with melanised fungal cells. However, i-NOS expression was unaffected by the presence of either untreated control F. pedrosoi or TC-treated F. pedrosoi. In addition, the inhibition of the DHN-melanin pathway by TC improved the oxidative burst capability of the macrophages. Conclusion The NO-trapping ability of F. pedrosoi melanin is an important mechanism to escape the oxidative burst of macrophages.
Collapse
Affiliation(s)
- Marcel M L Cunha
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 2009; 9:177. [PMID: 19703288 PMCID: PMC2740851 DOI: 10.1186/1471-2180-9-177] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 08/24/2009] [Indexed: 11/13/2022] Open
Abstract
Background Aspergillus fumigatus is the most common agent of invasive aspergillosis, a feared complication in severely immunocompromised patients. Despite the recent commercialisation of new antifungal drugs, the prognosis for this infection remains uncertain. Thus, there is a real need to discover new targets for therapy. Particular attention has been paid to the biochemical composition and organisation of the fungal cell wall, because it mediates the host-fungus interplay. Conidia, which are responsible for infections, have melanin as one of the cell wall components. Melanin has been established as an important virulence factor, protecting the fungus against the host's immune defences. We suggested that it might also have an indirect role in virulence, because it is required for correct assembly of the cell wall layers of the conidia. Results We used three A. fumigatus isolates which grew as white or brown powdery colonies, to demonstrate the role of melanin. Firstly, sequencing the genes responsible for biosynthesis of melanin (ALB1, AYG1, ARP1, ARP2, ABR1 and ABR2) showed point mutations (missense mutation, deletion or insertion) in the ALB1 gene for pigmentless isolates or in ARP2 for the brownish isolate. The isolates were then shown by scanning electron microscopy to produce numerous, typical conidial heads, except that the conidia were smooth-walled, as previously observed for laboratory mutants with mutations in the PKSP/ALB1 gene. Flow cytometry showed an increase in the fibronectin binding capacity of conidia from mutant isolates, together with a marked decrease in the binding of laminin to the conidial surface. A marked decrease in the electronegative charge of the conidia and cell surface hydrophobicity was also seen by microelectrophoresis and two-phase partitioning, respectively. Ultrastructural studies of mutant isolates detected considerable changes in the organisation of the conidial wall, with the loss of the outermost electron dense layer responsible for the ornamentations seen on the conidial surface in wild-type strains. Finally, analysis of the conidial surface of mutant isolates by atomic force microscopy demonstrated the absence of the outer cell wall rodlet layer which is composed of hydrophobins. Conclusion These results suggest that, in addition to a protective role against the host's immune defences, melanin is also a structural component of the conidial wall that is required for correct assembly of the cell wall layers and the expression at the conidial surface of adhesins and other virulence factors.
Collapse
|
41
|
da Cunha MML, dos Santos LPB, Dornelas-Ribeiro M, Vermelho AB, Rozental S. Identification, antifungal susceptibility and scanning electron microscopy of a keratinolytic strain of Rhodotorula mucilaginosa: a primary causative agent of onychomycosis. ACTA ACUST UNITED AC 2009; 55:396-403. [PMID: 19170752 DOI: 10.1111/j.1574-695x.2009.00534.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Onychomycosis is a dermatological problem of high prevalence that mainly affects the hallux toenail. Onychomycosis caused by the yeast Rhodotorula mucilaginosa was identified using colony morphology, light microscopy, urease and carbohydrate metabolism in a 57-year-old immunocompetent patient from Rio de Janeiro, Brazil. High-resolution scanning electron microscopy of nail fragments, processed by a noncoating method, led to the observation with fine detail of the structures of both nail and fungus involved in the infection. Yeasts were mainly found inside grooves in the nail. Budding yeasts presented a spiral pattern of growth and blastoconidia were found in the nail groove region. Keratinase assays and keratin enzymography revealed that this isolate was highly capable of degrading keratin. Antifungal susceptibility tests showed that the fungus was susceptible to low concentrations of amphotericin B and 5-flucytosine and resistant to high concentrations of fluconazole, itraconazole, voriconazole and terbinafine. These findings showed data for the first time concerning the interaction of R. mucilaginosa in toenail infection and suggest that this emerging yeast should also be considered an opportunistic primary causative agent of onychomycosis.
Collapse
Affiliation(s)
- Marcel M L da Cunha
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho-UFRJ, Cidade Universitária, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
42
|
Wheeler MH, Abramczyk D, Puckhaber LS, Naruse M, Ebizuka Y, Fujii I, Szaniszlo PJ. New biosynthetic step in the melanin pathway of Wangiella (Exophiala) dermatitidis: evidence for 2-acetyl-1,3,6,8-Tetrahydroxynaphthalene as a novel precursor. EUKARYOTIC CELL 2008; 7:1699-711. [PMID: 18676950 PMCID: PMC2568069 DOI: 10.1128/ec.00179-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/24/2008] [Indexed: 11/20/2022]
Abstract
The predominant cell wall melanin of Wangiella dermatitidis, a black fungal pathogen of humans, is synthesized from 1,8-dihydroxynaphthalene (D2HN). An early precursor, 1,3,6,8-tetrahydroxynaphthalene (T4HN), in the pathway leading to D2HN is reportedly produced directly as a pentaketide by an iterative type I polyketide synthase (PKS). In contrast, the bluish-green pigment in Aspergillus fumigatus is produced after the enzyme Ayg1p converts the PKS product, the heptaketide YWA1, to T4HN. Previously, we created a new melanin-deficient mutant of W. dermatitidis, WdBrm1, by random molecular insertion. From this strain, the altered gene WdYG1 was cloned by a marker rescue strategy and found to encode WdYg1p, an ortholog of Ayg1p. In the present study, two gene replacement mutants devoid of the complete WdYG1 gene were derived to eliminate the possibility that the phenotype of WdBrm1 was due to other mutations. Characterization of the new mutants showed that they were phenotypically identical to WdBrm1. Chemical analyses of mutant cultures demonstrated that melanin biosynthesis was blocked, resulting in the accumulation of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (AT4HN) and its oxidative product 3-acetylflaviolin in the culture media. When given to an albino W. dermatitidis strain with an inactivated WdPKS1 gene, AT4HN was mostly oxidized to 3-acetylflaviolin and deacetylated to flaviolin. Under reduced oxygen conditions, cell-free homogenates of the albino converted AT4HN to D2HN. This is the first report of evidence that the hexaketide AT4HN is a melanin precursor for T4HN in W. dermatitidis.
Collapse
Affiliation(s)
- Michael H Wheeler
- United States Department of Agriculture, Cotton Pathology Research Unit, Agricultural Research Service, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Taborda CP, da Silva MB, Nosanchuk JD, Travassos LR. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia 2008; 165:331-9. [PMID: 18777637 PMCID: PMC2586806 DOI: 10.1007/s11046-007-9061-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles ("ghosts") can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic dimorphic fungi including Paracoccidioides brasiliensis, Sporothrix schenckii, Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides posadasii. Melanization appears to contribute to virulence by reducing the susceptibility of melanized fungi to host defense mechanisms and antifungal drugs.
Collapse
Affiliation(s)
- Carlos P Taborda
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, Ave. Prof. Lineu Prestes, 1374, 2 andar, São Paulo, SP 05508-900, Brazil.
| | | | | | | |
Collapse
|
44
|
Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi. J Struct Biol 2008; 162:75-84. [DOI: 10.1016/j.jsb.2007.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/26/2007] [Accepted: 11/09/2007] [Indexed: 11/22/2022]
|
45
|
Santos ALS, Palmeira VF, Rozental S, Kneipp LF, Nimrichter L, Alviano DS, Rodrigues ML, Alviano CS. Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis. FEMS Microbiol Rev 2007; 31:570-91. [PMID: 17645522 DOI: 10.1111/j.1574-6976.2007.00077.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Treatment of the disease presents poor effectiveness and serious side effects. The disease is epidemiologically important in several regions, which has stimulated studies focused on the biology and pathogenic potential of its major causative agent. In this review, we summarize the current knowledge on the biological aspects of F. pedrosoi, including cell differentiation and pathogenic mechanisms during the interaction of fungi with different hosts' elements.
Collapse
Affiliation(s)
- André L S Santos
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, IMPPG/Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cruz MCS, Santos PO, Barbosa AM, de Mélo DLFM, Alviano CS, Antoniolli AR, Alviano DS, Trindade RC. Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses. JOURNAL OF ETHNOPHARMACOLOGY 2007; 111:409-12. [PMID: 17234376 DOI: 10.1016/j.jep.2006.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/17/2006] [Accepted: 12/02/2006] [Indexed: 05/13/2023]
Abstract
A survey of medicinal plants used to treat common mycoses was done in the Curituba district, Sergipe State, Brazil. One hundred inhabitants were interviewed by health agents and traditional healers. Four different plants were the most cited (more than 50% of the citations): Ziziphus joazeiro, Caesalpinia pyramidalis, Bumelia sartorum and Hymenea courbaril. The aqueous extracts obtained following traditional methods and using different parts of these plants, were submitted to drop agar diffusion tests for primary antimicrobial screening. Only the water infusion extract of Ziziphus joazeiro and Caesalpinea pyramidalis presented a significant antifungal activity against Trichophyton rubrum, Candida guilliermondii, Candida albicans, Cryptococcus neoformans and Fonsecaea pedrosoi, when compared to the antifungal agent amphotericin B. The minimal inhibitory concentration (MIC) of the bioactive extracts was evaluated by the microdilution method. Best activity with a MIC of 6.5 microg/ml for both extracts was observed against Trichophyton rubrum and Candida guilliermondii. Ziziphus joazeiro and Caesalpinea pyramidalis extracts presented also low acute toxicity in murine models. The present study validates the folk use of these plant extracts and indicates that they can be effective potential candidates for the development of new strategies to treat fungal infections.
Collapse
Affiliation(s)
- M C S Cruz
- Departamento de Fisiologia-CCBS, Laboratório de Farmacologia-Universidade Federal de Sergipe, São Cristóvão-SE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 2006; 50:3519-28. [PMID: 17065617 PMCID: PMC1635213 DOI: 10.1128/aac.00545-06] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
48
|
Franzen AJ, Cunha MML, Batista EJO, Seabra SH, De Souza W, Rozental S. Effects of tricyclazole (5-methyl-1,2,4-triazol[3,4] benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells. Microsc Res Tech 2006; 69:729-37. [PMID: 16850396 DOI: 10.1002/jemt.20344] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The influence of tricyclazole (5-methyl-1,2,4-triazol[3,4]benzothiazole), a specific DHN-melanin inhibitor, on the cell walls and intracellular structures of Fonsecaea pedrosoi conidia and sclerotic cells was analyzed by transmission electron microscopy (TEM), deep-etching, and field emission scanning electron microscopy. The treatment of the fungus with 16 microg mL(-1) of tricyclazole (TC) did not significantly affect fungal viability, but electron microscopy observations showed several important morphological differences between TC-treated and non-TC treated cells. Control sclerotic cells presented patched granules, with an average diameter of 47 nm, on the cell surface, which were absent in TC-treated cells. Also, TC-treated sclerotic cells showed an undulated relief. TC treatment leads to an accumulation of electron lucent vacuoles in the fungal cytoplasm of both conidia and sclerotic cells, and treated conidia observed by deep etching showed a relevant thickening of the fungal cell wall. Together, these observations support the previous data of our group that F. pedrosoi synthesizes melanin in intracellular organelles. In addition, we suggest that melanin is not only an extracellular constituent but could also be dispersing all over the cell walls and could have an effective role in cross-linking different cell wall compounds that help maintain the regular shape of the cell wall.
Collapse
Affiliation(s)
- Anderson J Franzen
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21949-900, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Paolo WF, Dadachova E, Mandal P, Casadevall A, Szaniszlo PJ, Nosanchuk JD. Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature. BMC Microbiol 2006; 6:55. [PMID: 16784529 PMCID: PMC1569847 DOI: 10.1186/1471-2180-6-55] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/19/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis. RESULTS We analyzed the effects of disrupting WdPKS1 on dihydroxynaphthalene melanin production and resistance to antifungal compounds. Transmission electron microscopy revealed that wdpks1Delta-1 yeast had thinner cell walls that lacked an electron-opaque layer compared to wild-type cells. However, digestion of the wdpks1Delta-1 yeast revealed small black particles that were consistent with a melanin-like compound, because they were acid-resistant, reacted with melanin-binding antibody, and demonstrated a free radical signature by electron spin resonance analysis. Despite lacking the WdPKS1 gene, the mutant yeast were capable of catalyzing the formation of melanin from L-3,4-dihyroxyphenylalanine. The wdpks1Delta-1 cells were significantly more susceptible to killing by voriconazole, amphotericin B, NP-1 [a microbicidal peptide], heat and cold, and lysing enzymes than the heavily melanized parental or complemented strains. CONCLUSION In summary, W. dermatitidis makes WdPKS-dependent and -independent melanins, and the WdPKS1-dependent deposition of melanin in the cell wall confers protection against antifungal agents and environmental stresses. The biological role of the WdPKS-independent melanin remains unclear.
Collapse
Affiliation(s)
- William F Paolo
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, New York University Medical Center, NY, USA
| | - Ekaterina Dadachova
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piyali Mandal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology, All India Institute of Medical Sciences and Division of Infectious Diseases, New Delhi, India
| | - Arturo Casadevall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul J Szaniszlo
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX, USA
| | - Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|