1
|
Frolikova M, Blazikova M, Capek M, Chmelova H, Valecka J, Kolackova V, Valaskova E, Gregor M, Komrskova K, Horvath O, Novotny I. Innovative sample preparation using alcohol dehydration and high refractive index medium enables acquisition of two-channel super-resolution 3D STED image of an entire oocyte. J Microsc 2024. [PMID: 39392013 DOI: 10.1111/jmi.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Super-resolution (SR) microscopy is a cutting-edge method that can provide detailed structural information with high resolution. However, the thickness of the specimen has been a major limitation for SR methods, and large biological structures have posed a challenge. To overcome this, the key step is to optimise sample preparation to ensure optical homogeneity and clarity, which can enhance the capabilities of SR methods for the acquisition of thicker structures. Oocytes are the largest cells in the mammalian body and are crucial objects in reproductive biology. They are especially useful for studying membrane proteins. However, oocytes are extremely fragile and sensitive to mechanical manipulation and osmotic shocks, making sample preparation a critical and challenging step. We present an innovative, simple and sensitive approach to oocyte sample preparation for 3D STED acquisition. This involves alcohol dehydration and mounting into a high refractive index medium. This extended preparation procedure allowed us to successfully obtain a unique two-channel 3D STED SR image of an entire mouse oocyte. By optimising sample preparation, it is possible to overcome current limitations of SR methods and obtain high-resolution images of large biological structures, such as oocytes, in order to study fundamental biological processes. Lay Abstract: Super-resolution (SR) microscopy is a cutting-edge tool that allows scientists to view incredibly fine details in biological samples. However, it struggles with larger, thicker specimens, as they need to be optically clear and uniform for the best imaging results. In this study, we refined the sample preparation process to make it more suitable for SR microscopy. Our method includes carefully dehydrating biological samples with alcohol and then transferring them into a mounting medium that enhances optical clarity. This improved protocol enables high-resolution imaging of thick biological structures, which was previously challenging. By optimizing this preparation method, we hope to expand the use of SR microscopy for studying large biological samples, helping scientists better understand complex biological structures.
Collapse
Affiliation(s)
- Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Capek
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Chmelova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Valecka
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Kolackova
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova, Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondrej Horvath
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivan Novotny
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Stepping SM, Vashistha N, Ullah S, Liu P, Anjass M, Dietzek-Ivanšić B. Reductive quenching of photosensitizer [Ru(bpy) 3] 2+ reveals the inhomogeneous distribution of sites in PAN polymer nanofibers for light-driven redox catalysis. RSC Adv 2024; 14:32501-32505. [PMID: 39411257 PMCID: PMC11474860 DOI: 10.1039/d4ra05672h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Integration of molecular photocatalysts into redox-inert polymers constitutes a path towards photocatalytically active, lightweight materials. In particular, electrospun polymer fibers hold potential due to their favorable surface-to-volume ratio and their straightforward fabrication. This study focuses on the polyacrylonitrile (PAN) fibers, into which the prototype photosensitizer (PS) ruthenium tris(bipyridine) [Ru(bpy)3]2+, has been embedded by electrospinning. Studying the interaction between the optically excited [Ru(bpy)3]2+ with a non-redox inert solvent within the nanofibers, we resolve a distribution of microenvironments, which differ by the extent to which the photosensitizer is exposed to the solvent. This results in a non-exponential decay of the complex's emission and pronounced differences in the transient absorption signals.
Collapse
Affiliation(s)
- Svea M Stepping
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena Helmholtzweg 4 07743 Jena Germany
- Department of Chemistry-Ångström, Physical Chemistry, Uppsala University 75120 Uppsala Sweden
| | - Nikita Vashistha
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces Albert Einstein Allee 9 07745 Jena Germany
| | - Sana Ullah
- Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Poting Liu
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces Albert Einstein Allee 9 07745 Jena Germany
| | - Montaha Anjass
- Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Department of Chemistry, University of Sharjah 27272 Sharjah United Arab Emirates
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces Albert Einstein Allee 9 07745 Jena Germany
| |
Collapse
|
3
|
Zhou L, Shi W, Fu S, Li M, Chen J, Fang K, Li Y. High Refractive Index Imaging Buffer for Dual-Color 3D SMLM Imaging of Thick Samples. Anal Chem 2024; 96:15648-15656. [PMID: 39298273 DOI: 10.1021/acs.analchem.4c02893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The current limitations of single-molecule localization microscopy (SMLM) in deep tissue imaging, primarily due to depth-dependent aberrations caused by refractive index (RI) mismatch, present a significant challenge in achieving high-resolution images at greater depths. To extend the imaging depth, we optimized the imaging buffer of SMLM with the RI matched to that of the objective immersion medium and systematically evaluated five different RI-matched buffers, focusing on their impact on the blinking behavior of red-absorbing dyes and the quality of reconstructed super-resolution images. Particularly, we found that clear unobstructed brain imaging cocktails-based imaging buffer could match the RI of oil and was able to clear the tissue samples. With the help of the RI-matched imaging buffers, we showed high-quality dual-color 3D SMLM images with imaging depths ranging from a few micrometers to tens of micrometers in both cultured cells and sectioned tissue samples. This advancement offers a practical and accessible method for high-resolution imaging at greater depths without the need for specialized optical equipment or expertise.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Shi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuang Fu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengfan Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianwei Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Schweighofer SV, Inamdar K, Jans DC, Jakobs S. STED super-resolution microscopy of mitochondrial translocases. Methods Enzymol 2024; 707:299-327. [PMID: 39488379 DOI: 10.1016/bs.mie.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The mitochondrial translocases of the outer membrane (TOM) and of the inner membrane (TIM) act together to facilitate the import of nuclear-encoded proteins across the mitochondrial membranes. Stimulated Emission Depletion (STED) super-resolution microscopy enables the in situ imaging of such complexes in single cells at sub-diffraction resolution. STED microscopy requires only conventional sample preparation techniques and provides super-resolved raw data without the need for further image processing. In this chapter, we provide a detailed example protocol for STED microscopy of TOM20 and mitochondrial DNA in fixed mammalian cells. The protocol includes instructions on sample preparation for immunolabeling, including cell line selection, fixation, permeabilization, blocking, labeling and mounting, but also recommendations for sample and microscope performance evaluation. The protocol is supplemented by considerations on key factors that influence the quality of the final image and also includes some considerations for the analysis of the acquired images. While the protocol described here is aimed at imaging TOM20 and DNA, it contains all the information for an immediate adaptation to other cellular targets.
Collapse
Affiliation(s)
- Sarah V Schweighofer
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy TNM, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Kaushik Inamdar
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel C Jans
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy TNM, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Wang LM, Kim J, Han KY. Highly sensitive volumetric single-molecule imaging. NANOPHOTONICS 2024; 13:3805-3814. [PMID: 39224784 PMCID: PMC11366074 DOI: 10.1515/nanoph-2024-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Volumetric subcellular imaging has long been essential for studying structures and dynamics in cells and tissues. However, due to limited imaging speed and depth of field, it has been challenging to perform live-cell imaging and single-particle tracking. Here we report a 2.5D fluorescence microscopy combined with highly inclined illumination beams, which significantly reduce not only the image acquisition time but also the out-of-focus background by ∼2-fold compared to epi-illumination. Instead of sequential z-scanning, our method projects a certain depth of volumetric information onto a 2D plane in a single shot using multi-layered glass for incoherent wavefront splitting, enabling high photon detection efficiency. We apply our method to multi-color immunofluorescence imaging and volumetric super-resolution imaging, covering ∼3-4 µm thickness of samples without z-scanning. Additionally, we demonstrate that our approach can substantially extend the observation time of single-particle tracking in living cells.
Collapse
Affiliation(s)
- Le-Mei Wang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Jiah Kim
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Asahina Y, Hinata M, Tanaka A, Oshio K, Ogawa H, Aihara M, Onodera H, Ushiku T. Transparency-enhancing technology allows the three-dimensional assessment of esophageal carcinoma obtained by endoscopic submucosal dissection. Esophagus 2024; 21:405-409. [PMID: 38498095 PMCID: PMC11199231 DOI: 10.1007/s10388-024-01055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Although much progress has been made in diagnosis of carcinomas, no established methods have been confirmed to elucidate their morphological features. METHODS Three-dimensional structure of esophageal carcinomas was assessed using transparency-enhancing technology. Endoscopically resected esophageal squamous cell carcinoma was fluorescently stained, optically cleared using a transparency-enhancing reagent called LUCID, and visualized using laser scanning microscopy. The resulting microscope images were converted to virtual HE images for observation using ImageJ software. RESULTS Microscopic observation and image editing enabled three-dimensional image reconstruction and conversion to virtual HE images. The structure of abnormal blood vessels in esophageal carcinoma recognized by endoscopy could be observed in the 3 dimensions. Squamous cell carcinoma and normal squamous epithelium could be distinguished in the virtual HE images. CONCLUSIONS The results suggested that transparency-enhancing technology and virtual HE images may be feasible for clinical application and represent a novel histopathological method for evaluating endoscopically resected specimens.
Collapse
Affiliation(s)
- Yuichi Asahina
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Munetoshi Hinata
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Asami Tanaka
- Photon Science Center, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kaori Oshio
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Haruki Ogawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Surgery, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Onodera
- Institute for Photon Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
7
|
He C, Yuan Y, Gong C, Wang X, Lyu G. Applications of Tissue Clearing in Central and Peripheral Nerves. Neuroscience 2024; 546:104-117. [PMID: 38570062 DOI: 10.1016/j.neuroscience.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.
Collapse
Affiliation(s)
- Cheng He
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Ye Yuan
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Chuanhui Gong
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Xueying Wang
- Medical School of Nantong University, Nantong, China
| | - Guangming Lyu
- Department of Anatomy, Medical School of Nantong University, Nantong, China; Department of Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
8
|
Fang L, Huang F. Measurement precision bounds on aberrated single molecule emission patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569462. [PMID: 38076960 PMCID: PMC10705439 DOI: 10.1101/2023.11.30.569462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Single-Molecule Localization Microscopy (SMLM) has revolutionized the study of biological phenomena by providing exquisite nanoscale spatial resolution. However, optical aberrations induced by sample and system imperfections distort the single molecule emission patterns (i.e. PSFs), leading to reduced precision and resolution of SMLM, particularly in three-dimensional (3D) applications. While various methods, both analytical and instrumental, have been employed to mitigate these aberrations, a comprehensive analysis of how different types of commonly encountered aberrations affect single molecule experiments and their image formation remains missing. In this study, we addressed this gap by conducting a quantitative study of the theoretical precision limit for position and wavefront distortion measurements in the presence of aberrations. Leveraging Fisher information and Cramér-Rao lower bound (CRLB), we quantitively analyzed and compared the effects of different aberration types, including index mismatch aberrations, on localization precision in both biplane and astigmatism 3D modalities as well as 2D SMLM imaging. Furthermore, we studied the achievable wavefront estimation precision from aberrated single molecule emission patterns, a pivot step for successful adaptive optics in SMLM through thick specimens. This analysis lays a quantitative foundation for the development and application of SMLM in whole-cells, tissues and with large field of view, providing in-depth insights into the behavior of different aberration types in single molecule imaging and thus generating theoretical guidelines for developing highly efficient aberration correction strategies and enhancing the precision and reliability of 3D SMLM.
Collapse
Affiliation(s)
- Li Fang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
9
|
Williams RM, Bloom JC, Robertus CM, Recknagel AK, Putnam D, Schimenti JC, Zipfel WR. Practical strategies for robust and inexpensive imaging of aqueous-cleared tissues. J Microsc 2023; 291:237-247. [PMID: 37413663 DOI: 10.1111/jmi.13213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Lightsheet microscopy offers an ideal method for imaging of large (mm-cm scale) biological tissues rendered transparent via optical clearing protocols. However the diversity of clearing technologies and tissue types, and how these are adapted to the microscope can make tissue mounting complicated and somewhat irreproducible. Tissue preparation for imaging can involve glues and or equilibration in a variety of expensive and/or proprietary formulations. Here we present practical advice for mounting and capping cleared tissues in optical cuvettes for macroscopic imaging, providing a standardised 3D cell that can be imaged routinely and relatively inexpensively. We show that acrylic cuvettes cause minimal spherical aberration with objective numerical apertures less than 0.65. Furthermore, we describe methods for aligning and assessing the light sheets, discriminating fluorescence from autofluorescence, identifying chromatic artefacts due to differential scattering and removing streak artefacts such that they do not confound downstream 3D object segmentation analyses, with mouse embryo, liver and heart imaging as demonstrated examples.
Collapse
Affiliation(s)
- Rebecca M Williams
- BRC Imaging Facility, Institute of Biotechnology, Cornell University, Ithaca, New York
| | - Jordana C Bloom
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Cara M Robertus
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - David Putnam
- Meinig School of Biomedical Engineering, Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
10
|
Ushakov DS, Finke S. Tissue optical clearing and 3D imaging of virus infections. Adv Virus Res 2023; 116:89-121. [PMID: 37524483 DOI: 10.1016/bs.aivir.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.
Collapse
Affiliation(s)
- Dmitry S Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Stefan Finke
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
11
|
Morizet J, Olivier N, Mahou P, Boutillon A, Stringari C, Beaurepaire E. Third harmonic imaging contrast from tubular structures in the presence of index discontinuity. Sci Rep 2023; 13:7850. [PMID: 37188736 DOI: 10.1038/s41598-023-34528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
Accurate interpretation of third harmonic generation (THG) microscopy images in terms of sample optical properties and microstructure is generally hampered by the presence of excitation field distortions resulting from sample heterogeneity. Numerical methods that account for these artifacts need to be established. In this work, we experimentally and numerically analyze the THG contrast obtained from stretched hollow glass pipettes embedded in different liquids. We also characterize the nonlinear optical properties of 2,2[Formula: see text]-thiodiethanol (TDE), a water-soluble index-matching medium. We find that index discontinuity not only changes the level and modulation amplitude of polarization-resolved THG signals, but can even change the polarization direction producing maximum THG near interfaces. We then show that a finite-difference time-domain (FDTD) modeling strategy can accurately account for contrast observed in optically heterogeneous samples, whereas reference Fourier-based numerical approaches are accurate only in the absence of index mismatch. This work opens perspectives for interpreting THG microscopy images of tubular objects and other geometries.
Collapse
Affiliation(s)
- Joséphine Morizet
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Nicolas Olivier
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Arthur Boutillon
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, 01062, Germany
| | - Chiara Stringari
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
12
|
Homma S, Shimada T, Wada I, Kumaki K, Sato N, Yaginuma H. A three-component model of the spinal nerve ramification: Bringing together the human gross anatomy and modern Embryology. Front Neurosci 2023; 16:1009542. [PMID: 36726852 PMCID: PMC9884977 DOI: 10.3389/fnins.2022.1009542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023] Open
Abstract
Due to its long history, the study of human gross anatomy has not adequately incorporated modern embryological findings; consequently, the current understanding has often been incompatible with recent discoveries from molecular studies. Notably, the traditional epaxial and hypaxial muscle distinction, and their corresponding innervation by the dorsal and ventral rami of the spinal nerve, do not correspond to the primaxial and abaxial muscle distinction, defined by the mesodermal lineages of target tissues. To resolve the disagreement between adult anatomy and embryology, we here propose a novel hypothetical model of spinal nerve ramification. Our model is based on the previously unknown developmental process of the intercostal nerves. Observations of these nerves in the mouse embryos revealed that the intercostal nerves initially had superficial and deep ventral branches, which is contrary to the general perception of a single ventral branch. The initial dual innervation pattern later changes into an adult-like single branch pattern following the retraction of the superficial branch. The modified intercostal nerves consist of the canonical ventral branches and novel branches that run on the muscular surface of the thorax, which sprout from the lateral cutaneous branches. We formulated the embryonic branching pattern into the hypothetical ramification model of the human spinal nerve so that the branching pattern is compatible with the developmental context of the target muscles. In our model, every spinal nerve consists of three components: (1) segmental branches that innervate the primaxial muscles, including the dorsal rami, and short branches and long superficial anterior branches from the ventral rami; (2) plexus-forming intramural branches, the serial homolog of the canonical intercostal nerves, which innervate the abaxial portion of the body wall; and (3) plexus-forming extramural branches, the series of novel branches located outside of the body wall, which innervate the girdle and limb muscles. The selective elaboration or deletion of each component successfully explains the reasoning for the standard morphology and variability of the spinal nerve. Therefore, our model brings a novel understanding of spinal nerve development and valuable information for basic and clinical sciences regarding the diverse branching patterns of the spinal nerve.
Collapse
Affiliation(s)
- Shunsaku Homma
- Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan
| | - Takako Shimada
- Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Katsuji Kumaki
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
13
|
Lopes MM, Paysan J, Rino J, Lopes SM, Pereira de Almeida L, Cortes L, Nobre RJ. A new protocol for whole-brain biodistribution analysis of AAVs by tissue clearing, light-sheet microscopy and semi-automated spatial quantification. Gene Ther 2022; 29:665-679. [PMID: 36316447 DOI: 10.1038/s41434-022-00372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/23/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has become one of the most promising gene delivery systems for both in vitro and in vivo applications. However, a key challenge is the lack of suitable imaging technologies to evaluate delivery, biodistribution and tropism of rAAVs and efficiently monitor disease amelioration promoted by AAV-based therapies at a whole-organ level with single-cell resolution. Therefore, we aimed to establish a new pipeline for the biodistribution analysis of natural and new variants of AAVs at a whole-brain level by tissue clearing and light-sheet fluorescence microscopy (LSFM). To test this platform, neonatal C57BL/6 mice were intravenously injected with rAAV9 encoding EGFP and, after sacrifice, brains were processed by standard immunohistochemistry and a recently released aqueous-based clearing procedure. This clearing technique required no dedicated equipment and rendered highly cleared brains, while simultaneously preserving endogenous fluorescence. Moreover, three-dimensional imaging by LSFM allowed the quantitative analysis of EGFP at a whole-brain level, as well as the reconstruction of Purkinje cells for the retrieval of valuable morphological information inaccessible by standard immunohistochemistry. In conclusion, the pipeline herein described takes the AAVs to a new level when coupled to LSFM, proving its worth as a bioimaging tool in tropism and gene therapy studies.
Collapse
Affiliation(s)
- Miguel M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - José Rino
- iMM - Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- ViraVector - Viral Vectors for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.
- FFUC - Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal.
| | - Luísa Cortes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
- MICC-CNC - Microscopy Imaging Center of Coimbra - CNC, University of Coimbra, Coimbra, Portugal.
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
- ViraVector - Viral Vectors for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
A method for matching the refractive index and dynamic viscosity of transparent replicas of rock for flow visualization. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
16
|
Ryu Y, Kim Y, Lim HR, Kim HJ, Park BS, Kim JG, Park SJ, Ha CM. Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging. Int J Mol Sci 2022; 23:ijms23126826. [PMID: 35743267 PMCID: PMC9224586 DOI: 10.3390/ijms23126826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Recent advances in optical clearing techniques have dramatically improved deep tissue imaging by reducing the obscuring effects of light scattering and absorption. However, these optical clearing methods require specialized equipment or a lengthy undertaking with complex protocols that can lead to sample volume changes and distortion. In addition, the imaging of cleared tissues has limitations, such as fluorescence bleaching, harmful and foul-smelling solutions, and the difficulty of handling samples in high-viscosity refractive index (RI) matching solutions. To address the various limitations of thick tissue imaging, we developed an Aqueous high refractive Index matching and tissue Clearing solution for Imaging (termed AICI) with a one-step tissue clearing protocol that was easily made at a reasonable price in our own laboratory without any equipment. AICI can rapidly clear a 1 mm thick brain slice within 90 min with simultaneous RI matching, low viscosity, and a high refractive index (RI = 1.466), allowing the imaging of the sample without additional processing. We compared AICI with commercially available RI matching solutions, including optical clear agents (OCAs), for tissue clearing. The viscosity of AICI is closer to that of water compared with other RI matching solutions, and there was a less than 2.3% expansion in the tissue linear morphology during 24 h exposure to AICI. Moreover, AICI remained fluid over 30 days of air exposure, and the EGFP fluorescence signal was only reduced to ~65% after 10 days. AICI showed a limited clearing of brain tissue >3 mm thick. However, fine neuronal structures, such as dendritic spines and axonal boutons, could still be imaged in thick brain slices treated with AICI. Therefore, AICI is useful not only for the three-dimensional (3D) high-resolution identification of neuronal structures, but also for the examination of multiple structural imaging by neuronal distribution, projection, and gene expression in deep brain tissue. AICI is applicable beyond the imaging of fluorescent antibodies and dyes, and can clear a variety of tissue types, making it broadly useful to researchers for optical imaging applications.
Collapse
Affiliation(s)
- Youngjae Ryu
- Research Strategy Office and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, Korea; (Y.R.); (Y.K.); (H.R.L.)
- Department of Histology, College of Veterinary Medicine, Kyungpook University, Daegu 41566, Korea;
| | - Yoonju Kim
- Research Strategy Office and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, Korea; (Y.R.); (Y.K.); (H.R.L.)
| | - Hye Ryeong Lim
- Research Strategy Office and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, Korea; (Y.R.); (Y.K.); (H.R.L.)
| | - Hyung-Joon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41068, Korea;
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (B.S.P.); (J.G.K.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (B.S.P.); (J.G.K.)
| | - Sang-Joon Park
- Department of Histology, College of Veterinary Medicine, Kyungpook University, Daegu 41566, Korea;
| | - Chang Man Ha
- Research Strategy Office and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, Korea; (Y.R.); (Y.K.); (H.R.L.)
- Correspondence:
| |
Collapse
|
17
|
Hériché M, Arnould C, Wipf D, Courty PE. Imaging plant tissues: advances and promising clearing practices. TRENDS IN PLANT SCIENCE 2022; 27:601-615. [PMID: 35339361 DOI: 10.1016/j.tplants.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The study of the organ structure of plants and understanding their physiological complexity requires 3D imaging with subcellular resolution. Most plant organs are highly opaque to light, and their study under optical sectioning microscopes is therefore difficult. In animals, many protocols have been developed to make organs transparent to light using clearing protocols (CPs). By contrast, clearing plant tissues is challenging because of the presence of fibers and pigments. We describe progress in the development of plant CPs over the past 20 years through a modified taxonomy of CPs based on their physical and optical parameters that affect tissue properties. We also discuss successful approaches that combine CPs with new microscopy methods and their future applications in plant science research.
Collapse
Affiliation(s)
- Mathilde Hériché
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Christine Arnould
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
18
|
Dunshee LC, McDonough R, Price C, Kiick KL. Retention of peptide-based vesicles in murine knee joints after intra-articular injection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Sun T, Li Y, Förstera B, Stanic K, Lu S, Steffens S, Yin C, Ertürk A, Megens RTA, Weber C, Habenicht A, Mohanta SK. Tissue Clearing Approaches in Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:747-763. [PMID: 35237999 DOI: 10.1007/978-1-0716-1924-7_45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in cardiovascular research have led to a more comprehensive understanding of molecular mechanisms of atherosclerosis. It has become apparent that the disease involves three layers of the arterial wall: the intima, the media, and a connective tissue coat termed the adventitia. It is also now appreciated that arteries are surrounded by adipose and neuronal tissues. In addition, adjacent to and within the adventitia, arteries are embedded in a loose connective tissue containing blood vessels (vasa vasora) and lymph vessels, artery-draining lymph nodes and components of the peripheral nervous system, including periarterial nerves and ganglia. During atherogenesis, each of these tissues undergoes marked structural and cellular alterations. We propose that a better understanding of these cell-cell and cell-tissue interactions may considerably advance our understanding of cardiovascular disease pathogenesis. Methods to acquire subcellular optical access to the intact tissues surrounding healthy and diseased arteries are urgently needed to achieve these aims. Tissue clearing is a landmark next-generation, three-dimensional (3D) microscopy technique that allows to image large-scale hitherto inaccessible intact deep tissue compartments. It allows for detailed reconstructions of arteries by a combination of labelling, clearing, advanced microscopies and other imaging and data-analysis tools. Here, we describe two distinct tissue clearing protocols; solvent-based modified three-dimensional imaging of solvent-cleared organs (3DISCO) clearing and another using aqueous-based 2,2'-thiodiethanol (TDE) clearing, both of which complement each other.
Collapse
Affiliation(s)
- Ting Sun
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Yuanfang Li
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Benjamin Förstera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Karen Stanic
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Shu Lu
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Changjun Yin
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Sarajo K Mohanta
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany. .,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
20
|
Peredo N, Valle-Tenney R, Melis S, Mesnieres M, Nefyodova E, Maes C. Visualization and quantification of the stromal-vascular compartment in fetal or adult mouse bones: From sampling to high-resolution 3D image analysis. STAR Protoc 2022. [DOI: 10.1016/j.xpro.2022.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Liu CJ, Ammon W, Jones RJ, Nolan J, Wang R, Chang S, Frosch MP, Yendiki A, Boas DA, Magnain C, Fischl B, Wang H. Refractive-index matching enhanced polarization sensitive optical coherence tomography quantification in human brain tissue. BIOMEDICAL OPTICS EXPRESS 2022; 13:358-372. [PMID: 35154876 PMCID: PMC8803034 DOI: 10.1364/boe.443066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 05/11/2023]
Abstract
The importance of polarization-sensitive optical coherence tomography (PS-OCT) has been increasingly recognized in human brain imaging. Despite the recent progress of PS-OCT in revealing white matter architecture and orientation, quantification of fine-scale fiber tracts in the human brain cortex has been a challenging problem, due to a low birefringence in the gray matter. In this study, we investigated the effect of refractive index matching by 2,2'-thiodiethanol (TDE) immersion on the improvement of PS-OCT measurements in ex vivo human brain tissue. We show that we can obtain fiber orientation maps of U-fibers that underlie sulci, as well as cortical fibers in the gray matter, including radial fibers in gyri and distinct layers of fibers exhibiting laminar organization. Further analysis shows that index matching reduces the noise in axis orientation measurements by 56% and 39%, in white and gray matter, respectively. Index matching also enables precise measurements of apparent birefringence, which was underestimated in the white matter by 82% but overestimated in the gray matter by 16% prior to TDE immersion. Mathematical simulations show that the improvements are primarily attributed to the reduction in the tissue scattering coefficient, leading to an enhanced signal-to-noise ratio in deeper tissue regions, which could not be achieved by conventional noise reduction methods.
Collapse
Affiliation(s)
- Chao J Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - William Ammon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert J Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jackson Nolan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruopeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Shuaibin Chang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Caroline Magnain
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- MIT HST, Computer Science and AI Lab, Cambridge, MA 02139, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
22
|
Richardson DS, Guan W, Matsumoto K, Pan C, Chung K, Ertürk A, Ueda HR, Lichtman JW. TISSUE CLEARING. NATURE REVIEWS. METHODS PRIMERS 2021; 1:84. [PMID: 35128463 PMCID: PMC8815095 DOI: 10.1038/s43586-021-00080-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Tissue clearing of gross anatomical samples was first described over a century ago and has only recently found widespread use in the field of microscopy. This renaissance has been driven by the application of modern knowledge of optical physics and chemical engineering to the development of robust and reproducible clearing techniques, the arrival of new microscopes that can image large samples at cellular resolution and computing infrastructure able to store and analyze large data volumes. Many biological relationships between structure and function require investigation in three dimensions and tissue clearing therefore has the potential to enable broad discoveries in the biological sciences. Unfortunately, the current literature is complex and could confuse researchers looking to begin a clearing project. The goal of this Primer is to outline a modular approach to tissue clearing that allows a novice researcher to develop a customized clearing pipeline tailored to their tissue of interest. Further, the Primer outlines the required imaging and computational infrastructure needed to perform tissue clearing at scale, gives an overview of current applications, discusses limitations and provides an outlook on future advances in the field.
Collapse
Affiliation(s)
- Douglas S. Richardson
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Katsuhiko Matsumoto
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Chenchen Pan
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Nano Biomedical Engineering (Nano BME) Graduate Program, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Jeff W. Lichtman
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
23
|
Buzzaccaro S, Mollame AF, Piazza R. Relaxation in aging thermoreversible gels: the role of thermal history. SOFT MATTER 2021; 17:7623-7627. [PMID: 34382994 DOI: 10.1039/d1sm00711d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast setting of gels originating from an arrested phase separation leads to solid structures that incorporate a substantial amount of frozen-in stresses. Using a colloidal system made of particles whose interactions can accurately be tuned with temperature and exploiting Photon Correlation Imaging (PCI), an optical correlation technique blending the powers of scattering and imaging, we show that the relaxation of these internal stresses, which occurs through a cascade of microscopic restructuring events, is strongly influenced by the thermal history of the sample. By changing with a temperature jump the interparticle interactions in an already set gel, we specifically show that gels formed by a deep quench within the coexistence region store a lot of residual stress. This stress quickly relaxes when the interparticle attractions are weakened by decreasing temperature. Conversely, the relaxation of stresses accumulated in gels obtained by a shallower quench comes to a halt by a temperature jump that hardens the gel structure. The evidence we collected may provide useful hints about tempering and annealing processes in disordered solids.
Collapse
Affiliation(s)
- Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | |
Collapse
|
24
|
Multicolor 3D Confocal Imaging of Thick Tissue Sections. Methods Mol Biol 2021; 2350:95-104. [PMID: 34331281 DOI: 10.1007/978-1-0716-1593-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In multicellular organisms, most physiological and pathological processes involve an interplay between various cells and molecules that act both locally and systemically. To understand how these complex and dynamic processes occur in time and space, imaging techniques are key. Advances in tissue processing techniques and microscopy now allow us to probe these processes at a large scale and at the same time at a level of detail previously unachievable. Indeed, it is now possible to reliably quantify multiple protein expression levels at single-cell resolution in whole organs using three-dimensional fluorescence imaging techniques. Here we describe a method to prepare adult mouse bone tissue for multiplexed confocal imaging of thick tissue sections. Up to eight different fluorophores can be multiplexed using this technique and spectrally resolved using standard confocal microscopy. The optical clearing method described allows detection of these fluorophores up to a depth of >700 μm in the far-red. Although the method was initially developed for bone tissue imaging, we have successfully applied it to several other tissue types.
Collapse
|
25
|
Valli J, Sanderson J. Super-Resolution Fluorescence Microscopy Methods for Assessing Mouse Biology. Curr Protoc 2021; 1:e224. [PMID: 34436832 DOI: 10.1002/cpz1.224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Super-resolution (diffraction unlimited) microscopy was developed 15 years ago; the developers were awarded the Nobel Prize in Chemistry in recognition of their work in 2014. Super-resolution microscopy is increasingly being applied to diverse scientific fields, from single molecules to cell organelles, viruses, bacteria, plants, and animals, especially the mammalian model organism Mus musculus. In this review, we explain how super-resolution microscopy, along with fluorescence microscopy from which it grew, has aided the renaissance of the light microscope. We cover experiment planning and specimen preparation and explain structured illumination microscopy, super-resolution radial fluctuations, stimulated emission depletion microscopy, single-molecule localization microscopy, and super-resolution imaging by pixel reassignment. The final section of this review discusses the strengths and weaknesses of each super-resolution technique and how to choose the best approach for your research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
26
|
Saito H, Matsukawa-Usami F, Fujimori T, Kimura T, Ide T, Yamamoto T, Shibata T, Onoue K, Okayama S, Yonemura S, Misaki K, Soba Y, Kakui Y, Sato M, Toya M, Takeichi M. Tracheal motile cilia in mice require CAMSAP3 for formation of central microtubule pair and coordinated beating. Mol Biol Cell 2021; 32:ar12. [PMID: 34319756 PMCID: PMC8684751 DOI: 10.1091/mbc.e21-06-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motile cilia of multiciliated epithelial cells undergo synchronized beating to produce fluid flow along the luminal surface of various organs. Each motile cilium consists of an axoneme and a basal body (BB), which are linked by a “transition zone” (TZ). The axoneme exhibits a characteristic 9+2 microtubule arrangement important for ciliary motion, but how this microtubule system is generated is not yet fully understood. Here we show that calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), a protein that can stabilize the minus-end of a microtubule, concentrates at multiple sites of the cilium–BB complex, including the upper region of the TZ or the axonemal basal plate (BP) where the central pair of microtubules (CP) initiates. CAMSAP3 dysfunction resulted in loss of the CP and partial distortion of the BP, as well as the failure of multicilia to undergo synchronized beating. These findings suggest that CAMSAP3 plays pivotal roles in the formation or stabilization of the CP by localizing at the basal region of the axoneme and thereby supports the coordinated motion of multicilia in airway epithelial cells.
Collapse
Affiliation(s)
- Hiroko Saito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Fumiko Matsukawa-Usami
- Division of Embryology, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science, SOKENDAI, the Graduate University for Advanced Studies, Okazaki, 444-8787 Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science, SOKENDAI, the Graduate University for Advanced Studies, Okazaki, 444-8787 Japan
| | - Toshiya Kimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takaki Yamamoto
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Satoko Okayama
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kazuyo Misaki
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Yurina Soba
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan
| | - Mika Toya
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
27
|
Myers A, Ford J, Decker S, Crawford F, Tzekov R. Volumetric histological characterization of optic nerve degeneration using tissue clearing: literature review and practical study. J Histotechnol 2021; 44:206-216. [PMID: 34132156 DOI: 10.1080/01478885.2021.1938808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tissue clearing technologies can greatly improve the depth and accuracy with which the three-dimensional structure of tissues, especially those of the nervous system, can be visualized. A review of the present literature suggests that the growing diversity and sophistication of various approaches have contributed to the expansion of this method to a greater variety of tissue types, experimental conditions, and imaging modalities. In the proof-of-concept study presented in this paper, a simplified and modified version of the tissue clearing method CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) was used in conjunction with fluorescent staining and immunohistochemistry to illustrate the three-dimensional structure and molecular characteristics of inflammatory and degenerative activity in the mouse optic nerve. Based on the studies summarized in this mini-review, and our impression from using the mCUBIC method, it appears that tissue clearing could be a viable approach revealing three-dimensional histological features of myelin-rich tissues under normal conditions and after injury.
Collapse
Affiliation(s)
- April Myers
- Vision Research Program, The Roskamp Institute, Sarasota, FL, USA.,Department of Neurobiology, New College of Florida, Sarasota, FL, USA.,Vision Science Graduate Program, University of California Berkeley, Berkeley, CA, USA
| | - Jonathan Ford
- Department of Radiology, University of South Florida, Tampa, FL, USA
| | - Summer Decker
- Department of Radiology, University of South Florida, Tampa, FL, USA
| | - Fiona Crawford
- Vision Research Program, The Roskamp Institute, Sarasota, FL, USA.,James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - Radouil Tzekov
- Vision Research Program, The Roskamp Institute, Sarasota, FL, USA.,James A. Haley Veterans' Administration Hospital, Tampa, FL, USA.,Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
28
|
Nowzari F, Wang H, Khoradmehr A, Baghban M, Baghban N, Arandian A, Muhaddesi M, Nabipour I, Zibaii MI, Najarasl M, Taheri P, Latifi H, Tamadon A. Three-Dimensional Imaging in Stem Cell-Based Researches. Front Vet Sci 2021; 8:657525. [PMID: 33937378 PMCID: PMC8079735 DOI: 10.3389/fvets.2021.657525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cells have an important role in regenerative therapies, developmental biology studies and drug screening. Basic and translational research in stem cell technology needs more detailed imaging techniques. The possibility of cell-based therapeutic strategies has been validated in the stem cell field over recent years, a more detailed characterization of the properties of stem cells is needed for connectomics of large assemblies and structural analyses of these cells. The aim of stem cell imaging is the characterization of differentiation state, cellular function, purity and cell location. Recent progress in stem cell imaging field has included ultrasound-based technique to study living stem cells and florescence microscopy-based technique to investigate stem cell three-dimensional (3D) structures. Here, we summarized the fundamental characteristics of stem cells via 3D imaging methods and also discussed the emerging literatures on 3D imaging in stem cell research and the applications of both classical 2D imaging techniques and 3D methods on stem cells biology.
Collapse
Affiliation(s)
- Fariborz Nowzari
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Huimei Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mahdi Muhaddesi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad I. Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Najarasl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Payam Taheri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Physics, Shahid Beheshti University, Tehran, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
29
|
Berg-Johansen S, Neugebauer M, Aiello A, Leuchs G, Banzer P, Marquardt C. Microsphere kinematics from the polarization of tightly focused nonseparable light. OPTICS EXPRESS 2021; 29:12429-12439. [PMID: 33985002 DOI: 10.1364/oe.419540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Recently, it was shown that vector beams can be utilized for fast kinematic sensing via measurements of their global polarization state [Optica2, 864 (2015)10.1364/OPTICA.2.000864]. The method relies on correlations between the spatial and polarization degrees of freedom of the illuminating field which result from its nonseparable mode structure. Here, we extend the method to the nonparaxial regime. We study experimentally and theoretically the far-field polarization state generated by the scattering of a dielectric microsphere in a tightly focused vector beam as a function of the particle position. Using polarization measurements only, we demonstrate position sensing of a Mie particle in three dimensions. Our work extends the concept of back focal plane interferometry and highlights the potential of polarization analysis in optical tweezers employing structured light.
Collapse
|
30
|
Schneidereit D, Bröllochs A, Ritter P, Kreiß L, Mokhtari Z, Beilhack A, Krönke G, Ackermann JA, Faas M, Grüneboom A, Schürmann S, Friedrich O. An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Am J Cancer Res 2021; 11:2876-2891. [PMID: 33456578 PMCID: PMC7806485 DOI: 10.7150/thno.51558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/12/2020] [Indexed: 01/27/2023] Open
Abstract
Rationale: Structural remodeling or damage as a result of disease or injury is often not evenly distributed throughout a tissue but strongly depends on localization and extent of damaging stimuli. Skeletal muscle as a mechanically active organ can express signs of local or even systemic myopathic damage, necrosis, or repair. Conventionally, muscle biopsies (patients) or whole muscles (animal models) are mechanically sliced and stained to assess structural alterations histologically. Three-dimensional tissue information can be obtained by applying deep imaging modalities, e.g. multiphoton or light-sheet microscopy. Chemical clearing approaches reduce scattering, e.g. through matching refractive tissue indices, to overcome optical penetration depth limits in thick tissues. Methods: Here, we optimized a range of different clearing protocols. We find aqueous solution-based protocols employing (20-80%) 2,2'-thiodiethanol (TDE) to be advantageous over organic solvents (dibenzyl ether, cinnamate) regarding the preservation of muscle morphology, ease-of-use, hazard level, and costs. Results: Applying TDE clearing to a mouse model of local cardiotoxin (CTX)-induced muscle necrosis, a complete loss of myosin-II signals was observed in necrotic areas with little change in fibrous collagen or autofluorescence (AF) signals. The 3D aspect of myofiber integrity could be assessed, and muscle necrosis in whole muscle was quantified locally via the ratios of detected AF, forward- and backward-scattered Second Harmonic Generation (fSHG, bSHG) signals. Conclusion: TDE optical clearing is a versatile tool to study muscle architecture in conjunction with label-free multiphoton imaging in 3D in injury/myopathy models and might also be useful in studying larger biofabricated constructs in regenerative medicine.
Collapse
|
31
|
Andronov L, Vonesch JL, Klaholz BP. Practical Aspects of Super-Resolution Imaging and Segmentation of Macromolecular Complexes by dSTORM. Methods Mol Biol 2021; 2247:271-286. [PMID: 33301123 DOI: 10.1007/978-1-0716-1126-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Super-resolution fluorescence microscopy allows imaging macromolecular complexes down to the nanoscopic scale and thus is a great tool to combine and integrate cellular imaging in the native cellular environment with structural analysis by X-ray crystallography or high-resolution cryo electron microscopy or tomography. Here we describe practical aspects of SMLM imaging by dSTORM, from the initial sample preparation using mounting media, antibodies and fluorescent markers, the experimental setup for data acquisition including multi-color colocalization and 3D data acquisition, and finally tips and clues on advanced data processing that includes image reconstruction and data segmentation using 2D or 3D clustering methods. This approach opens the path toward multi-resolution integration in cellular structural biology.
Collapse
Affiliation(s)
- Leonid Andronov
- Centre for Integrative Biology (CBI), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, Illkirch, France
| | - Jean-Luc Vonesch
- Centre for Integrative Biology (CBI), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, Illkirch, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
32
|
Kamp M, de Nijs B, Baumberg JJ, Scherman OA. Contact angle as a powerful tool in anisotropic colloid synthesis. J Colloid Interface Sci 2021; 581:417-426. [PMID: 32771750 DOI: 10.1016/j.jcis.2020.07.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022]
Abstract
Nucleation and growth is a technique widely used to prepare colloids, in which droplets are adsorbed onto substrate particles. Changing the contact angle of the substrates can greatly alter the morphology of the product particles. Here, we investigate the nucleation and growth of 3-methacryloxypropyltrimethoxysilane (MPTMS) both onto Stöber spheres and onto (cross-linked) MPTMS* spheres. The former results in 'snowman' particles with a cap-shaped MPTMS* compartment, and we show that their morphology is highly controllable via the MPTMS content in the reaction mixture. The contact angle of the MPTMS* compartment decreases with droplet diameter, suggesting that this wetting process is affected not only by surface tension but also by line tension. In contrast to Stöber spheres, MPTMS* substrate particles yield highly reproducible and tuneable 'engulfed-sphere' colloids with an internal reference axis (but a homogeneous mass distribution). These engulfed-sphere particles can be fully index-matched for confocal microscopy on account of their homogeneous refractive index. Suitable index-matching mixtures of polar and of low-polar media are presented, where cyclohexyl iodide (CHI) is introduced as a new medium for colloids of high refractive index. Finally, the index-matched engulfed-sphere colloids are self-assembled into (close-packed and long-range) plastic phases, and the particles' rotational diffusion inside the crystal phases is tracked via confocal microscopy.
Collapse
Affiliation(s)
- Marlous Kamp
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; NanoPhotonics Centre, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
| | - Bart de Nijs
- NanoPhotonics Centre, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| |
Collapse
|
33
|
Bekkouche BMB, Fritz HKM, Rigosi E, O'Carroll DC. Comparison of Transparency and Shrinkage During Clearing of Insect Brains Using Media With Tunable Refractive Index. Front Neuroanat 2020; 14:599282. [PMID: 33328907 PMCID: PMC7714936 DOI: 10.3389/fnana.2020.599282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022] Open
Abstract
Improvement of imaging quality has the potential to visualize previously unseen building blocks of the brain and is therefore one of the great challenges in neuroscience. Rapid development of new tissue clearing techniques in recent years have attempted to solve imaging compromises in thick brain samples, particularly for high resolution optical microscopy, where the clearing medium needs to match the high refractive index of the objective immersion medium. These problems are exacerbated in insect tissue, where numerous (initially air-filled) tracheal tubes branching throughout the brain increase the scattering of light. To date, surprisingly few studies have systematically quantified the benefits of such clearing methods using objective transparency and tissue shrinkage measurements. In this study we compare a traditional and widely used insect clearing medium, methyl salicylate combined with permanent mounting in Permount (“MS/P”) with several more recently applied clearing media that offer tunable refractive index (n): 2,2′-thiodiethanol (TDE), “SeeDB2” (in variants SeeDB2S and SeeDB2G matched to oil and glycerol immersion, n = 1.52 and 1.47, respectively) and Rapiclear (also with n = 1.52 and 1.47). We measured transparency and tissue shrinkage by comparing freshly dissected brains with cleared brains from dipteran flies, with or without addition of vacuum or ethanol pre-treatments (dehydration and rehydration) to evacuate air from the tracheal system. The results show that ethanol pre-treatment is very effective for improving transparency, regardless of the subsequent clearing medium, while vacuum treatment offers little measurable benefit. Ethanol pre-treated SeeDB2G and Rapiclear brains show much less shrinkage than using the traditional MS/P method. Furthermore, at lower refractive index, closer to that of glycerol immersion, these recently developed media offer outstanding transparency compared to TDE and MS/P. Rapiclear protocols were less laborious compared to SeeDB2, but both offer sufficient transparency and refractive index tunability to permit super-resolution imaging of local volumes in whole mount brains from large insects, and even light-sheet microscopy. Although long-term permanency of Rapiclear stored samples remains to be established, our samples still showed good preservation of fluorescence after storage for more than a year at room temperature.
Collapse
Affiliation(s)
| | | | - Elisa Rigosi
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
34
|
Franceschini A, Costantini I, Pavone FS, Silvestri L. Dissecting Neuronal Activation on a Brain-Wide Scale With Immediate Early Genes. Front Neurosci 2020; 14:569517. [PMID: 33192255 PMCID: PMC7645181 DOI: 10.3389/fnins.2020.569517] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Visualizing neuronal activation on a brain-wide scale yet with cellular resolution is a fundamental technical challenge for neuroscience. This would enable analyzing how different neuronal circuits are disrupted in pathology and how they could be rescued by pharmacological treatments. Although this goal would have appeared visionary a decade ago, recent technological advances make it eventually feasible. Here, we review the latest developments in the fields of genetics, sample preparation, imaging, and image analysis that could be combined to afford whole-brain cell-resolution activation mapping. We show how the different biochemical and optical methods have been coupled to study neuronal circuits at different spatial and temporal scales, and with cell-type specificity. The inventory of techniques presented here could be useful to find the tools best suited for a specific experiment. We envision that in the next years, mapping of neuronal activation could become routine in many laboratories, allowing dissecting the neuronal counterpart of behavior.
Collapse
Affiliation(s)
| | - Irene Costantini
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
| | - Francesco S Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Allegra Mascaro AL, Conti E, Lai S, Di Giovanna AP, Spalletti C, Alia C, Panarese A, Scaglione A, Sacconi L, Micera S, Caleo M, Pavone FS. Combined Rehabilitation Promotes the Recovery of Structural and Functional Features of Healthy Neuronal Networks after Stroke. Cell Rep 2020; 28:3474-3485.e6. [PMID: 31553915 DOI: 10.1016/j.celrep.2019.08.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/19/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022] Open
Abstract
Rehabilitation is considered the most effective treatment for promoting the recovery of motor deficits after stroke. One of the most challenging experimental goals is to unambiguously link brain rewiring to motor improvement prompted by rehabilitative therapy. Previous work showed that robotic training combined with transient inactivation of the contralesional cortex promotes a generalized recovery in a mouse model of stroke. Here, we use advanced optical imaging and manipulation tools to study cortical remodeling induced by this rehabilitation paradigm. We show that the stabilization of peri-infarct synaptic contacts accompanies increased vascular density induced by angiogenesis. Furthermore, temporal and spatial features of cortical activation recover toward pre-stroke conditions through the progressive formation of a new motor representation in the peri-infarct area. In the same animals, we observe reinforcement of inter-hemispheric connectivity. Our results provide evidence that combined rehabilitation promotes the restoration of structural and functional features distinctive of healthy neuronal networks.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa 56124, Italy; European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy.
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Stefano Lai
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | | | | | - Claudia Alia
- Neuroscience Institute, National Research Council, Pisa 56124, Italy
| | - Alessandro Panarese
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Alessandro Scaglione
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino 50019, Italy
| | - Silvestro Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Matteo Caleo
- Neuroscience Institute, National Research Council, Pisa 56124, Italy; Department of Biomedical Sciences, University of Padua, Padova 35131, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino 50019, Italy
| |
Collapse
|
36
|
Yang J, Chen IA, Chang S, Tang J, Lee B, Kılıç K, Sunil S, Wang H, Varadarajan D, Magnain C, Chen SC, Costantini I, Pavone F, Fischl B, Boas DA. Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters. NEUROPHOTONICS 2020; 7:045005. [PMID: 33094126 PMCID: PMC7575831 DOI: 10.1117/1.nph.7.4.045005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 05/24/2023]
Abstract
Significance: The optical properties of biological samples provide information about the structural characteristics of the tissue and any changes arising from pathological conditions. Optical coherence tomography (OCT) has proven to be capable of extracting tissue's optical properties using a model that combines the exponential decay due to tissue scattering and the axial point spread function that arises from the confocal nature of the detection system, particularly for higher numerical aperture (NA) measurements. A weakness in estimating the optical properties is the inter-parameter cross-talk between tissue scattering and the confocal parameters defined by the Rayleigh range and the focus depth. Aim: In this study, we develop a systematic method to improve the characterization of optical properties with high-NA OCT. Approach: We developed a method that spatially parameterizes the confocal parameters in a previously established model for estimating the optical properties from the depth profiles of high-NA OCT. Results: The proposed parametrization model was first evaluated on a set of intralipid phantoms and then validated using a low-NA objective in which cross-talk from the confocal parameters is negligible. We then utilize our spatially parameterized model to characterize optical property changes introduced by a tissue index matching process using a simple immersion agent, 2,2'-thiodiethonal. Conclusions: Our approach improves the confidence of parameter estimation by reducing the degrees of freedom in the non-linear fitting model.
Collapse
Affiliation(s)
- Jiarui Yang
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Ichun Anderson Chen
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Shuaibin Chang
- Boston University, Department of Electrical and Computer Engineering, Boston, United States
| | - Jianbo Tang
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Blaire Lee
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Smrithi Sunil
- Boston University, Department of Biomedical Engineering, Boston, United States
| | - Hui Wang
- Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, United States
| | - Divya Varadarajan
- Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, United States
| | - Caroline Magnain
- Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, United States
| | - Shih-Chi Chen
- The Chinese University of Hong Kong, Department of Mechanical Engineering, Hong Kong Special Administrative Region, China
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy
- National Research Council, National Institute of Optics, Italy
| | - Francesco Pavone
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy
| | - Bruce Fischl
- Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, United States
- Health Science and Technology/Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, United States
| |
Collapse
|
37
|
Egert D, Pettibone JR, Lemke S, Patel PR, Caldwell CM, Cai D, Ganguly K, Chestek CA, Berke JD. Cellular-scale silicon probes for high-density, precisely localized neurophysiology. J Neurophysiol 2020; 124:1578-1587. [PMID: 32965150 DOI: 10.1152/jn.00352.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural implants with large numbers of electrodes have become an important tool for examining brain functions. However, these devices typically displace a large intracranial volume compared with the neurons they record. This large size limits the density of implants, provokes tissue reactions that degrade chronic performance, and impedes the ability to accurately visualize recording sites within intact circuits. Here we report next-generation silicon-based neural probes at a cellular scale (5 × 10 µm cross section), with ultra-high-density packing (as little as 66 µm between shanks) and 64 or 256 closely spaced recording sites per probe. We show that these probes can be inserted into superficial or deep brain structures and record large spikes in freely behaving rats for many weeks. Finally, we demonstrate a slice-in-place approach for the precise registration of recording sites relative to nearby neurons and anatomical features, including striatal µ-opioid receptor patches. This scalable technology provides a valuable tool for examining information processing within neural circuits and potentially for human brain-machine interfaces.NEW & NOTEWORTHY Devices with many electrodes penetrating into the brain are an important tool for investigating neural information processing, but they are typically large compared with neurons. This results in substantial damage and makes it harder to reconstruct recording locations within brain circuits. This paper presents high-channel-count silicon probes with much smaller features and a method for slicing through probe, brain, and skull all together. This allows probe tips to be directly observed relative to immunohistochemical markers.
Collapse
Affiliation(s)
- Daniel Egert
- Department of Neurology, University of California, San Francisco, California
| | - Jeffrey R Pettibone
- Department of Neurology, University of California, San Francisco, California
| | - Stefan Lemke
- Neuroscience Graduate Program, University of California, San Francisco, California
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ciara M Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Dawen Cai
- Department of Molecular and Cell Biology, University of Michigan, Ann Arbor, Michigan
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, California.,Veterans Affairs Medical Center, San Francisco, California.,Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan.,Neurosciences Program, University of Michigan, Ann Arbor, Michigan.,Robotics Program, University of Michigan, Ann Arbor, Michigan
| | - Joshua D Berke
- Department of Neurology, University of California, San Francisco, California.,Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| |
Collapse
|
38
|
Whole-Mount Immunofluorescence Staining of Early Mouse Embryos. Methods Mol Biol 2020. [PMID: 32944908 DOI: 10.1007/978-1-0716-0958-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Immunofluorescence staining enables the visualization of protein expression at a cellular or even sub-nuclear level. Whole-mount staining preserves the three-dimensional spatial information in biological samples allowing a comprehensive interpretation of expression domains. Here we describe the sample processing, protein detection using antibodies and confocal imaging of isolated preimplantation to early postimplantation mouse embryos up to Embryonic day 8.0 (E8.0).
Collapse
|
39
|
Dallas SL, Moore DS. Using confocal imaging approaches to understand the structure and function of osteocytes and the lacunocanalicular network. Bone 2020; 138:115463. [PMID: 32512167 PMCID: PMC7423610 DOI: 10.1016/j.bone.2020.115463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Although overlooked in the past, osteocytes have come to the forefront of skeletal biology and are now recognized as a key cell type that integrates hormonal, mechanical and other signals to control bone mass through regulation of both osteoblast and osteoclast activity. With the surge of recent interest in osteocytes as bone regulatory cells and the discovery that they also function as endocrine regulators of phosphate homeostasis, there has been renewed interest in understanding the structure and function of these unique and relatively inaccessible cells. Osteocytes are embedded within the mineralized bone matrix and are housed within a complex lacunocanalicular system which connects them with the circulation and with other organ systems. This has presented unique challenges for imaging these cells. This review summarizes recent advances in confocal imaging approaches for visualizing osteocytes and their lacunocanalicular networks in both living and fixed bone specimens and discusses how computational approaches can be combined with live and fixed cell imaging techniques to generate quantitative outputs and predictive models. The integration of advanced imaging with computational approaches promises to lead to a more in depth understanding of the structure and function of osteocyte networks and the lacunocanalicular system in the healthy and aging state as well as in pathological conditions in bone.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, United States of America.
| | - David S Moore
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, United States of America
| |
Collapse
|
40
|
Kennedy T, Rinker D, Broadie K. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model. BMC Biol 2020; 18:94. [PMID: 32731855 PMCID: PMC7392683 DOI: 10.1186/s12915-020-00817-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neural circuits are initially assembled during development when neurons synapse with potential partners and later refined as appropriate connections stabilize into mature synapses while inappropriate contacts are eliminated. Disruptions to this synaptogenic process impair connectivity optimization and can cause neurodevelopmental disorders. Intellectual disability (ID) and autism spectrum disorder (ASD) are often characterized by synaptic overgrowth, with the maintenance of immature or inappropriate synapses. Such synaptogenic defects can occur through mutation of a single gene, such as fragile X mental retardation protein (FMRP) loss causing the neurodevelopmental disorder fragile X syndrome (FXS). FXS represents the leading heritable cause of ID and ASD, but many other genes that play roles in ID and ASD have yet to be identified. RESULTS In a Drosophila FXS disease model, one dfmr150M null mutant stock exhibits previously unreported axonal overgrowths at developmental and mature stages in the giant fiber (GF) escape circuit. These excess axon projections contain both chemical and electrical synapse markers, indicating mixed synaptic connections. Extensive analyses show these supernumerary synapses connect known GF circuit neurons, rather than new, inappropriate partners, indicating hyperconnectivity within the circuit. Despite the striking similarities to well-characterized FXS synaptic defects, this new GF circuit hyperconnectivity phenotype is driven by genetic background mutations in this dfmr150M stock. Similar GF circuit synaptic overgrowth is not observed in independent dfmr1 null alleles. Bulked segregant analysis (BSA) was combined with whole genome sequencing (WGS) to identify the quantitative trait loci (QTL) linked to neural circuit hyperconnectivity. The results reveal 8 QTL associated with inappropriate synapse formation and maintenance in the dfmr150M mutant background. CONCLUSIONS Synaptogenesis is a complex, precisely orchestrated neurodevelopmental process with a large cohort of gene products coordinating the connectivity, synaptic strength, and excitatory/inhibitory balance between neuronal partners. This work identifies a number of genetic regions that contain mutations disrupting proper synaptogenesis within a particularly well-mapped neural circuit. These QTL regions contain potential new genes involved in synapse formation and refinement. Given the similarity of the synaptic overgrowth phenotype to known ID and ASD inherited conditions, identifying these genes should increase our understanding of these devastating neurodevelopmental disease states.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
41
|
Abstract
The recently developed expansion microscopy method (ExM) allows for the resolution of structures below the diffraction limit of light not by sophisticated instrumentation, but rather by physically expanding the molecular structure of cells. This happens by crosslinking the protein in the sample to a hydrogel that is polymerized in situ and subsequently expanded, tearing the proteins apart in a nearly isotropic manner. In the resulting, larger facsimile of the original sample, the fluorescence-labeled molecules of interest can be optically separated by conventional fluorescence microscopy since the intermolecular distances are enlarged by a factor ranging from ~4 to 20 depending on the chemistry used for the hydrogel. The achieved improvement in resolution thus corresponds to the expansion factor. Further increase in resolution beyond this value may be achieved by combining ExM with established super-resolution microscopy methods. Indeed, this is possible using structured illumination microscopy (SIM) (Halpern et al., 2017; Wang et al., 2018), single molecule localization microscopy (SMLM) (Zwettler et al., 2020) and stimulated emission depletion (STED), as we and others have shown recently (Gambarotto et al., 2019; Gao et al., 2018; Kim, Kim, Lee, & Shim, 2019; Unnersjö-Jess et al., 2016). Here, we provide a protocol, for our method, called ExSTED, which enabled us to achieve an increase in resolution of up to 30-fold compared to conventional microscopy, well beyond what is possible with conventional STED microscopy. Our protocol includes a strategy to achieve very high intensity fluorescence labeling, which is essential for optimal signal retention during the expansion process for ExSTED.
Collapse
Affiliation(s)
- Mengfei Gao
- Max Planck Institut für molekulare Zellbiologie und Genetik, Dresden, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Ria Thielhorn
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Rentsch
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Alf Honigmann
- Max Planck Institut für molekulare Zellbiologie und Genetik, Dresden, Germany
| | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Collins M, Li Y, Bowser R. RBM45 associates with nuclear stress bodies and forms nuclear inclusions during chronic cellular stress and in neurodegenerative diseases. Acta Neuropathol Commun 2020; 8:91. [PMID: 32586379 PMCID: PMC7318465 DOI: 10.1186/s40478-020-00965-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The RNA binding protein (RBP) RBM45 forms nuclear and cytoplasmic inclusions in neurons and glia in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP), and Alzheimer's disease (AD). The normal functions of RBM45 are poorly understood, as are the mechanisms by which it forms inclusions in disease. To better understand the normal and pathological functions of RBM45, we evaluated whether the protein functions via association with several membraneless organelles and whether such an association could promote the formation of nuclear RBM45 inclusions. Under basal conditions, RBM45 is diffusely distributed throughout the nucleus and does not localize to membraneless organelles, including nuclear speckles, Cajal bodies, or nuclear gems. During cellular stress, however, nuclear RBM45 undergoes a reversible, RNA-binding dependent incorporation into nuclear stress bodies (NSBs). Chronic stress leads to the persistent association of RBM45 with NSBs and the irreversible accumulation of nuclear RBM45 inclusions. We also quantified the cell type- and disease-specific patterns of RBM45 pathology in ALS, FTLD-TDP, and AD. RBM45 nuclear and cytoplasmic inclusions are found in both neurons and glia in ALS, FTLD-TDP, and AD but are absent in non-neurologic disease controls. Across neurodegenerative diseases, RBM45 nuclear inclusion pathology occurs more frequently than cytoplasmic RBM45 inclusion pathology and exhibits cell type-specific variation. Collectively, our results define new stress-associated functions of RBM45, a mechanism for nuclear RBM45 inclusion formation, a role for NSBs in the pathogenesis of ALS, FTLD-TDP, and AD, and further underscore the importance of protein self-association to both the normal and pathological functions of RBPs in these diseases.
Collapse
|
43
|
Brenna C, Khan AUM, Picascia T, Sun Q, Heuveline V, Gretz N. New technical approaches for
3D
morphological imaging and quantification of measurements. Anat Rec (Hoboken) 2020; 303:2702-2715. [DOI: 10.1002/ar.24463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Cinzia Brenna
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
| | - Arif ul Maula Khan
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
| | - Tiziana Picascia
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
| | - Quanchao Sun
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
- Department of Thoracic Surgery, Union HospitalTongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Vincent Heuveline
- University Computing CenterUniversity of Heidelberg Heidelberg Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
| |
Collapse
|
44
|
Ueda HR, Dodt HU, Osten P, Economo MN, Chandrashekar J, Keller PJ. Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron 2020; 106:369-387. [PMID: 32380050 PMCID: PMC7213014 DOI: 10.1016/j.neuron.2020.03.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/11/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka 565-0871, Japan.
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria; Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
45
|
Dumbović G, Sanjuan X, Perucho M, Forcales SV. Stimulated emission depletion (STED) super resolution imaging of RNA- and protein-containing domains in fixed cells. Methods 2020; 187:68-76. [PMID: 32360441 DOI: 10.1016/j.ymeth.2020.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Super resolution microscopy has changed our capability to visualize and understand spatial arrangements of RNA- and protein-containing domains in individual cells. In a previous study, we described a novel lncRNA, Tumor-associated NBL2 transcript (TNBL), which originates from a primate specific macrosatellite repeat. We aimed to describe several aspects of TNBL lncRNA, with one focus being pinpointing its precise location in the nucleus, as well as visualizing its interactions with proteins to deduce its functionality. Using a combination of STimulated Emission Depletion (STED) super resolution microscopy, single molecule RNA (smRNA) FISH against TNBL, and immunofluorescence against SAM68 perinucleolar body, we resolved the spatial complexity of the interaction between TNBL aggregates and SAM68 bodies at the perinucleolar region. Here, we describe protocols for a step-by-step optimized smRNA FISH/IF and STED imaging, detailing parameter settings, and three-dimensional data analysis of spatial positioning of subnuclear structures. These protocols can be employed for single-cell imaging of complex nuclear RNA-protein structures.
Collapse
Affiliation(s)
- Gabrijela Dumbović
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
| | - Xavier Sanjuan
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Advanced Light Microscopy Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Manuel Perucho
- Cancer Genetics and Epigenetics, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain; Tumor Initiation and Maintenance Program, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA, USA
| | - Sonia-V Forcales
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L' Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
46
|
Szymonowicz K, Krysztofiak A, van der Linden J, Kern A, Deycmar S, Oeck S, Squire A, Koska B, Hlouschek J, Vüllings M, Neander C, Siveke JT, Matschke J, Pruschy M, Timmermann B, Jendrossek V. Proton Irradiation Increases the Necessity for Homologous Recombination Repair Along with the Indispensability of Non-Homologous End Joining. Cells 2020; 9:E889. [PMID: 32260562 PMCID: PMC7226794 DOI: 10.3390/cells9040889] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Jansje van der Linden
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Ajvar Kern
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Simon Deycmar
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anthony Squire
- Institute of Experimental Immunology and Imaging, Imaging Center Essen, University Hospital Essen, 45122 Essen, Germany;
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Melanie Vüllings
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Christian Neander
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Jens T. Siveke
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Martin Pruschy
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
- Department of Particle Therapy, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| |
Collapse
|
47
|
Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, Keller PJ. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci 2020; 21:61-79. [PMID: 31896771 PMCID: PMC8121164 DOI: 10.1038/s41583-019-0250-1] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
State-of-the-art tissue-clearing methods provide subcellular-level optical access to intact tissues from individual organs and even to some entire mammals. When combined with light-sheet microscopy and automated approaches to image analysis, existing tissue-clearing methods can speed up and may reduce the cost of conventional histology by several orders of magnitude. In addition, tissue-clearing chemistry allows whole-organ antibody labelling, which can be applied even to thick human tissues. By combining the most powerful labelling, clearing, imaging and data-analysis tools, scientists are extracting structural and functional cellular and subcellular information on complex mammalian bodies and large human specimens at an accelerated pace. The rapid generation of terabyte-scale imaging data furthermore creates a high demand for efficient computational approaches that tackle challenges in large-scale data analysis and management. In this Review, we discuss how tissue-clearing methods could provide an unbiased, system-level view of mammalian bodies and human specimens and discuss future opportunities for the use of these methods in human neuroscience.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, University of Tokyo, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Japan.
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian University of Munich, Munich, Germany
- Institute of Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli & Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for NanoMedicine, Institute for Basic Science, Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
48
|
Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods Mol Biol 2020. [PMID: 31975291 DOI: 10.1007/978-1-0716-0342-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The major tissue types and stem-cell niches of plants are established during embryogenesis, and thus knowledge of embryo development is essential for a full understanding of plant development. Studies of seed development are also important for human health, because the nutrients stored in both the embryo and endosperm of plant seeds provide an essential part of our diet. Arabidopsis and maize have evolved different types of seeds, opening a range of experimental opportunities. Development of the Arabidopsis embryo follows an almost invariant pattern, while cell division patterns of maize embryos are variable. Embryo-endosperm interactions are also different between the two species: in Arabidopsis, the endosperm is consumed during seed development, while mature maize seeds contain an enormous endosperm. Genetic screens have provided important insights into seed development in both species. In the genomic era, genetic analysis will continue to provide important tools for understanding embryo and endosperm biology in plants, because single gene functional studies can now be integrated with genome-wide information. Here, we lay out important factors to consider when designing genetic screens to identify new genes or to probe known pathways in seed development. We then highlight the technical details of two previous genetic screens that may serve as useful examples for future experiments.
Collapse
|
49
|
Zhang H, Yarinome K, Kawakami R, Otomo K, Nemoto T, Okamura Y. Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution. PLoS One 2020; 15:e0227650. [PMID: 31923215 PMCID: PMC6953877 DOI: 10.1371/journal.pone.0227650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022] Open
Abstract
In order to achieve deep tissue imaging, a number of optical clearing agents have been developed. However, in a conventional microscopy setup, an objective lens can only be moved until it is in contact with a coverslip, which restricts the maximum focusing depth into a cleared tissue specimen. Until now, it is still a fact that the working distance of a high magnification objective lens with a high numerical aperture is always about 100 μm. In this study, a polymer thin film (also called as nanosheet) composed of fluoropolymer with a thickness of 130 nm, less than one-thousandth that of a 170 μm thick coverslip, is employed to replace the coverslip. Owing to its excellent characteristics, such as high optical transparency, mechanical robustness, chemical resistance, and water retention ability, nanosheet is uniquely capable of providing a coverslip-free imaging. By wrapping the tissue specimen with a nanosheet, an extra distance of 170 μm for the movement of objective lens is obtained. Results show an equivalently high resolution imaging can be obtained if a homogenous refractive index between immersion liquid and mounting media is adjusted. This method will facilitate a variety of imaging tasks with off-the-shelf high magnification objectives.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Applied Chemistry, School of Engineering, Tokai University, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan
| | - Kenji Yarinome
- Course of Applied Science, Graduate School of Engineering, Tokai University, Kanagawa, Japan
| | - Ryosuke Kawakami
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kohei Otomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- Exploratory Research Center on Life and Living Systems, National Institute of Natural Sciences, Aichi, Japan
- National Institute for Physiological Sciences, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Aichi, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- Exploratory Research Center on Life and Living Systems, National Institute of Natural Sciences, Aichi, Japan
- National Institute for Physiological Sciences, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Aichi, Japan
| | - Yosuke Okamura
- Department of Applied Chemistry, School of Engineering, Tokai University, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan
- Course of Applied Science, Graduate School of Engineering, Tokai University, Kanagawa, Japan
| |
Collapse
|
50
|
Wagner K, Girardo S, Goswami R, Rosso G, Ulbricht E, Müller P, Soteriou D, Träber N, Guck J. Colloidal crystals of compliant microgel beads to study cell migration and mechanosensitivity in 3D. SOFT MATTER 2019; 15:9776-9787. [PMID: 31742293 DOI: 10.1039/c9sm01226e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissues are defined not only by their biochemical composition, but also by their distinct mechanical properties. It is now widely accepted that cells sense their mechanical environment and respond to it. However, studying the effects of mechanics in in vitro 3D environments is challenging since current 3D hydrogel assays convolve mechanics with gel porosity and adhesion. Here, we present novel colloidal crystals as modular 3D scaffolds where these parameters are principally decoupled by using monodisperse, protein-coated PAAm microgel beads as building blocks, so that variable stiffness regions can be achieved within one 3D colloidal crystal. Characterization of the colloidal crystal and oxygen diffusion simulations suggested the suitability of the scaffold to support cell survival and growth. This was confirmed by live-cell imaging and fibroblast culture over a period of four days. Moreover, we demonstrate unambiguous durotactic fibroblast migration and mechanosensitive neurite outgrowth of dorsal root ganglion neurons in 3D. This modular approach of assembling 3D scaffolds from mechanically and biochemically well-defined building blocks allows the spatial patterning of stiffness decoupled from porosity and adhesion sites in principle and provides a platform to investigate mechanosensitivity in 3D environments approximating tissues in vitro.
Collapse
Affiliation(s)
- Katrin Wagner
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|