1
|
Ralph PC, Choi SW, Baek MJ, Lee SJ. Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges. Acta Biomater 2024:S1742-7061(24)00613-5. [PMID: 39424019 DOI: 10.1016/j.actbio.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Spinal cord injury (SCI) is a profound medical condition that significantly hampers motor function, imposing substantial limitations on daily activities and exerting a considerable financial burden on patients and their families. The constrained regenerative capacity of endogenous spinal cord tissue, exacerbated by the inflammatory response following the initial trauma, poses a formidable obstacle to effective therapy. Recent advancements in the field, stem cells, biomaterials, and molecular therapy, show promising outcomes. This review provides a comprehensive analysis of tissue engineering and regenerative medicine approaches for SCI treatment, including cell transplantation, tissue-engineered construct implantation, and other potential therapeutic strategies. Additionally, it sheds light on preclinical animal studies and recent clinical trials incorporating these modalities, providing a glimpse into the evolving landscape of SCI management. STATEMENT OF SIGNIFICANCE: The investigation into spinal cord injury (SCI) treatments focuses on reducing long-term impacts by targeting scar inhibition and enhancing regeneration through stem cells, with or without growth factors. Induced pluripotent stem cells (iPSCs) show promise for autologous use, with clinical trials confirming their safety. Challenges include low cell viability and difficulty in targeted differentiation. Biomaterial scaffolds hold potential for improving cell viability and integration, and extracellular vesicles (EVs) are emerging as a novel therapy. While EV research is in its early stages, stem cell trials demonstrate safety and potential recovery. Advancing tissue engineering approaches with biomaterial scaffolds is crucial for human trials.
Collapse
Affiliation(s)
- Patrick C Ralph
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Sung-Woo Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States; Department of Orthopedic Surgery, Soonchunhyang University Hospital Seoul, Seoul 04401, Republic of Korea
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, CHA University Bundang Medical Center, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
2
|
Xu J, Shi C, Ding Y, Qin T, Li C, Yuan F, Liu Y, Xie Y, Qin Y, Cao Y, Wu T, Duan C, Lu H, Hu J, Jiang L. Endothelial Foxo1 Phosphorylation Inhibition via Aptamer-Liposome Alleviates OPN-Induced Pathological Vascular Remodeling Following Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406398. [PMID: 39340832 DOI: 10.1002/advs.202406398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Reconstruction of the neurovascular unit is essential for the repair of spinal cord injury (SCI). Nonetheless, detailed documentation of specific vascular changes following SCI and targeted interventions for vascular treatment remains limited. This study demonstrates that traumatic pathological vascular remodeling occurs during the chronic phase of injury, characterized by enlarged vessel diameter, disruption of blood-spinal cord barrier, endothelial-to-mesenchymal transition (EndoMT), and heightened extracellular matrix deposition. After SCI, osteopontin (OPN), a critical factor secreted by immune cells, is indispensable for early vascular regeneration but also contributes to traumatic pathological vascular remodeling. This work further elucidates the mechanism by which OPN influences spinal cord microvascular endothelial cells, involving Akt-mediated Foxo1 phosphorylation. This process facilitates the extranuclear transport of Foxo1 and decreases Smad7 expression, leading to excessive activation of the TGF-β signaling pathway, which ultimately results in EndoMT and fibrosis. Targeted inhibition of Foxo1 phosphorylation through an endothelium-specific aptamer-liposome small molecule delivery system significantly mitigates vascular remodeling, thereby enhancing axon regeneration and neurological function recovery following SCI. The findings offer a novel perspective for drug therapies aimed at specifically targeting pathological vasculature after SCI.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chaoran Shi
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yinghe Ding
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
3
|
Li Y, Luo W, Meng C, Shi K, Gu R, Cui S. Exosomes as promising bioactive materials in the treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:335. [PMID: 39334506 PMCID: PMC11438208 DOI: 10.1186/s13287-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Patients with spinal cord injury (SCI) have permanent devastating motor and sensory disabilities. Secondary SCI is known for its complex progression and presents with sophisticated aberrant inflammation, vascular changes, and secondary cellular dysfunction, which aggravate the primary damage. Since their initial discovery, the potent neuroprotective effects and powerful delivery abilities of exosomes (Exos) have been reported in different research fields, including SCI. In this study, we summarize therapeutic advances related to the application of Exos in preclinical animal studies. Subsequently, we discuss the mechanisms of action of Exos derived from diverse cell types, including neurogenesis, angiogenesis, blood-spinal cord barrier preservation, anti-apoptosis, and anti-inflammatory potential. We also evaluate the relationship between the Exo delivery cargo and signaling pathways. Finally, we discuss the challenges and advantages of using Exos to offer innovative insights regarding the development of efficient clinical strategies for SCI.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Chuikai Meng
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Kaiyuan Shi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| |
Collapse
|
4
|
Jabermoradi S, Paridari P, Ramawad HA, Gharin P, Roshdi S, Toloui A, Yousefifard M. Stem Cell-Derived Exosomes as a Therapeutic Option for Spinal Cord Injuries; a Systematic Review and Meta-Analysis. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2024; 13:e2. [PMID: 39318865 PMCID: PMC11417640 DOI: 10.22037/aaem.v12i1.2261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Introduction Exosomes function as cell signaling carriers and have drawn much attention to the cell-free treatments of regenerative medicine. This meta-analysis aimed to investigate the efficacy of mesenchymal stem cell-derived (MSC-derived) exosomes in animal models of spinal cord injuries (SCI). Method A comprehensive search was conducted in Medline, Embase, Scopus, and Web of Science to attain related articles published by January 31, 2023. The eligible keywords were correlated with the spinal cord injury and MSC-derived exosomes. The evaluated outcomes were locomotion, cavity size, cell apoptosis, inflammation, neuro-regeneration, and microglia activation. A standardized mean difference was calculated for each sample and a pooled effect size was reported. Results 65 papers fully met the inclusion criteria. Treatment with MSC-derived exosomes ultimately improved locomotion and shrunk cavity size (p<0.0001). The administration of MSC-derived exosomes enhanced the expression of beta-tubulin III, NF200, and GAP-43, and increased the number of NeuN-positive and Nissl-positive cells, while reducing the expression of glial fibrillary acidic protein (p<0.0001). The number of apoptotic cells in the treatment group decreased significantly (p<0.0001). Regarding the markers of microglia activation, MSC-derived exosomes increased the number of CD206- and CD68-positive cells (p=0.032 and p<0.0001, respectively). Additionally, MSC-derived exosome administration significantly increased the expression of the anti-inflammatory interleukin (IL)-10 and IL-4 (p<0.001 and p=0.001, respectively) and decreased the expression of the inflammatory IL-1b, IL-6, and TNF-a (p<0.0001). Conclusion MSC-derived exosome treatment resulted in a significantly improved locomotion of SCI animals through ameliorating neuroinflammation, reducing apoptosis, and inducing neuronal regrowth by facilitating a desirable microenvironment.
Collapse
Affiliation(s)
- Sajjad Jabermoradi
- Physiology Research Center, Iran University ofMedical Sciences, Tehran, Iran
- The first and second authors have identical contributions
| | - Parsa Paridari
- Physiology Research Center, Iran University ofMedical Sciences, Tehran, Iran
- The first and second authors have identical contributions
| | - Hamzah Adel Ramawad
- Department of EmergencyMedicine, NYC Health + Hospitals, Coney Island, New York, USA
| | - Pantea Gharin
- Physiology Research Center, Iran University ofMedical Sciences, Tehran, Iran
| | - Shayan Roshdi
- Physiology Research Center, Iran University ofMedical Sciences, Tehran, Iran
| | - Amirmohammad Toloui
- Physiology Research Center, Iran University ofMedical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University ofMedical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Yang J, Yao Y. Bone Marrow Mesenchymal Stem Cells-Derived Extracellular Vesicle miR-208a-3p Alleviating Spinal Cord Injury via Regulating the Biological Function of Spinal Cord Neurons. DNA Cell Biol 2024; 43:463-473. [PMID: 39133103 DOI: 10.1089/dna.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
We aim to explore the potential mechanism of bone marrow mesenchymal stem cells-derived extracellular vesicles (BMSCs-Exo) in improving spinal cord injury (SCI). Thirty male 12-week specific pathogen-free (SPF) Sprague-Dawley (SD) rats were used to construct SCI model in vivo. Ten male 12-week SPF SD rats were used to extract BMSCs. The Basso, Beattie, Bresnahan (BBB) score was used to evaluate the motor function of rats. Real-time fluorescence quantitative PCR (RT-PCR), western blot (WB), and double luciferase assay were used to explore the regulation between rno-miR-208a-3p and Cdkn1a (p21) in BMSCs. Primary spinal cord neurons were treated with lipopolysaccharide (100 ng/mL) for 30 min to mimic SCI in vitro. Compared with the model group (14 scores), BMSCs-Exo increased BBB score (19 scores) in SCI rats. Compared with the sham group, Cdkn1a was upregulated, whereas rno-miR-208a-3p was downregulated in the model group. However, compared with the model group, Cdkn1a was downregulated, whereas rno-miR-208a-3p was upregulated in the BMSCs-Exo group. In addition, rno-miR-208a-3p inhibited the expression of Cdkn1a via direct binding way. BMSCs-Exo-rno-miR-208a-3p promoted the proliferation of primary spinal neurons via inhibiting apoptosis in vitro. Moreover, BMSCs-Exo-rno-miR-208a-3p promoted cyclin D1, CDK6, and Bcl-2 and inhibited Bax expression in a cell model of SCI. In conclusion, BMSCs-Exo-carried rno-miR-208a-3p significantly protects rats from SCI via regulating the Cdkn1a pathway.
Collapse
Affiliation(s)
- Jianwei Yang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhua Yao
- Cell and molecular teaching laboratory, Experimental teaching center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang H, Zhao C, Rong Q, Cao J, Chen H, Li R, Zhang B, Xu P. The Role of Exosomes from Mesenchymal Stem Cells in Spinal Cord Injury: A Systematic Review. Int J Stem Cells 2024; 17:236-252. [PMID: 38016704 PMCID: PMC11361850 DOI: 10.15283/ijsc23092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/30/2023] Open
Abstract
Spinal cord injury (SCI) is a serious nervous system disease that usually leads to the impairment of the motor, sensory, and autonomic nervous functions of the spinal cord, and it places a heavy burden on families and healthcare systems every year. Due to the complex pathophysiological mechanism of SCI and the poor ability of neurons to regenerate, the current treatment scheme has very limited effects on the recovery of spinal cord function. In addition, due to their unique advantages, exosomes can be used as carriers for cargo transport. In recent years, some studies have confirmed that treatment with mesenchymal stem cells (MSCs) can promote the recovery of SCI nerve function. The therapeutic effect of MSCs is mainly related to exosomes secreted by MSCs, and exosomes may have great potential in SCI therapy. In this review, we summarized the repair mechanism of mesenchymal stem cells-derived exosomes (MSCs-Exos) in SCI treatment and discussed the microRNAs related to SCI treatment based on MSCs-Exos and their mechanism of action, which is helpful to further understand the role of exosomes in SCI.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Chunxia Zhao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingqing Rong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jinghe Cao
- Department of Reproduce, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Hongyi Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Ruolin Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bin Zhang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Peng Xu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
7
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
8
|
Rao J, Xie H, Liang Z, Yang Z, Chen P, Zhou M, Xu X, Lin Y, Lin F, Wang R, Wang C, Chen C. Hypoxic-preconditioned mesenchymal stem cell-derived small extracellular vesicles inhibit neuronal death after spinal cord injury by regulating the SIRT1/Nrf2/HO-1 pathway. Front Pharmacol 2024; 15:1419390. [PMID: 39246654 PMCID: PMC11377843 DOI: 10.3389/fphar.2024.1419390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Background Oxidative stress and apoptosis of neurons significantly contribute to the pathophysiological cascade of spinal cord injury (SCI). However, the role of hypoxic-preconditioned mesenchymal stem cell-derived small extracellular vesicles (H-sEVs) in promoting SCI repair remains unclear. Hence, the present study aims to investigate the regulatory effects of H-sEVs on neuronal oxidative stress and apoptotic responses following SCI. Methods The administration of H-sEVs of SCI rats was assessed using behavioral evaluations such as Basso-Beattie-Bresnahan (BBB) scores, neuroelectrophysiological monitoring, and Catwalk gait analysis. Indices of oxidative stress (including superoxide dismutase [SOD], total antioxidant capacity [T-AOC], and malondialdehyde [MDA]) were measured. Neuronal survival was evaluated through Nissl staining, while the expression level of sirtuin 1 (SIRT1) was examined using immunohistochemical staining. Additionally, histological evaluation of lesion size was performed using hematoxylin-eosin (HE) staining. Tunel cell apoptosis staining and analysis of apoptosis-associated proteins (B-cell lymphoma-2 [Bcl2] and BCL2-Associated X [Bax]) were conducted through immunofluorescence staining and western blot, respectively. Furthermore, the model of oxidative stress was established using PC12 cells, and apoptosis levels were assessed via flow cytometry and western blot analysis. Importantly, to ascertain the critical role of SIRT1, we performed SIRT1 knockout experiments in PC12 cells using lentivirus transfection, followed by western blot. Results Using those behavioral evaluations, we observed significant functional improvement after H-sEVs treatment. Nissl staining revealed that H-sEVs treatment promoted neuronal survival. Moreover, we found that H-sEVs effectively reduced oxidative stress levels after SCI. HE staining demonstrated that H-sEVs could reduce lesion area. Immunohistochemical analysis revealed that H-sEVs enhanced SIRT1 expression. Furthermore, Tunel cell apoptosis staining and western blot analysis of apoptosis-related proteins confirmed the anti-apoptotic effects of H-sEVs. The PC12 cells were used to further substantiate the neuroprotective properties of H-sEVs by significantly inhibiting neuronal death and attenuating oxidative stress. Remarkably, SIRT1 knockout in PC12 cells reversed the antioxidant stress effects induced by H-sEVs treatment. Additionally, we elucidated the involvement of the downstream Nrf2/HO-1 signaling pathway. Conclusion Our study provides valuable insights into the effects of H-sEVs on neuronal oxidative stress and apoptosis after SCI. These findings underscore the potential clinical significance of H-sEVs-based therapies for SCI.
Collapse
Affiliation(s)
- Jian Rao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Haishu Xie
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Zeyan Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Zhelun Yang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Pingping Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Maochao Zhou
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Xiongjie Xu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Yike Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Rui Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Li D, Li D, Wang Z, Li J, Shahzad KA, Wang Y, Tan F. Signaling pathways activated and regulated by stem cell-derived exosome therapy. Cell Biosci 2024; 14:105. [PMID: 39164778 PMCID: PMC11334359 DOI: 10.1186/s13578-024-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Stem cell-derived exosomes exert comparable therapeutic effects to those of their parental stem cells without causing immunogenic, tumorigenic, and ethical disadvantages. Their therapeutic advantages are manifested in the management of a broad spectrum of diseases, and their dosing versatility are exemplified by systemic administration and local delivery. Furthermore, the activation and regulation of various signaling cascades have provided foundation for the claimed curative effects of exosomal therapy. Unlike other relevant reviews focusing on the upstream aspects (e.g., yield, isolation, modification), and downstream aspects (e.g. phenotypic changes, tissue response, cellular behavior) of stem cell-derived exosome therapy, this unique review endeavors to focus on various affected signaling pathways. After meticulous dissection of relevant literature from the past five years, we present this comprehensive, up-to-date, disease-specific, and pathway-oriented review. Exosomes sourced from various types of stem cells can regulate major signaling pathways (e.g., the PTEN/PI3K/Akt/mTOR, NF-κB, TGF-β, HIF-1α, Wnt, MAPK, JAK-STAT, Hippo, and Notch signaling cascades) and minor pathways during the treatment of numerous diseases encountered in orthopedic surgery, neurosurgery, cardiothoracic surgery, plastic surgery, general surgery, and other specialties. We provide a novel perspective in future exosome research through bridging the gap between signaling pathways and surgical indications when designing further preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Ding Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
10
|
Ye Z, Zheng Y, Li N, Zhang H, Li Q, Wang X. Repair of spinal cord injury by bone marrow mesenchymal stem cell-derived exosomes: a systematic review and meta-analysis based on rat models. Front Mol Neurosci 2024; 17:1448777. [PMID: 39169950 PMCID: PMC11335736 DOI: 10.3389/fnmol.2024.1448777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study aims to systematically evaluate the efficacy of bone marrow mesenchymal stem cell-derived exosomes (BMSCs-Exo) in improving spinal cord injury (SCI) to mitigate the risk of translational discrepancies from animal experiments to clinical applications. Methods We conducted a comprehensive literature search up to March 2024 using PubMed, Embase, Web of Science, and Scopus databases. Two researchers independently screened the literature, extracted data, and assessed the quality of the studies. Data analysis was performed using STATA16 software. Results A total of 30 studies were included. The results indicated that BMSCs-Exo significantly improved the BBB score in SCI rats (WMD = 3.47, 95% CI [3.31, 3.63]), inhibited the expression of the pro-inflammatory cytokine TNF-α (SMD = -3.12, 95% CI [-3.57, -2.67]), and promoted the expression of anti-inflammatory cytokines IL-10 (SMD = 2.76, 95% CI [1.88, 3.63]) and TGF-β (SMD = 3.89, 95% CI [3.02, 4.76]). Additionally, BMSCs-Exo significantly reduced apoptosis levels (SMD = -4.52, 95% CI [-5.14, -3.89]), promoted the expression of axonal regeneration markers NeuN cells/field (SMD = 3.54, 95% CI [2.65, 4.42]), NF200 (SMD = 4.88, 95% CI [3.70, 6.05]), and the number of Nissl bodies (SMD = 1.89, 95% CI [1.13, 2.65]), and decreased the expression of astrogliosis marker GFAP (SMD = -5.15, 95% CI [-6.47, -3.82]). The heterogeneity among studies was primarily due to variations in BMSCs-Exo transplantation doses, with efficacy increasing with higher doses. Conclusion BMSCs-Exo significantly improved motor function in SCI rats by modulating inflammatory responses, reducing apoptosis, inhibiting astrogliosis, and promoting axonal regeneration. However, the presence of selection, performance, and detection biases in current animal experiments may undermine the quality of evidence in this study.
Collapse
Affiliation(s)
- Zhongduo Ye
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yukun Zheng
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningning Li
- Lanzhou Maternal and Child Health Hospital, Lanzhou, China
| | - Huaibin Zhang
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qiangqiang Li
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiong Wang
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
12
|
Kim M, Choi H, Jang DJ, Kim HJ, Sub Y, Gee HY, Choi C. Exploring the clinical transition of engineered exosomes designed for intracellular delivery of therapeutic proteins. Stem Cells Transl Med 2024; 13:637-647. [PMID: 38838263 PMCID: PMC11227971 DOI: 10.1093/stcltm/szae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, have emerged as promising drug delivery systems owing to their unique advantages, such as biocompatibility, immune tolerability, and target specificity. Various engineering strategies have been implemented to harness these innate qualities, with a focus on enhancing the pharmacokinetic and pharmacodynamic properties of exosomes via payload loading and surface engineering for active targeting. This concise review outlines the challenges in the development of exosomes as drug carriers and offers insights into strategies for their effective clinical translation. We also highlight preclinical studies that have successfully employed anti-inflammatory exosomes and suggest future directions for exosome therapeutics. These advancements underscore the potential for integrating exosome-based therapies into clinical practice, heralding promise for future medical interventions.
Collapse
Affiliation(s)
| | - Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | - Deok-Jin Jang
- ILIAS Biologics Inc., Daejeon 34014, Korea
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | | | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | |
Collapse
|
13
|
Ji H, Chu W, Yang Y, Peng X, Song X. Conditioned culture medium of bone marrow mesenchymal stem cells promotes phenotypic transformation of microglia by regulating mitochondrial autophagy. PeerJ 2024; 12:e17664. [PMID: 38974415 PMCID: PMC11227809 DOI: 10.7717/peerj.17664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Objective To study the mechanism by which conditioned medium of bone marrow mesenchymal stem cells (BMSCs-CM) facilitates the transition of pro-inflammatory polarized microglia to an anti-inflammatory phenotype. Methods BV2 cells, a mouse microglia cell line, were transformed into a pro-inflammatory phenotype using lipopolysaccharide. The expression of phenotypic genes in BV2 cells was detected using real-time quantitative PCR (RT-qPCR). Enzyme-linked immunosorbent assay was used to measure inflammatory cytokine levels in BV2 cells co-cultured with BMSCs-CM. The expressions of mitophagy-associated proteins were determined using western blot. The mitochondrial membrane potential and ATP levels in BV2 cells were measured using JC-1 staining and an ATP assay kit, respectively. Additionally, we examined the proliferation, apoptosis, and migration of C8-D1A cells, a mouse astrocyte cell line, co-cultured with BV2 cells. Results After co- culture with BMSCs -CM, the mRNA expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase significantly decreased in pro-inflammatory BV2 cells, whereas the expression of CD206 and arginase-1 significantly increased. Moreover, TNF-α and interleukin-6 levels significantly decreased, whereas transforming growth factor-β and interleukin-10 levels significantly increased. Furthermore, co-culture with BMSCs-CM increased mitophagy-associated protein expression, ATP levels, mitochondrial and lysosomal co-localization in these cells and decreased reactive oxygen species levels. Importantly, BMSCs-CM reversed the decrease in the proliferation and migration of C8-D1A cells co-cultured with pro-inflammatory BV2 cells and inhibited the apoptosis of C8-D1A cells. Conclusion BMSCs-CM may promote the transition of polarized microglia from a pro-inflammatory to an anti-inflammatory phenotype by regulating mitophagy and influences the functional state of astrocytes.
Collapse
Affiliation(s)
- Hangyu Ji
- The Department of Orthopedics of ZhongDa Hospital, Southeast University, Nan Jing, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Weiming Chu
- The Department of Orthopedics, Xishan People’s Hospital, Wuxi, Jiangsu Province, China
| | - Yong Yang
- The Department of Orthopedics, Xishan People’s Hospital, Wuxi, Jiangsu Province, China
| | - Xin Peng
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiaoli Song
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Cen Y, Chen Y, Li X, Chen X, Yu B, Yan M, Yan N, Cheng H, Li S. Optical controlled and nuclear targeted CECR2 competitor to downregulate CSF-1 for metastatic breast cancer immunotherapy. Biomaterials 2024; 308:122568. [PMID: 38615488 DOI: 10.1016/j.biomaterials.2024.122568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The crosstalk between breast cancer cells and tumor associated macrophages (TAMs) greatly contributes to tumor progression and immunosuppression. In this work, cat eye syndrome chromosome region candidate 2 (CECR2) is identified to overexpress in breast cancer patients, which can recognize v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) and activate nuclear factor κB (NF-κB) to release colony stimulating factor-1 (CSF-1). Pharmacological inhibition of CECR2 by the bromodomain competitor (Bromosporine, Bro) can downregulate CSF-1 to inhibit M2 type TAMs. To amplify the immunotherapeutic effect, a chimeric peptide-based and optical controlled CECR2 competitor (designated as N-PB) is constructed to enhance the nuclear targeted delivery of Bro and initiate an immunogenic cell death (ICD). In vivo results indicate a favorable breast cancer targeting ability and primary tumor suppression effect of N-PB under optical irradiation. Importantly, N-PB downregulates CSF-1 by competitive inhibition of CECR2 and NF-κB(RelA) interactions, thus inhibiting immunosuppressive M2-like TAMs while improving the antitumorigenic M1-like phenotype. Ultimately, the systemic anti-tumor immunity is activated to suppress the metastatic breast cancer in an optical controlled manner. This study provides a promising therapeutic target and reliable strategy for metastatic breast cancer treatment by interrupting immunosuppressive crosstalk between tumor cells and macrophages.
Collapse
Affiliation(s)
- Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinxuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiayun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Baixue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Mengyi Yan
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ni Yan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China.
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
15
|
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO, March K, He M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. EXTRACELLULAR VESICLE 2024; 3:100034. [PMID: 38957857 PMCID: PMC11218754 DOI: 10.1016/j.vesic.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.
Collapse
Affiliation(s)
- Zuo Ding
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C. Jamieson
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Dmitry O. Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
16
|
Alshahrani MY, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Al-Hamdani MM, Deorari M, Abosaoda MK, Hamzah HF, A Mohammed B. A comprehensive insight into the immunomodulatory role of MSCs-derived exosomes (MSC-Exos) through modulating pattern-recognition receptors (PRRs). Cell Biochem Funct 2024; 42:e4029. [PMID: 38773914 DOI: 10.1002/cbf.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Bahira A Mohammed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
17
|
Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration. Int J Mol Sci 2024; 25:5863. [PMID: 38892052 PMCID: PMC11172915 DOI: 10.3390/ijms25115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Burcak Yavuz
- Vocational School of Health Services, Altinbas University, 34147 Istanbul, Turkey;
| | - Esra Cansever Mutlu
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Besim Ben-Nissan
- Translational Biomaterials and Medicine Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| | - Artemis Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
18
|
Chen G, Tong K, Li S, Huang Z, Liu S, Zhu H, Zhong Y, Zhou Z, Jiao G, Wei F, Chen N. Extracellular vesicles released by transforming growth factor-beta 1-preconditional mesenchymal stem cells promote recovery in mice with spinal cord injury. Bioact Mater 2024; 35:135-149. [PMID: 38312519 PMCID: PMC10837068 DOI: 10.1016/j.bioactmat.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Spinal cord injury (SCI) causes neuroinflammation, neuronal death, and severe axonal connections. Alleviating neuroinflammation, protecting residual cells and promoting neuronal regeneration via endogenous neural stem cells (eNSCs) represent potential strategies for SCI treatment. Extracellular vesicles (EVs) released by mesenchymal stem cells have emerged as pathological mediators and alternatives to cell-based therapies following SCI. In the present study, EVs isolated from untreated (control, C-EVs) and TGF-β1-treated (T-EVs) mesenchymal stem cells were injected into SCI mice to compare the therapeutic effects and explore the underlying mechanisms. Our study demonstrated for the first time that the application of T-EVs markedly enhanced the proliferation and antiapoptotic ability of NSCs in vitro. The infusion of T-EVs into SCI mice increased the shift from the M1 to M2 polarization of reactive microglia, alleviated neuroinflammation, and enhanced the neuroprotection of residual cells during the acute phase. Moreover, T-EVs increased the number of eNSCs around the epicenter. Consequently, T-EVs further promoted neurite outgrowth, increased axonal regrowth and remyelination, and facilitated locomotor recovery in the chronic stage. Furthermore, the use of T-EVs in Rictor-/- SCI mice (conditional knockout of Rictor in NSCs) showed that T-EVs failed to increase the activation of eNSCs and improve neurogenesis sufficiently, which suggested that T-EVs might induce the activation of eNSCs by targeting the mTORC2/Rictor pathway. Taken together, our findings indicate the prominent role of T-EVs in the treatment of SCI, and the therapeutic efficacy of T-EVs for SCI treatment might be optimized by enhancing the activation of eNSCs via the mTORC2/Rictor signaling pathway.
Collapse
Affiliation(s)
- Guoliang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Kuileung Tong
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shiming Li
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zerong Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Shuangjiang Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Haoran Zhu
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Heyuan, 517400, China
| | - Yanheng Zhong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhisen Zhou
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Genlong Jiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ningning Chen
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
19
|
Chen Z, Zhou T, Luo H, Wang Z, Wang Q, Shi R, Li Z, Pang R, Tan H. HWJMSC-EVs promote cartilage regeneration and repair via the ITGB1/TGF-β/Smad2/3 axis mediated by microfractures. J Nanobiotechnology 2024; 22:177. [PMID: 38609995 PMCID: PMC11015550 DOI: 10.1186/s12951-024-02451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The current first-line treatment for repairing cartilage defects in clinical practice is the creation of microfractures (MF) to stimulate the release of mesenchymal stem cells (MSCs); however, this method has many limitations. Recent studies have found that MSC-derived extracellular vesicles (MSC-EVs) play an important role in tissue regeneration. This study aimed to verify whether MSC-EVs promote cartilage damage repair mediated by MFs and to explore the repair mechanisms. In vitro experiments showed that human umbilical cord Wharton's jelly MSC-EVs (hWJMSC-EVs) promoted the vitality of chondrocytes and the proliferation and differentiation ability of bone marrow-derived MSCs. This was mainly because hWJMSC-EVs carry integrin beta-1 (ITGB1), and cartilage and bone marrow-derived MSCs overexpress ITGB1 after absorbing EVs, thereby activating the transforming growth factor-β/Smad2/3 axis. In a rabbit knee joint model of osteochondral defect repair, the injection of different concentrations of hWJMSC-EVs into the joint cavity showed that a concentration of 50 µg/ml significantly improved the formation of transparent cartilage after MF surgery. Extraction of regenerated cartilage revealed that the changes in ITGB1, transforming growth factor-β, and Smad2/3 were directly proportional to the repair of regenerated cartilage. In summary, this study showed that hWJMSC-EVs promoted cartilage repair after MF surgery.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Tianhua Zhou
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Huan Luo
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Zhen Wang
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Qiang Wang
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Rongmao Shi
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Zian Li
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Rongqing Pang
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China.
| |
Collapse
|
20
|
Lu T, Liu Y, Huang X, Sun S, Xu H, Jin A, Wang X, Gao X, Liu J, Zhu Y, Dai Q, Wang C, Lin K, Jiang L. Early-Responsive Immunoregulation Therapy Improved Microenvironment for Bone Regeneration Via Engineered Extracellular Vesicles. Adv Healthc Mater 2024; 13:e2303681. [PMID: 38054523 DOI: 10.1002/adhm.202303681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Overactivated inflammatory reactions hinder the bone regeneration process. Timely transformation of microenvironment from pro-inflammatory to anti-inflammatory after acute immune response is favorable for osteogenesis. Macrophages play an important role in the immune response to inflammation. Therefore, this study adopts TIM3 high expression extracellular vesicles (EVs) with immunosuppressive function to reshape the early immune microenvironment of bone injury, mainly by targeting macrophages. These EVs can be phagocytosed by macrophages, thereby increasing the infiltration of TIM3-positive macrophages (TIM3+ macrophages) and M2 subtypes. The TIM3+ macrophage group has some characteristics of M2 macrophages and secretes cytokines, such as IL-10 and TGF-β1 to regulate inflammation. TIM3, which is highly expressed in the engineered EVs, mediates the release of anti-inflammatory cytokines by inhibiting the p38/MAPK pathway and promotes osseointegration by activating the Bmp2 promoter to enhance macrophage BMP2 secretion. After evenly loading the engineered EVs into the hydrogel, the continuous and slow release of EVsTIM3OE recruits more anti-inflammatory macrophages during the early stages of bone defect repair, regulating the immune microenvironment and eliminating the adverse effects of excessive inflammation. In summary, this study provides a new strategy for the treatment of refractory wounds through early inflammation control.
Collapse
Affiliation(s)
- Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qinggang Dai
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 201999, China
| | - Chao Wang
- Department of Obstetrics & Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200433, China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
21
|
Xue R, Xie M, Wu Z, Wang S, Zhang Y, Han Z, Li C, Tang Q, Wang L, Li D, Wang S, Yang H, Zhao RC. Mesenchymal Stem Cell-Derived Exosomes Promote Recovery of The Facial Nerve Injury through Regulating Macrophage M1 and M2 Polarization by Targeting the P38 MAPK/NF-Κb Pathway. Aging Dis 2024; 15:851-868. [PMID: 37548941 PMCID: PMC10917525 DOI: 10.14336/ad.2023.0719-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Facial nerve (FN) injury seriously affects human social viability and causes a heavy economic and social burden. Although mesenchymal stem cell-derived exosomes (MSC-Exos) promise therapeutic benefits for injury repair, there has been no evaluation of the impact of MSC-Exos administration on FN repair. Herein, we explore the function of MSC-Exos in the immunomodulation of macrophages and their effects in repairing FN injury. An ultracentrifugation technique was used to separate exosomes from the MSC supernatant. Administrating MSC-Exos to SD rats via local injection after FN injury promoted axon regeneration and myelination and alleviated local and systemic inflammation. MSC-Exos facilitated M2 polarization and reduced the M1-M2 polarization ratio. miRNA sequencing of MSC-Exos and previous literature showed that the MAPK/NF-κb pathway was a downstream target of macrophage polarization. We confirmed this hypothesis both in vivo and in vitro. Our findings show that MSC-Exos are a potential candidate for treating FN injury because they may have superior benefits for FN injury recovery and can decrease inflammation by controlling the heterogeneity of macrophages, which is regulated by the p38 MAPK/NF-κb pathway.
Collapse
Affiliation(s)
- Ruoyan Xue
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Mengyao Xie
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhiyuan Wu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yongli Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhijin Han
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chen Li
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qi Tang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liping Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Di Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
- School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
22
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
23
|
Du X, Kong D, Guo R, Liu B, He J, Zhang J, Amponsah AE, Cui H, Ma J. Combined transplantation of hiPSC-NSC and hMSC ameliorated neuroinflammation and promoted neuroregeneration in acute spinal cord injury. Stem Cell Res Ther 2024; 15:67. [PMID: 38444003 PMCID: PMC10916262 DOI: 10.1186/s13287-024-03655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious clinical condition that has pathological changes such as increased neuroinflammation and nerve tissue damage, which eventually manifests as fibrosis of the injured segment and the development of a spinal cord cavity leading to loss of function. Cell-based therapy, such as mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are promising treatment strategies for spinal cord injury via immunological regulation and neural replacement respectively. However, therapeutic efficacy is rare reported on combined transplantation of MSC and NSC in acute mice spinal cord injury even the potential reinforcement might be foreseen. Therefore, this study was conducted to investigate the safety and efficacy of co-transplanting of MSC and NSC sheets into an SCI mice model on the locomotor function and pathological changes of injured spinal cord. METHODS To evaluate the therapeutic effects of combination cells, acute SCI mice model were established and combined transplantation of hiPSC-NSCs and hMSCs into the lesion site immediately after the injury. Basso mouse scale was used to perform the open-field tests of hind limb motor function at days post-operation (dpo) 1, 3, 5, and 7 after SCI and every week after surgery. Spinal cord and serum samples were collected at dpo 7, 14, and 28 to detect inflammatory and neurotrophic factors. Hematoxylin-eosin (H&E) staining, masson staining and transmission electron microscopy were used to evaluate the morphological changes, fibrosis area and ultrastructure of the spinal cord. RESULT M&N transplantation reduced fibrosis formation and the inflammation level while promoting the secretion of nerve growth factor and brain-derived neurotrophic factor. We observed significant reduction in damaged tissue and cavity area, with dramatic improvement in the M&N group. Compared with the Con group, the M&N group exhibited significantly improved behaviors, particularly limb coordination. CONCLUSION Combined transplantation of hiPSC-NSC and hMSC could significantly ameliorate neuroinflammation, promote neuroregeneration, and decrease spinal fibrosis degree in safe and effective pattern, which would be indicated as a novel potential cell treatment option.
Collapse
Affiliation(s)
- Xiaofeng Du
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Boxin Liu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Huixian Cui
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Jun Ma
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
24
|
Xu J, Ren Z, Niu T, Li S. Epigenetic mechanism of miR-26b-5p-enriched MSCs-EVs attenuates spinal cord injury. Regen Ther 2024; 25:35-48. [PMID: 38058606 PMCID: PMC10696431 DOI: 10.1016/j.reth.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for the treatment of spinal cord injury (SCI). This study sought to explore the epigenetic mechanism of miR-26b-5p-enriched MSCs-EVs in SCI. MSCs and MSCs-EVs were isolated and characterized. The SCI rat model was established, followed by Basso-Beattie-Bresnahan scoring and H&E staining. In vitro cell models were established in PC12 cells with lipopolysaccharide (LPS) treatment, followed by cell viability evaluation using CCK-8 assay. The levels of miR-26b-5p, lysine demethylase 6A (KDM6A), NADPH oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory factors (TNF-α/IL-1β/IL-6) in tissues and cells were detected. The levels of cy3-lablled miR-26b-5p in tissues and cells were observed by confocal microscopy. The binding of miR-26b-5p to KDM6A 3'UTR and the enrichments of KDM6A and H3K27me3 at the NOX4 promoter were analyzed. MSCs-EVs attenuated motor dysfunction, inflammation, and oxidative stress in SCI rats. MSCs-EVs delivered miR-26b-5p into PC12 cells to reduce LPS-induced inflammation and ROS production and enhance cell viability. miR-26b-5p inhibited KDM6A, and KDM6A reduced H3K27me3 at the NOX4 promoter to promote NOX4. Overexpression of KDM6A or NOX4 reversed the alleviative role of MSCs-EVs in SCI or LPS-induced cell injury. Overall, MSCs-EVs delivered miR-26b-5p into cells to target the KDM6A/NOX4 axis and facilitate the recovery from SCI.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology), Guangzhou, 510080, China
| | - Zhenxiao Ren
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology), Guangzhou, 510080, China
| | - Tianzuo Niu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology), Guangzhou, 510080, China
| | - Siyuan Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology), Guangzhou, 510080, China
| |
Collapse
|
25
|
Yang Z, Liang Z, Rao J, Xie H, Zhou M, Xu X, Lin Y, Lin F, Wang C, Chen C. Hypoxic-preconditioned mesenchymal stem cell-derived small extracellular vesicles promote the recovery of spinal cord injury by affecting the phenotype of astrocytes through the miR-21/JAK2/STAT3 pathway. CNS Neurosci Ther 2024; 30:e14428. [PMID: 37641874 PMCID: PMC10915983 DOI: 10.1111/cns.14428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Secondary injury after spinal cord injury (SCI) is a major obstacle to their neurological recovery. Among them, changes in astrocyte phenotype regulate secondary injury dominated by neuroinflammation. Hypoxia-preconditioned mesenchymal stem cells (MSCs)-derived extracellular vesicle (H-EV) plays a multifaceted role in secondary injury by interacting with cellular components and signaling pathways. They possess anti-inflammatory properties, regulate oxidative stress, and modulate apoptotic pathways, promoting cell survival and reducing neuronal loss. Given the unique aspects of secondary injury, H-EV shows promise as a therapeutic approach to mitigate its devastating consequences. Our study aimed to determine whether H-EV could promote SCI repair by altering the phenotype of astrocytes. METHODS Rat bone marrow MSCs (BMSCs) and EVs secreted by them were extracted and characterized. After the SCI model was successfully constructed, EV and H-EV were administered into the tail vein of the rats, respectively, and then their motor function was evaluated by the Basso-Beattie-Bresnahan (BBB) score, Catwalk footprint analysis, and electrophysiological monitoring. The lesion size of the spinal cord was evaluated by hematoxylin-eosin (HE) staining. The key point was to use glial fibrillary acidic protein (GFAP) as a marker of reactive astrocytes to co-localize with A1-type marker complement C3 and A2-type marker S100A10, respectively, to observe phenotypic changes in astrocytes within tissues. The western blot (WB) of the spinal cord was also used to verify the results. We also compared the efficacy differences in apoptosis and inflammatory responses using terminal deoxynucleotidyl transferase dUTP terminal labeling (TUNEL) assay, WB, and enzyme-linked immunosorbent assay (ELISA). Experiments in vitro were also performed to verify the results. Subsequently, we performed microRNA (miRNA) sequencing analysis of EV and H-EV and carried out a series of knockdown and overexpression experiments to further validate the mechanism by which miRNA in H-EV plays a role in promoting astrocyte phenotypic changes, as well as the regulated signaling pathways, using WB both in vivo and in vitro. RESULTS Our findings suggest that H-EV is more effective than EV in the recovery of motor function, anti-apoptosis, and anti-inflammatory effects after SCI, both in vivo and in vitro. More importantly, H-EV promoted the conversion of A1 astrocytes into A2 astrocytes more than EV. Moreover, miR-21, which was found to be highly expressed in H-EV by miRNA sequencing results, was also demonstrated to influence changes in astrocyte phenotype through a series of knockdown and overexpression experiments. At the same time, we also found that H-EV might affect astrocyte phenotypic alterations by delivering miR-21 targeting the JAK2/STAT3 signaling pathway. CONCLUSION H-EV exerts neuroprotective effects by delivering miR-21 to promote astrocyte transformation from the A1 phenotype to the A2 phenotype, providing new targets and ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhelun Yang
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Zeyan Liang
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Jian Rao
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Haishu Xie
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Maochao Zhou
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Xiongjie Xu
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Yike Lin
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Fabin Lin
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Chunhua Wang
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Chunmei Chen
- Department of NeurosurgeryFujian Medical University Union HospitalFuzhouFujianChina
| |
Collapse
|
26
|
Lentilhas-Graça J, Santos DJ, Afonso J, Monteiro A, Pinho AG, Mendes VM, Dias MS, Gomes ED, Lima R, Fernandes LS, Fernandes-Amorim F, Pereira IM, de Sousa N, Cibrão JR, Fernandes AM, Serra SC, Rocha LA, Campos J, Pinho TS, Monteiro S, Manadas B, Salgado AJ, Almeida RD, Silva NA. The secretome of macrophages has a differential impact on spinal cord injury recovery according to the polarization protocol. Front Immunol 2024; 15:1354479. [PMID: 38444856 PMCID: PMC10912310 DOI: 10.3389/fimmu.2024.1354479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed. Methods In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues. Results We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-β1 (M(IL-10+TGF-β1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-β1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-β1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-β1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation. Discussion Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.
Collapse
Affiliation(s)
- José Lentilhas-Graça
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diogo J. Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - João Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Andreia G. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S. Dias
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Eduardo D. Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Luís S. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Fernando Fernandes-Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Inês M. Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Aline M. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Luís A. Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Tiffany S. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Ramiro D. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| |
Collapse
|
27
|
Morishima Y, Kawabori M, Yamazaki K, Takamiya S, Yamaguchi S, Nakahara Y, Senjo H, Hashimoto D, Masuda S, Fujioka Y, Ohba Y, Mizuno Y, Kuge Y, Fujimura M. Intravenous Administration of Mesenchymal Stem Cell-Derived Exosome Alleviates Spinal Cord Injury by Regulating Neutrophil Extracellular Trap Formation through Exosomal miR-125a-3p. Int J Mol Sci 2024; 25:2406. [PMID: 38397083 PMCID: PMC10889446 DOI: 10.3390/ijms25042406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Spinal cord injury (SCI) leads to devastating sequelae, demanding effective treatments. Recent advancements have unveiled the role of neutrophil extracellular traps (NETs) produced by infiltrated neutrophils in exacerbating secondary inflammation after SCI, making it a potential target for treatment intervention. Previous research has established that intravenous administration of stem cell-derived exosomes can mitigate injuries. While stem cell-derived exosomes have demonstrated the ability to modulate microglial reactions and enhance blood-brain barrier integrity, their impact on neutrophil deactivation, especially in the context of NETs, remains poorly understood. This study aims to investigate the effects of intravenous administration of MSC-derived exosomes, with a specific focus on NET formation, and to elucidate the associated molecular mechanisms. Exosomes were isolated from the cell supernatants of amnion-derived mesenchymal stem cells using the ultracentrifugation method. Spinal cord injuries were induced in Sprague-Dawley rats (9 weeks old) using a clip injury model, and 100 μg of exosomes in 1 mL of PBS or PBS alone were intravenously administered 24 h post-injury. Motor function was assessed serially for up to 28 days following the injury. On Day 3 and Day 28, spinal cord specimens were analyzed to evaluate the extent of injury and the formation of NETs. Flow cytometry was employed to examine the formation of circulating neutrophil NETs. Exogenous miRNA was electroporated into neutrophil to evaluate the effect of inflammatory NET formation. Finally, the biodistribution of exosomes was assessed using 64Cu-labeled exosomes in animal positron emission tomography (PET). Rats treated with exosomes exhibited a substantial improvement in motor function recovery and a reduction in injury size. Notably, there was a significant decrease in neutrophil infiltration and NET formation within the spinal cord, as well as a reduction in neutrophils forming NETs in the circulation. In vitro investigations indicated that exosomes accumulated in the vicinity of the nuclei of activated neutrophils, and neutrophils electroporated with the miR-125a-3p mimic exhibited a significantly diminished NET formation, while miR-125a-3p inhibitor reversed the effect. PET studies revealed that, although the majority of the transplanted exosomes were sequestered in the liver and spleen, a notably high quantity of exosomes was detected in the damaged spinal cord when compared to normal rats. MSC-derived exosomes play a pivotal role in alleviating spinal cord injury, in part through the deactivation of NET formation via miR-125a-3p.
Collapse
Affiliation(s)
- Yutaka Morishima
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Kazuyoshi Yamazaki
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Soichiro Takamiya
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe 650-0047, Hyogo, Japan
| | - Yo Nakahara
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| | - Hajime Senjo
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Daigo Hashimoto
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Sakiko Masuda
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan;
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Yuki Mizuno
- Central Institute of Isotope Science, Hokkaido University, Sapporo 060-0815, Hokkaido, Japan; (Y.M.)
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo 060-0815, Hokkaido, Japan; (Y.M.)
| | - Miki Fujimura
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan; (Y.M.); (K.Y.); (S.T.); (M.F.)
| |
Collapse
|
28
|
Ding Z, Jiang M, Qian J, Gu D, Bai H, Cai M, Yao D. Role of transforming growth factor-β in peripheral nerve regeneration. Neural Regen Res 2024; 19:380-386. [PMID: 37488894 PMCID: PMC10503632 DOI: 10.4103/1673-5374.377588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits. Unlike in the central nervous system, damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells. However, axon regeneration and repair do not automatically result in the restoration of function, which is the ultimate therapeutic goal but also a major clinical challenge. Transforming growth factor (TGF) is a multifunctional cytokine that regulates various biological processes including tissue repair, embryo development, and cell growth and differentiation. There is accumulating evidence that TGF-β family proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells; recruiting specific immune cells; controlling the permeability of the blood-nerve barrier, thereby stimulating axon growth; and inhibiting remyelination of regenerated axons. TGF-β has been applied to the treatment of peripheral nerve injury in animal models. In this context, we review the functions of TGF-β in peripheral nerve regeneration and potential clinical applications.
Collapse
Affiliation(s)
- Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
29
|
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024; 9:17. [PMID: 38212307 PMCID: PMC10784577 DOI: 10.1038/s41392-023-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Mani A, Hotra J, Blackwell SC, Goetzl L, Refuerzo JS. Mesenchymal Stem Cells Suppress Inflammatory Cytokines in Lipopolysaccharide Exposed Preterm and Term Human Pregnant Myometrial Cells. AJP Rep 2024; 14:e69-e73. [PMID: 38370325 PMCID: PMC10874693 DOI: 10.1055/a-2216-9194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 02/20/2024] Open
Abstract
Objective The objective of this study was to determine the cytokine response in human pregnant preterm and term myometrial cells exposed to lipopolysaccharide (LPS) and cocultured with mesenchymal stem cells (MSCs). Study Design Myometrium was obtained at cesarean delivery in term and preterm patients. Human myometrial cells were exposed to 5 μg/mL LPS for 4 hours followed by 1 μg/mL LPS for 24 hours and were cocultured with MSCs for 24 hours. Culture supernatants were collected at 24 hours and expression of cytokines, including interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and IL-10, was quantified by enzyme-linked immunosorbent assay. Results There was significantly increased expression of the proinflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in preterm myometrial cells treated with LPS compared with untreated preterm myometrial cells. Coculture with MSCs significantly suppressed the proinflammatory cytokine levels in LPS-treated preterm versus treated term myometrial cells. Moreover, MSC cocultured preterm myometrial cells expressed increased levels of the anti-inflammatory cytokines TGF-β and IL-10 compared with treated term myometrial cells. Conclusion MSCs ameliorate LPS-mediated inflammation in preterm human myometrial cells compared with term myometrial cells. Immunomodulatory effects of MSCs mediated through anti-inflammatory cytokine regulation suggest a potential cell-based therapy for preterm birth.
Collapse
Affiliation(s)
- Arunmani Mani
- Department of Obstetrics Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - John Hotra
- Department of Obstetrics Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sean C. Blackwell
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Laura Goetzl
- Department of Obstetrics Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jerrie S. Refuerzo
- Department of Obstetrics Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
31
|
Ma CW, Wang ZQ, Ran R, Liao HY, Lyu JY, Ren Y, Lei ZY, Zhang HH. TGF-β signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. J Neurosci Res 2024; 102:e25255. [PMID: 37814990 DOI: 10.1002/jnr.25255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/15/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-β signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-β signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-β signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-β signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-β signaling pathway, the role of the TGF-β signaling pathway in SCI, and the latest evidence for targeting the TGF-β signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-β signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-β signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.
Collapse
Affiliation(s)
- Chun-Wei Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhi-Qiang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rui Ran
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia-Yang Lyu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yi Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ze-Yuan Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Hong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Han H, Chen BT, Liu Y, Wang Y, Xing L, Wang H, Zhou TJ, Jiang HL. Engineered stem cell-based strategy: A new paradigm of next-generation stem cell product in regenerative medicine. J Control Release 2024; 365:981-1003. [PMID: 38123072 DOI: 10.1016/j.jconrel.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Stem cells have garnered significant attention in regenerative medicine owing to their abilities of multi-directional differentiation and self-renewal. Despite these encouraging results, the market for stem cell products yields limited, which is largely due to the challenges faced to the safety and viability of stem cells in vivo. Besides, the fate of cells re-infusion into the body unknown is also a major obstacle to stem cell therapy. Actually, both the functional protection and the fate tracking of stem cells are essential in tissue homeostasis, repair, and regeneration. Recent studies have utilized cell engineering techniques to modify stem cells for enhancing their treatment efficiency or imparting them with novel biological capabilities, in which advances demonstrate the immense potential of engineered cell therapy. In this review, we proposed that the "engineered stem cells" are expected to represent the next generation of stem cell therapies and reviewed recent progress in this area. We also discussed potential applications of engineered stem cells and highlighted the most common challenges that must be addressed. Overall, this review has important guiding significance for the future design of new paradigms of stem cell products to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
33
|
Yang W, Pan Z, Zhang J, Wang L, lai J, Zhou S, Zhang Z, Fan K, Deng D, Gao Z, Yu S. Extracellular vesicles from adipose stem cells ameliorate allergic rhinitis in mice by immunomodulatory. Front Immunol 2023; 14:1302336. [PMID: 38143758 PMCID: PMC10739383 DOI: 10.3389/fimmu.2023.1302336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Background Human adipose tissue-derived stem cells (hADSCs) exert potent immunosuppressive effects in the allogeneic transplantation treatment. In mouse model of allergic rhinitis (AR), ADSCs partially ameliorated AR. However, no study has evaluated the potential therapeutic effects of hADSC-derived extracellular vesicles (hADSC-EVs) on AR. Methods Female BALB/c mice were sensitized and challenged with ovalbumin (OVA) to induce AR. One day after the last nasal drop, each group received phosphate buffered saline (PBS) or hADSC-EVs treatment. Associated symptoms and biological changes were then assessed. Results hADSC-EV treatment significantly alleviated nasal symptoms, and reduced inflammatory infiltration. Serum levels of OVA-specific IgE, interleukin (IL)-4 and interferon (IFN)-γ were all significantly reduced. The mRNA levels of IL-4 and IFN-γ in the spleen also changed accordingly. The T helper (Th)1/Th2 cell ratio increased. The treatment efficacy index of hADSC-EV was higher than that of all human-derived MSCs in published reports on MSC treatment of AR. ADSC-EVs exhibited a greater therapeutic index in most measures when compared to our previous treatment involving ADSCs. Conclusion These results demonstrated that hADSC-EVs could ameliorate the symptoms of AR by modulating cytokine secretion and Th1/Th2 cell balance. hADSC-EVs could potentially be a viable therapeutic strategy for AR. Further animal studies are needed to elucidate the underlying mechanisms and to optimize potential clinical protocols.
Collapse
Affiliation(s)
- Wenhan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhiyu Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiacheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Ju lai
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Shican Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhili Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Fan
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Shaoqing Yu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
35
|
Li K, Liu Z, Wu P, Chen S, Wang M, Liu W, Zhang L, Guo S, Liu Y, Liu P, Zhang B, Tao L, Ding H, Qian H, Fu Q. Micro electrical fields induced MSC-sEVs attenuate neuronal cell apoptosis by activating autophagy via lncRNA MALAT1/miR-22-3p/SIRT1/AMPK axis in spinal cord injury. J Nanobiotechnology 2023; 21:451. [PMID: 38012570 PMCID: PMC10680254 DOI: 10.1186/s12951-023-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic condition of the central nervous system that causes paralysis of the limbs. Micro electric fields (EF) have been implicated in a novel therapeutic approach for nerve injury repair and regeneration, but the effects of human umbilical cord mesenchymal stem cell-derived small extracellular vesicles that are induced by micro electric fields (EF-sEVs) stimulation on SCI remain unknown. The aim of the present study was to investigate whether EF-sEVs have therapeutic effects a rat model of SCI. EF-sEVs and normally conditioned human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (CON-sEVs) were collected and injected intralesionally into SCI model rats to evaluate the therapeutic effects. We detect the expression of candidate long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA-MALAT1) in EF-sEVs and CON-sEVs. The targets and downstream effectors of lncRNA-MALAT1 were investigated using luciferase reporter assays. Using both in vivo and in vitro experiments, we demonstrated that EF-sEVs increased autophagy and decreased apoptosis after SCI, which promoted the recovery of motor function. We further confirmed that the neuroprotective effects of EF-sEVs in vitro and in vivo correlated with the presence of encapsulated lncRNA-MALAT1 in sEVs. lncRNA-MALAT1 targeted miR-22-3p via sponging, reducing miR-22-3p's suppressive effects on its target, SIRT1, and this translated into AMPK phosphorylation and increased levels of the antiapoptotic protein Bcl-2. Collectively, the present study identified that the lncRNA-MALAT1 in EF-sEVs plays a neuroprotective role via the miRNA-22-3p/SIRT1/AMPK axis and offers a fresh perspective and a potential therapeutic approach using sEVs to improve SCI.
Collapse
Affiliation(s)
- Kewei Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shenyuan Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenhui Liu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Leilei Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Song Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanbin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Beiting Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lin Tao
- Department of Orthopaedics, Dehong Hospital of Traditional Chinese Medicine, Dehong, 678400, Yunnan, China
| | - Hua Ding
- Department of Orthopaedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
36
|
Jiang X, Yang J, Lin Y, Liu F, Tao J, Zhang W, Xu J, Zhang M. Extracellular vesicles derived from human ESC-MSCs target macrophage and promote anti-inflammation process, angiogenesis, and functional recovery in ACS-induced severe skeletal muscle injury. Stem Cell Res Ther 2023; 14:331. [PMID: 37964317 PMCID: PMC10647154 DOI: 10.1186/s13287-023-03530-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Acute compartment syndrome (ACS) is one of the most common complications of musculoskeletal injury, leading to the necrosis and demise of skeletal muscle cells. Our previous study showed that embryonic stem cells-derived mesenchymal stem cells (ESC-MSCs) are novel therapeutics in ACS treatment. As extracellular vesicles (EVs) are rapidly gaining attention as cell-free therapeutics that have advantages over parental stem cells, the therapeutic potential and mechanisms of EVs from ESC-MSCs on ACS need to be explored. METHOD In the present study, we examined the protective effects in the experimental ACS rat model and investigated the role of macrophages in mediating these effects. Next, we used transcriptome sequencing to explore the mechanisms by which ESC-MSC-EVs regulate macrophage polarization. Furthermore, miRNA sequencing was performed on ESC-MSC-EVs to identify miRNA candidates associated with macrophage polarization. RESULTS We found that intravenous administration of ESC-MSC-EVs, given at the time of fasciotomy, significantly promotes the anti-inflammation process, angiogenesis, and functional recovery of muscle in ACS. The beneficial effects were associated with ESC-MSC-EVs affecting macrophage polarization by delivering various miRNAs which regulate NF-κB, JAK/STAT, and PI3K/AKT pathways. Our data further illustrate that ESC-MSC-EVs mainly modulate macrophage polarization via the miR-21/PTEN, miR-320a/PTEN, miR-423/NLRP3, miR-100/mTOR, and miR-26a/TLR3 axes. CONCLUSION Together, our results demonstrated the beneficial effects of ESC-MSC-EVs in ACS, wherein the miRNAs present in ESC-MSC-EVs regulate the polarization of macrophages.
Collapse
Affiliation(s)
- Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Yao Lin
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Fei Liu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Wenbin Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
37
|
Yang Z, Liang Z, Rao J, Lin F, Lin Y, Xu X, Wang C, Chen C. Mesenchymal stem cell-derived extracellular vesicles therapy in traumatic central nervous system diseases: a systematic review and meta-analysis. Neural Regen Res 2023; 18:2406-2412. [PMID: 37282470 PMCID: PMC10360088 DOI: 10.4103/1673-5374.371376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Although there are challenges in treating traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have recently proven to be a promising non-cellular therapy. We comprehensively evaluated the efficacy of mesenchymal stem cell-derived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies. Our meta-analysis was registered at PROSPERO (CRD42022327904, May 24, 2022). To fully retrieve the most relevant articles, the following databases were thoroughly searched: PubMed, Web of Science, The Cochrane Library, and Ovid-Embase (up to April 1, 2022). The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases. The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tool was used to examine the risk of publication bias in animal studies. After screening 2347 studies, 60 studies were included in this study. A meta-analysis was conducted for spinal cord injury (n = 52) and traumatic brain injury (n = 8). The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal cord injury animals, including rat Basso, Beattie and Bresnahan locomotor rating scale scores (standardized mean difference [SMD]: 2.36, 95% confidence interval [CI]: 1.96-2.76, P < 0.01, I2 = 71%) and mouse Basso Mouse Scale scores (SMD = 2.31, 95% CI: 1.57-3.04, P = 0.01, I2 = 60%) compared with controls. Further, mesenchymal stem cell-derived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals, including the modified Neurological Severity Score (SMD = -4.48, 95% CI: -6.12 to -2.84, P < 0.01, I2 = 79%) and Foot Fault Test (SMD = -3.26, 95% CI: -4.09 to -2.42, P = 0.28, I2 = 21%) compared with controls. Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-derived extracellular vesicles. For Basso, Beattie and Bresnahan locomotor rating scale scores, the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles (allogeneic: SMD = 2.54, 95% CI: 2.05-3.02, P = 0.0116, I2 = 65.5%; xenogeneic: SMD: 1.78, 95%CI: 1.1-2.45, P = 0.0116, I2 = 74.6%). Mesenchymal stem cell-derived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultracentrifugation (SMD = 3.58, 95% CI: 2.62-4.53, P < 0.0001, I2 = 31%) may be more effective than other EV isolation methods. For mouse Basso Mouse Scale scores, placenta-derived mesenchymal stem cell-derived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles (placenta: SMD = 5.25, 95% CI: 2.45-8.06, P = 0.0421, I2 = 0%; bone marrow: SMD = 1.82, 95% CI: 1.23-2.41, P = 0.0421, I2 = 0%). For modified Neurological Severity Score, bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs (bone marrow: SMD = -4.86, 95% CI: -6.66 to -3.06, P = 0.0306, I2 = 81%; adipose: SMD = -2.37, 95% CI: -3.73 to -1.01, P = 0.0306, I2 = 0%). Intravenous administration (SMD = -5.47, 95% CI: -6.98 to -3.97, P = 0.0002, I2 = 53.3%) and dose of administration equal to 100 μg (SMD = -5.47, 95% CI: -6.98 to -3.97, P < 0.0001, I2 = 53.3%) showed better results than other administration routes and doses. The heterogeneity of studies was small, and sensitivity analysis also indicated stable results. Last, the methodological quality of all trials was mostly satisfactory. In conclusion, in the treatment of traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery.
Collapse
Affiliation(s)
- Zhelun Yang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zeyan Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian Rao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yike Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiongjie Xu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
38
|
Kong G, Xiong W, Li C, Xiao C, Wang S, Li W, Chen X, Wang J, Chen S, Zhang Y, Gu J, Fan J, Jin Z. Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861. J Nanobiotechnology 2023; 21:364. [PMID: 37794487 PMCID: PMC10552208 DOI: 10.1186/s12951-023-02089-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.
Collapse
Affiliation(s)
- Guang Kong
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Xiong
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenyu Xiao
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siming Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangjun Chen
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Chen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yongjie Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhengshuai Jin
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Xie Y, Sun Y, Liu Y, Zhao J, Liu Q, Xu J, Qin Y, He R, Yuan F, Wu T, Duan C, Jiang L, Lu H, Hu J. Targeted Delivery of RGD-CD146 +CD271 + Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood-Spinal Cord Barrier Repair after Spinal Cord Injury. ACS NANO 2023; 17:18008-18024. [PMID: 37695238 DOI: 10.1021/acsnano.3c04423] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.
Collapse
Affiliation(s)
- Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Quanbo Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
40
|
Zhao W, Ma L, Deng D, Zhang T, Han L, Xu F, Huang S, Ding Y, Chen X. M2 macrophage polarization: a potential target in pain relief. Front Immunol 2023; 14:1243149. [PMID: 37705982 PMCID: PMC10497114 DOI: 10.3389/fimmu.2023.1243149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Pain imposes a significant urden on patients, affecting them physically, psychologically, and economically. Despite numerous studies on the pathogenesis of pain, its clinical management remains suboptimal, leading to the under-treatment of many pain patients. Recently, research on the role of macrophages in pain processes has been increasing, offering potential for novel therapeutic approaches. Macrophages, being indispensable immune cells in the innate immune system, exhibit remarkable diversity and plasticity. However, the majority of research has primarily focused on the contributions of M1 macrophages in promoting pain. During the late stage of tissue damage or inflammatory invasion, M1 macrophages typically transition into M2 macrophages. In recent years, growing evidence has highlighted the role of M2 macrophages in pain relief. In this review, we summarize the mechanisms involved in M2 macrophage polarization and discuss their emerging roles in pain relief. Notably, M2 macrophages appear to be key players in multiple endogenous pathways that promote pain relief. We further analyze potential pathways through which M2 macrophages may alleviate pain.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| |
Collapse
|
41
|
Hajisoltani R, Taghizadeh M, Hamblin MR, Ramezani F. Could conditioned medium be used instead of stem cell transplantation to repair spinal cord injury in animal models? Identifying knowledge gaps. J Neuropathol Exp Neurol 2023; 82:753-759. [PMID: 37535839 DOI: 10.1093/jnen/nlad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
The drawbacks of stem cell (SC) therapies have led to investigations of SC conditioned medium (CM) instead of SC transplantation in the repair of spinal cord injury (SCI). However, the effectiveness of CM in comparison with cell transplantation in SCI models remain an open and intriguing question. The focus of this review was to survey existing publications addressing this comparison. The review included articles from electronic databases Medline, Embase, Scopus, and Web of Science that included comparisons of the effects of CM versus SC transplantation and versus controls on locomotion after SCI. The search yielded 5 studies and 6 experiments. The results indicated that there was insufficient evidence to conclude that treatment with CM and source cells were equally effective (SMD = 0.12; 95% CI = -0.36 to 0.59; p = 0.07). Regarding investigations of separate effects of SCs versus CM, there currently is limited evidence on efficacy in SCI models. This highlights a notable concern affecting this field. Thus, we identified critical knowledge gaps concerning comparisons of the efficacy of therapeutic application of SC and their derived CM on functional recovery following SCI.
Collapse
Affiliation(s)
- Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Taghizadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Lu D, Wu JP, Yang QW, Wang HY, Yang JJ, Zhang GG, Wang C, Yang YL, Zhu L, Sun XZ. Recent advances in lipid nanovesicles for targeted treatment of spinal cord injury. Front Bioeng Biotechnol 2023; 11:1261288. [PMID: 37691909 PMCID: PMC10486273 DOI: 10.3389/fbioe.2023.1261288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
The effective regeneration and functional restoration of damaged spinal cord tissue have been a long-standing concern in regenerative medicine. Treatment of spinal cord injury (SCI) is challenging due to the obstruction of the blood-spinal cord barrier (BSCB), the lack of targeting of drugs, and the complex pathophysiology of injury sites. Lipid nanovesicles, including cell-derived nanovesicles and synthetic lipid nanovesicles, are highly biocompatible and can penetrate BSCB, and are therefore effective delivery systems for targeted treatment of SCI. We summarize the progress of lipid nanovesicles for the targeted treatment of SCI, discuss their advantages and challenges, and provide a perspective on the application of lipid nanovesicles for SCI treatment. Although most of the lipid nanovesicle-based therapy of SCI is still in preclinical studies, this low immunogenicity, low toxicity, and highly engineerable nanovesicles will hold great promise for future spinal cord injury treatments.
Collapse
Affiliation(s)
- Di Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
| | - Jiu-Ping Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi-Wei Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
| | - Hua-Yi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jie Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang-Gang Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Yan-Lian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Zhi Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Kawikova I. Legends of Allergy and Immunology: Philip W. Askenase. Allergy 2023; 78:2327-2328. [PMID: 37310075 DOI: 10.1111/all.15786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
|
44
|
Liu L, Zheng CX, Zhao N, Zhu T, Hu CB, Zhang N, Chen J, Zhang KC, Zhang S, Liu JX, Zhang K, Jing H, Sui BD, Jin Y, Jin F. Mesenchymal Stem Cell Aggregation-Released Extracellular Vesicles Induce CD31 + EMCN + Vessels in Skin Regeneration and Improve Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2300019. [PMID: 36999744 DOI: 10.1002/adhm.202300019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/01/2023]
Abstract
The blood vessel system is essential for skin homeostasis and regeneration. While the heterogeneity of vascular endothelial cells has been emergingly revealed, whether a regeneration-relevant vessel subtype exists in skin remains unknown. Herein, a specialized vasculature in skin featured by simultaneous CD31 and EMCN expression contributing to the regeneration process is identified, the decline of which functionally underlies the impaired angiogenesis of diabetic nonhealing wounds. Moreover, enlightened by the developmental process that mesenchymal condensation induces angiogenesis, it is demonstrated that mesenchymal stem/stromal cell aggregates (CAs) provide an efficacious therapy to enhance regrowth of CD31+ EMCN+ vessels in diabetic wounds, which is surprisingly suppressed by pharmacological inhibition of extracellular vesicle (EV) release. It is further shown that CAs promote secretion of angiogenic protein-enriched EVs by proteomic analysis, which directly exert high efficacy in boosting CD31+ EMCN+ vessels and treating nonhealing diabetic wounds. These results add to the current knowledge on skin vasculature and help establish feasible strategies to benefit wound healing under diabetic condition.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Histopathology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Na Zhao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ting Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Cheng-Biao Hu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Nan Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai-Chao Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Sha Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Huan Jing
- Department of Endodontics, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
45
|
Feng L, Chen X, Huang Y, Zhang X, Zheng S, Xie N. Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies. Front Pharmacol 2023; 14:1243675. [PMID: 37576819 PMCID: PMC10412938 DOI: 10.3389/fphar.2023.1243675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Immune cells are essential for initiating and developing the fibrotic process by releasing cytokines and growth factors that activate fibroblasts and promote extracellular matrix deposition. Immunometabolism describes how metabolic alterations affect the function of immune cells and how inflammation and immune responses regulate systemic metabolism. The disturbed immune cell function and their interactions with other cells in the tissue microenvironment lead to the origin and advancement of fibrosis. Understanding the dysregulated metabolic alterations and interactions between fibroblasts and the immune cells is critical for providing new therapeutic targets for fibrosis. This review provides an overview of recent advances in the pathophysiology of fibrosis from the immunometabolism aspect, highlighting the altered metabolic pathways in critical immune cell populations and the impact of inflammation on fibroblast metabolism during the development of fibrosis. We also discuss how this knowledge could be leveraged to develop novel therapeutic strategies for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lixiang Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xingyu Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yujing Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaodian Zhang
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
46
|
Wang S, Du C, Li G. Mesenchymal stem cell-derived extracellular vesicles: emerging concepts in the treatment of spinal cord injury. Am J Transl Res 2023; 15:4425-4438. [PMID: 37560238 PMCID: PMC10408507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/09/2023] [Indexed: 08/11/2023]
Abstract
Spinal cord injury (SCI) is a prevalent central nervous system disease with a high disability rate, leading to the loss of motor and sensory nerve function. Due to the complex pathophysiology of SCI, more effective clinical treatment strategies are needed. Research has indicated the considerable potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) as a cell-free therapy in SCI repair and regeneration due to their ability to regulate immune cell activity and stimulate damaged neuron regeneration. Moreover, applying MSCs and engineered EVs can fully exploit the potential of MSC-EVs in spinal cord repair. Here, we outline the pathological process of SCI and its current clinical treatment status, summarize the latest MSC-EVs research and its pretreatment and engineering strategies in SCI treatment, and explore MSC-EVs application prospects.
Collapse
Affiliation(s)
- Shujun Wang
- School of Physical Education, Liaocheng UniversityLiaocheng, Shandong, China
| | - Chengzhe Du
- School of Physical Education, Liaocheng UniversityLiaocheng, Shandong, China
| | - Guilan Li
- School of Life Sciences, Liaocheng UniversityLiaocheng, Shandong, China
| |
Collapse
|
47
|
Zheng D, Ruan H, Chen W, Zhang Y, Cui W, Chen H, Shen H. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact Mater 2023; 25:500-526. [PMID: 37056271 PMCID: PMC10087114 DOI: 10.1016/j.bioactmat.2022.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-scale vesicles derived by cell secretion with unique advantages such as promoting cell proliferation, anti-inflammation, promoting blood vessels and regulating cell differentiation, which benefit their wide applications in regenerative medicine. However, the in vivo therapeutic effect of EVs still greatly restricted by several obstacles, including the off-targetability, rapid blood clearance, and undesired release. To address these issues, biomedical engineering techniques are vastly explored. This review summarizes different strategies to enhance EV functions from the perspective of drug loading, modification, and combination of biomaterials, and emphatically introduces the latest developments of functionalized EV-loaded biomaterials in different diseases, including cardio-vascular system diseases, osteochondral disorders, wound healing, nerve injuries. Challenges and future directions of EVs are also discussed.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| |
Collapse
|
48
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
49
|
Davies LC, Queckbörner S, Jylhä CE, Andrén AT, Forshell TZP, Blanc KL. Lysis and phenotypic modulation of mesenchymal stromal cells upon blood contact triggers anti-inflammatory skewing of the peripheral innate immune repertoire. Cytotherapy 2023:S1465-3249(23)00954-4. [PMID: 37354149 DOI: 10.1016/j.jcyt.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are used to treat immune-related disorders, including graft-versus-host disease. Upon intravenous infusion, MSCs trigger the instant blood-mediated inflammatory response, resulting in activation of both complement and coagulation cascades, and are rapidly cleared from circulation. Despite no/minimal engraftment, long-term immunoregulatory properties are evident. The aim of this study was to establish the effects of blood exposure on MSC viability and immunomodulatory functions. METHODS Human, bone marrow derived MSCs were exposed to human plasma +/- heat inactivation or whole blood. MSC number, viability and cellular damage was assessed using the JC-1 mitochondrial depolarization assay and annexin V staining. C3c binding and expression of the inhibitory receptors CD46, CD55 and CD59 and complement receptors C3aR and C5aR were evaluated by flow cytometry. MSCs pre-exposed to plasma were cultured with peripheral blood mononuclear cells (PBMCs) and monocyte subsets characterized by flow cytometry. The PBMC and MSC secretome was assessed using enzyme-linked immunosorbent assays against tumor necrosis factor alpha, interleukin (IL)-6 and IL-10. Monocyte recruitment towards the MSC secretome was evaluated using Boyden chambers and screened for chemotactic factors including monocyte chemoattractant protein (MCP)-1. MSC effects on the peripheral immune repertoire was also evaluated in whole blood by flow cytometry. RESULTS Plasma induced rapid lysis of 57% of MSCs, which reduced to 1% lysis with heat inactivation plasma. Of those cells that were not lysed, C3c could be seen bound to the surface of the cells, with a significant swelling of the MSCs and induction of cell death. The MSC secretome reduced monocyte recruitment, in part due to a reduction in MCP-1, and downregulated PBMC tumor necrosis factor alpha secretion while increasing IL-6 levels in the co-culture supernatant. A significant decrease in CD14+ monocytes was evident after MSC addition to whole blood alongside a significant increase in IL-6 levels, with those remaining monocytes demonstrating an increase in classical and decrease in non-classical subsets. This was accompanied by a significant increase in both mononuclear and polymorphonuclear myeloid-derived suppressor cells. CONCLUSIONS This study demonstrates that a significant number of MSCs are rapidly lysed upon contact with blood, with those surviving demonstrating a shift in their phenotype, including a reduction in the secretion of monocyte recruitment factors and an enhanced ability to skew the phenotype of monocytes. Shifts in the innate immune repertoire, towards an immunosuppressive profile, were also evident within whole blood after MSC addition. These findings suggest that exposure to blood components can promote peripheral immunomodulation via multiple mechanisms that persists within the system long after the infused MSCs have been cleared.
Collapse
Affiliation(s)
- Lindsay C Davies
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Suzanna Queckbörner
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Cecilia E Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anton Törnqvist Andrén
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tacha Zi Plym Forshell
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; CAST, Patient Area Cell Therapies and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Adamczyk AM, Leicaj ML, Fabiano MP, Cabrerizo G, Bannoud N, Croci DO, Witwer KW, Remes Lenicov F, Ostrowski M, Pérez PS. Extracellular vesicles from human plasma dampen inflammation and promote tissue repair functions in macrophages. J Extracell Vesicles 2023; 12:e12331. [PMID: 37272889 PMCID: PMC10241174 DOI: 10.1002/jev2.12331] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Although inflammation is a vital defence response to infection, if left uncontrolled, it can lead to pathology. Macrophages are critical players both in driving the inflammatory response and in the subsequent events required for restoring tissue homeostasis. Extracellular vesicles (EVs) are membrane-enclosed structures released by cells that mediate intercellular communication and are present in all biological fluids, including blood. Herein, we show that extracellular vesicles from plasma (pEVs) play a relevant role in the control of inflammation by counteracting PAMP-induced macrophage activation. Indeed, pEV-treatment of macrophages simultaneously with or prior to PAMP exposure reduced the secretion of pro-inflammatory IL-6 and TNF-α and increased IL-10 response. This anti-inflammatory activity was associated with the promotion of tissue-repair functions in macrophages, characterized by augmented efferocytosis and pro-angiogenic capacity, and increased expression of VEGFa, CD300e, RGS2 and CD93, genes involved in cell growth and tissue remodelling. We also show that simultaneous stimulation of macrophages with a PAMP and pEVs promoted COX2 expression and CREB phosphorylation as well as the accumulation of higher concentrations of PGE2 in cell culture supernatants. Remarkably, the anti-inflammatory activity of pEVs was abolished if cells were treated with a pharmacological inhibitor of COX2, indicating that pEV-mediated induction of COX2 is critical for the pEV-mediated inhibition of inflammation. Finally, we show that pEVs added to monocytes prior to their M-CSF-induced differentiation to macrophages increased efferocytosis and diminished pro-inflammatory cytokine responses to PAMP stimulation. In conclusion, our results suggest that pEVs are endogenous homeostatic modulators of macrophages, activating the PGE2/CREB pathway, decreasing the production of inflammatory cytokines and promoting tissue repair functions.
Collapse
Affiliation(s)
- Alan M. Adamczyk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - María Luz Leicaj
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Martina Paula Fabiano
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Gonzalo Cabrerizo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Nadia Bannoud
- Laboratorio de Glicobiología y Biología VascularInstituto de Histología y Embriología de MendozaCONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Diego O. Croci
- Laboratorio de Glicobiología y Biología VascularInstituto de Histología y Embriología de MendozaCONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Paula Soledad Pérez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| |
Collapse
|