1
|
Amaral-Silva L, Santin J. Neural Processing without O 2 and Glucose Delivery: Lessons from the Pond to the Clinic. Physiology (Bethesda) 2024; 39:0. [PMID: 38624246 DOI: 10.1152/physiol.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brain stem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying nonmammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| | - Joseph Santin
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
2
|
Dowling J, Bower DS, Nordberg EJ. Overwintering under ice: A novel observation for an Australian freshwater turtle. Ecol Evol 2024; 14:e11578. [PMID: 39011131 PMCID: PMC11247112 DOI: 10.1002/ece3.11578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/17/2024] Open
Abstract
Frozen water bodies provide a physiological challenge to fauna by physically limiting access to atmospheric oxygen. To tolerate low temperatures, reptiles use brumation as a physiological strategy in winter. Cryptodira vary in their tolerance to freezing conditions but the extent of tolerance in pleurodirans is largely unknown. Australia's freshwater turtles inhabit warmer regions with less severe winters and have well-developed mechanisms to cope with high temperatures and drying waterbodies, rather than extreme cold tolerance. Chelodina longicollis is a widespread Australian freshwater turtle species that tolerates high temperatures and desiccation during hot, dry periods while also undergoing brumation during winter months. Despite extensive research, limited observations exist on their behaviour during severe winter periods at the extremes of their range. In an 11-month tracking study, we monitored adult C. longicollis, noting their movements, locations, and temperature weekly. We observed an adult female C. longicollis which, during a seven-month period within a single creek pool, survived brumation in extreme cold water including a 15-day period of total freezing of the surface water. After the ice melted following a rain event, the turtle was recaptured alive. This marks the first observation of brumation for an Australian chelid species under ice.
Collapse
Affiliation(s)
- James Dowling
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| | - Deborah S. Bower
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| | - Eric J. Nordberg
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| |
Collapse
|
3
|
Giraud-Billoud M, Moreira DC, Minari M, Andreyeva A, Campos ÉG, Carvajalino-Fernández JM, Istomina A, Michaelidis B, Niu C, Niu Y, Ondei L, Prokić M, Rivera-Ingraham GA, Sahoo D, Staikou A, Storey JM, Storey KB, Vega IA, Hermes-Lima M. REVIEW: Evidence supporting the 'preparation for oxidative stress' (POS) strategy in animals in their natural environment. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111626. [PMID: 38521444 DOI: 10.1016/j.cbpa.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g. hibernation, estivation), stress-tolerant species down-regulate pathways to decrease energy expenditures until the return of less challenging conditions. However, it is with the return of these more favorable conditions and the reactivation of basal metabolic rates that a strong increase of reactive oxygen and nitrogen species (RONS) occurs, leading to oxidative stress. Over the last few decades, cases of species capable of enhancing antioxidant defenses during hypometabolic states have been reported across taxa and in response to a variety of stressors. Interpreted as an adaptive mechanism to counteract RONS formation during tissue hypometabolism and reactivation, this strategy was coined "Preparation for Oxidative Stress" (POS). Laboratory experiments have confirmed that over 100 species, spanning 9 animal phyla, apply this strategy to endure harsh environments. However, the challenge remains to confirm its occurrence in the natural environment and its wide applicability as a key survival element, through controlled experimentation in field and in natural conditions. Under such conditions, numerous confounding factors may complicate data interpretation, but this remains the only approach to provide an integrative look at the evolutionary aspects of ecophysiological adaptations. In this review, we provide an overview of representative cases where the POS strategy has been demonstrated among diverse species in natural environmental conditions, discussing the strengths and weaknesses of these results and conclusions.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis 5730, Argentina.
| | - Daniel C Moreira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil; Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marina Minari
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aleksandra Andreyeva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow 119991, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - Élida G Campos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Juan M Carvajalino-Fernández
- Laboratory of Adaptations to Extreme Environments and Global Change Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Aleksandra Istomina
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Luciana Ondei
- Universidade Estadual de Goiás, Câmpus Central, 75132-903 Anápolis, GO, Brazil
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Southport 4215, Gold Coast, Queensland. Australia; UMR9190-MARBEC, Centre National de la Recherche Scientifique (CNRS), Montpellier, 34090, France
| | - Debadas Sahoo
- Post Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odis ha-752001, India
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Janet M Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Israel A Vega
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marcelo Hermes-Lima
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
4
|
Wang Y, Liu Y, Wang Y, Zhang A, Xie W, Zhang H, Weng Q, Xu M. Investigation of seasonal changes in lipid synthesis and metabolism-related genes in the oviduct of Chinese brown frog (<em>Rana dybowskii</em>). Eur J Histochem 2023; 67:3890. [PMID: 38116875 PMCID: PMC10773197 DOI: 10.4081/ejh.2023.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
A peculiar physiological characteristic of the Chinese brown frog (Rana dybowskii) is that its oviduct dilates during pre-brumation rather than during the breeding season. This research aimed to examine the expression of genes connected with lipid synthesis and metabolism in the oviduct of R. dybowskii during both the breeding season and pre-brumation. We observed significant changes in the weight and size of the oviduct between the breeding season and pre-brumation. Furthermore, compared to the breeding season, pre-brumation exhibited significantly lower triglyceride content and a marked increase in free fatty acid content. Immunohistochemical results revealed the spatial distribution of triglyceride synthase (Dgat1), triglyceride hydrolase (Lpl and Hsl), fatty acid synthase (Fasn), and fatty acid oxidases (Cpt1a, Acadl, and Hadh) in oviductal glandular cells and epithelial cells during both the breeding season and pre-brumation. While the mRNA levels of triglycerides and free fatty acid synthesis genes (dgat1 and fasn) did not show a significant difference between the breeding season and pre-brumation, the mRNA levels of genes involved in triglycerides and free fatty acid metabolism (lpl, cpt1a, acadl, acox and hadh) were considerably higher during pre-brumation. Furthermore, the R. dybowskii oviduct's transcriptomic and metabolomic data confirmed differential expression of genes and metabolites enriched in lipid metabolism signaling pathways during both the breeding season and pre-brumation. Overall, these results suggest that alterations in lipid synthesis and metabolism during pre-brumation may potentially influence the expanding size of the oviduct, contributing to the successful overwintering of R. dybowskii.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Ao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
5
|
Dubiner S, Jamison S, Meiri S, Levin E. Squamate metabolic rates decrease in winter beyond the effect of temperature. J Anim Ecol 2023; 92:2163-2174. [PMID: 37632258 DOI: 10.1111/1365-2656.13997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The reptilian form of hibernation (brumation) is much less studied than its mammalian and insect equivalents. Hibernation and brumation share some basic features but may differ in others. Evidence for hypometabolism in brumating reptiles beyond the effect of temperature is sporadic and often ignored. We calculated the standard metabolic rates (SMR, oxygen uptake during inactivity), in winter and/or summer, of 156 individuals representing 59 species of Israeli squamates across all 17 local families. For 32 species, we measured the same individuals during both seasons. We measured gas exchange continuously in a dark metabolic chamber, under the average January high and low temperatures (20°C and 12°C), during daytime and nighttime. We examined how SMR changes with season, biome, body size, temperature and time of day, using phylogenetic mixed models. Metabolic rates increased at sunrise in the diurnal species, despite no light or other external cues, while in nocturnal species the metabolic rates did not increase. Cathemeral species shifted from a diurnal-like diel pattern in winter to a nocturnal-like pattern in summer. Regardless of season, Mediterranean species SMRs were 30% higher than similar-sized desert species. Summer SMR of all species together scaled with body size with an exponent of 0.84 but dropped to 0.71 during brumation. Individuals measured during both seasons decreased their SMR between summer and winter by a 47%, on average, at 20°C and by 70% at 12°C. Q10 was 1.75 times higher in winter than in summer, possibly indicating an active suppression of metabolic processes under cold temperatures. Our results challenge the commonly held perception that squamate physiology is mainly shaped by temperature, with little role for intrinsic metabolic regulation. The patterns we describe indicate that seasonal, diel and geographic factors can trigger remarkable shifts in metabolism across squamate species.
Collapse
Affiliation(s)
- Shahar Dubiner
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Simon Jamison
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Meiri
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
de Amaral M, Von Dentz MC, Ressel Simões LA, Vogt É, Heiermann D, Fischer P, Colombo P, Kucharski LC. Metabolic changes in the subtropical frog Boana pulchella during experimental cooling and recovery conditions. J Therm Biol 2023; 117:103705. [PMID: 37714110 DOI: 10.1016/j.jtherbio.2023.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Frogs have developed biochemical and physiological adaptations to occupy diverse ecological niches on Earth successfully. Survival in frozen states is a fascinating strategy made possible by evolving adaptations to produce cryoprotectant solutes. The hylid frog Boana pulchella thrives in South American regions with cold climates, remaining active while enduring sporadic subzero temperatures during winter. The species' metabolic changes during subzero exposure remain unclear. Therefore, we exposed B. pulchella to cooling and recovery, assessing plasma and tissue metabolite changes. Cooling significantly reduced urea concentrations in plasma (P = 0.033), muscle (P = 0.001), heart (P = 0.009), and brain (P = 0.041) compared to acclimation. Liver glucose oxidation and glycogen synthesis were lower in cooling and recovery than in acclimation (P < 0.0001 and P = 0.0117, respectively). Muscle glycogen synthesis was lower in recovery than acclimation (P = 0.0249). These results demonstrate B. pulchella's physiological strategies during subzero exposure, likely reflecting species-specific evolutionary adaptations for brief subzero exposures that enable winter survival in its natural habitat.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maiza Cristina Von Dentz
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Airton Ressel Simões
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Éverton Vogt
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Dener Heiermann
- Museum of Natural Sciences of the Secretariat of Environment and Infrastructure of Rio Grande do Sul (SEMA), FZB, Department of Herpetology/Amphibians, Doutor Salvador França, 90690000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Fischer
- Museum of Natural Sciences of the Secretariat of Environment and Infrastructure of Rio Grande do Sul (SEMA), FZB, Department of Herpetology/Amphibians, Doutor Salvador França, 90690000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrick Colombo
- Museum of Natural Sciences of the Secretariat of Environment and Infrastructure of Rio Grande do Sul (SEMA), FZB, Department of Herpetology/Amphibians, Doutor Salvador França, 90690000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600, 90035003, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Storey JM, Storey KB. Chaperone proteins: universal roles in surviving environmental stress. Cell Stress Chaperones 2023; 28:455-466. [PMID: 36441380 PMCID: PMC10469148 DOI: 10.1007/s12192-022-01312-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Chaperone proteins have crucial roles to play in all animal species and are involved in mediating both the folding of newly synthesized peptides into their mature conformation, the refolding of misfolded proteins, and the trafficking of proteins between subcellular compartments. These highly conserved proteins have particularly important roles to play in dealing with disruptions of the proteome as a result of environmental stress since abiotic factors, including temperature, pressure, oxygen, water availability, and pollutants can readily disrupt the conformation and/or function of all types of proteins, e.g., enzymes, transporters, and structural proteins. The current review provides an update on recent advances in understanding the roles and responses of chaperones in aiding animals to deal with environmental stress, offering new information on chaperone action in supporting survival strategies including torpor, hibernation, anaerobiosis, estivation, and cold/freeze tolerance among both vertebrate and invertebrate species.
Collapse
Affiliation(s)
- Janet M Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
8
|
Tong Q, Dong WJ, Xu MD, Hu ZF, Guo P, Han XY, Cui LY. Characteristics and a comparison of the gut microbiota in two frog species at the beginning and end of hibernation. Front Microbiol 2023; 14:1057398. [PMID: 37206336 PMCID: PMC10191234 DOI: 10.3389/fmicb.2023.1057398] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/21/2023] [Indexed: 05/21/2023] Open
Abstract
Season has been suggested to contribute to variation in the gut microbiota of animals. The complicated relationships between amphibians and their gut microbiota and how they change throughout the year require more research. Short-term and long-term hypothermic fasting of amphibians may affect gut microbiota differently; however, these changes have not been explored. In this study, the composition and characteristics of the gut microbiota of Rana amurensis and Rana dybowskii during summer, autumn (short-term fasting) and winter (long-term fasting) were studied by high-throughput Illumina sequencing. Both frog species had higher gut microbiota alpha diversity in summer than autumn and winter, but no significant variations between autumn and spring. The summer, autumn, and spring gut microbiotas of both species differed, as did the autumn and winter microbiomes. In summer, autumn and winter, the dominant phyla in the gut microbiota of both species were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. All animals have 10 OTUs (>90% of all 52 frogs). Both species had 23 OTUs (>90% of all 28 frogs) in winter, accounting for 47.49 ± 3.84% and 63.17 ± 3.69% of their relative abundance, respectively. PICRUSt2 analysis showed that the predominant functions of the gut microbiota in these two Rana were focused on carbohydrate metabolism, Global and overview maps, Glycan biosynthesis metabolism, membrane transport, and replication and repair, translation. The BugBase analysis estimated that among the seasons in the R. amurensis group, Facultatively_Anaerobic, Forms_Biofilms, Gram_Negative, Gram_Positive, Potentially_Pathogenic were significantly different. However, there was no difference for R. dybowskii. The research will reveal how the gut microbiota of amphibians adapts to environmental changes during hibernation, aid in the conservation of endangered amphibians, particularly those that hibernate, and advance microbiota research by elucidating the role of microbiota under various physiological states and environmental conditions.
Collapse
Affiliation(s)
- Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Hejiang Forestry Research Institute of Heilongjiang Province, Jiamusi, China
| | - Wen-jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi, China
| | - Zong-fu Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Peng Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi, China
| | - Li-yong Cui
- Hejiang Forestry Research Institute of Heilongjiang Province, Jiamusi, China
| |
Collapse
|
9
|
Cann AA, Muñoz A, Lentini I, Benjamin T, Thompson D, Anne Harden L, Milanovich JR. Spatial and thermal ecology of juvenile head‐started Blanding's turtles
Emydoidea blandingii. WILDLIFE BIOLOGY 2023. [DOI: 10.1002/wlb3.01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Armand A. Cann
- Dept of Biology, Loyola Univ. Chicago Chicago IL USA
- U.S. Fish and Wildlife Service Chicago IL USA
| | - Andrés Muñoz
- Dept of Biology, Loyola Univ. Chicago Chicago IL USA
| | - Isabella Lentini
- Dept of Biology, Loyola Univ. Chicago Chicago IL USA
- Nursing Dept, DePaul Univ. Chicago IL USA
| | | | - Daniel Thompson
- Dept of Natural Resources, Forest Preserve District of DuPage County Wheaton IL USA
| | | | | |
Collapse
|
10
|
Yang W, Wu W, Zhao Y, Li Y, Zhang C, Zhang J, Chen C, Cui S. Caveolin-1 suppresses hippocampal neuron apoptosis via the regulation of HIF1α in hypoxia in naked mole-rats. Cell Biol Int 2022; 46:2060-2074. [PMID: 36054154 PMCID: PMC9826031 DOI: 10.1002/cbin.11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Naked mole-rats (NMRs) (Heterocephalus glaber) are highly social and subterranean rodents with large communal colonies in burrows containing low oxygen levels. The inhibition of severe hypoxic conditions is of particular interest to this study. To understand the mechanisms that facilitate neuronal preservation during hypoxia, we investigated the proteins regulating hypoxia tolerance in NMR hippocampal neurons. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, confers prosurvival signalling in the central nervous system. The present study aimed to investigate the role of Cav-1 in hypoxia-induced neuronal injury. Western blotting analysis and immunocytochemistry showed that Cav-1 expression was significantly upregulated in NMR hippocampal neurons under 8% O2 conditions for 8 h. Cav-1 alleviates apoptotic neuronal death from hypoxia. Downregulation of Cav-1 by lentiviral vectors suggested damage to NMR hippocampal neurons under hypoxic conditions in vitro and in vivo. Overexpression of Cav-1 by LV-Cav-1 enhanced hypoxic tolerance of NMR hippocampal neurons in vitro and in vivo. Mechanistically, the levels of hypoxia inducible factor-1α (HIF-1α) are also increased under hypoxic conditions. After inhibiting the binding of HIF-1α to hypoxia response elements in the DNA by echinomycin, Cav-1 levels were downregulated significantly. Furthermore, chromatin immunoprecipitation assays showed the direct role of HIF1α in regulating the expression levels of Cav-1 in NMR hippocampal neurons under hypoxic conditions. These findings suggest that Cav-1 plays a critical role in modulating the apoptosis of NMR hippocampal neurons and warrant further studies targeting Cav-1 to treat hypoxia-associated brain diseases.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Wenqing Wu
- Department of Laboratory Animal CenterAcademy of Military Medical SciencesBeijingChina
| | - Ying Zhao
- Shanghai Laboratory Animal Research CenterShanghaiChina
| | - Yu Li
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chengcai Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Jingyuan Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chao Chen
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Shufang Cui
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
11
|
Starkloff NC, Civitello DJ. Cascading impacts of host seasonal adaptation on parasitism. Trends Parasitol 2022; 38:942-949. [PMID: 36088213 PMCID: PMC9588794 DOI: 10.1016/j.pt.2022.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023]
Abstract
The persistence of parasite populations through harsh seasonal bouts is often critical to circannual disease outbreaks. Parasites have a diverse repertoire of phenotypes for persistence, ranging from transitioning to a different life stage better suited to within-host dormancy to utilizing weather-hardy structures external to hosts. While these adaptive traits allow parasite species to survive through harsh seasons, it is often at survival rates that threaten population persistence. We argue that these periods of parasite (and vector) population busts could be ideal targets for disease intervention. As climate change portends abbreviated host dormancy and extended transmission periods in many host-parasite systems, it is essential to identify novel pathways to shore up current disease-intervention strategies.
Collapse
|
12
|
Wan Y, Huang M, Xu X, Cao X, Chen H, Duan R. Effects of short-term continuous and pulse cadmium exposure on gut histology and microbiota of adult male frogs (Pelophylax nigromaculatus) during pre-hibernation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103926. [PMID: 35787952 DOI: 10.1016/j.etap.2022.103926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is an environmental endocrine-disrupting pollutant which mainly occurs in pulsed manner in natural waters, while traditional toxicology experiments have less examined the effects of pulsed exposure. Here, we studied the effects of short-term (7 days) continuous and pulse exposure to 100 μg/L Cd on gut morphology and microbiota of frogs (Pelophylax nigromaculatus) during pre-hibernation. Compared to continuous exposure, Cd pulse exposure significantly increased individual mortality and decreased the villi height and the ratio of villi height to crypt depth of the gut. Cd continuous and pulse exposure both changed the community structure and relative abundance of intestinal microbiota. Compared to continuous exposure, Cd pulse exposure significantly decreased the relative abundance of beneficial bacteria (e.g., Cetobacterium and Aeromonas genus), and significantly increased the relative abundance of harmful bacteria (e.g., Parabacteroides, Odoribacter, and Acinetobacter genus). This study shows that the gut histology and microbiota of amphibians during pre-hibernation are more susceptible to Cd pulse exposure than continuous exposure.
Collapse
Affiliation(s)
- Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| | - Xiang Xu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Xiaohong Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Hongping Chen
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| |
Collapse
|
13
|
Al-Attar R, Storey KB. Lessons from nature: Leveraging the freeze-tolerant wood frog as a model to improve organ cryopreservation and biobanking. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110747. [PMID: 35460874 DOI: 10.1016/j.cbpb.2022.110747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The freeze-tolerant wood frog, Rana sylvatica, is one of the very few vertebrate species known to endure full body freezing in winter and thaw in early spring without any significant sign of damage. Once frozen, wood frogs show no cardiac or lung activity, brain function, or physical movement yet resume full physiological and biochemical functions within hours after thawing. The miraculous ability to tolerate such extreme stresses makes wood frogs an attractive model for identifying the molecular mechanisms that can promote freeze/thaw endurance. Recapitulating these pro-survival strategies in transplantable human cells and organs could improve viability post-thaw leading to better post-transplant outcomes, in addition to providing more time for adequate distribution of these transplantable materials across larger geographical areas. Indeed, several laboratories are beginning to mimic the pro-survival responses observed in wood frogs to preservation of human cells, tissues and organs and, to date, a few trials have been successful in extending preservation time prior to transplantation. In this review, we discuss the biology of the freeze-tolerant wood frog, current advances in biobanking based on these animals, and extend our discussion to future prospects for cryopreservation as an aid to regenerative medicine.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Sparks K, Couturier CS, Buskirk J, Flores A, Hoeferle A, Hoffman J, Stecyk JAW. Gene expression of hypoxia-inducible factor (HIF), HIF regulators, and putative HIF targets in ventricle and telencephalon of Trachemys scripta acclimated to 21 °C or 5 °C and exposed to normoxia, anoxia or reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111167. [PMID: 35182763 PMCID: PMC8977064 DOI: 10.1016/j.cbpa.2022.111167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
In anoxia-sensitive mammals, hypoxia inducible factor (HIF) promotes cellular survival in hypoxia, but also tumorigenesis. By comparison, anoxia-tolerant vertebrates likely need to circumvent a prolonged upregulation of HIF to survive long-term anoxia, making them attractive biomedical models for investigating HIF regulation. To lend insight into the role of HIF in anoxic Trachemys scripta ventricle and telencephalon, 21 °C- and 5 °C-acclimated turtles were exposed to normoxia, anoxia (24 h at 21 °C; 24 h or 14 d at 5 °C) or anoxia + reoxygenation and the gene expression of HIF-1α (hif1a) and HIF-2α (hif2a), two regulators of HIF, and eleven putative downstream targets of HIF quantified by qPCR. Changes in gene expression with anoxia at 21 °C differentially aligned with a circumvention of HIF activity. Whereas hif1a and hif2a expression was unaffected in ventricle and telencephalon, and BCL2 interacting protein 3 gene expression reduced by 30% in telencephalon, gene expression of vascular endothelial growth factor-A increased in ventricle (4.5-fold) and telencephalon (1.5-fold), and hexokinase 1 (2-fold) and hexokinase 2 (3-fold) gene expression increased in ventricle. At 5 °C, the pattern of gene expression in ventricle or telencephalon was unaltered with oxygenation state. However, cold acclimation in normoxia induced downregulation of HIF-1α, HIF-2α, and HIF target gene expression in telencephalon. Overall, the findings lend support to the postulation that prolonged activation of HIF is counterproductive for long-term anoxia survival. Nevertheless, quantification of the effect of anoxia and acclimation temperature on HIF binding activity and regulation at the protein level are needed to provide a strong scientific framework whereby new strategies for oxygen related pathologies can be developed.
Collapse
Affiliation(s)
- Kenneth Sparks
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Christine S Couturier
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jacob Buskirk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Alicia Flores
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Aurora Hoeferle
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jessica Hoffman
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States.
| |
Collapse
|
15
|
Country MW, Haase K, Blank K, Canez CR, Roberts JA, Campbell BFN, Smith JC, Pelling AE, Jonz MG. Seasonal changes in membrane structure and excitability in retinal neurons of goldfish (Carassius auratus) under constant environmental conditions. J Exp Biol 2022; 225:275230. [PMID: 35485205 DOI: 10.1242/jeb.244238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
Seasonal modifications in the structure of cellular membranes occur as an adaptive measure to withstand exposure to prolonged environmental change. Little is known about whether such changes may occur independently of external cues, such as photoperiod or temperature, or how they may impact the central nervous system. We compared membrane properties of neurons isolated from the retina of goldfish (Carassius auratus), an organism well-adapted to extreme environmental change, during the summer and winter months. Goldfish were maintained in a facility under constant environmental conditions throughout the year. Analysis of whole-retina phospholipid composition using mass spectrometry-based lipidomics revealed a two-fold increase in phosphatidylethanolamine species during the winter, suggesting an increase in cell membrane fluidity. Atomic force microscopy was used to produce localized, nanoscale-force deformation of neuronal membranes. Measurement of Young's modulus indicated increased membrane-cortical stiffness (or decreased elasticity) in neurons isolated during the winter. Voltage-clamp electrophysiology was used to assess physiological changes in neurons between seasons. Winter neurons displayed a hyperpolarized reversal potential (Vrev) and a significantly lower input resistance (Rin) compared to summer neurons. This was indicative of a decrease in membrane excitability during the winter. Subsequent measurement of intracellular Ca2+ activity using Fura-2 microspectrofluorometry confirmed a reduction in action potential activity, including duration and action potential profile, in neurons isolated during the winter. These studies demonstrate chemical and biophysical changes that occur in retinal neurons of goldfish throughout the year without exposure to seasonal cues, and suggest a novel mechanism of seasonal regulation of retinal activity.
Collapse
Affiliation(s)
| | | | - Katrin Blank
- Department of Chemistry, Carleton University, Canada
| | | | | | | | | | | | - Michael G Jonz
- Department of Biology, University of Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Canada
| |
Collapse
|
16
|
Garner M, Stecyk JA. Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? I. Comparison of the intrinsic contractile responses of cardiac chambers to the extracellular changes that accompany prolonged anoxia exposure. Curr Res Physiol 2022; 5:312-326. [PMID: 35872835 PMCID: PMC9301509 DOI: 10.1016/j.crphys.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple lines of evidence suggest that an inability of the ventricle to contract in coordination with the pacemaker during anoxia exposure may suppress cardiac pumping rate in anoxia-tolerant turtles. To determine under what extracellular conditions the ventricle could be the weak link that limits cardiac pumping, we compared, under various extracellular conditions, the intrinsic contractile properties of isometrically-contracting ventricular and atrial strips obtained from 21 °C- to 5 °C- acclimated turtles (Trachemys scripta) that had been exposed to either normoxia or anoxia (16 h at 21 °C; 12 days at 5 °C). We found that combined extracellular anoxia, acidosis, and hyperkalemia (AAK), severely disrupted ventricular, but not right or left atrial, excitability and contractibility of 5 °C anoxic turtles. However, combined hypercalcemia and heightened adrenergic stimulation counteracted the negative effects of AAK. We also report that the turtle heart is resilient to prolonged diastolic intervals, which would ensure that contractile force is maintained if arrhythmia were to occur during anoxia exposure. Finally, our findings reinforce that prior temperature and anoxia experiences are central to the intrinsic contractile response of the turtle myocardium to altered extracellular conditions. At 21 °C, prior anoxia exposure preconditioned the ventricle for anoxic and acidosis exposure. At 5 °C, prior anoxia exposure evoked heightened sensitivity of the ventricle to hyperkalemia, as well as all chambers to combined hypercalcemia and increased adrenergic stimulation. Overall, our findings show that the ventricle could limit cardiac pumping rate during prolonged anoxic submergence in cold-acclimated turtles if hypercalcemia and heightened adrenergic stimulation are insufficient to counteract the negative effects of combined extracellular anoxia, acidosis, and hyperkalemia. Turtle atria are more resilient to extracellular factors that disrupt contraction than the ventricle. Combined anoxia, acidosis, and hyperkalemia disrupted ventricular excitability and contractibility of 5 °C anoxic turtles. Heightened adrenergic stimulation counteracted the negative effects. The ventricle could limit cardiac pumping during anoxia at 5 °C if adrenergic stimulation is low.
Collapse
|
17
|
Muscles in Winter: The Epigenetics of Metabolic Arrest. EPIGENOMES 2021; 5:epigenomes5040028. [PMID: 34968252 PMCID: PMC8715459 DOI: 10.3390/epigenomes5040028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The winter months are challenging for many animal species, which often enter a state of dormancy or hypometabolism to “wait out” the cold weather, food scarcity, reduced daylight, and restricted mobility that can characterize the season. To survive, many species use metabolic rate depression (MRD) to suppress nonessential metabolic processes, conserving energy and limiting tissue atrophy particularly of skeletal and cardiac muscles. Mammalian hibernation is the best recognized example of winter MRD, but some turtle species spend the winter unable to breathe air and use MRD to survive with little or no oxygen (hypoxia/anoxia), and various frogs endure the freezing of about two-thirds of their total body water as extracellular ice. These winter survival strategies are highly effective, but create physiological and metabolic challenges that require specific biochemical adaptive strategies. Gene-related processes as well as epigenetic processes can lower the risk of atrophy during prolonged inactivity and limited nutrient stores, and DNA modifications, mRNA storage, and microRNA action are enacted to maintain and preserve muscle. This review article focuses on epigenetic controls on muscle metabolism that regulate MRD to avoid muscle atrophy and support winter survival in model species of hibernating mammals, anoxia-tolerant turtles and freeze-tolerant frogs. Such research may lead to human applications including muscle-wasting disorders such as sarcopenia, or other conditions of limited mobility.
Collapse
|
18
|
Nagle RD, Russell TJ, Rimple RJ. Sheltering oak: spotted turtles in a tree. Ecology 2021; 103:e03585. [PMID: 34767253 DOI: 10.1002/ecy.3585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Roy D Nagle
- Environmental Science and Studies, Juniata College, 1700 Moore St., Huntingdon, Pennsylvania, 16652, USA
| | - Travis J Russell
- Environmental Science and Studies, Juniata College, 1700 Moore St., Huntingdon, Pennsylvania, 16652, USA
| | - Ryan J Rimple
- Environmental Science and Studies, Juniata College, 1700 Moore St., Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
19
|
Bao M, Shang F, Liu F, Hu Z, Wang S, Yang X, Yu Y, Zhang H, Jiang C, Jiang J, Liu Y, Wang X. Comparative transcriptomic analysis of the brain in Takifugu rubripes shows its tolerance to acute hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1669-1685. [PMID: 34460041 DOI: 10.1007/s10695-021-01008-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Hypoxia in water that caused by reduced levels of oxygen occurred frequently, due to the complex aquatic environment. Hypoxia tolerance for fish depends on a complete set of coping mechanisms such as oxygen perception and gene-protein interaction regulation. The present study examined the short-term effects of hypoxia on the brain in Takifugu rubripes. We sequenced the transcriptomes of the brain in T. rubripes to study their response mechanism to acute hypoxia. A total of 167 genes were differentially expressed in the brain of T. rubripes after exposed to acute hypoxia. Gene ontology and KEGG enrichment analysis indicated that hypoxia could cause metabolic and neurological changes, showing the clues of their adaptation to acute hypoxia. As the most complex and important organ, the brain of T. rubripes might be able to create a self-protection mechanism to resist or reduce damage caused by acute hypoxia stress.
Collapse
Affiliation(s)
- Mingxiu Bao
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Fengqin Shang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Fujun Liu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Ziwen Hu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Shengnan Wang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Xiao Yang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Yundeng Yu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Hongbin Zhang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Chihang Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Jielan Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China.
| |
Collapse
|
20
|
Ruhr I, Bierstedt J, Rhen T, Das D, Singh SK, Miller S, Crossley DA, Galli GLJ. Developmental programming of DNA methylation and gene expression patterns is associated with extreme cardiovascular tolerance to anoxia in the common snapping turtle. Epigenetics Chromatin 2021; 14:42. [PMID: 34488850 PMCID: PMC8420019 DOI: 10.1186/s13072-021-00414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Environmental fluctuation during embryonic and fetal development can permanently alter an organism’s morphology, physiology, and behaviour. This phenomenon, known as developmental plasticity, is particularly relevant to reptiles that develop in subterranean nests with variable oxygen tensions. Previous work has shown hypoxia permanently alters the cardiovascular system of snapping turtles and may improve cardiac anoxia tolerance later in life. The mechanisms driving this process are unknown but may involve epigenetic regulation of gene expression via DNA methylation. To test this hypothesis, we assessed in situ cardiac performance during 2 h of acute anoxia in juvenile turtles previously exposed to normoxia (21% oxygen) or hypoxia (10% oxygen) during embryogenesis. Next, we analysed DNA methylation and gene expression patterns in turtles from the same cohorts using whole genome bisulfite sequencing, which represents the first high-resolution investigation of DNA methylation patterns in any reptilian species. Results Genome-wide correlations between CpG and CpG island methylation and gene expression patterns in the snapping turtle were consistent with patterns observed in mammals. As hypothesized, developmental hypoxia increased juvenile turtle cardiac anoxia tolerance and programmed DNA methylation and gene expression patterns. Programmed differences in expression of genes such as SCN5A may account for differences in heart rate, while genes such as TNNT2 and TPM3 may underlie differences in calcium sensitivity and contractility of cardiomyocytes and cardiac inotropy. Finally, we identified putative transcription factor-binding sites in promoters and in differentially methylated CpG islands that suggest a model linking programming of DNA methylation during embryogenesis to differential gene expression and cardiovascular physiology later in life. Binding sites for hypoxia inducible factors (HIF1A, ARNT, and EPAS1) and key transcription factors activated by MAPK and BMP signaling (RREB1 and SMAD4) are implicated. Conclusions Our data strongly suggests that DNA methylation plays a conserved role in the regulation of gene expression in reptiles. We also show that embryonic hypoxia programs DNA methylation and gene expression patterns and that these changes are associated with enhanced cardiac anoxia tolerance later in life. Programming of cardiac anoxia tolerance has major ecological implications for snapping turtles, because these animals regularly exploit anoxic environments throughout their lifespan. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00414-7.
Collapse
Affiliation(s)
- Ilan Ruhr
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, M13 9NT, UK
| | - Jacob Bierstedt
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Debojyoti Das
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Sunil Kumar Singh
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Soleille Miller
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, M13 9NT, UK
| |
Collapse
|
21
|
Lipaeva P, Vereshchagina K, Drozdova P, Jakob L, Kondrateva E, Lucassen M, Bedulina D, Timofeyev M, Stadler P, Luckenbach T. Different ways to play it cool: Transcriptomic analysis sheds light on different activity patterns of three amphipod species under long-term cold exposure. Mol Ecol 2021; 30:5735-5751. [PMID: 34480774 DOI: 10.1111/mec.16164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
Species of littoral freshwater environments in regions with continental climate experience pronounced seasonal temperature changes. Coping with long cold winters and hot summers requires specific physiological and behavioural adaptations. Endemic amphipods of Lake Baikal, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, show high metabolic activity throughout the year; E. verrucosus even reproduces in winter. In contrast, the widespread Holarctic amphipod Gammarus lacustris overwinters in torpor. This study investigated the transcriptomic hallmarks of E. verrucosus, E. cyaneus and G. lacustris exposed to low water temperatures. Amphipods were exposed to 1.5°C and 12°C (corresponding to the mean winter and summer water temperatures, respectively, in the Baikal littoral) for one month. At 1.5°C, G. lacustris showed upregulation of ribosome biogenesis and mRNA processing genes, as well as downregulation of genes related to growth, reproduction and locomotor activity, indicating enhanced energy allocation to somatic maintenance. Our results suggest that the mitogen-activated protein kinase (MAPK) signalling pathway is involved in the preparation for hibernation; downregulation of the actin cytoskeleton pathway genes could relate to the observed low locomotor activity of G. lacustris at 1.5°C. The differences between the transcriptomes of E. verrucosus and E. cyaneus from the 1.5°C and 12°C exposures were considerably smaller than for G. lacustris. In E. verrucosus, cold-exposure triggered reproductive activity was indicated by upregulation of respective genes, whereas in E. cyaneus, genes related to mitochondria functioning were upregulated, indicating cold compensation in this species. Our data elucidate the molecular characteristics behind the different adaptations of amphipod species from the Lake Baikal area to winter conditions.
Collapse
Affiliation(s)
- Polina Lipaeva
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kseniya Vereshchagina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Polina Drozdova
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Lena Jakob
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Magnus Lucassen
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Daria Bedulina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Peter Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Bogotá, Colombia.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
22
|
Niu Y, Zhang X, Zhang H, Xu T, Zhu L, Storey KB, Chen Q. Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis. Front Zool 2021; 18:41. [PMID: 34454525 PMCID: PMC8403389 DOI: 10.1186/s12983-021-00428-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Many animals lower their metabolic rate in response to low temperatures and scarcity of food in the winter in phenomena called hibernation or overwintering. Living at high altitude on the Tibetan Plateau where winters are very cold, the frog Nanorana parkeri, survives in one of the most hostile environments on Earth but, to date, relatively little is known about the biochemical and physiological adjustments for overwintering by this species. The present study profiled changes in plasma metabolites of N. parkeri between winter and summer using UHPLC-QE-MS non-target metabolomics in order to explore metabolic adaptations that support winter survival. The analysis showed that, in total, 11 metabolites accumulated and 95 were reduced in overwintering frogs compared with summer-active animals. Metabolites that increased included some that may have antioxidant functions (canthaxanthin, galactinol), act as a metabolic inhibitor (mono-ethylhexylphthalate), or accumulate as a product of anaerobic metabolism (lactate). Most other metabolites in plasma showed reduced levels in winter and were generally involved in energy metabolism including 11 amino acids (proline, isoleucine, leucine, valine, phenylalanine, tyrosine, arginine, tryptophan, methionine, threonine and histidine) and 4 carbohydrates (glucose, citrate, succinate, and malate). Pathway analysis indicated that aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and nitrogen metabolism were potentially the most prominently altered pathways in overwintering frogs. Changes to these pathways are likely due to fasting and global metabolic depression in overwintering frogs. Concentrations of glucose and urea, commonly used as cryoprotectants by amphibians that winter on land, were significantly reduced during underwater hibernation in N. parkeri. In conclusion, winter survival of the high-altitude frog, N. parkeri was accompanied by substantial changes in metabolomic profiles and this study provides valuable information towards understanding the special adaptive mechanisms of N. parkeri to winter stresses.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China. .,School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xuejing Zhang
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Haiying Zhang
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Tisen Xu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Lifeng Zhu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
23
|
Stecyk JAW, Barber RG, Cussins J, Hall D. Indirect evidence that anoxia exposure and cold acclimation alter transarcolemmal Ca 2+ flux in the cardiac pacemaker, right atrium and ventricle of the red-eared slider turtle (Trachemys scripta). Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111043. [PMID: 34332046 DOI: 10.1016/j.cbpa.2021.111043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
We indirectly assessed if altered transarcolemmal Ca2+ flux accompanies the decreased cardiac activity displayed by Trachemys scripta with anoxia exposure and cold acclimation. Turtles were first acclimated to 21 °C or 5 °C and held under normoxic (21N; 5N) or anoxic conditions (21A; 5A). We then compared the response of intrinsic heart rate (fH) and maximal developed force of spontaneously contracting right atria (Fmax,RA), and maximal developed force of isometrically-contracting ventricular strips (Fmax,V), to Ni2+ (0.1-10 mM), which respectively blocks T-type Ca2+ channels, L-type Ca2+ channels and the Na+-Ca2+-exchanger at the low, intermediate and high concentrations employed. Dose-response curves were established in simulated in vivo normoxic (Sim Norm) or simulated in vivo anoxic extracellular conditions (Sim Anx; 21A and 5A preparations). Ni2+ decreased intrinsic fH, Fmax,RA and Fmax,V of 21N tissues in a concentration-dependent manner, but the responses were blunted in 21A tissues in Sim Norm. Similarly, dose-response curves for Fmax,RA and Fmax,V of 5N tissues were right-shifted, whereas anoxia exposure at 5 °C did not further alter the responses. The influence of Sim Anx was acclimation temperature-, cardiac chamber- and contractile parameter-dependent. Combined, the findings suggest that: (1) reduced transarcolemmal Ca2+ flux in the cardiac pacemaker is a potential mechanism underlying the slowed intrinsic fH of anoxic turtles at 21 °C, but not 5 °C, (2) a downregulation of transarcolemmal Ca2+ flux may aid cardiac anoxia survival at 21 °C and prime the turtle myocardium for winter anoxia and (3) confirm that altered extracellular conditions with anoxia exposure can modify turtle cardiac transarcolemmal Ca2+ flux.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America.
| | - Riley G Barber
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| | - Jace Cussins
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| | - Diarmid Hall
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| |
Collapse
|
24
|
Alderman SL, Riggs CL, Bullingham OMN, Gillis TE, Warren DE. Cold acclimation induces life stage-specific responses in the cardiac proteome of western painted turtles (Chrysemys picta bellii): implications for anoxia tolerance. J Exp Biol 2021; 224:271114. [PMID: 34328184 DOI: 10.1242/jeb.242387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Western painted turtles (Chrysemys picta bellii) are the most anoxia-tolerant tetrapod. Survival time improves at low temperature and during ontogeny, such that adults acclimated to 3°C survive far longer without oxygen than either warm-acclimated adults or cold-acclimated hatchlings. As protein synthesis is rapidly suppressed to save energy at the onset of anoxia exposure, this study tested the hypothesis that cold acclimation would evoke preparatory changes in protein expression to support enhanced anoxia survival in adult but not hatchling turtles. To test this, adult and hatchling turtles were acclimated to either 20°C (warm) or 3°C (cold) for 5 weeks, and then the heart ventricles were collected for quantitative proteomic analysis. The relative abundance of 1316 identified proteins was compared between temperatures and developmental stages. The effect of cold acclimation on the cardiac proteome was only evident in the context of an interaction with life stage, suggesting that ontogenic differences in anoxia tolerance may be predicated on successful maturation of the heart. The main differences between the hatchling and adult cardiac proteomes reflect an increase in metabolic scope with age that included more myoglobin and increased investment in both aerobic and anaerobic energy pathways. Mitochondrial structure and function were key targets of the life stage- and temperature-induced changes to the cardiac proteome, including reduced Complex II proteins in cold-acclimated adults that may help down-regulate the electron transport system and avoid succinate accumulation during anoxia. Therefore, targeted cold-induced changes to the cardiac proteome may be a contributing mechanism for stage-specific anoxia tolerance in turtles.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, ON, Canada, N1G 2W1
| | - Claire L Riggs
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, ON, Canada, N1G 2W1
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
25
|
Carina Z, George-Ioan M, Dragoș V. Optimal body mass-length ratio during hibernation for Emys orbicularis (Linnaeus, 1758) - European Pond Turtle. Heliyon 2021; 7:e07607. [PMID: 34355098 PMCID: PMC8322291 DOI: 10.1016/j.heliyon.2021.e07607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/29/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to determine optimal body mass/length ratios of Emys orbicularis before hibernation. We obtained 213 measurements of wild-caught and captive-bred turtles during 9 years (2011–2019) and determined regression curves that show intervals for optimal or suboptimal body mass/length ratios before winter dormancy. Using this data we designed an online calculator that facilitates the process of establishing if a turtle has an optimal body mass/length ratio before hibernation. We also gathered 45 measurements at the end of the hibernation period which showed an average body mass loss of 5.32%. The present study offers practical means of assessing if an Emys orbicularis individual is fit for hibernation.
Collapse
Affiliation(s)
- Ziegler Carina
- Wilderness Research and Conservation, Bucharest, Romania
| | | | - Vitan Dragoș
- Military Equipment and Technologies Research Agency, Bucharest, Romania
| |
Collapse
|
26
|
|
27
|
Tarof SA, Crookes S, Moxley K, Hathaway J, Cameron G, Hanner RH. Environmental DNA bioassays corroborate field data for detection of overwintering species at risk Blanding's turtles ( Emydoidea blandingii). Genome 2021; 64:299-310. [PMID: 33538216 DOI: 10.1139/gen-2020-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Environmental DNA (eDNA) is gaining traction in conservation ecology as a powerful tool for detecting species at risk. We developed a quantitative polymerase chain reaction assay to detect a DNA amplicon fragment of the mitochondrial nicotinamide adenine dinucleotide locus of the Blanding's turtle (Emydoidea blandingii) for detecting overwintering individuals. Seventy-eight water samples were collected from 17 wetland sites in Ontario, Canada. We used traditional field data to identify a priori positive and negative control sites. Fifty percent of positive control sites amplified. Detection was related to the number of individuals estimated from field observations in at least one region surveyed. Positive control sites had lower total dissolved solids and electrical conductivity in relation to negative control sites. Shedding rates were within the same order of magnitude for brumating and active turtles. We recommend collecting additional samples at a larger number of locations to maximize detection. Recommended sampling design changes may overshadow the additional effects of water chemistry and low eDNA shedding rates. eDNA offers tremendous potential to practitioners conducting species at risk assessments in environmental consulting by providing a faster, more efficient method of detection compared with traditional surveys.
Collapse
Affiliation(s)
- Scott A Tarof
- Azimuth Environmental Consulting, Inc., 642 Welham Road, Barrie, ON L4N 9A1, Canada
| | - Steven Crookes
- Precision Biomonitoring Inc., Orchard Park, Suite #226, 5420 Highway 6 North, Guelph, ON N1H 6J2, Canada
| | - Kelsey Moxley
- Scales Nature Park, 82 Line 15 South, Oro-Medonte, ON L3V 8H9, Canada
| | - Jeff Hathaway
- Scales Nature Park, 82 Line 15 South, Oro-Medonte, ON L3V 8H9, Canada
| | - Graham Cameron
- Ministry of Natural Resources and Forestry (Bancroft District), 106 Monck Street, Bancroft, ON K0L 1C0, Canada
| | - Robert H Hanner
- Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
28
|
Shi L, Jiang M, Li M, Shang X, Li X, Huang M, Wu Y, Qiao C, Wang X, Tian X, Shi Y, Wang Z. Regulation of HIF-1α and p53 in stress responses in the subterranean rodents Lasiopodomys mandarinus and Lasiopodomys brandtii (Rodentia: Cricetidae). ZOOLOGIA 2021. [DOI: 10.3897/zoologia.38.e58607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The response mechanism and interaction patterns of HIF-1α and p53 in animals in an hypoxic environment are crucial for their hypoxic tolerance and adaptation. Many studies have shown that underground rodents have better hypoxic adaptation characteristics. However, the mechanism by which HIF-1α and p53 in underground rodents respond to hypoxic environments compared with in ground rodents remains unclear. Further, whether a synergy between HIF-1α and p53 enables animals tolerate extremely hypoxic environments is unclear. We studied HIF-1α and p53 expression in the brain tissue and cell apoptosis in the hippocampal CA1 region during 6 hours of acute hypoxia (5% oxygen) in Lasiopodomys mandarinus (Milne-Edwards, 1871) and Lasiopodomys brandtii (Radde, 1861), two closely related small rodents with different life characteristics (underground and aboveground, respectively), using a comparative biology method to determine the mechanisms underlying their adaptation to this environment. Our results indicate that HIF-1α and p53 expression is more rapid in L. mandarinus than in L. brandtii under acute hypoxic environments, resulting in a significant synergistic effect in L. mandarinus. Correlation analysis revealed that HIF-1α expression and the apoptotic index of the hippocampal CA1 regions of the brain tissues of L. mandarinus and L. brandtii, both under hypoxia, were significantly negatively and positively correlated, respectively. Long-term existence in underground burrow systems could enable better adaptation to hypoxia in L. mandarinus than in L. brandtii. We speculate that L. mandarinus can quickly eliminate resulting damage via the synergistic effect of p53 and HIF-1α in response to acute hypoxic environments, helping the organism quickly return to a normal state after the stress.
Collapse
|
29
|
Tang ZH, Chen BJ, Niu CJ. Antioxidant defense response during hibernation and arousal in Chinese soft-shelled turtle Pelodiscus sinensis juveniles. Cryobiology 2021; 99:46-54. [PMID: 33524338 DOI: 10.1016/j.cryobiol.2021.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Antioxidant defense is essential for animals to cope with homeostasis disruption during hibernation. The present study aimed to investigate the antioxidant defense response of juvenile soft-shelled turtle Pelodiscus sinensis during hibernation and following arousal. Turtle brain, liver, and kidney samples were collected at pre-hibernation (17 °C mud temperature; MT), during hibernation (5.8 °C MT) and after arousal (20.1 °C MT) in the field. Transcript levels of NF-E2-related factor 2 (Nrf2) decreased significantly during hibernation and recovered after arousal in all tissues. Cerebral and nephric copper-zinc superoxide dismutase (Cu/Zn SOD), catalase (CAT), glutathione peroxidase 3 (GPx3) and nephric GPx4 mRNA showed similar changing patterns as Nrf2. Cerebral Mn SOD, GPx1 and nephric GPx1 up-regulated after arousal. Hepatic Cu/Zn SOD, GPx1 and GPx3 mRNA kept stable, except hepatic GPx4 increased during hibernation. Hepatic Mn SOD and CAT increased after arousal. In the GSH system, mRNA levels of glutathione synthetases (GSs) kept stable during hibernation and up-regulated after arousal in most tissues except nephric GS2 mRNA remained unchanged. Gene expressions of glutathione reductase (GR) exhibited a tissue specific changing pattern, while those of glutathione-S-Transferase (GST) shared a similar pattern among tissues: remained stable or down-regulated during hibernation then recovered in arousal. In contrast to these diverse responses in gene expressions, most of the antioxidant enzyme activities maintained high and stable. Overall, no preparation for oxidative stress (POS) strategy was found in enzymatic antioxidant system in P. sinensis juveniles during hibernation, the Chinese soft-shelled turtles were able to stay safe from potential oxidative stress during hibernation by maintaining high level activities/concentrations of the antioxidant enzymes/antioxidants.
Collapse
Affiliation(s)
- Zhong-Hua Tang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Bo-Jian Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200082, China
| | - Cui-Juan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
30
|
Hutto D, Barrett K. Do urban open spaces provide refugia for frogs in urban environments? PLoS One 2021; 16:e0244932. [PMID: 33481837 PMCID: PMC7822500 DOI: 10.1371/journal.pone.0244932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/20/2020] [Indexed: 11/19/2022] Open
Abstract
Urbanization is among the largest threats to wildlife populations through factors such as fragmentation, isolation, and habitat destruction. Urban open spaces, such as parks and golf courses, have the potential to provide wildlife with suitable habitat within an urbanized matrix. These refugia may be particularly important for amphibians, which represent one of the most endangered and least vagile vertebrate groups on earth. During the spring and summer of 2018, we conducted surveys to determine the presence of anurans at 51 wetland sites within the Piedmont ecoregion of South Carolina. Nearly one-third of these wetlands were located within urban open spaces, one-third in low development areas, and one-third in highly developed areas. Impervious surface and total road length surrounding the wetlands were measured at two scales, a core habitat scale (300 m) and average maximum migration scale (750 m), and we measured several within-wetland habitat variables. Urban Open Space wetlands had levels of surrounding impervious surface similar to High Urbanization wetlands at the larger scale and were intermediate between Low and High Urbanization wetlands at the smaller scale. The total length of road segments occurring within buffers (at both scales) surrounding our study wetlands was higher for Urban Open Space compared to Low and High Urbanization sites. Among the within-wetland variables measured, Low Urbanization sites had higher canopy cover and were more likely to have a terrestrial buffer zone relative to the other categories. Species richness decreased significantly as total road length increased among all wetlands. Wetland category was not a significant driver explaining species richness, but β-diversity was more variable among Urban Open Space wetlands than either Low or High Urbanization wetlands. Urban Open Space wetlands did not appear to increase suitability for anurans relative to High Urbanization wetlands. Urban Open Space wetlands had higher variability in species composition, which was perhaps attributable to the diversity among sites represented in the Urban Open Space category.
Collapse
Affiliation(s)
- David Hutto
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| | - Kyle Barrett
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
31
|
Lamont MM, Johnson D, Catizone DJ. Movements of marine and estuarine turtles during Hurricane Michael. Sci Rep 2021; 11:1577. [PMID: 33452383 PMCID: PMC7810867 DOI: 10.1038/s41598-021-81234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Natural disturbances are an important driver of population dynamics. Because it is difficult to observe wildlife during these events, our understanding of the strategies that species use to survive these disturbances is limited. On October 10, 2018, Hurricane Michael made landfall on Florida’s northwest coast. Using satellite and acoustic telemetry, we documented movements of 6 individual turtles: one loggerhead sea turtle, one Kemp’s ridley sea turtle, three green sea turtles and one diamondback terrapin, in a coastal bay located less than 30 km from hurricane landfall. Post-storm survival was confirmed for all but the Kemp’s ridley; the final condition of that individual remains unknown. No obvious movements were observed for the remaining turtles however the loggerhead used a larger home range in the week after the storm. This study highlights the resiliency of turtles in response to extreme weather conditions. However, long-term impacts to these species from habitat changes post-hurricane are unknown.
Collapse
Affiliation(s)
- Margaret M Lamont
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA.
| | - Darren Johnson
- Cherokee Nations Systems Solutions, Contracted to U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, 70506, USA
| | - Daniel J Catizone
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA
| |
Collapse
|
32
|
Zhang J, Cai R, Liang J, Izaz A, Shu Y, Pan T, Wu X. Molecular mechanism of Chinese alligator (Alligator sinensis) adapting to hibernation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:32-49. [PMID: 33231934 DOI: 10.1002/jez.b.23013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Hibernation is a physiological state for Chinese alligators to cope with cold weather. In mammals, gene expression changes during hibernation and their regulatory mechanisms have been extensively studied, however, these studies in reptiles are still rare. Here, integrated analysis of messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) reveals the molecular mechanisms of the hypothalamus, liver, and skeletal muscle in hibernating and active individuals. During hibernation, the number of genes increased in the hypothalamus, liver, and skeletal muscle was 585, 282, and 297, while the number of genes decreased was 215, 561, and 627, respectively, as compared with active individuals. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the differential expressed genes were mainly enriched in DNA damage repair, biological rhythm, energy metabolism, myoprotein degradation, and other related items and pathways. Besides, 4740 miRNAs were identified in three tissues. Through the comprehensive analysis of miRNA and mRNA abundance profiles, 12,291, 6997, and 8232 miRNA-mRNA pairs all showed a negative correlation in the hypothalamus, liver, and skeletal muscle, respectively. Some miRNA target genes were related tobiological rhythm and energy metabolism, suggesting that miRNA may play an important role in the physiological metabolism of the hibernating adaptability of Chinese alligators. Moreover, 402, 230, and 130 differentially expressed lncRNAs were identified in the hypothalamus, liver, and skeletal muscle, respectively. The targeting relationship of four lncRNA-mRNA pairs were predicted, with the main function of target genes involved in the amino acid transportation. These results are helpful to further understand the molecular regulatory basis of the hibernation adaptation in Chinese alligators.
Collapse
Affiliation(s)
- Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ruiqing Cai
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juanjuan Liang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ali Izaz
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Pan
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaobing Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
33
|
Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe. Mol Cell Biochem 2020; 474:229-241. [PMID: 32729004 DOI: 10.1007/s11010-020-03848-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Trachemys scripta elegans can survive up to three months of absolute anoxia at 3 °C and recover with minimal cellular damage. Red-eared sliders employ various physiological and biochemical adaptations to survive anoxia with metabolic rate depression (MRD) being the most prominent adaptation. MRD is mediated by epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms aimed at shutting down cellular processes that are not needed for anoxia survival, while reprioritizing ATP towards cell processes that are vital for anaerobiosis. Histone acetylation/deacetylation are epigenetic modifications that maintain a proper balance between permissive chromatin and restricted chromatin, yet very little is known about protein regulation and enzymatic activity of the writers and erasers of acetylation during natural anoxia tolerance. As such, this study explored the interplay between transcriptional activators, histone acetyltransferases (HATs), and transcriptional repressors, sirtuins (SIRTs), along with three prominent acetyl-lysine (K) moieties of histone H3 in the liver of red-eared sliders. Western immunoblotting was used to measure acetylation levels of H3-K14, H3-K18, and H3-K56, as well as protein levels of histone H3-total, HATs, and nuclear SIRTs in the liver in response to 5 h and 20 h anoxia. Global and nuclear enzymatic activity of HATs and enzymatic activity of nuclear SIRTs were also measured. Overall, a strong suppression of HATs-mediated H3 acetylation and SIRT-mediated deacetylation was evident in the liver of red-eared sliders that could play an important role in ATP conservation as part of the overall reduction in metabolic rate.
Collapse
|
34
|
Comparative Morphology of the Lungs and Skin of two Anura, Pelophylax nigromaculatus and Bufo gargarizans. Sci Rep 2020; 10:11420. [PMID: 32651399 PMCID: PMC7351734 DOI: 10.1038/s41598-020-65746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/23/2020] [Indexed: 11/08/2022] Open
Abstract
The lungs and skin are important respiratory organs in Anura, but the pulmonary structure of amphibians remains unclear due to the lack of a suitable procedure. This study improved the procedure used for fixing lungs tissues and used light microscopy, transmission electron microscopy and scanning electron microscopy to reveal the differences in the lung and skin morphologies between Pelophylax nigromaculatus (P. nigromaculatus) and Bufo gargarizans (B. gargarizans). In P. nigromaculatus and B. gargarizans, the cystic lungs comprise a continuous outer pulmonary wall on which primary, secondary, and tertiary septa attach, and a number of regular lattices form from raised capillaries and the pulmonary epithelium on the surfaces of the pulmonary wall and septa. Each lattice in P. nigromaculatus consists of several elliptical sheets and flat bottom, and the septa are distributed with denser sheets and have a larger stretching range than the pulmonary wall. The lattice in B. gargarizans consists of thick folds and an uneven bottom with several thin folds, and the septa have more developed thick and thin folds than the pulmonary wall. However, the density of the pulmonary microvilli, the area of a single capillary, the thicknesses of the blood-air barrier, pulmonary wall and septum, and the lung/body weight percentage obtained for B. gargarizans were higher than those found for P. nigromaculatus. In P. nigromaculatus, the dorsal skin has dense capillaries and a ring surface structure with mucus layer on the stratum corneum, and the ventral skin is slightly keratinized. In B. gargarizans, the stratum corneum in both the dorsal and ventral skins is completely keratinized. A fine ultrastructure analysis of P. nigromaculatus and B. gargarizans revealed that the pulmonary septa are more developed than the pulmonary walls, which means that the septa have a stronger respiratory function. The more developed lungs are helpful for the adaptation of B. gargarizans to drought environments, whereas P. nigromaculatus has to rely on more vigorous skin respiration to adapt to a humid environment.
Collapse
|
35
|
Tong Q, Hu ZF, Du XP, Bie J, Wang HB. Effects of Seasonal Hibernation on the Similarities Between the Skin Microbiota and Gut Microbiota of an Amphibian (Rana dybowskii). MICROBIAL ECOLOGY 2020; 79:898-909. [PMID: 31820074 DOI: 10.1007/s00248-019-01466-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Both the gut and skin microbiotas have important functions for amphibians. The gut microbiota plays an important role in both the health and evolution of the host species, whereas the role of skin microbiota in disease resistance is particularly important for amphibians. Many studies have examined the effects of environmental factors on the skin and gut microbiotas, but no study has yet explored the similarities between the skin and gut microbiotas. In this study, the gut and skin microbiotas of Rana dybowskii in summer and winter were investigated via high-throughput Illumina sequencing. The results showed that the alpha diversity of gut and skin microbiotas decreased significantly from summer to winter. In both seasons, the microbial composition and structure differed significantly between the gut and skin, and the similarities between these microbiotas differed between seasons. The pairwise distances between the gut and skin microbiotas were greater in winter than in summer. The ratio of core OTUs and shared OTUs to the sum of the OTUs in the gut and skin microbiotas in summer was significantly higher than that in winter. The similarities between the gut and skin microbiotas are important for understanding amphibian ecology and life history.
Collapse
Affiliation(s)
- Qing Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Zong-Fu Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiao-Peng Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jia Bie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hong-Bin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China.
| |
Collapse
|
36
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
37
|
Burggren W, Bautista N. Invited review: Development of acid-base regulation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110518. [DOI: 10.1016/j.cbpa.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
|
38
|
Ultsch GR, Nordlie FG. The case for reporting PO2 (partial pressure of oxygen), in addition to DO (dissolved oxygen), in studies of aquatic systems. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:66-68. [DOI: 10.1016/j.cbpa.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
|
39
|
Roth TC, Krochmal AR, LaDage LD. Reptilian Cognition: A More Complex Picture via Integration of Neurological Mechanisms, Behavioral Constraints, and Evolutionary Context. Bioessays 2019; 41:e1900033. [PMID: 31210380 DOI: 10.1002/bies.201900033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Unlike birds and mammals, reptiles are commonly thought to possess only the most rudimentary means of interacting with their environments, reflexively responding to sensory information to the near exclusion of higher cognitive function. However, reptilian brains, though structurally somewhat different from those of mammals and birds, use many of the same cellular and molecular processes to support complex behaviors in homologous brain regions. Here, the neurological mechanisms supporting reptilian cognition are reviewed, focusing specifically on spatial cognition and the hippocampus. These processes are compared to those seen in mammals and birds within an ecologically and evolutionarily relevant context. By viewing reptilian cognition through an integrative framework, a more robust understanding of reptile cognition is gleaned. Doing so yields a broader view of the evolutionarily conserved molecular and cellular mechanisms that underlie cognitive function and a better understanding of the factors that led to the evolution of complex cognition.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA, 17603, USA
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD, 21620, USA
| | - Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona, Altoona, PA, 16601, USA
| |
Collapse
|
40
|
The expression of genes involved in excitatory and inhibitory neurotransmission in turtle (Trachemys scripta) brain during anoxic submergence at 21 °C and 5 °C reveals the importance of cold as a preparatory cue for anoxia survival. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:55-70. [DOI: 10.1016/j.cbd.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/20/2022]
|
41
|
Aerobic Pushups: Cutaneous Ventilation in Overwintering Smooth Softshell Turtles, Apalone mutica. J HERPETOL 2019. [DOI: 10.1670/18-038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Al-Attar R, Wijenayake S, Storey KB. Metabolic reorganization in winter: Regulation of pyruvate dehydrogenase (PDH) during long-term freezing and anoxia. Cryobiology 2019; 86:10-18. [PMID: 30639451 DOI: 10.1016/j.cryobiol.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
Abstract
Wood frogs, Rana sylvatica, can undergo prolonged periods of whole body freezing during winter, locking as much as 65-70% of total body water into extracellular ice and imposing both anoxia and dehydration on their cells. Metabolic rate depression (MRD) is an adaptation used by R. sylvatica to survive these environmental stresses, where a finite amount of ATP generated through anaerobic metabolism is directed towards maintaining pro-survival functions, while most ATP-expensive cellular processes are temporarily reduced in function. Pyruvate dehydrogenase (PDH) is a vital metabolic enzyme that links anaerobic glycolysis to the aerobic TCA cycle and is an important regulatory site in MRD. PDH enzymatic activity is regulated via reversible protein phosphorylation in response to energetic demands of cells. This study explored the posttranslational regulation of PDH at three serine sites (S232, S293, S300) on the catalytic E1α subunit along with protein expression of four pyruvate dehydrogenase kinases (PDHK1-4) in response to 24 h Freezing, 8 h Thaw, 24 h Anoxia, and 4 h Recovery in the liver and skeletal muscle of R. sylvatica using Luminex multiplex technology and western immunoblotting. Overall, inhibitory regulation of PDH was evident during 24 h Freezing and 24 h Anoxia, which could indicate a notable reduction in glycoytic flux and carbon entry into the tricarboxylic acid cycle as part of MRD. Furthermore, the expression of PDHK1-4 and phosphorylation of PDH at S232, S293, and S300 were highly tissue and stress-specific, indicative of how different tissues respond differently to stress within the same organism.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sanoji Wijenayake
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Center for Environmental Epigenetics and Development, Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
43
|
Dong Q, Shi L, Li Y, Jiang M, Sun H, Wang B, Cheng H, Zhang Y, Shao T, Shi Y, Wang Z. Differential responses of Lasiopodomys mandarinus and Lasiopodomys brandtii to chronic hypoxia: a cross-species brain transcriptome analysis. BMC Genomics 2018; 19:901. [PMID: 30537924 PMCID: PMC6290494 DOI: 10.1186/s12864-018-5318-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subterranean rodents have evolved many features to adapt to their hypoxic environment. The brain is an organ that is particularly vulnerable to damage caused by exposure to hypoxic conditions. To investigate the mechanisms of adaption to a hypoxic underground environment, we carried out a cross-species brain transcriptome analysis by RNA sequencing and identified genes that are differentially expressed between the subterranean vole Lasiopodomys mandarinus and the closely related above-ground species Lasiopodomys brandtii under chronic hypoxia [10.0% oxygen (O2)] and normoxia (20.9% O2). RESULTS A total of 355 million clean reads were obtained, including 69,611 unigenes in L. mandarinus and 69,360 in L. brandtii. A total of 235 and 92 differentially expressed genes (DEGs) were identified by comparing the hypoxic and control groups of L. mandarinus and L. brandtii, respectively. A Gene Ontology (GO) analysis showed that upregulated DEGs in both species had similar functions in response to hypoxia, whereas downregulated DEGs in L. mandarinus were enriched GO terms related to enzymes involved in aerobic reactions. In the Kyoto Encyclopedia of Genes and Genomes pathway analysis, upregulated DEGs in L. mandarinus were associated with angiogenesis and the increased O2 transport capacity of red blood cells, whereas downregulated DEGs were associated with immune responses. On the other hand, upregulated DEGs in L. brandtii were associated with cell survival, vascular endothelial cell proliferation, and neuroprotection, while downregulated genes were related to the synaptic transmission by neurons. CONCLUSIONS L. mandarinus actively adapts its physiological functions to hypoxic conditions, for instance by increasing O2 transport capacity and modulating O2 consumption. In contrast, L. brandtii reacts passively to hypoxia by decreasing overall activity in order to reduce O2 consumption. These results provide insight into hypoxia adaptation mechanisms in subterranean rodents that may be applicable to humans living at high altitudes or operating in other O2-poor environments.
Collapse
Affiliation(s)
- Qianqian Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yangwei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008 Henan China
| | - Mengwan Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Baishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038 China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Yifeng Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Tian Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| |
Collapse
|
44
|
Al-Attar R, Storey KB. Effects of anoxic exposure on the nuclear factor of activated T cell (NFAT) transcription factors in the stress-tolerant wood frog. Cell Biochem Funct 2018; 36:420-430. [PMID: 30411386 DOI: 10.1002/cbf.3362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 11/08/2022]
Abstract
The wood frog, Lithobates sylvaticus (also known as Rana sylvatica), is used for studying natural freeze tolerance. These animals convert 65% to 70% of their total body water into extracellular ice and survive freezing for weeks in winter. Freezing interrupts oxygen delivery to organs; thus, wood frogs limit their ATP usage by depressing their metabolism and redirecting the available energy only to prosurvival processes. Here, we studied the nuclear factor of activated T cell (NFAT) transcription factor family in response to 24-hour anoxia, and 4-hour aerobic recovery in liver and skeletal muscle. Protein expression levels of NFATc1-c4, calcineurin A and glycogen synthase kinase 3β (NFAT regulators), osteopontin, and atrial natriuretic peptide (ANP) (targets of NFATc3 and NFATc4, respectively) were measured by immunoblotting, and the DNA-binding activities of NFATc1-c4 were measured by DNA-protein interaction ELISAs. Results show that NFATc4, calcineurin, and ANP protein expression as well as NFATc4 DNA binding increased during anoxia in liver where calcineurin and ANP protein levels and NFATc4 DNA binding remaining high after aerobic recovery. Anoxia caused a significant increase in NFATc3 protein expression but not DNA-binding activity in muscle. Our results show that anoxia can increase NFATc4 transcriptional activity in liver, leading to the increase in expression of cytoprotective genes in the wood frog. Understanding the molecular mechanisms involved in mediating survival under anoxia/reoxygenation conditions in a naturally stress-tolerant model, such as the wood frog, provides insightful information on the prosurvival regulatory mechanisms involved in combating stress. This information will also further our understanding of metabolic rate depression and answer the question of how frogs tolerate prolonged periods of oxygen deprivation and resume to full function upon recovery without facing any detrimental side effects as other animals would.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
45
|
Williams BL, Wiebler JM, Lee RE, Costanzo JP. Nitric oxide metabolites in hypoxia, freezing, and hibernation of the wood frog, Rana sylvatica. J Comp Physiol B 2018; 188:957-966. [PMID: 30209557 DOI: 10.1007/s00360-018-1182-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/31/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is a gaseous free radical that in diverse organisms performs many signaling and protective functions, such as vasoregulation, inhibition of apoptosis, antioxidation, and metabolic suppression. Increased availability of NO may be especially important during life-history periods when organisms contend with multiple stresses. We investigated dynamics of the NO metabolites, nitrite (NO2-) and nitrate (NO3-), in the blood plasma, heart, liver, and skeletal muscle of the wood frog (Rana sylvatica), an amphibian that endures chronic cold, freezing, hypoxia, dehydration, and extended aphagia during hibernation. We found elevated concentrations of NO2- and/or NO3- in the plasma (up to 4.1-fold), heart (3.1-fold), and liver (up to 4.1-fold) of frogs subjected to experimental hypoxia (24 h, 4 °C), and in the liver (up to 3.8-fold) of experimentally frozen frogs (48 h, - 2.5 °C), suggesting that increased NO availability aids in survival of these stresses. During a 38-week period of simulated hibernation, NO2- and/or NO3- increased in the plasma (up to 10.4-fold), heart (up to 3.3-fold), and liver (5.0-fold) during an initial 5-week winter-acclimatization regimen and generally remained elevated thereafter. In hibernation, plasma NO2- was higher in frogs indigenous to Interior Alaska than in conspecifics from a temperate locale (southern Ohio), suggesting that NO availability is matched to the severity of environmental conditions prevailing in winter. The comparatively high NO availability in R. sylvatica, a stress-tolerant species, together with published values for other species, suggest that the NO protection system is of general importance in the stress adaptation of vertebrates.
Collapse
Affiliation(s)
- Bethany L Williams
- Department of Biology, Miami University, Oxford, OH, 45056, USA
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43202, USA
| | - James M Wiebler
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Jon P Costanzo
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
46
|
Swanson JE, Muths E, Pierce CL, Dinsmore SJ, Vandever MW, Hladik ML, Smalling KL. Exploring the amphibian exposome in an agricultural landscape using telemetry and passive sampling. Sci Rep 2018; 8:10045. [PMID: 29968741 PMCID: PMC6030078 DOI: 10.1038/s41598-018-28132-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
This is the first field study of its kind to combine radio telemetry, passive samplers, and pesticide accumulation in tissues to characterize the amphibian exposome as it relates to pesticides. Understanding how habitat drives exposure in individuals (i.e., their exposome), and how that relates to individual health is critical to managing species in an agricultural landscape where pesticide exposure is likely. We followed 72 northern leopard frogs (Lithobates pipiens) in two agricultural wetlands for insight into where and when individuals are at high risk of pesticide exposure. Novel passive sampling devices (PSDs) were deployed at sites where telemetered frogs were located, then moved to subsequent locations as frogs were radio-tracked. Pesticide concentration in PSDs varied by habitat and was greatest in agricultural fields where frogs were rarely found. Pesticide concentrations in frogs were greatest in spring when frogs were occupying wetlands compared to late summer when frogs occupied terrestrial habitats. Our results indicate that habitat and time of year influence exposure and accumulation of pesticides in amphibians. Our study illustrates the feasibility of quantifying the amphibian exposome to interpret the role of habitat use in pesticide accumulation in frogs to better manage amphibians in agricultural landscapes.
Collapse
Affiliation(s)
- Jennifer E Swanson
- Iowa State University, Department of Natural Resource Ecology and Management, Ames, IA, 50011, USA.
| | - Erin Muths
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
| | - Clay L Pierce
- US Geological Survey, Iowa Cooperative Fish and Wildlife Research Unit, Ames, IA, 50011, USA
| | - Stephen J Dinsmore
- Iowa State University, Department of Natural Resource Ecology and Management, Ames, IA, 50011, USA
| | - Mark W Vandever
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
| | - Michelle L Hladik
- US Geological Survey, California Water Science Center, Sacramento, CA, 95819, USA
| | - Kelly L Smalling
- US Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, 08648, USA
| |
Collapse
|
47
|
Cano Garcia M, Nesbit SC, Le CC, Dearworth JR. Ocular Kinematics Measured by In Vitro Stimulation of the Cranial Nerves in the Turtle. J Vis Exp 2018. [PMID: 29912183 DOI: 10.3791/56864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
After animals are euthanized, their tissues begin to die. Turtles offer an advantage because of a longer survival time of their tissues, especially when compared to warm-blooded vertebrates. Because of this, in vitro experiments in turtles can be performed for extended periods of time to investigate the neural signals and control of their target actions. Using an isolated head preparation, we measured the kinematics of eye movements in turtles, and their modulation by electrical signals carried by cranial nerves. After the brain was removed from the skull, leaving the cranial nerves intact, the dissected head was placed in a gimbal to calibrate eye movements. Glass electrodes were attached to cranial nerves (oculomotor, trochlear, and abducens) and stimulated with currents to evoke eye movements. We monitored eye movements with an infrared video tracking system and quantified rotations of the eyes. Current pulses with a range of amplitudes, frequencies, and train durations were used to observe effects on responses. Because the preparation is separated from the brain, the efferent pathway going to muscle targets can be examined in isolation to investigate neural signaling in the absence of centrally processed sensory information.
Collapse
Affiliation(s)
| | - Steven C Nesbit
- Department of Biology and Neuroscience Program, Lafayette College
| | - Chi C Le
- Department of Information Technology, Computer Science, and Digital Media, Juniata College
| | | |
Collapse
|
48
|
Andreyeva AY, Skverchinskaya EA, Gambaryan S, Soldatov AA, Mindukshev IV. Hypoxia inhibits the regulatory volume decrease in red blood cells of common frog (Rana temporaria). Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:44-47. [PMID: 29501871 DOI: 10.1016/j.cbpa.2018.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 11/19/2022]
Abstract
Red blood cells of vertebrates can restore their cellular volume after hyposmotic swelling. The process strictly depends on oxygen availability in the environment. However, the role of hemoglobin in regulation of cell volume recovery is not clear yet. Little is known about the osmotic reactions and regulatory volume decrease of amphibian red blood cells. We investigated volume recovery process in oxygenated (oxyhemoglobin concentration 97 ± 3% of total hemoglobin) deoxygenated (96 ± 2% of deoxyhemolobin) and oxidized (47 ± 2% of methemoglobin, 41 ± 3% of deoxyhemoglobin) red blood cells of common frog (Rana temporaria) after hyposmotic swelling. Using the low-angle light scattering method we demonstrated the regulatory volume decrease in oxygenated cells and showed that the process was eliminated in hypoxic conditions. Reoxygenation of hypoxic cells restored the regulatory volume decrease. Oxidation of cellular hemoglobin to methemoglobin inhibited the volume recovery response in hyposmotically swollen oxygenated and reoxygenated hypoxic cells.
Collapse
Affiliation(s)
- Aleksandra Y Andreyeva
- The A.O. Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Lenninsky ave, 14, 119991 Moscow, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 21, 194223 St. Petersburg, Russia.
| | - Elizaveta A Skverchinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 21, 194223 St. Petersburg, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 21, 194223 St. Petersburg, Russia; Department of Cytology and Histology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Aleksander A Soldatov
- The A.O. Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Lenninsky ave, 14, 119991 Moscow, Russia
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 21, 194223 St. Petersburg, Russia
| |
Collapse
|
49
|
Horii Y, Shiina T, Shimizu Y. The Mechanism Enabling Hibernation in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:45-60. [PMID: 30288703 DOI: 10.1007/978-981-13-1244-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Some rodents including squirrels and hamsters undergo hibernation. During hibernation, body temperature drops to only a few degrees above ambient temperature. The suppression of whole-body energy expenditure is associated with regulated, but not passive, reduction of cellular metabolism. The heart retains the ability to beat constantly, although body temperature drops to less than 10 °C during hibernation. Cardiac myocytes of hibernating mammals are characterized by reduced Ca2+ entry into the cell membrane and a concomitant enhancement of Ca2+ release from and reuptake by the sarcoplasmic reticulum. These adaptive changes would help in preventing excessive Ca2+ entry and its overload and in maintaining the resting levels of intracellular Ca2+. Adaptive changes in gene expression in the heart prior to hibernation may be indispensable for acquiring cold resistance. In addition, protective effects of cold-shock proteins are thought to have an important role. We recently reported the unique expression pattern of cold-inducible RNA-binding protein (CIRP) in the hearts of hibernating hamsters. The CIRP mRNA is constitutively expressed in the heart of a nonhibernating euthermic hamster with several different forms probably due to alternative splicing. The short product contained the complete open reading frame for full-length CIRP, while the long product had inserted sequences containing a stop codon, suggesting production of a C-terminal deletion isoform of CIRP. In contrast to nonhibernating hamsters, only the short product was found in hibernating animals. Thus, these results indicate that CIRP expression in the hamster heart is regulated at the level of alternative splicing, which would permit a rapid increment of functional CIRP when entering hibernation. We will summarize the current understanding of the cold-resistant property of the heart in hibernating animals.
Collapse
Affiliation(s)
- Yuuki Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
50
|
Szereszewski KE, Storey KB. Translational regulation in the anoxic turtle, Trachemys scripta elegans. Mol Cell Biochem 2017; 445:13-23. [PMID: 29243067 DOI: 10.1007/s11010-017-3247-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
The red-eared slider turtle (Trachemys scripta elegans), has developed remarkable adaptive mechanisms for coping with decreased oxygen availability during winter when lakes and ponds become covered with ice. Strategies for enduring anoxia tolerance include an increase in fermentable fuel reserves to support anaerobic glycolysis, the buffering of end products to minimize acidosis, altered expression in crucial survival genes, and strong metabolic rate suppression to minimize ATP-expensive metabolic processes such as protein synthesis. The mammalian target of rapamycin (mTOR) is at the center of the insulin-signaling pathway that regulates protein translation. The present study analyzed the responses of the mTOR signaling pathway to 5 (5H) or 20 h (20H) of anoxic submergence in liver and skeletal muscle of T. scripta elegans with a particular focus on regulatory changes in the phosphorylation states of targets. The data showed that phosphorylation of multiple mTOR targets was suppressed in skeletal muscle, but activated in the liver. Phosphorylated mTORSer2448 showed no change in skeletal muscle but had increased by approximately 4.5-fold in the liver after 20H of anoxia. The phosphorylation states of upstream positive regulators of mTOR (p-PDK-1Ser241, p-AKTSer473, and protein levels of GβL), the relative levels of dephosphorylated active PTEN, as well as phosphorylation state of negative regulators (TSC2Thr1462, p-PRAS40Thr246) were generally found to be differentially regulated in skeletal muscle and in liver. Downstream targets of mTOR (p-p70 S6KThr389, p-S6Ser235, PABP, p-4E-BP1Thr37/46, and p-eIF4ESer209) were generally unchanged in skeletal muscle but upregulated in most targets in liver. These findings indicate that protein synthesis is enhanced in the liver and suggests an increase in the synthesis of crucial proteins required for anoxic survival.
Collapse
Affiliation(s)
- Kama E Szereszewski
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|