1
|
Coutinho MF, Santos JI, S. Mendonça L, Matos L, Prata MJ, S. Jurado A, Pedroso de Lima MC, Alves S. Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21165732. [PMID: 32785133 PMCID: PMC7461213 DOI: 10.3390/ijms21165732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence: ; Tel.: +351-(223)-401-113
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- i3S—Institute of Research and Innovation in Health/IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Amália S. Jurado
- University of Coimbra, CNC—Center for Neuroscience and Cell Biology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Maria C. Pedroso de Lima
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
2
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
3
|
Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable Polymers for Gene Delivery. Molecules 2019; 24:molecules24203744. [PMID: 31627389 PMCID: PMC6832905 DOI: 10.3390/molecules24203744] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular transport process of DNA is hampered by cell membrane barriers, and hence, a delivery vehicle is essential for realizing the potential benefits of gene therapy to combat a variety of genetic diseases. Virus-based vehicles are effective, although immunogenicity, toxicity and cancer formation are among the major limitations of this approach. Cationic polymers, such as polyethyleneimine are capable of condensing DNA to nanoparticles and facilitate gene delivery. Lack of biodegradation of polymeric gene delivery vehicles poses significant toxicity because of the accumulation of polymers in the tissue. Many attempts have been made to develop biodegradable polymers for gene delivery by modifying existing polymers and/or using natural biodegradable polymers. This review summarizes mechanistic aspects of gene delivery and the development of biodegradable polymers for gene delivery.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, KTL N102, 675 Hoes Lane, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | | | - C K S Pillai
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
4
|
Liang Z, Lu Z, Zhang Y, Shang D, Li R, Liu L, Zhao Z, Zhang P, Lin Q, Feng C, Zhang Y, Liu P, Tu Z, Liu H. Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy. Curr Cancer Drug Targets 2018; 19:449-467. [PMID: 30306870 DOI: 10.2174/1568009618666181010091246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 01/02/2023]
Abstract
Ovarian cancer is a leading cause of death worldwide from gynecological malignancies, mainly because there are few early symptoms and the disease is generally diagnosed at an advanced stage. In addition, despite the effectiveness of cytoreductive surgery for ovarian cancer and the high response rates to chemotherapy, survival has improved little over the last 20 years. The management of patients with ovarian cancer also remains similar despite studies showing striking differences and heterogeneity among different subtypes. It is therefore clear that novel targeted therapeutics are urgently needed to improve clinical outcomes for ovarian cancer. To that end, several membrane receptors associated with pivotal cellular processes and often aberrantly overexpressed in ovarian cancer cells have emerged as potential targets for receptor-mediated therapeutic strategies including specific agents and multifunctional delivery systems based on ligand-receptor binding. This review focuses on the profiles and potentials of such strategies proposed for ovarian cancer treatment and imaging.
Collapse
Affiliation(s)
- Zhiquan Liang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yafei Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhicong Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Chen YL, Ge GJ, Qi C, Wang H, Wang HL, Li LY, Li GH, Xia LQ. A five-gene signature may predict sunitinib sensitivity and serve as prognostic biomarkers for renal cell carcinoma. J Cell Physiol 2018; 233:6649-6660. [PMID: 29327492 DOI: 10.1002/jcp.26441] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Sunitinib resistance is, nowadays, the major challenge for advanced renal cell carcinoma patients. Illuminating the potential mechanisms and exploring effective strategies to overcome sunitinib resistance are highly desired. We constructed a reliable gene signature which may function as biomarkers for prediction of sunitinib sensitivity and clinical prognosis. The gene expression profiles were obtained from The Cancer Genome Atlas database. By performing GEO2R analysis, numerous differentially expressed genes (DEGs) were found to be associated with sunitinib resistance. To acquire more precise DEGs, we integrated three different microarray datasets. Functional analysis revealed that these DEGs were mainly involved in Rap1 signaling pathway, p53 signaling pathway and Ras signaling pathway. Then, top five hub genes, BIRC5, CD44, MUC1, TF, CCL5, were identified from protein-protein interaction (PPI) network. Sub-network analysis carried out by MCODE plugin revealed that key DEGs were related with PI3K-Akt signaling pathway, Rap1 signaling pathway and VEGF signaling pathway. Next, we established sunitinib-resistant OS-RC-2 and 786-O cell lines and validated the expression of five hub genes in cell lines. To further evaluate the potentials of five-gene signature for predicting clinical prognosis, we analyzed RCC patients with gene expressions and overall survival information from two independent patient datasets. The Kaplan-Meier estimated the OS of RCC patients in the low- and high-risk groups according to gene expression signature. Multivariate Cox regression analysis indicated that the prognostic power of five-gene signature was independent of clinical features. In conclusion, we developed a five-gene signature which can predict sunitinib sensitivity and OS for advanced RCC patients, providing novel insights into understanding of sunitinib-resistant mechanisms and identification of RCC patients with poor prognosis.
Collapse
Affiliation(s)
- Yuan-Lei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang-Ju Ge
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Qi
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huai-Lan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Yang Li
- Department of Mathematics and Statistics Science, University College of London, London, England
| | - Gong-Hui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Qun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Sinsuebphon N, Rudkouskaya A, Barroso M, Intes X. Comparison of illumination geometry for lifetime-based measurements in whole-body preclinical imaging. JOURNAL OF BIOPHOTONICS 2018; 11:e201800037. [PMID: 29806238 PMCID: PMC6177317 DOI: 10.1002/jbio.201800037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 05/22/2023]
Abstract
Macroscopic fluorescence lifetime imaging (MFLI) has been proved to be an accurate tool to quantify Förster resonance energy transfer (FRET) lifetime-based assessment of receptor-ligand engagement in vitro and in vivo. Herein, we report on the quantitative comparison of MFLI for whole-body preclinical studies in transmittance and reflectance geometries. The comparative study was conducted for both in vitro and in vivo conditions. FRET quantification performance in both geometries was similar in high fluorescence concentration samples. However, the reflectance geometry performed better at low fluorescence concentration. In addition, reflectance geometry could acquire subsurface imaging of the main whole-body organs of small animals without being compromised by tissue attenuation.
Collapse
Affiliation(s)
- Nattawut Sinsuebphon
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
7
|
Peng H, Jin H, Zhuo H, Huang H. Enhanced antitumor efficacy of cisplatin for treating ovarian cancer in vitro and in vivo via transferrin binding. Oncotarget 2018; 8:45597-45611. [PMID: 28484093 PMCID: PMC5542211 DOI: 10.18632/oncotarget.17316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 04/02/2017] [Indexed: 11/25/2022] Open
Abstract
Cisplatin is a widely used anticancer drug, while non-targeted delivery, development of drug resistance, and serious side effects significantly limit its clinical use. In order to improve the tumor-targeting properties of cisplatin, transferrin (Tf) was employed as a carrier to transfer cisplatin into cancer cells via transferrin receptor 1 (TfR1) mediated endocytosis. The binding ability of cisplatin and Tf could be improved by pretreating Tf with 10% ethanol, and the binding number of cisplatin for each Tf molecule could reach to 40 without structural or functional impairment of Tf. The Tf-cisplatin complex could be delivered into human ovarian carcinoma cells high efficiently. In tumor-bearing nude-mice model, the Tf-cisplatin complex inhibited tumor growth in vivo more effectively than free cisplatin, with less toxicity in other tissues. Tumor targeting efficiency of the Tf-cisplatin complex was supported by in vivo and ex vivo imaging and platinum residues detected in each ex vivo organ. These data suggested that Tf-cisplatin was more effective and less drug-resistance than cisplatin, with targeting to tumor cells. Therefore, Tf-mediated delivery of cisplatin is a potential strategy for targeted delivery into tumor cells.
Collapse
Affiliation(s)
- Huifang Peng
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen, Fujian 361004, China
| | - Hongwei Jin
- Xiamen Center of Clinical Laboratory, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen University, Xiamen, Fujian 361004, China
| | - Heqing Huang
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen, Fujian 361004, China.,State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, Fujian 361004, China.,The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361004, China
| |
Collapse
|
8
|
Bang EK, Cho H, Jeon SSH, Tran NL, Lim DK, Hur W, Sim T. Amphiphilic small peptides for delivery of plasmid DNAs and siRNAs. Chem Biol Drug Des 2017; 91:575-587. [DOI: 10.1111/cbdd.13122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/08/2017] [Accepted: 09/13/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Eun-Kyoung Bang
- Chemical Kinomics Research Center; Korea Institute of Science and Technology; Seoul Korea
| | - Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology; Seoul Korea
| | - Sean S.-H. Jeon
- KU-KIST Graduate School of Converging Science and Technology; Seoul Korea
| | - Na Ly Tran
- Chemical Kinomics Research Center; Korea Institute of Science and Technology; Seoul Korea
- University of Science and Technology (UST); Daejoen Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology; Seoul Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center; Korea Institute of Science and Technology; Seoul Korea
| | - Taebo Sim
- Chemical Kinomics Research Center; Korea Institute of Science and Technology; Seoul Korea
- KU-KIST Graduate School of Converging Science and Technology; Seoul Korea
| |
Collapse
|
9
|
Fast therapeutic DNA internalization – A high potential transfection system based on a peptide mimicking cationic lipid. Eur J Pharm Biopharm 2017; 118:38-47. [DOI: 10.1016/j.ejpb.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/21/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023]
|
10
|
Rodriguez M, Lapierre J, Ojha CR, Kaushik A, Batrakova E, Kashanchi F, Dever SM, Nair M, El-Hage N. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep 2017; 7:1862. [PMID: 28500326 PMCID: PMC5431946 DOI: 10.1038/s41598-017-01819-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
We previously reported that activation of the host autophagic protein, Beclin1, by HIV-1 infection represents an essential mechanism in controlling HIV replication and viral-induced inflammatory responses in microglial cells. Existing antiretroviral therapeutic approaches have been limited in their ability to cross the blood-brain barrier effectively and recognize and selectively eliminate persistent HIV-infected brain reservoirs. In the present study and for the first time, the bio-distribution and efficacy of noninvasive intranasal delivery of small interfering RNA (siRNA) against the Beclin1 gene using the cationic linear polyethylenimines (PEI) as a gene carrier was investigated in adult mouse brain. Fluorescein isothiocyanate (FITC)-labeled control siRNA delivered intranasally was found in the cytoplasm of neurons and glial cells of the prefrontal cortex at 4 and 24 hours post-delivery, with no major adverse immune reaction encountered. Intranasal delivery of the siRNA targeting Beclin1 significantly depleted the target protein expression levels in brain tissues with no evidence of toxicity. Binding of siRNA to PEI-polymer was characterized and confirmed by Raman spectroscopy. These results indicate that the intranasal drug delivery allows for the direct delivery of the PEI-siRNA nano-complex to the central nervous system, which could potentially offer an efficient means of gene silencing-mediated therapy in the HIV-infected brain.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Jessica Lapierre
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Chet Raj Ojha
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Ajeet Kaushik
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Elena Batrakova
- University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Seth M Dever
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
11
|
Glaser T, Han I, Wu L, Zeng X. Targeted Nanotechnology in Glioblastoma Multiforme. Front Pharmacol 2017; 8:166. [PMID: 28408882 PMCID: PMC5374154 DOI: 10.3389/fphar.2017.00166] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/14/2017] [Indexed: 01/08/2023] Open
Abstract
Gliomas, and in particular glioblastoma multiforme, are aggressive brain tumors characterized by a poor prognosis and high rates of recurrence. Current treatment strategies are based on open surgery, chemotherapy (temozolomide) and radiotherapy. However, none of these treatments, alone or in combination, are considered effective in managing this devastating disease, resulting in a median survival time of less than 15 months. The efficiency of chemotherapy is mainly compromised by the blood-brain barrier (BBB) that selectively inhibits drugs from infiltrating into the tumor mass. Cancer stem cells (CSCs), with their unique biology and their resistance to both radio- and chemotherapy, compound tumor aggressiveness and increase the chances of treatment failure. Therefore, more effective targeted therapeutic regimens are urgently required. In this article, some well-recognized biological features and biomarkers of this specific subgroup of tumor cells are profiled and new strategies and technologies in nanomedicine that explicitly target CSCs, after circumventing the BBB, are detailed. Major achievements in the development of nanotherapies, such as organic poly(propylene glycol) and poly(ethylene glycol) or inorganic (iron and gold) nanoparticles that can be conjugated to metal ions, liposomes, dendrimers and polymeric micelles, form the main scope of this summary. Moreover, novel biological strategies focused on manipulating gene expression (small interfering RNA and clustered regularly interspaced short palindromic repeats [CRISPR]/CRISPR associated protein 9 [Cas 9] technologies) for cancer therapy are also analyzed. The aim of this review is to analyze the gap between CSC biology and the development of targeted therapies. A better understanding of CSC properties could result in the development of precise nanotherapies to fulfill unmet clinical needs.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Inbo Han
- Department of Neurosurgery, Spine Center, CHA University, CHA Bundang Medical CenterSeongnam, South Korea
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
12
|
Pärnaste L, Arukuusk P, Langel K, Tenson T, Langel Ü. The Formation of Nanoparticles between Small Interfering RNA and Amphipathic Cell-Penetrating Peptides. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624185 PMCID: PMC5363680 DOI: 10.1016/j.omtn.2017.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-penetrating peptides (CPPs) are delivery vectors widely used to aid the transport of biologically active cargoes to intracellular targets. These cargoes include small interfering RNAs (siRNA) that are not naturally internalized by cells. Elucidating the complexities behind the formation of CPP and cargo complexes is crucial for understanding the processes related to their delivery. In this study, we used modified analogs of the CPP transportan10 and investigated the binding properties of these CPPs to siRNA, the formation parameters of the CPP/siRNA complexes, and their stabiliy to enzymatic degradation. We conclude that the pH dependent change of the net charge of the CPP may very well be the key factor leading to the high delivery efficiency and the optimal binding strength between CPPs to siRNAs, while the hydrophobicity, secondary structure of the CPP, and the positions of the positive charges are responsible for the stability of the CPP/siRNA particles. Also, CPPs with distinct hydrophobic and hydrophilic regions may assemble into nanoparticles that could be described as core-shell formulations.
Collapse
Affiliation(s)
- Ly Pärnaste
- Institute of Technology, University of Tartu, Nooruse 1-517, 50411 Tartu, Estonia.
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Nooruse 1-517, 50411 Tartu, Estonia
| | - Kent Langel
- Institute of Technology, University of Tartu, Nooruse 1-517, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1-517, 50411 Tartu, Estonia
| | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1-517, 50411 Tartu, Estonia; Department of Neurochemistry, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
13
|
Khalil IR, Burns ATH, Radecka I, Kowalczuk M, Khalaf T, Adamus G, Johnston B, Khechara MP. Bacterial-Derived Polymer Poly-y-Glutamic Acid (y-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications. Int J Mol Sci 2017; 18:ijms18020313. [PMID: 28157175 PMCID: PMC5343849 DOI: 10.3390/ijms18020313] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
In the past decade, poly-γ-glutamic acid (γ-PGA)-based micro/nanoparticles have garnered remarkable attention as antimicrobial agents and for drug delivery, owing to their controlled and sustained-release properties, low toxicity, as well as biocompatibility with tissue and cells. γ-PGA is a naturally occurring biopolymer produced by several gram-positive bacteria that, due to its biodegradable, non-toxic and non-immunogenic properties, has been used successfully in the medical, food and wastewater industries. Moreover, its carboxylic group on the side chains can offer an attachment point to conjugate antimicrobial and various therapeutic agents, or to chemically modify the solubility of the biopolymer. The unique characteristics of γ-PGA have a promising future for medical and pharmaceutical applications. In the present review, the structure, properties and micro/nanoparticle preparation methods of γ-PGA and its derivatives are covered. Also, we have highlighted the impact of micro/nanoencapsulation or immobilisation of antimicrobial agents and various disease-related drugs on biodegradable γ-PGA micro/nanoparticles.
Collapse
Affiliation(s)
- Ibrahim R Khalil
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
- Polish Academy of Sciences, Centre of Polymer and Carbon Materials, Zabrze 41-819, Poland.
| | - Alan T H Burns
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Iza Radecka
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Marek Kowalczuk
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
- Polish Academy of Sciences, Centre of Polymer and Carbon Materials, Zabrze 41-819, Poland.
| | - Tamara Khalaf
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Grazyna Adamus
- Polish Academy of Sciences, Centre of Polymer and Carbon Materials, Zabrze 41-819, Poland.
| | - Brian Johnston
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Martin P Khechara
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| |
Collapse
|
14
|
Chernikov IV, Gladkikh DV, Meschaninova MI, Ven'yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Cholesterol-Containing Nuclease-Resistant siRNA Accumulates in Tumors in a Carrier-free Mode and Silences MDR1 Gene. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 6:209-220. [PMID: 28325287 PMCID: PMC5363506 DOI: 10.1016/j.omtn.2016.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/26/2022]
Abstract
Chemical modifications are an effective way to improve the therapeutic properties of small interfering RNAs (siRNAs), making them more resistant to degradation in serum and ensuring their delivery to target cells and tissues. Here, we studied the carrier-free biodistribution and biological activity of a nuclease-resistant anti-MDR1 cholesterol-siRNA conjugate in healthy and tumor-bearing severe combined immune deficiency (SCID) mice. The attachment of cholesterol to siRNA provided its efficient accumulation in the liver and in tumors, and reduced its retention in the kidneys after intravenous and intraperitoneal injection. The major part of cholesterol-siRNA after intramuscular and subcutaneous injections remained in the injection place. Confocal microscopy data demonstrated that cholesterol-siRNA spread deep in the tissue and was present in the cytoplasm of almost all the liver and tumor cells. The reduction of P-glycoprotein level in human KB-8-5 xenograft overexpressing the MDR1 gene by 60% was observed at days 5–6 after injection. Then, its initial level recovered by the eighth day. The data showed that, regardless of the mode of administration (intravenous, intraperitoneal, or peritumoral), cholesterol-siMDR efficiently reduced the P-glycoprotein level in tumors. The designed anti-MDR1 conjugate has potential as an adjuvant therapeutic for the reversal of multiple drug resistance of cancer cells.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Daniil V Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Mariya I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alya G Ven'yaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
15
|
Wang J, Mi P, Lin G, Wáng YXJ, Liu G, Chen X. Imaging-guided delivery of RNAi for anticancer treatment. Adv Drug Deliv Rev 2016; 104:44-60. [PMID: 26805788 DOI: 10.1016/j.addr.2016.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/27/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
The RNA interference (RNAi) technique is a new modality for cancer therapy, and several candidates are being tested clinically. In the development of RNAi-based therapeutics, imaging methods can provide a visible and quantitative way to investigate the therapeutic effect at anatomical, cellular, and molecular level; to noninvasively trace the distribution; to and study the biological processes in preclinical and clinical stages. Their abilities are important not only for therapeutic optimization and evaluation but also for shortening of the time of drug development to market. Typically, imaging-functionalized RNAi therapeutics delivery that combines nanovehicles and imaging techniques to study and improve their biodistribution and accumulation in tumor site has been progressively integrated into anticancer drug discovery and development processes. This review presents an overview of the current status of translating the RNAi cancer therapeutics in the clinic, a brief description of the biological barriers in drug delivery, and the roles of imaging in aspects of administration route, systemic circulation, and cellular barriers for the clinical translation of RNAi cancer therapeutics, and with partial content for discussing the safety concerns. Finally, we focus on imaging-guided delivery of RNAi therapeutics in preclinical development, including the basic principles of different imaging modalities, and their advantages and limitations for biological imaging. With growing number of RNAi therapeutics entering the clinic, various imaging methods will play an important role in facilitating the translation of RNAi cancer therapeutics from bench to bedside.
Collapse
|
16
|
Malhotra M, Toulouse A, Godinho BMDC, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. MOLECULAR BIOSYSTEMS 2016; 11:2635-57. [PMID: 26135606 DOI: 10.1039/c5mb00278h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
17
|
Muralidharan R, Babu A, Amreddy N, Basalingappa K, Mehta M, Chen A, Zhao YD, Kompella UB, Munshi A, Ramesh R. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration. J Nanobiotechnology 2016; 14:47. [PMID: 27328938 PMCID: PMC4915183 DOI: 10.1186/s12951-016-0201-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/02/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Human antigen R (HuR) is an RNA binding protein that is overexpressed in many human cancers, including lung cancer, and has been shown to regulate the expression of several oncoproteins. Further, HuR overexpression in cancer cells has been associated with poor-prognosis and therapy resistance. Therefore, we hypothesized that targeted inhibition of HuR in cancer cells should suppress several HuR-regulated oncoproteins resulting in an effective anticancer efficacy. To test our hypothesis, in the present study we investigated the efficacy of folate receptor-α (FRA)-targeted DOTAP:Cholesterol lipid nanoparticles carrying HuR siRNA (HuR-FNP) against human lung cancer cells. RESULTS The therapeutic efficacy of HuR-FNP was tested in FRA overexpressing human H1299 lung cancer cell line and compared to normal lung fibroblast (CCD16) cells that had low to no FRA expression. Physico-chemical characterization studies showed HuR-FNP particle size was 303.3 nm in diameter and had a positive surface charge (+4.3 mV). Gel retardation and serum stability assays showed that the FNPs were efficiently protected siRNA from rapid degradation. FNP uptake was significantly higher in H1299 cells compared to CCD16 cells indicating a receptor-dose effect. The results of competitive inhibition studies in H1299 cells demonstrated that HuR-FNPs were efficiently internalized via FRA-mediated endocytosis. Biologic studies demonstrated HuR-FNP but not C-FNP (control siRNA) induced G1 phase cell-cycle arrest and apoptosis in H1299 cells resulting in significant growth inhibition. Further, HuR-FNP exhibited significantly higher cytotoxicity against H1299 cells than it did against CCD16 cells. The reduction in H1299 cell viability was correlated with a marked decrease in HuR mRNA and protein expression. Further, reduced expression of HuR-regulated oncoproteins (cyclin D1, cyclin E, and Bcl-2) and increased p27 tumor suppressor protein were observed in HuR-FNP-treated H1299 cells but not in C-FNP-treated cells. Finally, cell migration was significantly inhibited in HuR-FNP-treated H1299 cells compared to C-FNP. CONCLUSIONS Our results demonstrate that HuR is a molecular target for lung cancer therapy and its suppression using HuR-FNP produced significant therapeutic efficacy in vitro.
Collapse
Affiliation(s)
- Ranganayaki Muralidharan
- Departments of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anish Babu
- Departments of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Narsireddy Amreddy
- Departments of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kanthesh Basalingappa
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Meghna Mehta
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Allshine Chen
- Departments of Epidemiology and Statistics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yan Daniel Zhao
- Departments of Epidemiology and Statistics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Uday B Kompella
- Department of Pharmaceutical Sciences and Opthalmology, University of Colorado, Denver, CO, 80045, USA
| | - Anupama Munshi
- Departments of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Departments of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Pathology, Stanton L. Young Biomedical Research Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
18
|
Xie Y, Kim NH, Nadithe V, Schalk D, Thakur A, Kılıç A, Lum LG, Bassett DJP, Merkel OM. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release 2016; 229:120-129. [PMID: 27001893 PMCID: PMC4886848 DOI: 10.1016/j.jconrel.2016.03.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022]
Abstract
Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy.
Collapse
Affiliation(s)
- Yuran Xie
- Wayne State University, Detroit, MI, United States
| | - Na Hyung Kim
- Wayne State University, Detroit, MI, United States
| | | | - Dana Schalk
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | - Archana Thakur
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | - Ayşe Kılıç
- Philipps-Universität Marburg, Marburg, Germany
| | - Lawrence G Lum
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | | | - Olivia M Merkel
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States; Ludwig-Maximilians Universität München, Munich, Germany.
| |
Collapse
|
19
|
Singh Y, Tomar S, Khan S, Meher JG, Pawar VK, Raval K, Sharma K, Singh PK, Chaurasia M, Surendar Reddy B, Chourasia MK. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. J Control Release 2015; 220:368-387. [PMID: 26528900 DOI: 10.1016/j.jconrel.2015.10.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/04/2023]
Abstract
The scope of RNAi based therapeutics is unquestionable. However, if we dissect the current trend of clinical trials for afore mentioned drug class, some stark trends appear: 1) naked siRNA only exerts influence in topical mode whilst systemic delivery requires a carrier and 2) even after two decades of extensive efforts, not even a single siRNA containing product is commercially available. It was therefore felt that a perspective simplifying the unique intricacies of working with a merger of siRNA and liposomes from a pharmaceutical viewpoint could draw the attention of a wider array of interested researchers. We begin from the beginning and attempt to conduit the gap between theoretical logic and experimental/actual constraints. This, in turn could stimulate the next generation of investigators, gearing them to tackle the conundrum, which is siRNA delivery.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Tomar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shariq Khan
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Komal Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pankaj K Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohini Chaurasia
- Amity Institute of Pharmacy, Amity University, Lucknow, UP 226028, India
| | - B Surendar Reddy
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
20
|
Zhang W, Rödl W, He D, Döblinger M, Lächelt U, Wagner E. Combination of sequence-defined oligoaminoamides with transferrin-polycation conjugates for receptor-targeted gene delivery. J Gene Med 2015; 17:161-72. [DOI: 10.1002/jgm.2838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wei Zhang
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Dongsheng He
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| | - Markus Döblinger
- Department of Chemistry; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| |
Collapse
|
21
|
Evaluation of improved PAMAM-G5 conjugates for gene delivery targeted to the transferrin receptor. Eur J Pharm Biopharm 2015; 94:116-22. [DOI: 10.1016/j.ejpb.2015.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/06/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022]
|
22
|
Marimani MD, Ely A, Buff MCR, Bernhardt S, Engels JW, Scherman D, Escriou V, Arbuthnot P. Inhibition of replication of hepatitis B virus in transgenic mice following administration of hepatotropic lipoplexes containing guanidinopropyl-modified siRNAs. J Control Release 2015; 209:198-206. [PMID: 25937322 DOI: 10.1016/j.jconrel.2015.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
Chronic infection with hepatitis B virus (HBV) occurs commonly and complications that arise from persistence of the virus are associated with high mortality. Available licensed drugs have modest curative efficacy and advancing new therapeutic strategies to eliminate the virus is therefore a priority. HBV is susceptible to inactivation by exogenous gene silencers that harness RNA interference (RNAi) and the approach has therapeutic potential. To advance RNAi-based treatment for HBV infection, use in vivo of hepatotropic lipoplexes containing siRNAs with guanidinopropyl (GP) modifications is reported here. Lipoplexes contained polyglutamate, which has previously been shown to facilitate formulation and improve efficiency of the non-viral vectors. GP moieties were included in a previously described anti-HBV siRNA that effectively targeted the conserved viral X sequence. Particles had physical properties that were suitable for use in vivo: average diameter was approximately 50-200 nm and surface charge (zeta potential) was +65 mV. Efficient hepatotropic delivery of labeled siRNA was observed following systemic intravenous injection of the particles into HBV transgenic mice. Good inhibition of markers of viral replication was observed without evidence of toxicity. Efficacy of the GP-modified siRNAs was significantly more durable and formulations made up with chemically modified siRNAs were less immunostimulatory. An RNAi-mediated mechanism was confirmed by demonstrating that HBV mRNA cleavage occurred in vivo at the intended target site. Collectively these data indicate that GP-modified siRNAs formulated in anionic polymer-containing lipoplexes are effective silencers of HBV replication in vivo and have therapeutic potential.
Collapse
Affiliation(s)
- Musa D Marimani
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| | - Abdullah Ely
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| | - Maximilian C R Buff
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Stefan Bernhardt
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Joachim W Engels
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Daniel Scherman
- UTCBS, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Virginie Escriou
- UTCBS, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Patrick Arbuthnot
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa.
| |
Collapse
|
23
|
Dar GH, Gopal V, Rao NM. Systemic delivery of stable siRNA-encapsulating lipid vesicles: optimization, biodistribution, and tumor suppression. Mol Pharm 2015; 12:610-20. [PMID: 25545110 DOI: 10.1021/mp500677x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid-based nanoparticles are considered as promising candidates for delivering siRNA into the cytoplasm of targeted cells. However, in vivo efficiency of these nanoparticles is critically dependent on formulation strategies of lipid-siRNA complexes. Adsorption of serum proteins to lipid-siRNA complexes and its charge determine siRNA degradation and serum half-life, thus significantly altering the bioavailability of siRNA. To address these challenges, we developed a formulation comprising dihydroxy cationic lipid, N,N-di-n-hexadecyl-N,N-dihydroxyethylammonium chloride (DHDEAC), cholesterol, and varying concentrations of 1,2-distearoryl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol-2000)] (DSPE-PEG 2000). Using an ethanol dilution method, addition of these lipids to siRNA solution leads to formation of stable and homogeneous population of siRNA-encapsulated vesicles (SEVs). Biodistribution of these SEVs, containing 5 mol % of DSPE-PEG 2000 in xenograft mice, as monitored by live animal imaging and fluorescence microscopy, revealed selective accumulation in the tumor. Remarkably, four intravenous injections of the modified vesicles with equimolar amounts of siRNA targeting ErbB2 and AURKB genes led to significant gene silencing and concomitant tumor suppression in the SK-OV-3 xenograft mouse model. Safety parameters as evaluated by various markers of hepatocellular injury indicated the nontoxic nature of this formulation. These results highlight improved pharmacokinetics and effective in vivo delivery of siRNA by DHDEAC-based vesicles.
Collapse
Affiliation(s)
- Ghulam Hassan Dar
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road, Hyderabad 500007, Andhra Pradesh, India
| | | | | |
Collapse
|
24
|
Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther 2014; 15:269-85. [PMID: 25399911 DOI: 10.1517/14712598.2015.983070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION RNA interference is a sequence-specific gene silencing phenomenon in which small interfering RNAs (siRNAs) can trigger gene transcriptional and post-transcriptional silencing. This phenomenon represents an emerging therapeutic approach for in vivo studies by efficient delivery of specific synthetic siRNAs against diseases. Therefore, simultaneous development of synthetic siRNAs along with novel delivery techniques is considered as novel and interesting therapeutic challenges. AREAS COVERED This review provides a basic explanation to siRNA signaling pathways and their therapeutic challenges. Here, we provide a comprehensive explanation to failed and successful trials and their in vivo challenges. EXPERT OPINION Specific, efficient and targeted delivery of siRNAs is the major concern for their in vivo administrations. Also, anatomical barriers, drug stability and availability, immunoreactivity and existence of various delivery routes, different genetic backgrounds are major clinical challenges. However, successful administration of siRNA-based drugs is expected during foreseeable features. But, their systemic applications will depend on strong targeted drug delivery strategies.
Collapse
Affiliation(s)
- Hojat Borna
- Baqiyatallah University of Medical Sciences, Chemical Injuries Research Center , Tehran , Iran
| | | | | | | |
Collapse
|
25
|
Gomes-da-Silva LC, Simões S, Moreira JN. Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology. Cell Mol Life Sci 2014; 71:1417-38. [PMID: 24221135 PMCID: PMC11113222 DOI: 10.1007/s00018-013-1502-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 11/27/2022]
Abstract
The identification of numerous deregulated signaling pathways on cancer cells and supportive stromal cells has revealed several molecular targets whose downregulation can elicit significant benefits for cancer treatment. In this respect, gene downregulation can be efficiently achieved by exploiting the RNA interference mechanism, particularly by the delivery of chemical synthesized small-interfering RNAs (siRNAs), which have the ability to mediate, in a specific manner, the degradation of any mRNA with complementary nucleotide sequence. However, several concerns regarding off-target effects and immune stimulation have been raised. Depending on their sequence, siRNAs can trigger an innate immune response, which might mediate undesirable side effects that ultimately compromise their clinical utility. This is a very relevant effect that will be discussed in the present manuscript. Moreover, the major drawback in the translation of siRNAs into the clinical practice is undoubtedly their inability to accumulate in tumor sites, particularly in organs other than the liver. In fact, upon systemic administration, owing to siRNAs physico-chemical features, they are rapidly cleared from the blood stream. Therefore, the development of a proper drug delivery system is of utmost importance. In this review, some of the latest advances on different nanotechnological platforms for siRNA delivery under clinical evaluation will be discussed. Along with this, targeting approaches towards cancer and/or endothelial cells will also be addressed, as these are some of the most promising strategies to enhance specific tumor accumulation while avoiding healthy tissues. Finally, clinical information on ongoing studies in patients with advanced solid tumors will be also provided.
Collapse
Affiliation(s)
- Lígia Catarina Gomes-da-Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Salzano G, Riehle R, Navarro G, Perche F, De Rosa G, Torchilin VP. Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer. Cancer Lett 2013; 343:224-31. [PMID: 24099916 DOI: 10.1016/j.canlet.2013.09.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022]
Abstract
The discovery that survivin, a small anti-apoptotic protein, is involved in chemoresistance, opens a new scenario to overcome the drug resistance in cancer. It was shown that siRNA can efficiently inhibit the expression of survivin in cancer cells. However, the clinical use of siRNA is still hampered by an unfavorable pharmacokinetic profile. To address this problem, earlier we developed a novel system to deliver siRNA into cancer cells. Namely, we reversibly modified the survivin siRNA with a phosphothioethanol (PE) portion via a reducible disulfide bond and incorporated the resulting siRNA-S-S-PE conjugate into nanosized polyethyelene glycol 2000-phosphatidyl ethanolamine (PEG2000-PE)-based polymeric micelles (PM), obtaining survivin siRNA PM. The activity of these nanopreparations was evaluated by survivin protein down-regulation, tumor cell growth inhibition, and chemosensitization of the treated tumor cells to paclitaxel (PXL). We found a significant decrease of cell viability and down-regulation of survivin protein levels after treatment with survivin siRNA PM in several cancer cell lines. In addition, the down-regulation of survivin by treating cells with survivin siRNA PM, elicited a significant sensitization of the cells to PXL, in both sensitive and resistant cancer cell lines. Finally, we demonstrated successful co-delivery of PXL and survivin siRNA in the same PM leading to superior therapeutic activity compared to their sequential administration. Our results support the use of this new platform for the treatment of the most aggressive tumors.
Collapse
Affiliation(s)
- G Salzano
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - R Riehle
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - G Navarro
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - F Perche
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - G De Rosa
- Department of Pharmacy, University of Naples, Federico II, Naples, Italy
| | - V P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA.
| |
Collapse
|
27
|
Tros de Ilarduya C, Düzgüneş N. Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers. Expert Opin Drug Deliv 2013; 10:1583-91. [PMID: 24050263 DOI: 10.1517/17425247.2013.837447] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The overexpression of transferrin (Tf) receptors on cancer cells renders them a useful target for the delivery of small-molecule drugs and nucleic acid therapeutics to these cells. This approach could alleviate the non-target effects of the drugs. AREAS COVERED The function of the Tf receptor, the development of Tf-lipid-DNA complexes (Tf lipoplexes), therapeutic use of lipoplexes and polymer-DNA complexes (poylplexes), and the therapeutic use of Tf-lipoplexes and anti-Tf-receptor antibody-lipoplexes are outlined. The literature search for this review was based primarily on the terms 'lipoplexes,' 'lipopolyplexes' 'transferrin,' 'transferrin receptor,' and 'gene therapy.' However, the review was not intended to be comprehensive. EXPERT OPINION Complexes of Tf with cationic liposomes and nucleic acids, or liposomes with covalently attached Tf or anti-transferrin receptor antibodies have been used for the delivery of therapeutic genes, antisense oligodeoxynucleotides, and short interfering RNA. Although such targeted nonviral delivery vehicles may benefit from further enhancement of their efficacy, current achievements at the cell culture and animal model level should be translated into clinical applications, restricted initially to localized delivery into accessible tissues to avoid potential systemic side-effects and non-target delivery.
Collapse
Affiliation(s)
- Conchita Tros de Ilarduya
- University of Navarra, School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology , Pamplona , Spain
| | | |
Collapse
|
28
|
Abstract
Malignant brain cancer treatment is limited by a number of barriers, including the blood-brain barrier, transport within the brain interstitium, difficulties in delivering therapeutics specifically to tumor cells, the highly invasive quality of gliomas and drug resistance. As a result, the prognosis for patients with high-grade gliomas is poor and has improved little in recent years. Nanomedicine approaches have been developed in the laboratory, with some technologies being translated to the clinic, in order to address these needs. This review discusses the obstacles to effective treatment that are currently faced in the field, as well as various nanomedicine techniques that have been used or are being explored to overcome them, with a focus on liposomal and polymeric nanoparticles.
Collapse
|
29
|
O'Mahony AM, Godinho BMDC, Cryan JF, O'Driscoll CM. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 2013; 102:3469-84. [PMID: 23893329 DOI: 10.1002/jps.23672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023]
Abstract
The application of gene and RNAi-based therapies to the central nervous system (CNS), for neurological and neurodegenerative disease, offers immense potential. The issue of delivery to the target site remains the single greatest barrier to achieving this. There are challenges to gene and siRNA (small interfering RNA) delivery which are specific to the CNS, including the post-mitotic nature of neurons, their resistance to transfection and the blood-brain barrier. Viral vectors are highly efficient and have been used extensively in pre-clinical studies for CNS diseases. However, non-viral delivery offers an exciting alternative. In this review, we will discuss the extracellular and intracellular barriers to gene and siRNA delivery in the CNS. Our focus will be directed towards various non-viral strategies used to overcome these barriers. In this regard, we describe selected non-viral vectors and categorise them according to the barriers that they overcome by their formulation and targeting strategies. Some of the difficulties associated with non-viral vectors such as toxicity, large-scale manufacture and route of administration are discussed. We provide examples of optimised formulation approaches and discuss regulatory hurdles to clinical validation. Finally, we outline the components of an "ideal" formulation, based on a critical analysis of the approaches highlighted throughout the review.
Collapse
Affiliation(s)
- Aoife M O'Mahony
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
30
|
Remaud S, López-Juárez SA, Bolcato-Bellemin AL, Neuberg P, Stock F, Bonnet ME, Ghaddab R, Clerget-Froidevaux MS, Pierre-Simons J, Erbacher P, Demeneix BA, Morvan-Dubois G. Inhibition of Sox2 Expression in the Adult Neural Stem Cell Niche In Vivo by Monocationic-based siRNA Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e89. [PMID: 23612115 PMCID: PMC3650249 DOI: 10.1038/mtna.2013.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
RNA interference (RNAi) is a major tool for basic and applied investigations. However, obtaining RNAi data that have physiological significance requires investigation of regulations and therapeutic strategies in appropriate in vivo settings. To examine in vivo gene regulation and protein function in the adult neural stem cell (NSC) niche, we optimized a new non-viral vector for delivery of siRNA into the subventricular zone (SVZ). This brain region contains the neural stem and progenitor cells populations that express the stem cell marker, SOX2. Temporally and spatially controlled Sox2 knockdown was achieved using the monocationic lipid vector, IC10. siRNA/IC10 complexes were stable over time and smaller (<40 nm) than jetSi complexes (≈400 nm). Immunocytochemistry showed that siRNA/IC10 complexes efficiently target both the progenitor and stem cell populations in the adult SVZ. Injection of the complexes into the lateral brain ventricle resulted in specific knockdown of Sox2 in the SVZ. Furthermore, IC10-mediated transient in vivo knockdown of Sox2-modulated expression of several genes implicated in NSC maintenance. Taken together, these data show that IC10 cationic lipid formulation can efficiently vectorize siRNA in a specific area of the adult mouse brain, achieving spatially and temporally defined loss of function.
Collapse
Affiliation(s)
- Sylvie Remaud
- Laboratoire d'Evolution des Régulations Endocriniennes, MNHN, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mishra J, Drummond J, Quazi SH, Karanki SS, Shaw JJ, Chen B, Kumar N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol 2012; 86:232-50. [PMID: 23098684 DOI: 10.1016/j.critrevonc.2012.09.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/03/2012] [Accepted: 09/26/2012] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the leading cause of cancer-related mortality in the western world. It is also the third most common cancer diagnosed in both men and women in the United States with a recent estimate for new cases of colorectal cancer in the year 2012 being around 103,170. Various risk factors for colorectal cancer include life-style, diet, age, personal and family history, and racial and ethnic background. While a few cancers are certainly preventable but this does not hold true for colon cancer as it is often detected in its advanced stage and generally not diagnosed until symptoms become apparent. Despite the fact that several options are available for treating this cancer through surgery, chemotherapy, radiation therapy, immunotherapy, and nutritional-supplement therapy, but the success rates are not very encouraging when used alone where secondary complications appear in almost all these therapies. To maximize the therapeutic-effects in patients, combinatorial approaches are essential. In this review we have discussed the therapies previously and currently available to patients diagnosed with colorectal-cancer, focus on some recent developments in basic research that has shaded lights on new therapeutic-concepts utilizing macrophages/dendritic cells, natural killer cells, gene delivery, siRNA-, and microRNA-technology, and specific-targeting of tyrosine kinases that are either mutated or over-expressed in the cancerous cell to treat these cancer. Potential strategies are discussed where these concepts could be applied to the existing therapies under a comprehensive approach to enhance the therapeutic effects.
Collapse
Affiliation(s)
- Jayshree Mishra
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
O’Mahony AM, Godinho BMDC, Ogier J, Devocelle M, Darcy R, Cryan JF, O’Driscoll CM. Click-modified cyclodextrins as nonviral vectors for neuronal siRNA delivery. ACS Chem Neurosci 2012; 3:744-52. [PMID: 23077718 DOI: 10.1021/cn3000372] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/03/2012] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) holds great promise as a strategy to further our understanding of gene function in the central nervous system (CNS) and as a therapeutic approach for neurological and neurodegenerative diseases. However, the potential for its use is hampered by the lack of siRNA delivery vectors which are both safe and highly efficient. Cyclodextrins have been shown to be efficient and low toxicity gene delivery vectors in various cell types in vitro. However, to date, they have not been exploited for delivery of oligonucleotides to neurons. To this end, a modified β-cyclodextrin (CD) vector was synthesized, which complexed siRNA to form cationic nanoparticles of less than 200 nm in size. Furthermore, it conferred stability in serum to the siRNA cargo. The in vitro performance of the CD in both immortalized hypothalamic neurons and primary hippocampal neurons was evaluated. The CD facilitated high levels of intracellular delivery of labeled siRNA, while maintaining at least 80% cell viability. Significant gene knockdown was achieved, with a reduction in luciferase expression of up to 68% and a reduction in endogenous glyceraldehyde phosphate dehydrogenase (GAPDH) expression of up to 40%. To our knowledge, this is the first time that a modified CD has been used as a safe and efficacious vector for siRNA delivery into neuronal cells.
Collapse
Affiliation(s)
- A. M. O’Mahony
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Ireland
| | - B. M. D. C. Godinho
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Ireland
| | - J. Ogier
- Centre for Synthesis and Chemical
Biology, UCD Conway Institute, University College Dublin, Ireland
| | - M. Devocelle
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - R. Darcy
- Centre for Synthesis and Chemical
Biology, UCD Conway Institute, University College Dublin, Ireland
| | - J. F. Cryan
- Department
of Anatomy and Neuroscience, University College Cork, Ireland
| | - C. M. O’Driscoll
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Ireland
| |
Collapse
|
33
|
Costa PM, Cardoso AL, Pereira de Almeida LF, Bruce JN, Canoll P, Pedroso de Lima MC. PDGF-B-mediated downregulation of miR-21: new insights into PDGF signaling in glioblastoma. Hum Mol Genet 2012; 21:5118-30. [PMID: 22922228 DOI: 10.1093/hmg/dds358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is a highly heterogeneous type of tumor characterized by genomic and signaling abnormalities affecting pathways involved in control of cell fate, including tumor-suppressor- and growth factor-regulated pathways. An aberrant miRNA expression has been observed in GBM, being associated with impaired cellular functions resulting in malignant transformation, proliferation and invasion. Here, we demonstrate for the first time that platelet-derived growth factor-B (PDGF-B), a potent angiogenic growth factor involved in GBM development and progression, promotes downregulation of pro-oncogenic (miR-21) and anti-oncogenic (miR-128) miRNAs, as well as upregulation/downregulation of several miRNAs involved in GBM pathology. Retrovirally mediated overexpression of PDGF-B in U87 human GBM cells or their prolonged exposure, as well as that of F98 rat glioma cells to this ligand, resulted in decreased miR-21 and miR-128 levels, which was associated with increased cell proliferation. Furthermore, siRNA-mediated PDGF-B silencing led to increased levels of miR-21 and miR-128, while miRNA modulation through overexpression of miR-21 did not alter the levels of PDGF-B. Finally, we demonstrate that modulation of tumor suppressors PTEN and p53 in U87 cells does not affect the decrease in miR-21 levels associated with PDGF-B overexpression. Overall, our findings suggest that, besides its role in inducing GBM tumorigenesis, PDGF-B may enhance tumor proliferation by modulating the expression of oncomiRs and tumor suppressor miRNAs in U87 human GBM cells.
Collapse
Affiliation(s)
- Pedro M Costa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | | | | | | | | | | |
Collapse
|
34
|
Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int J Pharm 2012; 427:35-57. [DOI: 10.1016/j.ijpharm.2011.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 01/24/2023]
|
35
|
Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther 2012; 20:829-39. [PMID: 22252450 DOI: 10.1038/mt.2011.291] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Noninvasive intranasal drug administration has been noted to allow direct delivery of drugs to the brain. In the present study, the therapeutic efficacy of intranasal small interfering RNA (siRNA) delivery was investigated in the postischemic rat brain. Fluorescein isothiocyanate (FITC)-labeled control siRNA was delivered intranasally in normal adult rats using e-PAM-R, a biodegradable PAMAM dendrimer, as gene carrier. Florescence-tagged siRNA was found in the cytoplasm and processes of neurons and of glial cells in many brain regions, including the hypothalamus, amygdala, cerebral cortex, and striatum, in 1 hour after infusion, and the FITC-fluorescence was continuously detected for at least 12 hours. When siRNA for high mobility group box 1 (HMGB1), which functions as an endogenous danger molecule and aggravates inflammation, was delivered intranasally, the target gene was significantly depleted in many brain regions, including the prefrontal cortex and striatum. More importantly, intranasal delivery of HMGB1 siRNA markedly suppressed infarct volume in the postischemic rat brain (maximal reduction to 42.8 ± 5.6% at 48 hours after 60 minutes middle cerebral artery occlusion (MCAO)) and this protective effect was manifested by recoveries from neurological and behavioral deficits. These results indicate that the intranasal delivery of HMGB1 siRNA offers an efficient means of gene knockdown-mediated therapy in the ischemic brain.
Collapse
|
36
|
Mendonça L, Pedroso de Lima M, Simões S. Targeted lipid-based systems for siRNA delivery. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50006-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Portis AM, Carballo G, Baker GL, Chan C, Walton SP. Confocal microscopy for the analysis of siRNA delivery by polymeric nanoparticles. Microsc Res Tech 2010; 73:878-85. [PMID: 20803695 DOI: 10.1002/jemt.20861] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical applications of genetic therapies, including delivery of short, interfering RNAs (siRNAs) for RNA interference (RNAi), are limited due to the difficulty of delivering nucleic acids to specific cells of interest while at the same time minimizing toxicity and immunogenicity. The use of cationic polymers to deliver nucleic acid therapeutics has the potential to address these complex issues but is currently limited by low-delivery efficiencies. Although cell culture studies have shown that some polymers can be used to deliver siRNAs and achieve silencing, it is still not clear what physical or chemical properties are needed to ensure that the polymers form active polymer-siRNA complexes. In this study, we used multicolor fluorescence confocal microscopy to analyze the cellular uptake of siRNAs delivered by novel propargyl glycolide polymeric nanoparticles (NPs). Delivery by these vehicles was compared with delivery by linear polyethyleneimine (LPEI) and Lipofectamine 2000 (LF2K), which are both known as effective delivery vehicles for siRNAs. Our results showed that when LF2K and LPEI were used, large quantities of siRNA were delivered rapidly, presumably overwhelming the basal levels of mRNA to initiate silencing. In contrast, our novel polymeric NPs showed delivery of siRNAs but at concentrations that were initially too low to achieve silencing. Nonetheless, the exceptionally low cytotoxicity of our NPs, and the simplicity with which they can be modified, makes them good candidates for further study to optimize their delivery profiles and, in turn, achieve efficient silencing.
Collapse
Affiliation(s)
- Amanda M Portis
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
38
|
Rao NM. Cationic lipid-mediated nucleic acid delivery: beyond being cationic. Chem Phys Lipids 2010; 163:245-52. [DOI: 10.1016/j.chemphyslip.2010.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/25/2009] [Accepted: 01/03/2010] [Indexed: 10/20/2022]
|
39
|
Kim ID, Lim CM, Kim JB, Nam HY, Nam K, Kim SW, Park JS, Lee JK. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. J Control Release 2010; 142:422-30. [DOI: 10.1016/j.jconrel.2009.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 01/17/2023]
|
40
|
Choi YS, Lee JY, Suh JS, Kwon YM, Lee SJ, Chung JK, Lee DS, Yang VC, Chung CP, Park YJ. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 2010; 31:1429-43. [DOI: 10.1016/j.biomaterials.2009.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 11/02/2009] [Indexed: 12/12/2022]
|
41
|
Xiao W, Sun YX, Cheng H, Zeng X, Zhang XZ, Zhuo RX. Inhibition of enhanced green fluorescent protein expression by (dextran-hexamethylenediisocyanate)-g-polyethylenimine/siRNA complexes. J Microencapsul 2009; 27:447-52. [DOI: 10.3109/02652040903471090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Cardoso ALC, Costa P, de Almeida LP, Simões S, Plesnila N, Culmsee C, Wagner E, de Lima MCP. Tf-lipoplex-mediated c-Jun silencing improves neuronal survival following excitotoxic damage in vivo. J Control Release 2009; 142:392-403. [PMID: 19913061 DOI: 10.1016/j.jconrel.2009.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/07/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Excitotoxicity is one of the main features responsible for neuronal cell death after acute brain injury and in several neurodegenerative disorders, for which only few therapeutic options are currently available. In this work, RNA interference was employed to identify and validate a potential target for successful treatment of excitotoxic brain injury, the transcription factor c-Jun. The nuclear translocation of c-Jun and its upregulation are early events following glutamate-induced excitotoxic damage in primary neuronal cultures. We present evidence for the efficient knockdown of this transcription factor using a non-viral vector consisting of cationic liposomes associated to transferrin (Tf-lipoplexes). Tf-lipoplexes were able to deliver anti-c-Jun siRNAs to neuronal cells in culture, resulting in efficient silencing of c-Jun mRNA and protein and in a significant decrease of cell death following glutamate-induced damage or oxygen-glucose deprivation. This formulation also leads to a significant c-Jun knockdown in the mouse hippocampus in vivo, resulting in the attenuation of both neuronal death and inflammation following kainic acid-mediated lesion of this region. Furthermore, a strong reduction of seizure activity and cytokine production was observed in animals treated with anti-c-Jun siRNAs. These findings demonstrate the efficient delivery of therapeutic siRNAs to the brain by Tf-lipoplexes and validate c-Jun as a promising therapeutic target in neurodegenerative disorders involving excitotoxic lesions.
Collapse
Affiliation(s)
- A L C Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Physicochemical properties of transferrin-associated lipopolyplexes and their role in biological activity. Colloids Surf B Biointerfaces 2009; 76:207-14. [PMID: 19945258 DOI: 10.1016/j.colsurfb.2009.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/23/2022]
Abstract
The combination of polyethylenimine (PEI), as a plasmid DNA pre-condensing agent, and cationic lipids has been reported to result in a synergistic effect on transfection. Recently, we have explored this effect by associating low-molecular weight PEIs with transferrin-associated lipoplexes using different cationic liposome formulations. The resulting lipopolyplexes that have shown to be the most efficient in mediating transfection were those prepared from cationic liposomes composed of DOTAP:Chol (associated or not with transferrin) and from a pH-sensitive liposome formulation (DOTAP:Chol:DOPE:CHEMS). In the present work, the physicochemical properties of these lipopolyplexes were studied aiming at establishing a correlation with their transfection efficiency. For this purpose, the lipopolyplexes were characterized in terms of their morphology by performing ultrastructural studies using cryo-TEM microscopy, investigating inner DNA structure using circular dichroism and characterizing particle size by photon correlation spectroscopy. A correlation between efficiency of transfection and more compact inner DNA structure and smaller particle sizes (around 250nm) was found. In addition, the visualization of liposomes and lipopolyplexes at the ultrastructural level revealed that the particles presenting enhanced transfection efficiencies are associated with higher electron density. Recently, PEI-based lipopolyplexes were reported to gain entry into the cell through the caveolae-mediated pathway. Based on the present finding that DOTAP:Chol liposomes exhibit the ability to form hexagonal structures when prepared at high concentrations, we propose that the lipopolyplexes containing DOTAP:Chol take advantage of such capacity to escape from the endocytotic vesicles, which will contribute to the observed high transfection efficiencies.
Collapse
|
44
|
Penacho N, Simões S, de Lima MCP. Polyethylenimine of various molecular weights as adjuvant for transfection mediated by cationic liposomes. Mol Membr Biol 2009; 26:249-63. [DOI: 10.1080/09687680902766716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Taetz S, Bochot A, Surace C, Arpicco S, Renoir JM, Schaefer UF, Marsaud V, Kerdine-Roemer S, Lehr CM, Fattal E. Hyaluronic Acid-Modified DOTAP/DOPE Liposomes for the Targeted Delivery of Anti-Telomerase siRNA to CD44-Expressing Lung Cancer Cells. Oligonucleotides 2009; 19:103-16. [DOI: 10.1089/oli.2008.0168] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sebastian Taetz
- UMR CNRS 8612, Université Paris Sud 11, Châtenay-Malabry, France
- Centre National de la Recherche Scientifique (CNRS), Châtenay-Malabry, France
- Biopharmacy and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Amélie Bochot
- UMR CNRS 8612, Université Paris Sud 11, Châtenay-Malabry, France
- Centre National de la Recherche Scientifique (CNRS), Châtenay-Malabry, France
| | - Claudio Surace
- UMR CNRS 8612, Université Paris Sud 11, Châtenay-Malabry, France
- Centre National de la Recherche Scientifique (CNRS), Châtenay-Malabry, France
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Jack-Michel Renoir
- UMR CNRS 8612, Université Paris Sud 11, Châtenay-Malabry, France
- Centre National de la Recherche Scientifique (CNRS), Châtenay-Malabry, France
| | - Ulrich F. Schaefer
- Biopharmacy and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Véronique Marsaud
- UMR CNRS 8612, Université Paris Sud 11, Châtenay-Malabry, France
- Centre National de la Recherche Scientifique (CNRS), Châtenay-Malabry, France
| | - Saadia Kerdine-Roemer
- Toxicologie, INSERM U749, Faculté de Pharmacie, Université Paris Sud 11, Châtenay-Malabry, France
| | - Claus-Michael Lehr
- Biopharmacy and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Elias Fattal
- UMR CNRS 8612, Université Paris Sud 11, Châtenay-Malabry, France
- Centre National de la Recherche Scientifique (CNRS), Châtenay-Malabry, France
| |
Collapse
|
46
|
|
47
|
Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A 2009; 106:6111-6. [PMID: 19307578 DOI: 10.1073/pnas.0807883106] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid reagents, including small interfering RNA (siRNA) and plasmid DNA, are important tools for the study of mammalian cells and are promising starting points for the development of new therapeutic agents. Realizing their full potential, however, requires nucleic acid delivery reagents that are simple to prepare, effective across many mammalian cell lines, and nontoxic. We recently described the extensive surface mutagenesis of proteins in a manner that dramatically increases their net charge. Here, we report that superpositively charged green fluorescent proteins, including a variant with a theoretical net charge of +36 (+36 GFP), can penetrate a variety of mammalian cell lines. Internalization of +36 GFP depends on nonspecific electrostatic interactions with sulfated proteoglycans present on the surface of most mammalian cells. When +36 GFP is mixed with siRNA, protein-siRNA complexes approximately 1.7 mum in diameter are formed. Addition of these complexes to five mammalian cell lines, including four that are resistant to cationic lipid-mediated siRNA transfection, results in potent siRNA delivery. In four of these five cell lines, siRNA transfected by +36 GFP suppresses target gene expression. We show that +36 GFP is resistant to proteolysis, is stable in the presence of serum, and extends the serum half-life of siRNA and plasmid DNA with which it is complexed. A variant of +36 GFP can mediate DNA transfection, enabling plasmid-based gene expression. These findings indicate that superpositively charged proteins can overcome some of the key limitations of currently used transfection agents.
Collapse
|
48
|
Yu B, Zhao X, Lee LJ, Lee RJ. Targeted delivery systems for oligonucleotide therapeutics. AAPS JOURNAL 2009; 11:195-203. [PMID: 19296227 DOI: 10.1208/s12248-009-9096-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 02/20/2009] [Indexed: 12/11/2022]
Abstract
Oligonucleotides including antisense oligonucleotides and siRNA are emerging as promising therapeutic agents against a variety of diseases. Effective delivery of these molecules is critical to their successful clinical application. Targeted systems can greatly improve the efficiency and specificity of oligonucleotides delivery. Meanwhile, an effective delivery system must successfully overcome a multitude of biological barriers to enable the oligonucleotides to reach the site of action and access their biological targets. Several delivery strategies based on different platform technologies and different targeting ligands have been developed to achieve these objectives. This review aims at providing a summary and perspective on recent progress in this very active area of research.
Collapse
Affiliation(s)
- Bo Yu
- Department of Chemical and Biomolecular Engineering, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
49
|
Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:8-20. [DOI: 10.1016/j.nano.2008.06.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/21/2008] [Accepted: 06/04/2008] [Indexed: 11/21/2022]
|
50
|
Abstract
Here we report preparation and properties of positively charged gold microparticles, and their use for biolistic DNA delivery. Micron-sized gold microparticles were modified by building self-assembling polyethylenimine monolayers on their surfaces, which enabled their electrostatic interaction with negatively charged molecules such as DNA. One milligram of the surface-modified microparticles was able to bind directly to up to 3.5 microg of DNA, exceeding the 1 microg/mg limit of the conventional protocols. The binding showed no apparent dependency on DNA purity, size, or conformation. The interaction occurred over a broad range of pH values and salt concentrations, and was stable throughout the standard protocol for biolistic cartridge preparation. At the standard 1 microg dose, biological activity of the DNA biolistically delivered on the charge-modified gold was 25% higher than that delivered on conventional microparticles. Loading the charge-modified gold with more DNA stimulated proportionally higher gene expression. The charge-modified gold can be also used for delivery of small biological molecules such as siRNA. Tissue culture cells biolistically transfected with a LUC+ specific siRNA showed 80% reduction of Luc expression relative to those cells transfected with an irrelevant siRNA. Along with its superior properties as a DNA delivery vehicle, charge-modified gold offers a unique opportunity to deliver various DNA formulations in addition to traditional naked DNA.
Collapse
|