1
|
King HAD, Pokkali S, Kim D, Brammer D, Song K, McCarthy E, Lehman C, Todd JP, Foulds KE, Darrah PA, Seder RA, Bolton DL, Roederer M. Immune Activation Profiles Elicited by Distinct, Repeated TLR Agonist Infusions in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1643-1655. [PMID: 37861342 PMCID: PMC10656433 DOI: 10.4049/jimmunol.2300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
TLR agonists are a promising class of immune system stimulants investigated for immunomodulatory applications in cancer immunotherapy and viral diseases. In this study, we sought to characterize the safety and immune activation achieved by different TLR agonists in rhesus macaques (Macaca mulatta), a useful preclinical model of complex immune interactions. Macaques received one of three TLR agonists, followed by plasma cytokine, immune cell subset representation, and blood cell activation measurements. The TLR4 agonist LPS administered i.v. induced very transient immune activation, including TNF-α expression and monocyte activation. The TLR7/8 agonist 2BXy elicited more persistent cytokine expression, including type I IFN, IL-1RA, and the proinflammatory IL-6, along with T cell and monocyte activation. Delivery of 2BXy i.v. and i.m. achieved comparable immune activation, which increased with escalating dose. Finally, i.v. bacillus Calmette-Guérin (BCG) vaccination (which activates multiple TLRs, especially TLR2/4) elicited the most pronounced and persistent innate and adaptive immune response, including strong induction of IFN-γ, IL-6, and IL-1RA. Strikingly, monocyte, T cell, and NK cell expression of the proliferation marker Ki67 increased dramatically following BCG vaccination. This aligned with a large increase in total and BCG-specific cells measured in the lung. Principal component analysis of the combined cytokine expression and cellular activation responses separated animals by treatment group, indicating distinct immune activation profiles induced by each agent. In sum, we report safe, effective doses and routes of administration for three TLR agonists that exhibit discrete immunomodulatory properties in primates and may be leveraged in future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hannah A. D. King
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Supriya Pokkali
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Dohoon Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Daniel Brammer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Kaimei Song
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | | - Chelsea Lehman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | | - Robert A. Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Stein SR, Platt AP, Teague HL, Anthony SM, Reeder RJ, Cooper K, Byrum R, Drawbaugh DJ, Liu DX, Burdette TL, Hadley K, Barr B, Warner S, Rodriguez-Hernandez F, Johnson C, Stanek P, Hischak J, Kendall H, Huzella LM, Strich JR, Herbert R, St. Claire M, Vannella KM, Holbrook MR, Chertow DS. Clinical and Immunologic Correlates of Vasodilatory Shock Among Ebola Virus-Infected Nonhuman Primates in a Critical Care Model. J Infect Dis 2023; 228:S635-S647. [PMID: 37652048 PMCID: PMC10651209 DOI: 10.1093/infdis/jiad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Existing models of Ebola virus infection have not fully characterized the pathophysiology of shock in connection with daily virologic, clinical, and immunologic parameters. We implemented a nonhuman primate critical care model to investigate these associations. METHODS Two rhesus macaques received a target dose of 1000 plaque-forming units of Ebola virus intramuscularly with supportive care initiated on day 3. High-dimensional spectral cytometry was used to phenotype neutrophils and peripheral blood mononuclear cells daily. RESULTS We observed progressive vasodilatory shock with preserved cardiac function following viremia onset on day 5. Multiorgan dysfunction began on day 6 coincident with the nadir of circulating neutrophils. Consumptive coagulopathy and anemia occurred on days 7 to 8 along with irreversible shock, followed by death. The monocyte repertoire began shifting on day 4 with a decline in classical and expansion of double-negative monocytes. A selective loss of CXCR3-positive B and T cells, expansion of naive B cells, and activation of natural killer cells followed viremia onset. CONCLUSIONS Our model allows for high-fidelity characterization of the pathophysiology of acute Ebola virus infection with host innate and adaptive immune responses, which may advance host-targeted therapy design and evaluation for use after the onset of multiorgan failure.
Collapse
Affiliation(s)
- Sydney R Stein
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Andrew P Platt
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Scott M Anthony
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Rebecca J Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Russell Byrum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - David J Drawbaugh
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - David X Liu
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Tracey L Burdette
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kyra Hadley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Bobbi Barr
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Seth Warner
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Francisco Rodriguez-Hernandez
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Cristal Johnson
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Phil Stanek
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Joseph Hischak
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Heather Kendall
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, Maryland, USA
| | - Louis M Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, Maryland, USA
| | - Marisa St. Claire
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kevin M Vannella
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Daniel S Chertow
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| |
Collapse
|
3
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
4
|
Tajima K, Tanaka K, Takeda H, Moriya M, Ueki T, Ogata S, Maeda K, Yasuda T. Anticoagulant effects on the evaluation of CD23 expression in cells by monoclonal antibodies. Leuk Lymphoma 2022; 63:1742-1745. [PMID: 35147494 DOI: 10.1080/10428194.2022.2038379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Katsushi Tajima
- Department of Hematology, Yamagata Prefectural Central Hospital, Yamagata, Japan.,National Institute for Quantum Science and Technology, Chiba, Japan
| | - Kiwa Tanaka
- Department of Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hikaru Takeda
- Department of Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Mika Moriya
- Department of Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Tetsuya Ueki
- Department of Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Shinya Ogata
- Department of Pathology, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Kunihiko Maeda
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Takeshi Yasuda
- National Institute for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
5
|
Jones R, Manickam C, Ram DR, Kroll K, Hueber B, Woolley G, Shah SV, Smith S, Varner V, Reeves RK. Systemic and mucosal mobilization of granulocyte subsets during lentiviral infection. Immunology 2021; 164:348-357. [PMID: 34037988 PMCID: PMC8442246 DOI: 10.1111/imm.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Granulocytes mediate broad immunoprotection through phagocytosis, extracellular traps, release of cytotoxic granules, antibody effector functions and recruitment of other immune cells against pathogens. However, descriptions of granulocytes in HIV infection and mucosal tissues are limited. Our goal was to characterize granulocyte subsets in systemic, mucosal and lymphoid tissues during lentiviral infection using the rhesus macaque (RM) model. Mononuclear cells from jejunum, colon, cervix, vagina, lymph nodes, spleen, liver and whole blood from experimentally naïve and chronically SHIVsf162p3-infected RM were analysed by microscopy and polychromatic flow cytometry. Granulocytes were identified using phenotypes designed specifically for RM: eosinophils-CD45+ CD66+ CD49d+ ; neutrophils-CD45+ CD66+ CD14+ ; and basophils-CD45+ CD123+ FcRε+ . Nuclear visualization with DAPI staining and surface marker images by ImageStream (cytometry/microscopy) further confirmed granulocytic phenotypes. Flow cytometric data showed that all RM granulocytes expressed CD32 (FcRγII) but did not express CD16 (FcRγIII). Additionally, constitutive expression of CD64 (FcRγI) on neutrophils and FcRε on basophils indicates the differential expression of Fc receptors on granulocyte subsets. Granulocytic subsets in naïve whole blood ranged from 25·4% to 81·5% neutrophils, 0·59% to 13·3% eosinophils and 0·059% to 1·8% basophils. Interestingly, elevated frequencies of circulating neutrophils, colorectal neutrophils and colorectal eosinophils were all observed in chronic lentiviral disease. Conversely, circulating basophils, jejunal eosinophils, vaginal neutrophils and vaginal eosinophils of SHIVsf162p3-infected RM declined in frequency. Overall, our data suggest modulation of granulocytes in chronic lentiviral infection, most notably in the gastrointestinal mucosae where a significant inflammation and disruption occurs in lentivirus-induced disease. Furthermore, granulocytes may migrate to inflamed tissues during infection and could serve as targets of immunotherapeutic intervention.
Collapse
Affiliation(s)
- Rhianna Jones
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Cordelia Manickam
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Daniel R. Ram
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Kyle Kroll
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Brady Hueber
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Griffin Woolley
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Spandan V. Shah
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Scott Smith
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Valerie Varner
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - R. Keith Reeves
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
- Ragon Institute of Massachusetts General Hospital, MIT, and HarvardCambridgeMAUSA
- Division of Innate and Comparative Immunology, Center for Human Systems ImmunologyDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
6
|
Pollara J, Tay MZ, Edwards RW, Goodman D, Crowley AR, Edwards RJ, Easterhoff D, Conley HE, Hoxie T, Gurley T, Jones C, Machiele E, Tuyishime M, Donahue E, Jha S, Spreng RL, Hope TJ, Wiehe K, He MM, Moody MA, Saunders KO, Ackerman ME, Ferrari G, Tomaras GD. Functional Homology for Antibody-Dependent Phagocytosis Across Humans and Rhesus Macaques. Front Immunol 2021; 12:678511. [PMID: 34093580 PMCID: PMC8174565 DOI: 10.3389/fimmu.2021.678511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Analyses of human clinical HIV-1 vaccine trials and preclinical vaccine studies performed in rhesus macaque (RM) models have identified associations between non-neutralizing Fc Receptor (FcR)-dependent antibody effector functions and reduced risk of infection. Specifically, antibody-dependent phagocytosis (ADP) has emerged as a common correlate of reduced infection risk in multiple RM studies and the human HVTN505 trial. This recurrent finding suggests that antibody responses with the capability to mediate ADP are most likely a desirable component of vaccine responses aimed at protecting against HIV-1 acquisition. As use of RM models is essential for development of the next generation of candidate HIV-1 vaccines, there is a need to determine how effectively ADP activity observed in RMs translates to activity in humans. In this study we compared ADP activity of human and RM monocytes and polymorphonuclear leukocytes (PMN) to bridge this gap in knowledge. We observed considerable variability in the magnitude of monocyte and PMN ADP activity across individual humans and RM that was not dependent on FcR alleles, and only modestly impacted by cell-surface levels of FcRs. Importantly, we found that for both human and RM phagocytes, ADP activity of antibodies targeting the CD4 binding site was greatest when mediated by human IgG3, followed by RM and human IgG1. These results demonstrate that there is functional homology between antibody and FcRs from these two species for ADP. We also used novel RM IgG1 monoclonal antibodies engineered with elongated hinge regions to show that hinge elongation augments RM ADP activity. The RM IgGs with engineered hinge regions can achieve ADP activity comparable to that observed with human IgG3. These novel modified antibodies will have utility in passive immunization studies aimed at defining the role of IgG3 and ADP in protection from virus challenge or control of disease in RM models. Our results contribute to a better translation of human and macaque antibody and FcR biology, and may help to improve testing accuracy and evaluations of future active and passive prevention strategies.
Collapse
Affiliation(s)
- Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Matthew Zirui Tay
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - R Whitney Edwards
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Andrew R Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Robert J Edwards
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - David Easterhoff
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Haleigh E Conley
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Taylor Hoxie
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Thaddeus Gurley
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Caroline Jones
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Emily Machiele
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Marina Tuyishime
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Elizabeth Donahue
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Shalini Jha
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rachel L Spreng
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Max M He
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - M Anthony Moody
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | | | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
7
|
Fingerhut L, Dolz G, de Buhr N. What Is the Evolutionary Fingerprint in Neutrophil Granulocytes? Int J Mol Sci 2020; 21:E4523. [PMID: 32630520 PMCID: PMC7350212 DOI: 10.3390/ijms21124523] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gaby Dolz
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|