1
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
2
|
Xu L, Mi Y, Meng Q, Liu Y, Wang Y, Zhang Y, Yang Y, Chen G, Liu Y, Hou Y. A quinolinyl resveratrol derivative alleviates acute ischemic stroke injury by promoting mitophagy for neuroprotection via targeting CK2α'. Int Immunopharmacol 2024; 137:112524. [PMID: 38909494 DOI: 10.1016/j.intimp.2024.112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Ischemic stroke (IS) is a serious threat to human health. The naturally derived small molecule (E)-5-(2-(quinolin-4-yl) ethenyl) benzene-1,3-diol (RV01) is a quinolinyl analog of resveratrol with great potential in the treatment of IS. The aim of this study was to investigate the potential mechanisms and targets for the protective effect of the RV01 on IS. The mouse middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation and reperfusion (OGD/R) models were employed to evaluate the effects of RV01 on ischemic injury and neuroprotection. RV01 was found to significantly increase the survival of SH-SY5Y cells and prevent OGD/R-induced apoptosis in SH-SY5Y cells. Furthermore, RV01 reduced oxidative stress and mitochondrial damage by promoting mitophagy in OGD/R-exposed SH-SY5Y cells. Knockdown of CK2α' abolished the RV01-mediated promotion on mitophagy and alleviation on mitochondrial damage as well as neuronal injury after OGD/R. These results were further confirmed by molecular docking, drug affinity responsive target stability and cellular thermal shift assay analysis. Importantly, in vivo study showed that treatment with the CK2α' inhibitor CX-4945 abolished the RV01-mediated alleviation of cerebral infarct volume, brain edema, cerebral blood flow and neurological deficit in MCAO/R mice. These data suggest that RV01 effectively reduces damage caused by acute ischemic stroke by promoting mitophagy through its interaction with CK2α'. These findings offer valuable insights into the underlying mechanisms through which RV01 exerts its therapeutic effects on IS.
Collapse
Affiliation(s)
- Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Qingqi Meng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yongping Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Ying Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
3
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Abstract
Coronavirus Disease-19 (COVID-19) pandemic is caused by SARS-CoV-2 that has infected more than 600 million people and killed more than 6 million people worldwide. This infection affects mainly certain groups of people that have high susceptibility to present severe COVID-19 due to comorbidities. Moreover, the long-COVID-19 comprises a series of symptoms that may remain in some patients for months after infection that further compromises their health. Thus, since this pandemic is profoundly affecting health, economy, and social life of societies, a deeper understanding of viral replication cycle could help to envisage novel therapeutic alternatives that limit or stop COVID-19. Several findings have unexpectedly discovered that mitochondria play a critical role in SARS-CoV-2 cell infection. Indeed, it has been suggested that this organelle could be the origin of its replication niches, the double membrane vesicles (DMV). In this regard, mitochondria derived vesicles (MDV), involved in mitochondria quality control, discovered almost 15 years ago, comprise a subpopulation characterized by a double membrane. MDV shedding is induced by mitochondrial stress, and it has a fast assembly dynamic, reason that perhaps has precluded their identification in electron microscopy or tomography studies. These and other features of MDV together with recent SARS-CoV-2 protein interactome and other findings link SARS-CoV-2 to mitochondria and support that these vesicles are the precursors of SARS-CoV-2 induced DMV. In this work, the morphological, biochemical, molecular, and cellular evidence that supports this hypothesis is reviewed and integrated into the current model of SARS-CoV-2 cell infection. In this scheme, some relevant questions are raised as pending topics for research that would help in the near future to test this hypothesis. The intention of this work is to provide a novel framework that could open new possibilities to tackle SARS-CoV-2 pandemic through mitochondria and DMV targeted therapies.
Collapse
Affiliation(s)
- Pavel Montes de Oca-B
- Neurociencia Cognitiva, Instituto de Fisiologia-UNAM, CDMX, CDMX, 04510, Mexico
- Unidad de Neurobiologia Dinamica, Instituto Nacional de Neurologia y Neurocirugia, CDMX, CDMX, 14269, Mexico
| |
Collapse
|
5
|
Ma Q, Luo G, Wang F, Li H, Li X, Liu Y, Li Z, Guo Y, Li Y. NK Cell Mitochondrial Membrane Potential-Associated Model Predicts Outcomes in Critically Ill Patients with COVID-19. J Inflamm Res 2024; 17:4361-4372. [PMID: 38983452 PMCID: PMC11232957 DOI: 10.2147/jir.s458749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Purpose This study investigated potential predictive models associated with natural killer (NK) cell mitochondrial membrane potential (MMP or ΔΨm) in predicting death among critically ill patients with COVID-19. Patients and Methods We included 97 patients with COVID-19 of different severities attending Peking Union Medical College Hospital from December 2022 to January 2023. Patients were divided into three groups according to oxygen and mechanical ventilation use during specimen collection and were followed for survival and death at 3 months. The lymphocyte subpopulation MMP was detected via flow cytometry. We constructed a joint diagnostic model by integrating identified key indicators and generating receiver operating curves (ROCs) and evaluated its predictive performance for mortality risk in critically ill patients. Results The NK-cell MMP median fluorescence intensity (MFI) was significantly lower in critically ill patients who died from COVID-19 (p<0.0001) and significantly and positively correlated with D-dimer content in critically ill patients (r=0.56, p=0.0023). The random forest model suggested that fibrinogen levels and NK-cell MMP MFI were the most important indicators. Integrating the above predictive models for the ROC yielded an area under the curve of 0.94. Conclusion This study revealed the potential of combining NK-cell MMP with key clinical indicators (D-dimer and fibrinogen levels) to predict death among critically ill patients with COVID-19, which may help in early risk stratification of critically ill patients and improve patient care and clinical outcomes.
Collapse
Affiliation(s)
- Qingqing Ma
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Medical Laboratory Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, People’s Republic of China
| | - Guoju Luo
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Fei Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhan Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Shin HJ, Lee W, Ku KB, Yoon GY, Moon HW, Kim C, Kim MH, Yi YS, Jun S, Kim BT, Oh JW, Siddiqui A, Kim SJ. SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics to induce robust virus propagation. Signal Transduct Target Ther 2024; 9:125. [PMID: 38734691 PMCID: PMC11088672 DOI: 10.1038/s41392-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.
Collapse
Affiliation(s)
- Hye Jin Shin
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Wooseong Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Keun Bon Ku
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gun Young Yoon
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyun-Woo Moon
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Chonsaeng Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Mi-Hwa Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Bum-Tae Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Aleem Siddiqui
- Division of Infectious Diseases, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seong-Jun Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
7
|
Shankar V, Wilhelmy J, Curtis EJ, Michael B, Cervantes L, Mallajosyula VA, Davis RW, Snyder M, Younis S, Robinson WH, Shankar S, Mischel PS, Bonilla H, Davis MM. Oxidative Stress is a shared characteristic of ME/CFS and Long COVID. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592477. [PMID: 38746454 PMCID: PMC11092775 DOI: 10.1101/2024.05.04.592477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
More than 65 million individuals worldwide are estimated to have Long COVID (LC), a complex multisystemic condition, wherein patients of all ages report fatigue, post-exertional malaise, and other symptoms resembling myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). With no current treatments or reliable diagnostic markers, there is an urgent need to define the molecular underpinnings of these conditions. By studying bioenergetic characteristics of peripheral blood lymphocytes in over 16 healthy controls, 15 ME/CFS, and 15 LC, we find both ME/CFS and LC donors exhibit signs of elevated oxidative stress, relative to healthy controls, especially in the memory subset. Using a combination of flow cytometry, bulk RNA-seq analysis, mass spectrometry, and systems chemistry analysis, we also observed aberrations in ROS clearance pathways including elevated glutathione levels, decreases in mitochondrial superoxide dismutase levels, and glutathione peroxidase 4 mediated lipid oxidative damage. Critically, these changes in redox pathways show striking sex-specific trends. While females diagnosed with ME/CFS exhibit higher total ROS and mitochondrial calcium levels, males with an ME/CFS diagnosis have normal ROS levels, but larger changes in lipid oxidative damage. Further analyses show that higher ROS levels correlates with hyperproliferation of T cells in females, consistent with the known role of elevated ROS levels in the initiation of proliferation. This hyperproliferation of T cells can be attenuated by metformin, suggesting this FDA-approved drug as a possible treatment, as also suggested by a recent clinical study of LC patients. Thus, we report that both ME/CFS and LC are mechanistically related and could be diagnosed with quantitative blood cell measurements. We also suggest that effective, patient tailored drugs might be discovered using standard lymphocyte stimulation assays.
Collapse
|
8
|
Annesley SJ, Missailidis D, Heng B, Josev EK, Armstrong CW. Unravelling shared mechanisms: insights from recent ME/CFS research to illuminate long COVID pathologies. Trends Mol Med 2024; 30:443-458. [PMID: 38443223 DOI: 10.1016/j.molmed.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic illness often triggered by an initiating acute event, mainly viral infections. The transition from acute to chronic disease remains unknown, but interest in this phenomenon has escalated since the COVID-19 pandemic and the post-COVID-19 illness, termed 'long COVID' (LC). Both ME/CFS and LC share many clinical similarities. Here, we present recent findings in ME/CFS research focussing on proposed disease pathologies shared with LC. Understanding these disease pathologies and how they influence each other is key to developing effective therapeutics and diagnostic tests. Given that ME/CFS typically has a longer disease duration compared with LC, with symptoms and pathologies evolving over time, ME/CFS may provide insights into the future progression of LC.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, VIC, Australia.
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Elisha K Josev
- Neurodisability & Rehabilitation, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia; Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Christopher W Armstrong
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms 2024; 12:332. [PMID: 38399736 PMCID: PMC10892048 DOI: 10.3390/microorganisms12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Collapse
Affiliation(s)
- Siqi Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| |
Collapse
|
10
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Schwendinger F, Looser V, Gerber M, Schmidt-Trucksäss A. Autonomic dysfunction and exercise intolerance in post-COVID-19 - An as yet underestimated organ system? Int J Clin Health Psychol 2024; 24:100429. [PMID: 38348143 PMCID: PMC10859561 DOI: 10.1016/j.ijchp.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 02/15/2024] Open
Abstract
Individuals recovering from COVID-19 often present with persistent symptoms, particularly exercise intolerance and low cardiorespiratory fitness. Put simply, the Wasserman gear system describes the interdependence of heart, lungs, and musculature as determinants of cardiorespiratory fitness. Based on this system, recent findings indicate a contribution of peripheral, cardiovascular, and lung diffusion limitations to persistent symptoms of exercise intolerance and low cardiorespiratory fitness. The autonomic nervous system as an organ system involved in the pathophysiology of exercise intolerance and low cardiorespiratory fitness, has received only little attention as of yet. Hence, our article discusses contribution of the autonomic nervous system through four potential pathways, namely alterations in (1) cerebral hemodynamics, (2) afferent and efferent signaling, (3) central hypersensitivity, and (4) appraisal and engagement in physical activity. These pathways are summarized in a psycho-pathophysiological model. Consequently, this article encourages a shift in perspective by examining the state of the pulmonary and cardiovascular system, the periphery, and auxiliary, the autonomic nervous system as potential underlying mechanisms for exercise intolerance and low cardiorespiratory fitness in patients with post-COVID-19.
Collapse
Affiliation(s)
- F. Schwendinger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052 Basel, Switzerland
| | - V.N. Looser
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052 Basel, Switzerland
| | - M. Gerber
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052 Basel, Switzerland
| | - A. Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Schanzenstrasse 55, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Ailioaie LM, Ailioaie C, Litscher G. Gut Microbiota and Mitochondria: Health and Pathophysiological Aspects of Long COVID. Int J Mol Sci 2023; 24:17198. [PMID: 38139027 PMCID: PMC10743487 DOI: 10.3390/ijms242417198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The current understanding of long COVID (LC) is still limited. This review highlights key findings regarding the role of gut microbiota, mitochondria, and the main pathophysiological aspects of LC revealed by clinical studies, related to the complex interplay between infection, intestinal dysbiosis, dysfunctional mitochondria, and systemic inflammation generated in a vicious circle, reflecting the molecular and cellular processes from the "leaky gut" to the "leaky electron transport chain (ETC)" into a quantum leap. The heterogeneity of LC has hindered progress in deciphering all the pathophysiological mechanisms, and therefore, the approach must be multidisciplinary, with a special focus not only on symptomatic management but also on addressing the underlying health problems of the patients. It is imperative to further assess and validate the effects of COVID-19 and LC on the gut microbiome and their relationship to infections with other viral agents or pathogens. Further studies are needed to better understand LC and expand the interdisciplinary points of view that are required to accurately diagnose and effectively treat this heterogeneous condition. Given the ability of SARS-CoV-2 to induce autoimmunity in susceptible patients, they should be monitored for symptoms of autoimmune disease after contracting the viral infection. One question remains open, namely, whether the various vaccines developed to end the pandemic will also induce autoimmunity. Recent data highlighted in this review have revealed that the persistence of SARS-CoV-2 and dysfunctional mitochondria in organs such as the heart and, to a lesser extent, the kidneys, liver, and lymph nodes, long after the organism has been able to clear the virus from the lungs, could be an explanation for LC.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German-Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, Honorary Professor of China Beijing International Acupuncture Training Center, China Academy of Chinese Medical Sciences, Former Head of Two Research Units and the TCM Research Center at the Medical University of Graz, Auenbruggerplatz, 8036 Graz, Austria
| |
Collapse
|
13
|
Liu Y, Gu X, Li H, Zhang H, Xu J. Mechanisms of long COVID: An updated review. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:231-240. [PMID: 39171285 PMCID: PMC11332859 DOI: 10.1016/j.pccm.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 08/23/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 3 years, with an enormous impact on global health and economies. In some patients, symptoms and signs may remain after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which cannot be explained by an alternate diagnosis; this condition has been defined as long COVID. Long COVID may exist in patients with both mild and severe disease and is prevalent after infection with different SARS-CoV-2 variants. The most common symptoms include fatigue, dyspnea, and other symptoms involving multiple organs. Vaccination results in lower rates of long COVID. To date, the mechanisms of long COVID remain unclear. In this narrative review, we summarized the clinical presentations and current evidence regarding the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xiaoying Gu
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
14
|
Jiang Y, Cheng Y, Xiao J, Wang Y, Chen G, Zhang Y. Analysis of the correlation between heart rate variability and palpitation symptoms in female patients with long COVID. Front Cardiovasc Med 2023; 10:1273156. [PMID: 38045913 PMCID: PMC10690811 DOI: 10.3389/fcvm.2023.1273156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Objectives To analyze the correlation between heart rate variability (HRV) and palpitation symptoms in female patients with long COVID. Methods A total of 272 female healthcare workers who were infected with SARS-CoV-2 for the first time in December 2022 at Fuzhou First Hospital affiliated with Fujian Medical University, were selected as study subjects. These subjects were divided into three groups based on their symptoms: a group with palpitations (70 cases), a group without palpitations but with other symptoms (124 cases), and a group consisting of asymptomatic cases (78 cases). The study compared the general information, COMPASS-31 scores, quality of life scores, and HRV parameters among the three groups. Furthermore, it analyzed the factors influencing palpitation symptoms in female patients with long COVID. Results Compared to the other two groups, the HRV parameters SDNN, HRVIndex, LF, and TP were significantly reduced in the group with palpitations (p < 0.05). Multivariate analysis revealed that HRVIndex (p = 0.016; OR: 0.966, 95% CI: 0.940∼0.994) had a significant impact on palpitation symptoms in female patients with long COVID. Conclusions The symptoms of palpitations in female patients with long COVID were found to be related to HRV parameters. Autonomic dysfunction may be connected to the occurrence of palpitation symptoms in long COVID.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiovascular Medicine, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
- Cardiovascular Disease Research Institute of Fuzhou City, Fuzhou, China
| | - Yan Cheng
- Department of Cardiovascular Medicine, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, China
- Cardiovascular Disease Research Institute of Fuzhou City, Fuzhou, China
| | - Jingwen Xiao
- Department of Cardiovascular Medicine, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, China
- Cardiovascular Disease Research Institute of Fuzhou City, Fuzhou, China
| | - Yicheng Wang
- Department of Cardiovascular Medicine, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
- Cardiovascular Disease Research Institute of Fuzhou City, Fuzhou, China
| | - Geng Chen
- Department of Nursing, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, China
| | - Yan Zhang
- Department of Cardiovascular Medicine, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, China
- Cardiovascular Disease Research Institute of Fuzhou City, Fuzhou, China
| |
Collapse
|
15
|
Li J, Zhou Y, Ma J, Zhang Q, Shao J, Liang S, Yu Y, Li W, Wang C. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID. Signal Transduct Target Ther 2023; 8:416. [PMID: 37907497 PMCID: PMC10618229 DOI: 10.1038/s41392-023-01640-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
There have been hundreds of millions of cases of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the growing population of recovered patients, it is crucial to understand the long-term consequences of the disease and management strategies. Although COVID-19 was initially considered an acute respiratory illness, recent evidence suggests that manifestations including but not limited to those of the cardiovascular, respiratory, neuropsychiatric, gastrointestinal, reproductive, and musculoskeletal systems may persist long after the acute phase. These persistent manifestations, also referred to as long COVID, could impact all patients with COVID-19 across the full spectrum of illness severity. Herein, we comprehensively review the current literature on long COVID, highlighting its epidemiological understanding, the impact of vaccinations, organ-specific sequelae, pathophysiological mechanisms, and multidisciplinary management strategies. In addition, the impact of psychological and psychosomatic factors is also underscored. Despite these crucial findings on long COVID, the current diagnostic and therapeutic strategies based on previous experience and pilot studies remain inadequate, and well-designed clinical trials should be prioritized to validate existing hypotheses. Thus, we propose the primary challenges concerning biological knowledge gaps and efficient remedies as well as discuss the corresponding recommendations.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiechao Ma
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Postgraduate Student, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhou Yu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Cheong KL, Yu B, Teng B, Veeraperumal S, Xu B, Zhong S, Tan K. Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides. Biomed Pharmacother 2023; 166:115320. [PMID: 37595427 DOI: 10.1016/j.biopha.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
The COVID-19 pandemic has caused significant global impact, resulting in long-term health effects for many individuals. As more patients recover, there is a growing need to identify effective management strategies for ongoing health concerns, such as post-COVID-19 syndrome, characterized by persistent symptoms or complications beyond several weeks or months from the onset of symptoms. In this review, we explore the potential of dietary polysaccharides as a promising approach to managing post-COVID-19 syndrome. We summarize the immunomodulatory, antioxidant, antiviral, and prebiotic activities of dietary polysaccharides for the management of post-COVID-19 syndrome. Furthermore, the review investigates the role of polysaccharides in enhancing immune response, regulating immune function, improving oxidative stress, inhibiting virus binding to ACE2, balancing gut microbiota, and increasing functional metabolites. These properties of dietary polysaccharides may help alleviate COVID-19 symptoms, providing a promising avenue for effective treatment strategies.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Biao Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
17
|
Schwartz L, Aparicio-Alonso M, Henry M, Radman M, Attal R, Bakkar A. Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeutic approach. Free Radic Biol Med 2023; 206:106-110. [PMID: 37392949 DOI: 10.1016/j.freeradbiomed.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 07/03/2023]
Abstract
We previously demonstrated that most diseases display a form of anabolism due to mitochondrial impairment: in cancer, a daughter cell is formed; in Alzheimer's disease, amyloid plaques; in inflammation cytokines and lymphokines. The infection by Covid-19 follows a similar pattern. Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction. This unrelenting anabolism leads to the cytokine storm, chronic fatigue, chronic inflammation or neurodegenerative diseases. Drugs such as Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism. Similarly, coMeBining Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism.
Collapse
Affiliation(s)
| | | | - Marc Henry
- Institut Lebel, Faculté de chimie, Université de Strasbourg, 67000, Strasbourg, France
| | - Miroslav Radman
- Mediterranean Institute for Life Sciences (MedILS), 21000, Split, Croatia
| | - Romain Attal
- Cité des Sciences et de l'Industrie, 30 avenue Corentin-Cariou, 75019, Paris, France
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
18
|
Golomb BA, Sanchez Baez R, Schilling JM, Dhanani M, Fannon MJ, Berg BK, Miller BJ, Taub PR, Patel HH. Mitochondrial impairment but not peripheral inflammation predicts greater Gulf War illness severity. Sci Rep 2023; 13:10739. [PMID: 37438460 DOI: 10.1038/s41598-023-35896-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Gulf War illness (GWI) is an important exemplar of environmentally-triggered chronic multisymptom illness, and a potential model for accelerated aging. Inflammation is the main hypothesized mechanism for GWI, with mitochondrial impairment also proposed. No study has directly assessed mitochondrial respiratory chain function (MRCF) on muscle biopsy in veterans with GWI (VGWI). We recruited 42 participants, half VGWI, with biopsy material successfully secured in 36. Impaired MRCF indexed by complex I and II oxidative phosphorylation with glucose as a fuel source (CI&CIIOXPHOS) related significantly or borderline significantly in the predicted direction to 17 of 20 symptoms in the combined sample. Lower CI&CIIOXPHOS significantly predicted GWI severity in the combined sample and in VGWI separately, with or without adjustment for hsCRP. Higher-hsCRP (peripheral inflammation) related strongly to lower-MRCF (particularly fatty acid oxidation (FAO) indices) in VGWI, but not in controls. Despite this, whereas greater MRCF-impairment predicted greater GWI symptoms and severity, greater inflammation did not. Surprisingly, adjusted for MRCF, higher hsCRP significantly predicted lesser symptom severity in VGWI selectively. Findings comport with a hypothesis in which the increased inflammation observed in GWI is driven by FAO-defect-induced mitochondrial apoptosis. In conclusion, impaired mitochondrial function-but not peripheral inflammation-predicts greater GWI symptoms and severity.
Collapse
Affiliation(s)
- Beatrice A Golomb
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA.
| | - Roel Sanchez Baez
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
- San Ysidro Health Center, San Diego, CA, 92114, USA
| | - Jan M Schilling
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| | - Mehul Dhanani
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
- Avidity Biosciences, San Diego, CA, 92121, USA
| | - McKenzie J Fannon
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| | - Brinton K Berg
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
| | - Bruce J Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
| | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| |
Collapse
|
19
|
Tsilingiris D, Vallianou NG, Karampela I, Christodoulatos GS, Papavasileiou G, Petropoulou D, Magkos F, Dalamaga M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int J Mol Sci 2023; 24:10458. [PMID: 37445634 PMCID: PMC10341908 DOI: 10.3390/ijms241310458] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece;
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece;
| | | | - Georgios Papavasileiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Dimitra Petropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| |
Collapse
|
20
|
Hamed SA. Post-COVID-19 persistent olfactory, gustatory, and trigeminal chemosensory disorders: Definitions, mechanisms, and potential treatments. World J Otorhinolaryngol 2023; 10:4-22. [DOI: 10.5319/wjo.v10.i2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
The nose and the oral cavities are the main sites for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the body. Smell and taste deficits are the most common acute viral manifestations. Persistent smell disorders are the most common and bothersome complications after SARS-CoV-2 infection, lasting for months to years. The mechanisms and treatment of persistent post-coronavirus disease 2019 (COVID-19) smell and taste disorders are still challenges. Information sources for the review are PubMed, Centers for Disease Control and Prevention, Ovid Medline, Embase, Scopus, Web of Science, International Prospective Register of Systematic Reviews, Cumulative Index to Nursing and Allied Health Literature, Elton Bryson Stephens Company, Cochrane Effective Practice and Organization of Care, Cooperation in Science and Technology, International Clinical Trials Registry Platform, World Health Organization, Randomized Controlled Trial Number Registry, and MediFind. This review summarizes the up-to-date information about the prevalence, patterns at onset, and prognoses of post-COVID-19 smell and taste disorders, evidence for the neurotropism of SARS-CoV-2 and the overlap between SARS-CoV-1, Middle East respiratory syndrome coronavirus, and SARS-CoV-2 in structure, molecular biology, mode of replication, and host pathogenicity, the suggested cellular and molecular mechanisms for these post-COVID19 chemosensory disorders, and the applied pharmacotherapies and interventions as trials to treat these disorders, and the recommendations for future research to improve understanding of predictors and mechanisms of these disorders. These are crucial for hopeful proper treatment strategies.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University, Faculty of Medicine, Assiut 71516, Egypt
| |
Collapse
|
21
|
Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023; 21:133-146. [PMID: 36639608 PMCID: PMC9839201 DOI: 10.1038/s41579-022-00846-2] [Citation(s) in RCA: 1445] [Impact Index Per Article: 1445.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/15/2023]
Abstract
Long COVID is an often debilitating illness that occurs in at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. More than 200 symptoms have been identified with impacts on multiple organ systems. At least 65 million individuals worldwide are estimated to have long COVID, with cases increasing daily. Biomedical research has made substantial progress in identifying various pathophysiological changes and risk factors and in characterizing the illness; further, similarities with other viral-onset illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome have laid the groundwork for research in the field. In this Review, we explore the current literature and highlight key findings, the overlap with other conditions, the variable onset of symptoms, long COVID in children and the impact of vaccinations. Although these key findings are critical to understanding long COVID, current diagnostic and treatment options are insufficient, and clinical trials must be prioritized that address leading hypotheses. Additionally, to strengthen long COVID research, future studies must account for biases and SARS-CoV-2 testing issues, build on viral-onset research, be inclusive of marginalized populations and meaningfully engage patients throughout the research process.
Collapse
Affiliation(s)
| | | | - Julia Moore Vogel
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
22
|
He Z, Liu JJ, Ma SL. Analysis of mitochondrial function in lymphocytes obtained from COVID-19 patients. Int J Immunopathol Pharmacol 2023; 37:3946320231210736. [PMID: 37889851 PMCID: PMC10612433 DOI: 10.1177/03946320231210736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVES There is a significant decline in the lymphocyte subset counts in the peripheral blood of COVID-19 patients. However, the mitochondrial function of lymphocytes obtained from COVID-19 patients has rarely been studied. METHODS A case-control study was conducted in 115 COVID-19 patients and 50 healthy controls from December 2022 to February 2023. The extent of lymphocytic mitochondrial damage in these patients using mitochondrial fluorescence staining and flow cytometry. Clinical symptoms were evaluated using the SOFA and APACHE II scores. RESULTS The mitochondrial function of lymphocytes was severely impaired in the peripheral blood of COVID-19 patients, compared to healthy controls, and was characterized by an increased single-cell mitochondrial mass (SCMM) and increased percentage of low mitochondrial membrane potential. The increase in the SCMM of T cells was more notable in patients with severe COVID-19 and was positively correlated with the SOFA and APACHE II scores. When the SCMM-CD8 cutoff value was 38.775, the AUC for distinguishing between severe and mild COVID-19 was 0.740, and the sensitivity, specificity, and Youden index were 65.8%, 82.1%, and 0.478, respectively. CONCLUSION SCMM-CD8 could act as a diagnostic biomarker of COVID-19 progression. However, this needs to be verified in other multi-center studies with a larger sample size.
Collapse
Affiliation(s)
- Zhi He
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jing-Jing Liu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shao-Lei Ma
- Department of Emergency and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Haunhorst S, Bloch W, Javelle F, Krüger K, Baumgart S, Drube S, Lemhöfer C, Reuken P, Stallmach A, Müller M, Zielinski CE, Pletz MW, Gabriel HHW, Puta C. A scoping review of regulatory T cell dynamics in convalescent COVID-19 patients - indications for their potential involvement in the development of Long COVID? Front Immunol 2022; 13:1070994. [PMID: 36582234 PMCID: PMC9792979 DOI: 10.3389/fimmu.2022.1070994] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Recovery from coronavirus disease 2019 (COVID-19) can be impaired by the persistence of symptoms or new-onset health complications, commonly referred to as Long COVID. In a subset of patients, Long COVID is associated with immune system perturbations of unknown etiology, which could be related to compromised immunoregulatory mechanisms. Objective The objective of this scoping review was to summarize the existing literature regarding the frequency and functionality of Tregs in convalescent COVID-19 patients and to explore indications for their potential involvement in the development of Long COVID. Design A systematic search of studies investigating Tregs during COVID-19 convalescence was conducted on MEDLINE (via Pubmed) and Web of Science. Results The literature search yielded 17 relevant studies, of which three included a distinct cohort of patients with Long COVID. The reviewed studies suggest that the Treg population of COVID-19 patients can reconstitute quantitatively and functionally during recovery. However, the comparison between recovered and seronegative controls revealed that an infection-induced dysregulation of the Treg compartment can be sustained for at least several months. The small number of studies investigating Tregs in Long COVID allowed no firm conclusions to be drawn about their involvement in the syndrome's etiology. Yet, even almost one year post-infection Long COVID patients exhibit significantly altered proportions of Tregs within the CD4+ T cell population. Conclusions Persistent alterations in cell frequency in Long COVID patients indicate that Treg dysregulation might be linked to immune system-associated sequelae. Future studies should aim to address the association of Treg adaptations with different symptom clusters and blood parameters beyond the sole quantification of cell frequencies while adhering to consensualized phenotyping strategies.
Collapse
Affiliation(s)
- Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Baumgart
- Institute for Immunology, Jena University Hospital, Jena, Germany
| | - Sebastian Drube
- Institute for Immunology, Jena University Hospital, Jena, Germany
| | | | - Philipp Reuken
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Müller
- Department of Infection Immunology, Leibniz Institue for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Christina E. Zielinski
- Department of Infection Immunology, Leibniz Institue for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Mathias W. Pletz
- Institute for Immunology, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Holger H. W. Gabriel
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Jena, Germany
| |
Collapse
|
24
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
25
|
The Mito-Hormetic Mechanisms of Ozone in the Clearance of SARS-CoV2 and in the COVID-19 Therapy. Biomedicines 2022; 10:biomedicines10092258. [PMID: 36140358 PMCID: PMC9496465 DOI: 10.3390/biomedicines10092258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
An increasing body of evidence in the literature is reporting the feasibility of using medical ozone as a possible alternative and adjuvant treatment for COVID-19 patients, significantly reducing hospitalization time, pro-inflammatory indicators, and coagulation markers and improving blood oxygenation parameters. In addition to the well-described ability of medical ozone in counteracting oxidative stress through the upregulation of the main anti-oxidant and scavenging enzymes, oxygen–ozone (O2–O3) therapy has also proved effective in reducing chronic inflammation and the occurrence of immune thrombosis, two key players involved in COVID-19 exacerbation and severity. As chronic inflammation and oxidative stress are also reported to be among the main drivers of the long sequelae of SARS-CoV2 infection, a rising number of studies is investigating the potential of O2–O3 therapy to reduce and/or prevent the wide range of post-COVID (or PASC)-related disorders. This narrative review aims to describe the molecular mechanisms through which medical ozone acts, to summarize the clinical evidence on the use of O2–O3 therapy as an alternative and adjuvant COVID-19 treatment, and to discuss the emerging potential of this approach in the context of PASC symptoms, thus offering new insights into effective and safe nonantiviral therapies for the fighting of this devastating pandemic.
Collapse
|
26
|
Chronic Olfactory Dysfunction in Children with Long COVID: A Retrospective Study. CHILDREN 2022; 9:children9081251. [PMID: 36010141 PMCID: PMC9406427 DOI: 10.3390/children9081251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023]
Abstract
Olfactory dysfunction is one of the long-term consequences of acute SARS-CoV-2 infection in adults. This study aims to analyze the prevalence of chronic anosmia among COVID-19 children and to bring to light its impact on their families’ quality of life and wellbeing. Children younger than 18 years old, who were detected as being COVID-19-positive by RT-PCR and were assessed in a pediatric post-COVID outpatient clinic at least 28 days after the onset of the acute infection, were included in the study. The patients suffering from persisting smell disorders were asked to answer a questionnaire about their symptoms and how they influence their daily life. Out of the 784 children evaluated, 13 (1.7%) presented olfactory impairment at a mean follow-up since the acute infection of more than three months. Parents’ answers showed that they were worried about their children’s health, in particular they wanted to know if and when they would recover and if these disorders would have long-term consequences. They also wanted to share their experiences, in order to help other people who are experiencing the same disorders in everyday life. Our study highlights that smell disorders can significantly upset children’s eating habits and everyday activities. Furthermore, these findings suggest that future research should try to better understand the mechanisms causing loss of smell in COVID-19 patients and find the most appropriate treatment.
Collapse
|
27
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|