1
|
la Torre A, Lo Vecchio F, Angelillis VS, Gravina C, D’Onofrio G, Greco A. Reinforcing Nrf2 Signaling: Help in the Alzheimer's Disease Context. Int J Mol Sci 2025; 26:1130. [PMID: 39940900 PMCID: PMC11818887 DOI: 10.3390/ijms26031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Oxidative stress plays a role in various pathophysiological diseases, including neurogenerative diseases, such as Alzheimer's disease (AD), which is the most prevalent neuro-pathology in the aging population. Oxidative stress has been reported to be one of the earliest pathological alterations in AD. Additionally, it was demonstrated that in older adults, there is a loss of free radical scavenging ability. The Nrf2 transcription factor is a key regulator in antioxidant defense systems, but, with aging, both the amount and the transcriptional activity of Nrf2 decrease. With the available treatments for AD being poorly effective, reinforcing the antioxidant defense systems via the Nrf2 pathway may be a way to prevent and treat AD. To highlight the predominant role of Nrf2 signaling in defending against oxidative stress and, therefore, against neurotoxicity, we present an overview of the natural compounds that exert their own neuroprotective roles through the activation of the Nrf2 pathway. This review is an opportunity to promote a holistic approach in the treatment of AD and to highlight the need to further refine the development of new potential Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Valentina Soccorsa Angelillis
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| | - Carolina Gravina
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Grazia D’Onofrio
- Clinical Psychology Service, Health Department, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| |
Collapse
|
2
|
Dong Y, Zou YZ, Li T, Sun JH, Li H, Zhuang WY, Song Y, Wang CM. Schisandrol A Alleviates Allergic Asthma in Mice via Regulating the NF-κB/IκBα and Nrf2/HO-1 Signaling Pathways. J Med Food 2025; 28:28-37. [PMID: 39315928 DOI: 10.1089/jmf.2024.k.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Schisandra chinensis (Turcz) Baill (S. chinensis) is the key traditional Chinese medicine for the treatment of asthma used by ancient and modern medical practitioners. However, the material basis and the main mechanism of its antiasthmatic effect remain unclear. Our preliminary results showed that schisandrol A (SCA), a representative monomer of Schisandra lignans, had the best relaxation effect on tracheal rings in isolated rats. In this research, a mouse asthma model was prepared by combining ovalbumin (OVA) with Al (OH)3 for exploring the antiasthmatic action and the underlying mechanism of SCA. The study results demonstrated that SCA improved the behavior of mice with asthma and pathological changes in their lung tissues and airways, decreased serum immunoglobulin E (IgE) and OVA-IgE levels, interleukin-4 (IL-4), IL-5, IL-13, and eotaxin contents, and leukocytes number in bronchoalveolar lavage fluid. SCA downregulated the gene expressions of keratinocyte-derived protein chemokines and ILs and reduced the expressions of phosphorylated IκB kinase α (p-IKKα) and p-nuclear factor kappa-B (NF-κB) proteins in lung tissues. In addition, it was found that SCA could significantly increase T-superoxide dismutase and catalase activities, decrease malondialdehyde content, and elevate p-IκBα, NF-E2-related-factor 2 (Nrf2), and heme oxygenase-1 (HO-1) protein expressions. In summary, SCA treatment resulted in a significant improvement in the allergic bronchial asthma in mice, and its mechanisms may involve the regulation of the NF-κB/IκBα pathway to reduce inflammatory response and the Nrf2/HO-1 pathway to improve the body's antioxidant capacity. These results suggest that SCA is a key component of S. chinensis in exerting antiasthmatic effects.
Collapse
Affiliation(s)
- Yang Dong
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Yi-Zhuo Zou
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Ting Li
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Jing-Hui Sun
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Wen-Yue Zhuang
- Department of Molecular Biology Test Technique, School of Medical Technology, Beihua University, Jilin, China
| | - Yan Song
- Department of Medical Nursing, School of Nursing, Beihua University, Jilin, China
| | - Chun-Mei Wang
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
3
|
Cuenca-Zamora EJ, Martínez C, Morales ML, Guijarro-Carrillo PJ, López-Poveda MJ, Alcolea-Guardiola C, Vidal-Garrido N, Lozano ML, Gonzalez-Conejero R, Teruel-Montoya R, Ferrer-Marín F. Pacritinib prevents inflammation-driven myelofibrosis-like phenotype in a miR-146a -/- murine model. Biomed Pharmacother 2024; 181:117712. [PMID: 39603040 DOI: 10.1016/j.biopha.2024.117712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic proinflammatory signaling is a characteristic trait in myeloproliferative neoplasms (MPN), particularly myelofibrosis (MF). Aberrant inflammatory signaling, particularly from NF-κB pathway, exacerbates the progression of MPN. Previously, we identified a critical role of miR-146a, a negative regulator of the TLR/NF-κB axis, in MF development. MPN patients carrying the miR-146a rs2431697-TT genotype, associated with lower miR-146a expression levels, have a higher risk of progression to overt-MF from chronic-phase disease. Using miR-146a-/- (KO) mice, a MF-like model lacking MPN driver mutations, we here investigate whether pacritinib, a dual JAK/NF-κB pathways inhibitor (via JAK2/IRAK1, respectively), prevents the age-associated myelofibrotic phenotype of these mice. Young miR-146a-/- mice were treated either with or without pacritinib, for 3 or 6 months. Notably, pacritinib prevented the splenomegaly, reticulin fibrosis and osteosclerosis observed in untreated KO mice. Pacritinib also avoided the myeloproliferation, loss of splenic architecture, and extramedullary hematopoiesis observed in age-matched untreated KO mice. Pharmacological targeting of IRAK1/JAK2 attenuated the pro-inflammatory environment, preventing the increase of inflammatory cytokines, particularly CXCL1 and TNF-α, without inducing cytopenias but rather the opposite. Compared to age-matched untreated KO mice, treated mice showed higher platelet counts irrespective of treatment duration, and higher erythrocyte counts with the longer treatment. Additionally, pacritinib preventive treatment reduced COL1A1 production in an in vitro model mimicking JAK2-driven fibrosis. These findings highlight that dual inhibition of JAK2/IRAK1 with pacritinib, by delaying or attenuating the myelofibrotic progression, could be a potential modifier of the natural course of MPN.
Collapse
Affiliation(s)
- Ernesto José Cuenca-Zamora
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Constantino Martínez
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | - María Luz Morales
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Pedro Jesús Guijarro-Carrillo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | | | | | - Natalia Vidal-Garrido
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | - María Luisa Lozano
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain
| | - Rocío Gonzalez-Conejero
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; Universidad de Murcia, Murcia, Spain
| | - Raúl Teruel-Montoya
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| | - Francisca Ferrer-Marín
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| |
Collapse
|
4
|
Asgari D, Stewart AJ, Meisel RP. The role of uncertainty and negative feedback loops in the evolution of induced immune defenses. G3 (BETHESDA, MD.) 2024; 14:jkae182. [PMID: 39106431 PMCID: PMC11457078 DOI: 10.1093/g3journal/jkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander J Stewart
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Koyuncu AG, Cumbul A, Noval MKA, Akyüz EY. Pomegranate seed oil alleviates colitis: Therapeutic effects achieved by modulation of oxidative stress and inflammation in a rat model. Prostaglandins Other Lipid Mediat 2024; 173:106837. [PMID: 38608927 DOI: 10.1016/j.prostaglandins.2024.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Pomegranate seed oil shows positive effects by limiting neutrophil activation and lipid peroxidation through its antioxidant and anti-inflammatory activities. This study evaluated the possible ameliorative effects of pomegranate seed oil, its actions on proinflammatory cytokines, and its antioxidant activity using an acute acetic acid-induced colitis model in rats. 32 male Sprague-Dawley rats were divided into 4 groups: control, colitis, 0.4 ml/kg, and 0.8 ml/kg pomegranate seed oil treatment after colitis. At the end of the experiment, histopathological and biochemical analyses of intestinal tissues and blood were performed. The study revealed that administering different doses of pomegranate seed oil dramatically reduced total oxidant levels, nuclear factor kappa B, proinflammatory cytokines, and myeloperoxidase activity and appreciably reduced colitis injury. These findings suggest that pomegranate seed oil may alleviate colitis symptoms effectively and exert protective effects through antioxidant, anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Açelya Gül Koyuncu
- Yeditepe University, Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul, Turkey.
| | - Alev Cumbul
- Yeditepe University, Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| | | | - Elvan Yilmaz Akyüz
- University of Health Sciences, Hamidiye Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul, Turkey
| |
Collapse
|
6
|
Lawrence M, Goyal A, Pathak S, Ganguly P. Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions. Int J Mol Sci 2024; 25:7411. [PMID: 39000517 PMCID: PMC11242738 DOI: 10.3390/ijms25137411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).
Collapse
Affiliation(s)
- Merin Lawrence
- School of Biological and Chemical Sciences, University of Galway, H91W2TY Galway, Ireland
| | - Abhishek Goyal
- RAS Life Science Solutions, Stresemannallee 61, 60596 Frankfurt, Germany
| | - Shelly Pathak
- Observational and Pragmatic Research Institute, 5 Coles Lane, Oakington, Cambridge CB24 3BA, UK
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| |
Collapse
|
7
|
Long J, Zhao W, Xiang Y, Wang Y, Xiang W, Liu X, Jiang M, Song Y, Hu J. STAT3 promotes cytoplasmic-nuclear translocation of RNA-binding protein HuR to inhibit IL-1β-induced IL-8 production. Int Immunopharmacol 2024; 133:112065. [PMID: 38608448 DOI: 10.1016/j.intimp.2024.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1β-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1β-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1β induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1β-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1β-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1β-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1β. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1β-induced IL-8 production through this non-transcriptional mechanism.
Collapse
Affiliation(s)
- Jiangwen Long
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wang Zhao
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yangen Xiang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yufei Wang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China; Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wei Xiang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China; Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Xueting Liu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Manli Jiang
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Jinyue Hu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
8
|
Hua X, Hongbing R, Juan X, Jizan L, Beibei Y. Dysregulation of TNF-induced protein 3 and CCAAT/enhancer-binding protein β in alveolar macrophages: Implications for systemic sclerosis-associated interstitial lung disease. Int J Rheum Dis 2024; 27:e15174. [PMID: 38720423 DOI: 10.1111/1756-185x.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein β (C/EBPβ) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPβ was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPβ, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPβ, IL-10, and TGF-β1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPβ. RESULTS TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPβ expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFβ1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPβ. CONCLUSIONS This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPβ expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.
Collapse
Affiliation(s)
- Xiao Hua
- Department of Rheumatology and immulology, The First Affiliated Hospital of FuJian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, The First Peoples' Hospital of Chenzhou, ChenZhou, Hunan, China
| | - Rui Hongbing
- Department of Rheumatology and immulology, The First Affiliated Hospital of FuJian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xue Juan
- Department of Rheumatology and immulology, The First Affiliated Hospital of FuJian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liu Jizan
- Department of Rheumatology and immulology, The First Affiliated Hospital of FuJian Medical University, Fuzhou, China
- Department of Rheumatology and immulology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yang Beibei
- Department of Dermatology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics&Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Chen Z, Feng L, Wu P, Jiang WD, Jiang J, Zhou XQ, Liu Y. From growth promotion to intestinal inflammation alleviation: Unraveling the potential role of Lactobacillus rhamnosus GCC-3 in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109511. [PMID: 38499215 DOI: 10.1016/j.fsi.2024.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lactobacillus rhamnosus is a probiotic, which not only promotes the growth of animals, but also has anti-inflammatory effects. However, the mechanism by which Lactobacillus rhamnosus regulates intestinal immunity is not well comprehended. Hence, the study aimed to research how Lactobacillus rhamnosus affects the intestinal immunity using juvenile grass carp (Ctenopharyngodon idella) as a model. We selected 1800 juvenile grass carp for testing. They were divided into six treatments and fed with six gradients of Lactobacillus rhamnosus GCC-3 (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 g/kg) for 70 days. Enteritis was subsequently induced with dextroside sodium sulfate. Results indicated that dietary Lactobacillus rhamnosus GCC-3 addition improved growth performance. Meanwhile, appropriate levels of Lactobacillus rhamnosus GCC-3 alleviated excessive inflammatory response by down-regulating the expression of TLR4 and NOD receptors, up-regulating the expression of TOR, and then down-regulating the expression of NF-κB. Additionally, appropriate Lactobacillus rhamnosus GCC-3 improved intestinal immunity by reducing pyroptosis triggered by NLRP3 inflammasome and mediated by GSDME. Furthermore, 16 S rRNA sequencing showing appropriate levels of Lactobacillus rhamnosus GCC-3 increased Lactobacillus and Bifidobacterium abundance and decreased Aeromonas abundance. These results suggest that Lactobacillus rhamnosus GCC-3 can alleviate intestinal inflammation through down-regulating NF-κB and up-regulating TOR signaling pathways, as well as by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Zhen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
10
|
Rumpel N, Riechert G, Schumann J. miRNA-Mediated Fine Regulation of TLR-Induced M1 Polarization. Cells 2024; 13:701. [PMID: 38667316 PMCID: PMC11049089 DOI: 10.3390/cells13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Macrophage polarization to the M1 spectrum is induced by bacterial cell wall components through stimulation of Toll-like family (TLR) receptors. By orchestrating the expression of relevant mediators of the TLR cascade, as well as associated pathways and feedback loops, macrophage polarization is coordinated to ensure an appropriate immune response. This is central to the successful control of pathogens and the maintenance of health. Macrophage polarization is known to be modulated at both the transcriptional and post-transcriptional levels. In recent years, the miRNA-based post-transcriptional regulation of M1 polarization has received increasing attention from the scientific community. Comparative studies have shown that TLR stimulation alters the miRNA profile of macrophages and that macrophages from the M1 or the M2 spectrum differ in terms of miRNAs expressed. Simultaneously, miRNAs are considered critical post-transcriptional regulators of macrophage polarization. In particular, miRNAs are thought to play a regulatory role in the switch between the early proinflammatory response and the resolution phase. In this review, we will discuss the current state of knowledge on the complex interaction of transcriptional and post-transcriptional regulatory mechanisms that ultimately determine the functionality of macrophages.
Collapse
Affiliation(s)
| | | | - Julia Schumann
- University Clinic and Outpatient Clinic for Anesthesiology and Operative Intensive Care, University Medicine Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany
| |
Collapse
|
11
|
Teng Y, Gao J, Tan T, Zhang X, Wang Y, Zhang J, Ni L. Chemical components and against alzheimer's disease effects of the calyxes of Physalis alkekengi L. var. franchetii (Mast.) Makino. J Chem Neuroanat 2024; 136:102390. [PMID: 38228242 DOI: 10.1016/j.jchemneu.2024.102390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Physalis alkekengi L. var. franchetii (Mast.) Makino (PA), a traditional Chinese medicine, is utilised for treating dermatitis, sore throat, dysuria, and cough. This research aimed to identify the main constituents in the four extracted portions from the calyces of PA (PAC) utilising ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The Alzheimer's disease (AD) mice model was induced by D-galactose (D-gal) combined with aluminium chloride (AlCl3). Subsequent investigation into the underlying mechanisms involved behavioural and histopathological observations. The results demonstrated that four extracted portions of PAC (PACE) significantly enhanced memory and learning abilities in the Morris water maze. The concentrations of Aβ, tau and p-tau in brain tissue exhibited a significant decrease relative to the model group. Moreover, the four PACE treatment groups increased the glutathione (GSH) and superoxide dismutase (SOD) levels, while concurrently reducing malondialdehyde (MDA), interleukin-1β (IL-1β) and interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) levels. In summary, the current study demonstrates that the four PACE formulations exhibit beneficial anti-AD properties, with the most pronounced efficacy observed in the EA group. Additionally, PAC shows potential in mitigating neuroinflammation and oxidative damage by inhibiting the TLR4/NF-κB signalling pathway. This research lays a theoretical groundwork for the future clinical development and utilisation of PAC in treating AD.
Collapse
Affiliation(s)
- Yang Teng
- Department of Pharmacy, Jiamusi University, Jiamusi, China; Department of Vocational Education Group, Jiamusi, China
| | - Jia Gao
- Department of Pharmacy, Jiamusi University, Jiamusi, China
| | - Tian Tan
- Department of Vocational Education Group, Jiamusi, China
| | | | - Yuliang Wang
- Department of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jiaguang Zhang
- Department of Vocational Education Group, Jiamusi, China
| | - Lei Ni
- Department of Clinical Medicine, Jiamusi University, Jiamusi, China.
| |
Collapse
|
12
|
Naseer N, Mustafa MM, Latief N, Fazal N, Tariq M, Afreen A, Yaqub F, Riazuddin S. Sarcococca saligna fabricated gold nanoparticles alleviated in vitro oxidative stress and inflammation in human adipose-derived stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:2032-2043. [PMID: 37560935 DOI: 10.1002/jbm.b.35303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
Oxidative stress is a destructive phenomenon that affects various cell structures including membranes, proteins, lipoproteins, lipids, and DNA. Oxidative stress and inflammation owing to lifestyle changes may lead to serious diseases such as Cancers, Gout, and Arthritis etc. These disorders can be prevented using different therapeutic strategies including nanomedicine. Biosynthesized gold nanoparticles (GNPs) because of their anti-inflammatory and antioxidant bioactivities can be key player in reversal of these ailments. This study was carried out to evaluate the anti-inflammatory and antioxidant potential of bio fabricated GNPs with Sarcococca saligna (S. saligna) extract on injured human adipose-derived Mesenchymal stem cells (hADMSCs). GNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Scanning Electron Microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x-ray (EDS). Phytochemical screening of biosynthesized GNPs exhibited a significant release of polyphenols, that is, total phenolic content (TPC) and total flavonoid content (TFC). GNPs priming amended the in vitro injury caused by Monosodium Iodoacetate (MIA) as exhibited by improved cell viability, wound closure response and superoxide dismutase activity (SOD). The anti-inflammatory conduct assessed through NF-κB pathway and other associated inflammatory markers reported down-regulation of TNF-α (0.644 ± 0.045), IL-1β (0.694 ± 0.147) and IL-6 (0.622 ± 0.112), apoptosis causing genes like Caspase-3 (0.734 ± 0.13) and BAX (0.830 ± 0.12), NF-κB pathway, p65 (0.672 ± 0.084) and p105 (0.539 ± 0.083) associated genes. High SOD activity (95 ± 5.25%) revealed by treated hADMSCs with GNPs also supported the antioxidant role of GNPs in vitro model. This study concludes that S. saligna bio fabricated GNPs priming may improve the therapeutic potential of hADMSCs against chronic inflammatory problems by regulating NF-κB pathway.
Collapse
Affiliation(s)
- Nadia Naseer
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Munam Mustafa
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Noreen Latief
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Numan Fazal
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Faiza Yaqub
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College (AIMC), Lahore, Punjab, Pakistan
| |
Collapse
|
13
|
Hua KF, Li LH, Yu HC, Wong WT, Hsu HT. Leptin Induces MMP-1 Expression Through the RhoA/ERK1/2/NF-κB Axis in Human Intervertebral Disc Cartilage Endplate-Derived Stem Cells. J Inflamm Res 2023; 16:5235-5248. [PMID: 38026238 PMCID: PMC10657743 DOI: 10.2147/jir.s431026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Intervertebral disc (IVD) degeneration, associated with aging, may cause low back pain and disability, with obesity as a significant risk factor. In a prior study, we found a positive correlation between IVD degeneration and levels of matrix metalloproteinase-1 (MMP-1) and leptin. Yet, the interaction between MMP-1 and leptin in IVD degeneration is unclear. Our research seeks to explore leptin's influence on MMP-1 expression and the underlying mechanisms in human intervertebral disc cartilage endplate-derived stem cells, specifically SV40 cells. Methods The mRNA and protein expression in leptin-stimulated SV40 cells were assessed using RT-real-time PCR and Western blotting or ELISA, respectively. We examined leptin-mediated RhoA activation through a GTP-bound RhoA pull-down assay. Furthermore, the phosphorylation levels of mitogen-activated protein kinases and AKT in leptin-stimulated SV40 cells were analyzed using Western blotting. The activation of NF-κB by leptin was investigated by assessing phosphorylation of IKKα/β, IκBα, and NF-κB p65, along with the nuclear translocation of NF-κB p65. To understand the underlying mechanism behind leptin-mediated MMP-1 expression, we employed specific inhibitors. Results Leptin triggered the mRNA and protein expression of MMP-1 in SV40 cells. In-depth mechanistic investigations uncovered that leptin heightened RhoA activity, promoted ERK1/2 phosphorylation, and increased NF-κB activity. However, leptin did not induce phosphorylation of JNK1/2, p38, or AKT. When we inhibited RhoA, ERK1/2, and NF-κB, it resulted in a decrease in MMP-1 expression. Conversely, inhibition of reactive oxygen species and NADPH oxidase did not yield the same outcome. Additionally, inhibiting RhoA or ERK1/2 led to a reduction in leptin-induced NF-κB activation. Moreover, inhibiting RhoA also decreased leptin-mediated ERK1/2 phosphorylation. Conclusion These results indicated that leptin induced MMP-1 expression in SV40 cells through the RhoA/ERK1/2/NF-κB axis. This study provided the pathogenic role of leptin and suggested the potential therapeutic target for IVD degeneration.
Collapse
Affiliation(s)
- Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, 26047, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404333, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, 108, Taiwan
| | - Hsin-Chiao Yu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, 26047, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, 970, Taiwan
| |
Collapse
|
14
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
He L, Yu X, Zhao Y, Lin H, Zhang Y, Lu D. TLR5S negatively regulates the TLR5M-mediated NF-κB signaling pathway in Epinephelus coioides. Int J Biol Macromol 2023; 249:126048. [PMID: 37517756 DOI: 10.1016/j.ijbiomac.2023.126048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Nuclear factor kappa-B (NF-κB) pathway is a key mediator of inflammation response that plays a role in host defense for pathogen elimination, but excessive activation may lead to tissue damage or pathogen transmission. The negative regulation of NF-κB in lower vertebrates is largely unknown, hindering further understanding of immune signaling evolution. Here, we provided evidence that Epinephelus coioides soluble toll-like receptor 5 (TLR5S), a member of the TLR5 subfamily, has been newly identified as a negative regulator of NF-κB signaling. EcTLR5S was a cytoplasmic protein consisting of 17 leucine-rich repeat domains, which specifically responded to Vibrio flagellin and suppressed flagellin-induced NF-κB signaling activation and cytokine expression. The amino-terminal LRR 1-5 region was necessary for its negative regulatory function. Dual-luciferase reporter assay showed that EcTLR5S significantly inhibited the NF-κB-luc activity induced by inhibitor of NF-κB kinase α (IKKα) and IKKβ. Subsequently, the functional relationship between EcTLR5M and EcTLR5S was analyzed, revealing that the negative regulatory function of EcTLR5S targeted the activation of the NF-κB pathway mediated by EcTLR5M. The above results reveal that EcTLR5S negatively regulates the flagellin-induced EcTLR5M-NF-κB pathway activation, which may prevent over-activation of immune signaling and restore homeostasis.
Collapse
Affiliation(s)
- Liangge He
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China; College of Ocean, Hainan University, Haikou 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
16
|
Nagai-Singer MA, Morrison HA, Woolls MK, Leedy K, Imran KM, Tupik JD, Allen IC. NLRX1 functions as a tumor suppressor in Pan02 pancreatic cancer cells. Front Oncol 2023; 13:1155831. [PMID: 37342194 PMCID: PMC10277690 DOI: 10.3389/fonc.2023.1155831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Pancreatic cancer is a deadly malignancy with limited treatment options. NLRX1 is a unique, understudied member of the Nod-like Receptor (NLR) family of pattern recognition receptors that regulates a variety of biological processes that are highly relevant to pancreatic cancer. The role of NLRX1 in cancer remains highly enigmatic, with some studies defining its roles as a tumor promoter, while others characterize its contributions to tumor suppression. These seemingly contradicting roles appear to be due, at least in part, to cell type and temporal mechanisms. Here, we define roles for NLRX1 in regulating critical hallmarks of pancreatic cancer using both gain-of-function and loss-of-function studies in murine Pan02 cells. Our data reveals that NLRX1 increases susceptibility to cell death, while also suppressing proliferation, migration, and reactive oxygen species production. We also show that NLRX1 protects against upregulated mitochondrial activity and limits energy production in the Pan02 cells. Transcriptomics analysis revealed that the protective phenotypes associated with NLRX1 are correlated with attenuation of NF-κB, MAPK, AKT, and inflammasome signaling. Together, these data demonstrate that NLRX1 diminishes cancer-associated biological functions in pancreatic cancer cells and establishes a role for this unique NLR in tumor suppression.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA,
United States
| |
Collapse
|
17
|
Ma L, Hua L, Yu W, Ke L, Li LY. TSG-6 inhibits hypertrophic scar fibroblast proliferation by regulating IRE1α/TRAF2/NF-κB signalling. Int Wound J 2023; 20:1008-1019. [PMID: 36056472 PMCID: PMC10031217 DOI: 10.1111/iwj.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
TNF-stimulated gene (TSG-6) was reported to suppress hypertrophic scar (HS) formation in a rabbit ear model, and the overexpression of TSG-6 in human HS fibroblasts (HSFs) was found to induce their apoptotic death. The molecular basis for these findings, however, remains to be clarified. HSFs were subjected to TSG-6 treatment. Treatment with TSG-6 significantly suppressed HSF proliferation and induced them to undergo apoptosis. Moreover, TSG-6 exposure led to reductions in collagen I, collagen III, and α-SMA mRNA and protein levels, with a corresponding drop in proliferating cell nuclear antigen (PCNA) expression indicative of impaired proliferative activity. Endoplasmic reticulum (ER) stress was also suppressed in these HSFs as demonstrated by decreases in Bip and p-IRE1α expression, downstream inositol requiring enzyme 1 alpha (IRE1α) -Tumor necrosis factor receptor associated factor 2 (TRAF2) pathway signalling was inhibited and treated cells failed to induce NF-κB, TNF-α, IL-1β, and IL-6 expression. Overall, ER stress was found to trigger inflammatory activity in HSFs via the IRE1α-TRAF2 axis, as confirmed with the specific inhibitor of IRE1α STF083010. Additionally, the effects of TSG-6 on apoptosis, collagen I, collagen III, α-SMA, and PCNA of HSFs were reversed by the IRE1α activator thapsigargin (TG). These data suggest that TSG-6 administration can effectively suppress the proliferation of HSFs in part via the inhibition of IRE1α-mediated ER stress-induced inflammation (IRE1α/TRAF2/NF-κB signalling).
Collapse
Affiliation(s)
- Li Ma
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lei Hua
- Department of Neurology, the Affiliated Nanjing city Hospital of Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Soochow University, SuZhou City, PR China
| | - Li Ke
- Department of Thoracic Surgery, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Liang-Yong Li
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
18
|
A Data-Mining Approach to Identify NF-kB-Responsive microRNAs in Tissues Involved in Inflammatory Processes: Potential Relevance in Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24065123. [PMID: 36982191 PMCID: PMC10049099 DOI: 10.3390/ijms24065123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The nuclear factor NF-kB is the master transcription factor in the inflammatory process by modulating the expression of pro-inflammatory genes. However, an additional level of complexity is the ability to promote the transcriptional activation of post-transcriptional modulators of gene expression as non-coding RNA (i.e., miRNAs). While NF-kB’s role in inflammation-associated gene expression has been extensively investigated, the interplay between NF-kB and genes coding for miRNAs still deserves investigation. To identify miRNAs with potential NF-kB binding sites in their transcription start site, we predicted miRNA promoters by an in silico analysis using the PROmiRNA software, which allowed us to score the genomic region’s propensity to be miRNA cis-regulatory elements. A list of 722 human miRNAs was generated, of which 399 were expressed in at least one tissue involved in the inflammatory processes. The selection of “high-confidence” hairpins in miRbase identified 68 mature miRNAs, most of them previously identified as inflammamiRs. The identification of targeted pathways/diseases highlighted their involvement in the most common age-related diseases. Overall, our results reinforce the hypothesis that persistent activation of NF-kB could unbalance the transcription of specific inflammamiRNAs. The identification of such miRNAs could be of diagnostic/prognostic/therapeutic relevance for the most common inflammatory-related and age-related diseases.
Collapse
|
19
|
Du Y, Liu M, Nigrovic PA, Dedeoglu F, Lee PY. Biologics and JAK inhibitors for the treatment of monogenic systemic autoinflammatory diseases in children. J Allergy Clin Immunol 2023; 151:607-618. [PMID: 36707349 PMCID: PMC9992337 DOI: 10.1016/j.jaci.2022.12.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) are caused by aberrant activation of 1 or more inflammatory pathways in an antigen-independent manner. Monogenic forms of SAIDs typically manifest during childhood, and early treatment is essential to minimize morbidity and mortality. On the basis of the mechanism of disease and the dominant cytokine(s) that propagates inflammation, monogenic SAIDs can be grouped into major categories including inflammasomopathies/disorders of IL-1, interferonopathies, and disorders of nuclear factor-κB and/or aberrant TNF activity. This classification scheme has direct therapeutic relevance given the availability of biologic agents and small-molecule inhibitors that specifically target these pathways. Here, we review the experience of using biologics that target IL-1 and TNF as well as using Janus kinase inhibitors for the treatment of monogenic SAIDs in pediatric patients. We provide an evidence-based guide for the use of these medications and discuss their mechanism of action, safety profile, and strategies for therapeutic monitoring.
Collapse
Affiliation(s)
- Yan Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou
| | - Meng Liu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston.
| |
Collapse
|
20
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
21
|
Duan L, Tang H, Lan Y, Shi H, Pu P, He Q. Ring finger protein 10 improves pirarubicin-induced cardiac inflammation by regulating the AP-1/Meox2 signaling pathway. Toxicol Appl Pharmacol 2023; 462:116411. [PMID: 36740146 DOI: 10.1016/j.taap.2023.116411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Pirarubicin (THP) is widely used in clinical antitumor therapy, but its cardiotoxicity seriously affects the therapeutic effect in patients. In the study, we investigated the role of ring finger protein 10 (RNF10) in cardiotoxicity induced by THP. MATERIALS AND METHODS A cardiac toxicity model in Sprague-Dawley (SD) rats induced by THP was established. Changes in diet, weight, electrocardiogram (ECG), and echocardiography were observed. Serum levels of brain natriuretic peptide (BNP), creatine kinase MB (CK-MB), cardiac troponin T (cTnT), and lactate dehydrogenase (LDH) were measured. The expression of RNF10 in myocardium was observed by immunohistochemistry. The expressions of RNF10, activator protein-1 (AP-1), mesenchyme homeobox 2 (Meox2), total nuclear factor (NF)-κB p65 (T-P65), phosphorylated NF-κB p65 (PP65), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and mature IL-1β were detected by Western blot. A THP-induced H9c2 myocardial cell injury model was established. RNF10 was downregulated or overexpressed by RNF10 siRNA and a RNF10 lentiviral vector, respectively. Then, cell viability was measured. The expression of RNF10 in H9c2 cells was observed by immunofluorescence. All of the above signaling pathways were verified by Western blots. FINDINGS THP caused a series of cardiotoxic manifestations in SD rats. Our studies suggested that THP caused cardiac inflammation by inhibiting the expression of RNF10, while overexpression of RNF10 antagonized the cardiotoxicity induced by THP. SIGNIFICANCE Our study showed RNF10 improved THP-induced cardiac inflammation by regulating the AP-1/Meox2 signaling pathway. RNF10 may be a new target to treat THP-induced cardiotoxicity.
Collapse
Affiliation(s)
- Liang Duan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Lan
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Hongwei Shi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quan He
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Malka O, Malishev R, Bersudsky M, Rajendran M, Krishnamohan M, Shaik J, Chamovitz DA, Tikhonov E, Sultan E, Koren O, Apte RN, Rosental B, Voronov E, Jelinek R. Tryptophol Acetate and Tyrosol Acetate, Small-Molecule Metabolites Identified in a Probiotic Mixture, Inhibit Hyperinflammation. J Innate Immun 2023; 15:531-547. [PMID: 36809756 PMCID: PMC10315057 DOI: 10.1159/000529782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Probiotic fermented foods are perceived as contributing to human health; however, solid evidence for their presumptive therapeutic systemic benefits is generally lacking. Here we report that tryptophol acetate and tyrosol acetate, small-molecule metabolites secreted by the probiotic milk-fermented yeast Kluyveromyces marxianus, inhibit hyperinflammation (e.g., "cytokine storm"). Comprehensive in vivo and in vitro analyses, employing LPS-induced hyperinflammation models, reveal dramatic effects of the molecules, added in tandem, on mice morbidity, laboratory parameters, and mortality. Specifically, we observed attenuated levels of the proinflammatory cytokines IL-6, IL-1α, IL-1β, and TNF-α and reduced reactive oxygen species. Importantly, tryptophol acetate and tyrosol acetate did not completely suppress proinflammatory cytokine generation, rather brought their concentrations back to baseline levels, thus maintaining core immune functions, including phagocytosis. The anti-inflammatory effects of tryptophol acetate and tyrosol acetate were mediated through downregulation of TLR4, IL-1R, and TNFR signaling pathways and increased A20 expression, leading to NF-kB inhibition. Overall, this work illuminates phenomenological and molecular details underscoring anti-inflammatory properties of small molecules identified in a probiotic mixture, pointing to potential therapeutic avenues against severe inflammation.
Collapse
Affiliation(s)
- Orit Malka
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Ravit Malishev
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Marina Bersudsky
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Manikandan Rajendran
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Mathumathi Krishnamohan
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Jakeer Shaik
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Daniel A. Chamovitz
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Evgeni Tikhonov
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Eliya Sultan
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Omry Koren
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Ron N. Apte
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Benyamin Rosental
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Elena Voronov
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology Ben Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
23
|
Lee FFY, Alper S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front Immunol 2022; 13:1023567. [PMID: 36531997 PMCID: PMC9755862 DOI: 10.3389/fimmu.2022.1023567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing. In addition to encoding the canonical mRNAs that produce proteins that promote inflammation, many genes in the TLR signaling pathway also encode alternative mRNAs that produce proteins that are dominant negative inhibitors of signaling. Many of these negative regulators are induced by immune challenge, so production of these alternative isoforms represents a negative feedback loop that limits persistent inflammation. While these alternative splicing events have been investigated on a gene by gene basis, there has been limited systemic analysis of this mechanism that terminates TLR signaling. Here we review what is known about the production of negatively acting alternative isoforms in the TLR signaling pathway including how these inhibitors function, how they are produced, and what role they may play in inflammatory disease.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States
| | - Scott Alper
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States,*Correspondence: Scott Alper,
| |
Collapse
|
24
|
Zhang Z, Zhang S, Jiang X, Wu D, Du Y, Yang XD. Spata2L Suppresses TLR4 Signaling by Promoting CYLD-Mediated Deubiquitination of TRAF6 and TAK1. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:957-964. [PMID: 36180997 DOI: 10.1134/s0006297922090085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Toll-like receptor 4 (TLR4) is a key pattern recognition receptor that can be activated by bacterial lipopolysaccharide to elicit inflammatory response. Proper activation of TLR4 is critical for the host defense against microbial infections. Since overactivation of TLR4 causes deleterious effects and inflammatory diseases, its activation needs to be tightly controlled by negative regulatory mechanisms, among which the most pivotal could be deubiquitination of key signaling molecules mediated by deubiquitinating enzymes (DUBs). CYLD is a member of the USP family of DUBs that acts as a critical negative regulator of TLR4-depedent inflammatory responses by deconjugating polyubiquitin chains from signaling molecules, such as TRAF6 and TAK1. Dysregulation of CYLD is implicated in inflammatory diseases. However, how the function of CYLD is regulated during inflammatory response remains largely unclear. Recently, we and other authors have shown that Spata2 functions as an important CYLD partner to regulate enzymatic activity of CYLD and substrate binding by this protein. Here, we show that a Spata2-like protein, Spata2L, can also form a complex with CYLD to inhibit the TLR4-dependent inflammatory response. We found that Spata2L constitutively interacts with CYLD and that the deficiency of Spata2L enhances the LPS-induced NF-κB activation and proinflammatory cytokine gene expression. Mechanistically, Spata2L potentiated CYLD-mediated deubiquitination of TRAF6 and TAK1 likely by promoting CYLD enzymatic activity. These findings identify Spata2L as a novel CYLD regulator, provide new insights into regulatory mechanisms underlying CYLD role in TLR4 signaling, and suggest potential targets for modulating TLR4-induced inflammation.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuangyan Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoli Jiang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dandan Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaning Du
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Dong Yang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
25
|
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer's disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152:113208. [PMID: 35660246 DOI: 10.1016/j.biopha.2022.113208] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
AIM OF THE REVIEW This study aimed to reveal the classical signal pathways and important potential targets of traditional Chinese medicine (TCM) for treating Alzheimer's disease (AD), and provide support for further investigation on TCM and its active ingredients. MATERIALS AND METHODS Literature survey was conducted using PubMed, Web of Science, Google Scholar, CNKI, and other databases, with "Alzheimer's disease," "traditional Chinese medicine," "medicinal herb," "Chinese herb," and "natural plant" as the primary keywords. RESULTS TCM could modulate signal pathways related to AD pathological progression, including NF-κB, Nrf2, JAK/STAT, ubiquitin-proteasome pathway, autophagy-lysosome pathway-related AMPK/mTOR, GSK-3/mTOR, and PI3K/Akt/mTOR, as well as SIRT1 and PPARα pathway. It could regulate crosstalk between pathways through a multitarget, thus maintaining chronic inflammatory interaction balance, inhibiting oxidative stress damage, regulating ubiquitin-proteasome system function, modulating autophagy, and eventually improving cognitive impairment in patients with AD. CONCLUSION TCM could be multilevel, multitargeted, and multifaceted to prevent and treat AD. In-depth research on the prevention and treatment of AD with TCM could provide new ideas for exploring the pathogenesis of AD and developing new anti-AD drugs.
Collapse
Affiliation(s)
- Min-Rui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Jie Qu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
26
|
Ahmad HI, Jabbar A, Mushtaq N, Javed Z, Hayyat MU, Bashir J, Naseeb I, Abideen ZU, Ahmad N, Chen J. Immune Tolerance vs. Immune Resistance: The Interaction Between Host and Pathogens in Infectious Diseases. Front Vet Sci 2022; 9:827407. [PMID: 35425833 PMCID: PMC9001959 DOI: 10.3389/fvets.2022.827407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system is most likely developed to reduce the harmful impact of infections on the host homeostasis. This defense approach is based on the coordinated activity of innate and adaptive immune system components, which detect and target infections for containment, killing, or expulsion by the body's defense mechanisms. These immunological processes are responsible for decreasing the pathogen burden of an infected host to maintain homeostasis that is considered to be infection resistance. Immune-driven resistance to infection is connected with a second, and probably more important, defensive mechanism: it helps to minimize the amount of dysfunction imposed on host parenchymal tissues during infection without having a direct adverse effect on pathogens. Disease tolerance is a defensive approach that relies on tissue damage control systems to prevent infections from causing harm to the host. It also uncouples immune-driven resistance mechanisms from immunopathology and disease, allowing the body to fight infection more effectively. This review discussed the cellular and molecular processes that build disease tolerance to infection and the implications of innate immunity on those systems. In addition, we discuss how symbiotic relationships with microbes and their control by particular components of innate and adaptive immunity alter disease tolerance to infection.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
- *Correspondence: Hafiz Ishfaq Ahmad
| | - Abdul Jabbar
- Department of Clinical Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nadia Mushtaq
- Department of Biological Sciences, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zainab Javed
- Institute of Pharmaceutical Sciences, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Umar Hayyat
- Institute of Pharmaceutical Sciences, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Javaria Bashir
- Department of Medical Sciences, Sharif Medical and Dental Hospital, Lahore, Pakistan
| | - Iqra Naseeb
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zain Ul Abideen
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Nisar Ahmad
- Department of Livestock Management, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- Jinping Chen
| |
Collapse
|
27
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving HR. A systematic review and meta-analyses of interleukin-1 receptor associated kinase 3 (IRAK3) action on inflammation in in vivo models for the study of sepsis. PLoS One 2022; 17:e0263968. [PMID: 35167625 PMCID: PMC8846508 DOI: 10.1371/journal.pone.0263968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Background Interleukin-1 receptor associated kinase 3 (IRAK3) is a critical modulator of inflammation and is associated with endotoxin tolerance and sepsis. Although IRAK3 is known as a negative regulator of inflammation, several studies have reported opposing functions, and the temporal actions of IRAK3 on inflammation remain unclear. A systematic review and meta-analyses were performed to investigate IRAK3 expression and its effects on inflammatory markers (TNF-α and IL-6) after one- or two-challenge interventions, which mimic the hyperinflammatory and immunosuppression phases of sepsis, respectively, using human or animal in vivo models. Methods This systematic review and meta-analyses has been registered in the Open Science Framework (OSF) (Registration DOI: 10.17605/OSF.IO/V39UR). A systematic search was performed to identify in vivo studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data was available. Results The search identified 7778 studies for screening. After screening titles, abstracts and full texts, a total of 49 studies were included in the systematic review. The review identified significant increase of IRAK3 mRNA and protein expression at different times in humans compared to rodents following one-challenge, whereas the increases of IL-6 and TNF-α protein expression in humans were similar to rodent in vivo models. Meta-analyses confirmed the inhibitory effect of IRAK3 on TNF-α mRNA and protein expression after two challenges. Conclusions A negative correlation between IRAK3 and TNF-α expression in rodents following two challenges demonstrates the association of IRAK3 in the immunosuppression phase of sepsis. Species differences in underlying biology affect the translatability of immune responses of animal models to human, as shown by the dissimilarity in patterns of IRAK3 mRNA and protein expression between humans and rodents following one challenge that are further influenced by variations in experimental procedures.
Collapse
Affiliation(s)
- Trang H. Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| |
Collapse
|
28
|
Xu B, Yang R, Yang B, Li L, Chen J, Fu J, Qu X, Huo D, Tan C, Chen H, Peng Z, Wang X. Long non-coding RNA lncC11orf54-1 modulates neuroinflammatory responses by activating NF-κB signaling during meningitic Escherichia coli infection. Mol Brain 2022; 15:4. [PMID: 34980188 PMCID: PMC8722204 DOI: 10.1186/s13041-021-00890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Escherichia coli is the most common gram-negative pathogenic bacterium causing meningitis. It penetrates the blood–brain barrier (BBB) and activates nuclear factor kappa B (NF-κB) signaling, which are vital events leading to the development of meningitis. Long non-coding RNAs (lncRNAs) have been implicated in regulating neuroinflammatory signaling, and our previous study showed that E. coli can induce differential expression of lncRNAs, including lncC11orf54-1, in human brain microvascular endothelial cells (hBMECs). The hBMECs constitute the structural and functional basis for the BBB, however, it is unclear whether lncRNAs are involved in the regulation of inflammatory responses of hBMECs during meningitic E. coli infection. In this study, we characterized an abundantly expressed lncRNA, lncC11orf54-1, which was degraded by translocated coilin to produce mgU2-19 and mgU2-30 in hBMECs during E. coli infection. Functionally, lncC11orf54-1-originated non-coding RNA mgU2-30 interacted with interleukin-1 receptor-associated kinase 1 (IRAK1) to induce its oligomerization and autophosphorylation, thus promoting the activation of NF-κB signaling and facilitating the production of pro-inflammatory cytokines. In summary, our study uncovers the involvement of lncC11orf54-1 in IRAK1–NF-κB signaling, and it functions as a positive regulator of inflammatory responses in meningitic E. coli-induced neuroinflammation, which may be a valuable therapeutic and diagnostic target for bacterial meningitis.
Collapse
Affiliation(s)
- Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinyi Qu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dong Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China. .,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China. .,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Schubert M, Kluge S, Brunner E, Pace S, Birringer M, Werz O, Lorkowski S. The α-tocopherol-derived long-chain metabolite α-13'-COOH mediates endotoxin tolerance and modulates the inflammatory response via MAPK and NFκB pathways. Free Radic Biol Med 2022; 178:83-96. [PMID: 34848369 DOI: 10.1016/j.freeradbiomed.2021.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022]
Abstract
SCOPE The long-chain metabolites of (LCM) vitamin E are proposed as the active regulatory metabolites of vitamin E providing, with their anti-inflammatory properties, an explanatory approach for the inconsistent effects of vitamin E on inflammatory-driven diseases. We examined the modulation of cytokine expression and release from macrophages, a fundamental process in many diseases, to gain insights into the anti-inflammatory mechanisms of the α-tocopherol-derived LCM α-13'-COOH. METHODS AND RESULTS Suppressed gene expression of C-C motif chemokine ligand 2 (Ccl2), tumor necrosis factor (Tnf), and interleukin (Il) 6 in response to lipopolysaccharides by 24 h pre-treatment with α-13'-COOH in RAW264.7 macrophages was revealed using quantitative reverse transcription PCR. Further, reduced secretion of IL1β and CCL2 was found in this setup using flow cytometry. In contrast, 1 h pre-treatment suppressed only CCL2. Consequent gene expression analysis within 24 h of α-13'-COOH treatment revealed the induction of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) negative feedback regulators including the 'master regulators' dual-specificity phosphatase 1 (Dusp1/Mkp1) and tumor necrosis factor induced protein 3 (Tnfaip3/A20). Approaches with immunoblots and chemical antagonists suggest a feedback induction via activation of extracellular-signal regulated kinase (ERK), p38 MAPK and NFκB pathways. CONCLUSIONS CCL2 is suppressed in murine macrophages by α-13'-COOH and the indirect suppression of MAPK and NFκB pathways is likely a relevant process contributing to anti-inflammatory actions of α-13'-COOH. These results improve the understanding of the effects of α-13'-COOH and provide a basis for new research strategies in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Elena Brunner
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Simona Pace
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Germany; Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
30
|
Sun L, Wang R, Wu C, Gong J, Ma H, Fung SY, Yang H. The Modulatory Activity of Tryptophan Displaying Nanodevices on Macrophage Activation for Preventing Acute Lung Injury. Front Immunol 2021; 12:750128. [PMID: 34659253 PMCID: PMC8516359 DOI: 10.3389/fimmu.2021.750128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Macrophages play an important role in the initiation, progression and resolution of inflammation in many human diseases. Effective regulation of their activation and immune responses could be a promising therapeutic strategy to manage various inflammatory conditions. Nanodevices that naturally target macrophages are ideal agents to regulate immune responses of macrophages. Here we described a special tryptophan (Trp)-containing hexapeptide-coated gold nanoparticle hybrid, PW, which had unique immunomodulatory activities on macrophages. The Trp residues enabled PW higher affinity to cell membranes, and contributed to inducing mild pro-inflammatory responses of NF-κB/AP-1 activation. However, in the presence of TLR stimuli, PW exhibited potent anti-inflammatory activities through inhibiting multiple TLR signaling pathways. Mechanistically, PW was internalized primarily through micropinocytosis pathway into macrophages and attenuated the endosomal acidification process, and hence preferentially affected the endosomal TLR signaling. Interestingly, PW could induce the expression of the TLR negative regulator IRAK-M, which may also contribute to the observed TLR inhibitory activities. In two acute lung injury (ALI) mouse models, PW could effectively ameliorate lung inflammation and protect lung from injuries. This work demonstrated that nanodevices with thoughtful design could serve as novel immunomodulatory agents to manage the dysregulated inflammatory responses for treating many chronic and acute inflammatory conditions, such as ALI.
Collapse
Affiliation(s)
- Liya Sun
- School of Biomedical Engineering and The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Rui Wang
- School of Biomedical Engineering and The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chenchen Wu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiameng Gong
- School of Biomedical Engineering and The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Huiqiang Ma
- School of Biomedical Engineering and The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shan-Yu Fung
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hong Yang
- School of Biomedical Engineering and The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
The Role of microRNAs in NK Cell Development and Function. Cells 2021; 10:cells10082020. [PMID: 34440789 PMCID: PMC8391642 DOI: 10.3390/cells10082020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
The clinical use of natural killer (NK) cells is at the forefront of cellular therapy. NK cells possess exceptional antitumor cytotoxic potentials and can generate significant levels of proinflammatory cytokines. Multiple genetic manipulations are being tested to augment the anti-tumor functions of NK cells. One such method involves identifying and altering microRNAs (miRNAs) that play essential roles in the development and effector functions of NK cells. Unique miRNAs can bind and inactivate mRNAs that code for cytotoxic proteins. MicroRNAs, such as the members of the Mirc11 cistron, downmodulate ubiquitin ligases that are central to the activation of the obligatory transcription factors responsible for the production of inflammatory cytokines. These studies reveal potential opportunities to post-translationally enhance the effector functions of human NK cells while reducing unwanted outcomes. Here, we summarize the recent advances made on miRNAs in murine and human NK cells and their relevance to NK cell development and functions.
Collapse
|
32
|
Pradhan K, Geng S, Zhang Y, Lin RC, Li L. TRAM-Related TLR4 Pathway Antagonized by IRAK-M Mediates the Expression of Adhesion/Coactivating Molecules on Low-Grade Inflammatory Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2980-2988. [PMID: 34031144 PMCID: PMC8278277 DOI: 10.4049/jimmunol.2000978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
Low-grade inflammatory monocytes critically contribute to the pathogenesis of chronic inflammatory diseases such as atherosclerosis. The elevated expression of coactivating molecule CD40 as well as key adhesion molecule CD11a is a critical signature of inflammatory monocytes from both human patients with coronary artery diseases as well as in animal models of atherosclerosis. In this study, we report that subclinical superlow-dose LPS, a key risk factor for low-grade inflammation and atherosclerosis, can potently trigger the induction of CD40 and CD11a on low-grade inflammatory monocytes. Subclinical endotoxin-derived monocytes demonstrate immune-enhancing effects and suppress the generation of regulatory CD8+CD122+ T cells, which further exacerbate the inflammatory environment conducive for chronic diseases. Mechanistically, subclinical endotoxemia activates TRAM-mediated signaling processes, leading to the activation of MAPK and STAT5, which is responsible for the expression of CD40 and CD11a. We also demonstrate that TRAM-mediated monocyte polarization can be suppressed by IRAK-M. IRAK-M-deficient monocytes have increased expression of TRAM, elevated induction of CD40 and CD11a by subclinical-dose endotoxin, and are more potent in suppressing the CD8 regulatory T cells. Mice with IRAK-M deficiency generate an increased population of inflammatory monocytes and a reduced population of CD8 T regulatory cells. In contrast, mice with TRAM deficiency exhibit a significantly reduced inflammatory monocyte population and an elevated CD8 T regulatory cell population. Together, our data reveal a competing intracellular circuitry involving TRAM and IRAK-M that modulate the polarization of low-grade inflammatory monocytes with an immune-enhancing function.
Collapse
Affiliation(s)
- Kisha Pradhan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Rui-Ci Lin
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
33
|
Nguyen VQ, Eden K, Morrison HA, Sammons MB, Knight KK, Sorrentino S, Brock RM, Grider DJ, Allen IC, Sorrentino D. Noncanonical NF-κB Signaling Upregulation in Inflammatory Bowel Disease Patients is Associated With Loss of Response to Anti-TNF Agents. Front Pharmacol 2021; 12:655887. [PMID: 34177575 PMCID: PMC8223059 DOI: 10.3389/fphar.2021.655887] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: Targeting tumor necrosis factor (TNF) with biologic agents, such as infliximab and adalimumab, is a widely used and effective therapeutic strategy in inflammatory bowel disease (IBD). Unfortunately, a significant number of patients fail to respond or lose response over time to these agents. Previous studies have defined multiple complex roles for canonical NF-κB signaling in the pathogenesis of IBD. However, preliminary evidence suggests that the lesser defined noncanonical NF-κB signaling pathway also contributes to disease pathogenesis and response to anti-TNF agents. The objective of this study was to evaluate this hypothesis in Crohn’s disease (CD) and ulcerative colitis (UC) patients. Design: A total of 27 subjects with IBD (19 with CD and 8 with UC) and 15 control subjects were tested. Clinical criteria, patient history, and endoscopic disease activity were factors used to categorize patients and define therapeutic response. Biopsy specimens were collected during colonoscopy and expression was determined for 88 target genes known to be associated with noncanonical NF-κB signaling and IBD. Results: Noncanonical NF-κB signaling was significantly upregulated in IBD patients and was associated with increased gastrointestinal inflammation, epithelial cell death, lymphocyte migration, and Nod-like receptor signaling. Furthermore, noncanonical NF-κB signaling was further upregulated in patients unresponsive to anti-TNF agents and was suppressed in responsive patients. MAP3K14, NFKB2, CCL19, CXCL12, and CXCL13 were significantly dysregulated, as were genes that encode pathway regulators, such as CYLD, NLRP12, and BIRC2/3. Conclusion: Our study identifies a previously uncharacterized role for the understudied noncanonical NF-κB signaling pathway in the pathogenesis of IBD and anti-TNF therapy responsiveness. The genes and pathways identified may ultimately prove useful in IBD management and could potentially be used as biomarkers of drug response.
Collapse
Affiliation(s)
- Vu Q Nguyen
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Megan B Sammons
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Kristin K Knight
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Siena Sorrentino
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Douglas J Grider
- Department of Pathology, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Dario Sorrentino
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.,Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, Udine, Italy
| |
Collapse
|
34
|
Wang H, Liu D, Song P, Jiang F, Chi X, Zhang T. Exposure to hypoxia causes stress erythropoiesis and downregulates immune response genes in spleen of mice. BMC Genomics 2021; 22:413. [PMID: 34090336 PMCID: PMC8178839 DOI: 10.1186/s12864-021-07731-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The spleen is the largest secondary lymphoid organ and the main site where stress erythropoiesis occurs. It is known that hypoxia triggers the expansion of erythroid progenitors; however, its effects on splenic gene expression are still unclear. Here, we examined splenic global gene expression patterns by time-series RNA-seq after exposing mice to hypoxia for 0, 1, 3, 5, 7 and 13 days. RESULTS Morphological analysis showed that on the 3rd day there was a significant increase in the spleen index and in the proliferation of erythroid progenitors. RNA-sequencing analysis revealed that the overall expression of genes decreased with increased hypoxic exposure. Compared with the control group, 1380, 3430, 4396, 3026, and 1636 genes were differentially expressed on days 1, 3, 5, 7 and 13, respectively. Clustering analysis of the intersection of differentially expressed genes pointed to 739 genes, 628 of which were upregulated, and GO analysis revealed a significant enrichment for cell proliferation. Enriched GO terms of downregulated genes were associated with immune cell activation. Expression of Gata1, Tal1 and Klf1 was significantly altered during stress erythropoiesis. Furthermore, expression of genes involved in the immune response was inhibited, and NK cells decreased. CONCLUSIONS The spleen of mice conquer hypoxia exposure in two ways. Stress erythropoiesis regulated by three transcription factors and genes in immune response were downregulated. These findings expand our knowledge of splenic transcriptional changes during hypoxia.
Collapse
Affiliation(s)
- Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Medical College of Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangwen Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China.
| |
Collapse
|
35
|
Cui X, Pan G, Chen Y, Guo X, Liu T, Zhang J, Yang X, Cheng M, Gao H, Jiang F. The p53 pathway in vasculature revisited: A therapeutic target for pathological vascular remodeling? Pharmacol Res 2021; 169:105683. [PMID: 34019981 DOI: 10.1016/j.phrs.2021.105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Pathological vascular remodeling contributes to the development of restenosis following intraluminal interventions, transplant vasculopathy, and pulmonary arterial hypertension. Activation of the tumor suppressor p53 may counteract vascular remodeling by inhibiting aberrant proliferation of vascular smooth muscle cells and repressing vascular inflammation. In particular, the development of different lines of small-molecule p53 activators ignites the hope of treating remodeling-associated vascular diseases by targeting p53 pharmacologically. In this review, we discuss the relationships between p53 and pathological vascular remodeling, and summarize current experimental data suggesting that drugging the p53 pathway may represent a novel strategy to prevent the development of vascular remodeling.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tengfei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
36
|
Mahmoudvand S, Shokri S. Interactions between SARS coronavirus 2 papain-like protease and immune system: A potential drug target for the treatment of COVID-19. Scand J Immunol 2021; 94:e13044. [PMID: 33872387 PMCID: PMC8250271 DOI: 10.1111/sji.13044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 12/01/2022]
Abstract
Coronaviruses (CoVs) are a large family of respiratory viruses which can cause mild to moderate upper respiratory tract infections. Recently, new coronavirus named as Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has been identified which is a major threat to public health. Innate immune responses play a vital role in a host's defence against viruses. Interestingly, CoVs have evolved elaborate strategies to evade the complex system of sensors and signalling molecules to suppress host immunity. SARS‐CoV‐2 papain‐like protease (PLpro), as an important coronavirus enzyme, regulates viral spread and innate immune responses. SCoV‐2 PLpro is multifunctional enzyme with deubiquitinating (DUB) and deISGylating activity. The PLpro can interact with key regulators in signalling pathways such as STING, NF‐κB, cytokine production, MAPK and TGF‐β and hijack those to block the immune responses. Therefore, the PLpro can be as an important target for the treatment of COVID‐19. Until now, several drugs or compounds have been identified that can inhibit PLpro activity. Here we discuss about the dysregulation effects of PLpro on immune system and drugs that have potential inhibitors for SCoV‐2 PLpro.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of VirologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Somayeh Shokri
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of VirologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
37
|
Du H, He Y, Pan Y, Zhao M, Li Z, Wang Y, Yang J, Wan H. Danhong Injection Attenuates Cerebral Ischemia-Reperfusion Injury in Rats Through the Suppression of the Neuroinflammation. Front Pharmacol 2021; 12:561237. [PMID: 33927611 PMCID: PMC8076794 DOI: 10.3389/fphar.2021.561237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation is one of the major causes of damage of the central nervous system (CNS) and plays a vital role in the pathogenesis of cerebral ischemia, which can result in long-term disability and neuronal death. Danhong injection (DHI), a traditional Chinese medicine injection, has been applied to the clinical treatment of cerebral stoke for many years. In this study, we investigated the protective effects of DHI on cerebral ischemia-reperfusion injury (CIRI) in rats and explored its potential anti-neuroinflammatory properties. CIRI in adult male SD rats was induced by middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h. Results showed that DHI (0.5, 1, and 2 ml/kg) dose-dependently improved the neurological deficits and alleviated cerebral infarct volume and histopathological damage of the cerebral cortex caused by CIRI. Moreover, DHI (0.5, 1, and 2 ml/kg) inhibited the mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), intercellular cell adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in ischemic brains, downregulated TNF-α, IL-1β, and monocyte chemotactic protein-1 (MCP-1) levels in serum, and reduced the neutrophil infiltration (myeloperoxidase, MPO) in ischemic brains, in a dose-dependent manner. Immunohistochemical staining results also revealed that DHI dose-dependently diminished the protein expressions of ICAM-1 and COX-2, and suppressed the activation of microglia (ionized calcium-binding adapter molecule 1, Iba-1) and astrocyte (glial fibrillary acidic protein, GFAP) in the cerebral cortex. Western blot analysis showed that DHI significantly downregulated the phosphorylation levels of the proteins in nuclear factor κB (NF-κB) and mitogen-activated protein kinas (MAPK) signaling pathways in ischemic brains. These results indicate that DHI exerts anti-neuroinflammatory effects against CIRI, which contribute to the amelioration of CNS damage.
Collapse
Affiliation(s)
- Haixia Du
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Mengdi Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiwei Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
38
|
IL-38 restrains inflammatory response of collagen-induced arthritis in rats via SIRT1/HIF-1α signaling pathway. Biosci Rep 2021; 40:223089. [PMID: 32347300 PMCID: PMC7256678 DOI: 10.1042/bsr20182431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To observe the restraining effect of IL-38 on inflammatory response in collagen-induced arthritis rats (CIA), and to explore the regulatory mechanism of SIRT1/HIF-1α signaling pathway. METHODS 40 SD rats were randomly divided into Control group, CIA group, CLL group and CLH group, with 10 rats in each group; CIA rat model was established. The effects of IL-38 on arthritis index, inflammatory response, osteogenic factor and angiogenic factor were observed by methods including HE staining, ELISA, immunohistochemical and immunofluorescence. Human synoviocytes were cultured in vitro, and SIRT1 inhibitors were added to detect the expression for relating factors of SIRT1/HIF-1α signaling pathway by Western blot. RESULTS IL-38 could alleviate CIA joint damage and restrain inflammatory response, could up-regulate the expression of OPG in CIA rats and could down-regulate the expression of RANKL and RANK. IL-38 could restrain the expression of VEGF, VEGFR1, VEGFR2 and HIF. Moreover, we found that IL-38 could up-regulate the SIRT1 expression and down-regulate the HIF-1α, TLR4 and NF-KB p65 expression in CLL and CLH groups. From the treatment of synoviocytes to simulate the CIA model and the treatment of SIRT1 inhibitors, we demonstrated that the inhibitory effect of IL-38 on inflammatory factors and regulation of SIRT1/HIF-1α signaling pathway-related proteins were inhibited. CONCLUSION IL-38 can restrain the inflammatory response of CIA rats, can promote the expression of osteogenic factors, can inhibit neovascularization, and can alleviate joint damage in rats. The mechanism may be related to the regulation of SIRT1/HIF-1α signaling pathway.
Collapse
|
39
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
40
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
41
|
Abstract
Inflammation is triggered by stimulation of innate sensors that recognize pathogens, chemical and physical irritants, and damaged cells subsequently initiating a well-orchestrated adaptive immune response. Immune cell activation is a strictly regulated and self-resolving process supported by an array of negative feedback mechanisms to sustain tissue homeostasis. The disruption of these regulatory pathways forms the basis of chronic inflammatory diseases, including periodontitis. Ubiquitination, a covalent posttranslational modification of target proteins with ubiquitin, has a profound effect on the stability and activity of its substrates, thereby regulating the immune system at molecular and cellular levels. Through the cooperative actions of E3 ubiquitin ligases and deubiquitinases, ubiquitin modifications are implicated in several biological processes, including proteasomal degradation, transcriptional regulation, regulation of protein-protein interactions, endocytosis, autophagy, DNA repair, and cell cycle regulation. A20 (tumor necrosis factor α-induced protein 3 or TNFAIP3) is a ubiquitin-editing enzyme that mainly functions as an endogenous regulator of inflammation through termination of nuclear factor (NF)-κB activation as part of a negative feedback loop. A20 interacts with substrates that reside downstream of immune sensors, including Toll-like receptors, nucleotide-binding oligomerization domain-containing receptors, lymphocyte receptors, and cytokine receptors. Due to its pleiotropic functions as a ubiquitin binding protein, deubiquitinase and ubiquitin ligase, and its versatile role in various signaling pathways, aberrant A20 levels are associated with numerous conditions such as rheumatoid arthritis, diabetes, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, Sjögren syndrome, coronary artery disease, multiple sclerosis, cystic fibrosis, asthma, cancer, neurological disorders, and aging-related sequelae. Similarly, A20 has recently been implicated as an essential regulator of inflammation in the oral cavity. This review presents information on the ubiquitin system and regulation of NF-κB by ubiquitination using A20 as a representative molecule and highlights how the dysregulation of this system can lead to several immune pathologies, including oral cavity-related disorders mainly focusing on periodontitis.
Collapse
Affiliation(s)
- E.C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Dentistry, Richmond, VA, USA
| | - S.E. Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
RNF11 at the Crossroads of Protein Ubiquitination. Biomolecules 2020; 10:biom10111538. [PMID: 33187263 PMCID: PMC7697665 DOI: 10.3390/biom10111538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis.
Collapse
|
43
|
Fu YW, Li L, Wang XQ, Zhou Y, Zhu LF, Mei YM, Xu Y. The inhibitory effect of the deubiquitinase cylindromatosis (CYLD) on inflammatory responses in human gingival fibroblasts. Oral Dis 2020; 27:1487-1497. [PMID: 33031609 DOI: 10.1111/odi.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Experiments were performed to evaluate CYLD expression in human gingival tissue samples and to examine the effects of CYLD on inflammatory responses in lipopolysaccharide (LPS)- or TNF-α-stimulated human gingival fibroblasts (HGFs). METHODS Immunohistochemistry for CYLD and p65 expression was performed with healthy and inflamed gingival tissue samples. siRNA was used to knock down the expression of CYLD in HGFs. Upon LPS or TNF-α stimulation, NF-κB activation was detected in control and CYLD-knockdown HGFs. RT-PCR was applied to determine gene expression. Western blot analyses were employed to assess protein expression. Immunofluorescence staining was carried out to evaluate the nuclear translocation of p65. RESULTS Immunohistochemical staining showed the expression of CYLD in human gingival tissues. In addition, CYLD protein expression was reduced in inflamed gingival tissue samples compared with healthy tissue samples. CYLD knockdown greatly enhanced the mRNA expression of proinflammatory cytokines in LPS- or TNF-α-stimulated HGFs. Furthermore, knocking down CYLD expression increased LPS-stimulated NF-κB activation in HGFs. Unexpectedly, CYLD knockdown did not affect TNF-α-induced NF-κB activation. CONCLUSIONS Our results suggest that CYLD participates in periodontal inflammatory responses by negatively regulating LPS-induced NF-κB signalling.
Collapse
Affiliation(s)
- Yong-Wei Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Department of Stomatology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Fang Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - You-Min Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Talele TT. Opportunities for Tapping into Three-Dimensional Chemical Space through a Quaternary Carbon. J Med Chem 2020; 63:13291-13315. [PMID: 32805118 DOI: 10.1021/acs.jmedchem.0c00829] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A quaternary carbon bears four other carbon substituents or combination of four non-hydrogen substituents at four vertices of a tetrahedron. The spirocyclic quaternary carbon positioned at the center of a bioactive molecule offers conformational rigidity, which in turn reduces the penalty for conformational entropy. The quaternary carbon is a predominant feature of natural product structures and has been associated with more effective and selective binding to target proteins compared to planar compounds with a high sp2 count. The presence of a quaternary carbon stereocenter allows the exploration of novel chemical space to obtain new molecules with enhanced three-dimensionality. These characteristics, coupled to an increasing awareness to develop sp3-rich molecules, boosted utility of quaternary carbon stereocenters in bioactive compounds. It is hoped that this Perspective will inspire the chemist to utilize quaternary carbon stereocenters to enhance potency, selectivity, and other drug-like properties.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
45
|
Ul-Haq Z, Khan A, Ashraf S, Morales-Bayuelo A. Quantum mechanics and 3D-QSAR studies on thienopyridine analogues: inhibitors of IKKβ. Heliyon 2020; 6:e04125. [PMID: 32566780 PMCID: PMC7298411 DOI: 10.1016/j.heliyon.2020.e04125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 01/23/2023] Open
Abstract
Inhibitor of kappa B kinase subunit β (IKKβ) is a main regulator of nuclear factor kappa B (NF-κB) and has received considerable attention as an attractive therapeutic target for the treatment of lung cancer or other inflammatory disease. A group of diversified thienopyridine derivatives exhibited a wide range of biological activity was used to investigate its structural requirements by using DFT and 3D-Quantitative structure activity relationship. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were established using the experimental activity of thienopyridine derivatives. The cross-validation coefficient (q2) values for CoMFA and CoMSIA are 0.671 and 0.647 respectively, were achieved, demonstrating high predictive capability of the model. The contour analysis indicate that presence of hydrophobic and electrostatic field is highly desirable for biological activity. The results indicate that substitution of hydrophobic group with electron withdrawing effect at R4 and R6 position have more possibility to increase the biological activity of thienopyridine derivatives. Subsequently molecular docking and DFT calculation were performed to assess the potency of the compounds.
Collapse
Affiliation(s)
- Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Alamgir Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Alejandro Morales-Bayuelo
- Grupo de Investigaciones Básicas y Clínicas de la Universidad del Sinú (GIBACUS), Escuela de Medicina, Universidad del Sinú, Seccional Cartagena de Indias, Colombia
| |
Collapse
|
46
|
Sikyungbanha-Tang Suppressing Acute Lung Injury in Mice Is Related to the Activation of Nrf2 and TNFAIP3. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8125758. [PMID: 32256655 PMCID: PMC7102461 DOI: 10.1155/2020/8125758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Abstract
Sikyungbanha-Tang (SKBHT) is a Chinese traditional medicine popularly prescribed to patients with respiratory inflammatory symptoms in Korea. Although the Korea Food and Drug Administration approved SKBHT as a therapeutics for relieving the symptoms, experimental evidence for SKBHT suppressing inflammation is scarce. Here, we presented evidence that SKBHT can suppress inflammation in an acute lung injury (ALI) mouse model and explored the possible underlying mechanisms of SKBHT's anti-inflammatory activity. Single intratracheal (i.t.) injection of SKBHT (1 mg/kg or 10 mg/kg body weight) into mouse lungs decreased prototypic features of lung inflammation found in ALI, such as a high level of proinflammatory cytokines, neutrophil infiltration, and the formation of hyaline membrane, which were induced by a single i.t. LPS (2 mg/kg body weight). When added to a murine macrophage RAW 264.7 cells, SKBHT activated an anti-inflammatory factor Nrf2, increasing the expression of genes regulated by Nrf2. SKBHT suppressed the ubiquitination of Nrf2, suggesting that SKBHT increases the level of and thus activates Nrf2 by blunting the ubiquitin-dependent degradation of Nrf2. SKBHT induced the expression of tumor necrosis factor α-induced protein 3 (TNFAIP3), an ubiquitin-modulating protein that suppresses various cellular signals to NF-κB. Concordantly, SKBHT suppressed NF-κB activity and the expression of inflammatory cytokine genes regulated by NF-κB. Given that Nrf2 and TNFAIP3 are involved in regulating inflammation, our results suggest that SKBHT suppresses inflammation in the lung, the effect of which is related to SKBHT activating Nrf2 and TNFAIP3.
Collapse
|
47
|
Yang D, Li S, Duan X, Ren J, Liang S, Yakoumatos L, Kang Y, Uriarte SM, Shang J, Li W, Wang H. TLR4 induced Wnt3a-Dvl3 restrains the intensity of inflammation and protects against endotoxin-driven organ failure through GSK3β/β-catenin signaling. Mol Immunol 2020; 118:153-164. [PMID: 31884387 PMCID: PMC7035959 DOI: 10.1016/j.molimm.2019.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Accumulating evidence suggests a regulatory role of Wnt proteins in innate immune responses. However, the effects of Wnt3a signaling on TLR4-mediated inflammatory responses are controversial and the signaling crosstalk between TLR4 and Wnt3a remains uncertain. METHODS Gain- and Loss- of function approaches were utilized to determine the function of Wnt3a signaling in TLR4-mediated inflammatory responses. Cytokine production at protein and mRNA levels and phosphorylation of signaling molecules were measured by ELISA, qRT-PCR, and Western Blot, respectively. Endotoxemia mouse model was employed to assess the effect of Wnt3a on systemic inflammatory cytokine levels and neutrophil infiltration. RESULTS LPS stimulation leads to an increase of Wnt3a expression and its downstream molecule, Dvl3, in primary monocytes. Inhibition or silence of Wnt3a or Dvl3 significantly increases the production of pro-inflammatory cytokines (IL-12, IL-6, TNFα), robustly reduces β-catenin accumulation, and enhances the phosphorylation of NF-κB P65 and its DNA binding activity. These results were confirmed by multiple gain- and loss- of function approaches including specific siRNA and ectopic expression of Dvl3, GSK3β, and β-catenin in monocytes. Moreover, in vivo relevance was established in a murine endotoxin model, in which Wnt3a inhibition enhances the inflammatory responses by augmenting the systemic pro-inflammatory cytokine levels and neutrophil infiltration. CONCLUSIONS TLR4 activation promotes Wnt3a-Dvl3 signaling, which acts as rheostats to restrain the intensity of inflammation through regulating GSK3β-β-catenin signaling and NF-κB activity. GENERAL SIGNIFICANCE Wnt3a-Dvl3-β-catenin signaling axis could be a potential interventional target for manipulating the direction and intensity of inflammatory responses.
Collapse
Affiliation(s)
- Dongqiang Yang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - ShuJian Li
- Department of Neurology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Junling Ren
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA, USA
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Wei Li
- Department of Neurology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA, USA.
| |
Collapse
|
48
|
Wen J, Shen J, Zhou Y, Zhao X, Dai Z, Jin Y. Pyrroloquinoline quinone attenuates isoproterenol hydrochloride‑induced cardiac hypertrophy in AC16 cells by inhibiting the NF‑κB signaling pathway. Int J Mol Med 2020; 45:873-885. [PMID: 31922230 PMCID: PMC7015139 DOI: 10.3892/ijmm.2020.4463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is a naturally occurring redox co-factor that functions as an essential nutrient and antioxidant, and has been reported to exert potent anti-inflammatory effects. However, the therapeutic potential of PQQ for isoproterenol hydrochloride (Iso)-induced cardiac hypertrophy has not yet been explored, at least to the best of our knowledge. In the present study, the anti-inflammatory effects of PQQ were investigated in Iso-treated AC16 cells, a myocardial injury cellular model characterized by an increase in the apparent surface area of the cells and the activation of intracellular cardiac hypertrophy-associated proteins. The results revealed that pre-treatment with PQQ significantly inhibited the expression of cardiac hypertrophy marker proteins, such as atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain. PQQ also inhibited the activation of the nuclear factor (NF)-κB signaling pathway in Iso-treated AC16 cells, thus inhibiting the nuclear translocation of NF-κB and reducing the phosphorylation levels of p65. On the whole, the findings of this study suggest that PQQ may be a promising therapeutic agent for effectively reversing the progression of cardiac hypertrophy.
Collapse
Affiliation(s)
- Junru Wen
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Junwei Shen
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University Affiliated EAST Hospital, Shanghai 200120, P.R. China
| | - Yajie Zhou
- Graduate School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xianhui Zhao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhensheng Dai
- Department of Oncology, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai 200090, P.R. China
| | - Yueling Jin
- Department of Science and Technology, Shanghai University of Medicine and Health Sciences, Shanghai 200237, P.R. China
| |
Collapse
|
49
|
Jia Z, Huang Y, Ji X, Sun J, Fu G. Ticagrelor and clopidogrel suppress NF-κB signaling pathway to alleviate LPS-induced dysfunction in vein endothelial cells. BMC Cardiovasc Disord 2019; 19:318. [PMID: 31888640 PMCID: PMC6936058 DOI: 10.1186/s12872-019-01287-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/29/2019] [Indexed: 01/31/2023] Open
Abstract
Background Ticagrelor and clopidogrel, P2Y12 receptor antagonists, can prevent thrombotic events and are used to treat cardiovascular diseases such as acute coronary syndrome and chronic obstructive pulmonary disease, in which inflammation is involved. Moreover, NF-B is the central regulator of inflammation. Thus, we suspected that ticagrelor and clopidogrel are involved in the regulation of the NF-ΚB signaling pathway. Methods After human umbilical vein endothelial cells (HUVECs) were cultured with ticagrelor or clopidogrel and given lipopolysaccharide (LPS) and CD14, the mRNA levels of related inflammatory factors, the protein level and subcellular localization of molecules in the NF-ΚB signaling pathway, cell viability, apoptosis and the cell cycle, cell migration, and vascular formation were detected using quantitative polymerase chain reaction (qPCR), western blotting and immunofluorescence assay, CCK-8, flow cytometry, transwell assay, and matrigel, respectively. All data was expressed as the mean ± S.D. The statistical significance of data was assessed by an unpaired two-tailed t-test. Results Ticagrelor and clopidogrel can inhibit the degradation of IKBα and phosphorylation of p65, prevent p65 from entering the nucleus, reduce the production of TNFα, IL-1, IL-8, IL-6 and IL-2, and alleviate the decrease in cell viability, cell migration and angiogenesis, the changes of cell cycle and apoptosis induced by LPS. Conclusions Ticagrelor and clopidogrel alleviate cellular dysfunction through suppressing NF-ΚB signaling pathway.
Collapse
Affiliation(s)
- Zhuyin Jia
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yiwei Huang
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Xiaojun Ji
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jiaju Sun
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
50
|
Tian C, Li Z, Zhang L, Dai D, Huang Q, Liu J, Hong B. lncRNA NR_120420 promotes SH-SY5Y cells apoptosis by regulating NF-κB after oxygen and glucose deprivation. Gene 2019; 728:144285. [PMID: 31838253 DOI: 10.1016/j.gene.2019.144285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Stroke has serious implications on patients and a huge impact on society. The current treatment regimens with drug for acute cerebral infarction are unsatisfactory. Here, we explore whether the two long non-coding RNA (lncRNA) candidates from preliminary research regulate apoptosis after cerebral infarction, and evaluate the underlying mechanism of action. Bioinformatics analysis of the lncRNA microarray in the preliminary research of our group was performed. Changes in the expression of candidate lncRNAs in SH-SY5Y cells were detected by quantitative polymerase chain reaction (qPCR) after treatment with seven different oxygen and glucose deprivation (OGD) methods. The changes were detected after transfection of cells with six small-interfering RNAs (siRNAs). Cell models were established by OGD after transfection with siRNAs. Cell viability was evaluated with the cell counting kit 8 (CCK8) assay, while TUNEL staining and flow cytometry analysis were performed to determine apoptosis. Changes in the expression and phosphorylation of three proteins were detected by western blotting after the knockdown of NR_120420. Changes in the expression and phosphorylation of P65 protein were detected by western blotting after this cell model was treated with PDTC. Cells were transfected with siNR_120420 and treated with and without PDTC, followed by analysis of cell viability and apoptosis. Bioinformatics analysis revealed that the differentially expressed lncRNAs after acute cerebral infarction were mainly involved in nuclear factor kappa B (NF-κB) and apoptosis. Expression of the two lncRNA candidates in SH-SY5Y cells was the maximum after incubation under the OGD condition for 8 h. The knockdown efficiency was more than 60% for four of the six siRNAs, and knockdown of NR_120420 increased the cell viability and decreased the percentage of TUNEL-positive cells and apoptotic cells. Knockdown of lnc-GCH1-2:3 resulted in none of these effects. Phosphorylation of NF-κB (P65) decreased significantly after the knockdown of NR_120420. Expression and phosphorylation of P65 was significantly reduced after it was treated with PDTC. The inhibitor of NF-κB (PDTC) could abolish the effect of NR_120420 on the regulation of apoptosis in this cell model. Both NR_120420 and lnc-GCH1-2:3 had significant changes in this cell model. Knockdown of NR_120420 inhibited the apoptosis of cells, while NR_120420 knockdown inhibited apoptosis after cerebral infarction by downregulating the phosphorylation of a subunit of NF-κB (P65). This study may provide new idea for improving drug treatment of acute cerebral infarction.
Collapse
Affiliation(s)
- Chunou Tian
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Neurosurgery, The First Naval Hospital of Southern Theater Command of PLA, 40 The Third Haibin Road, Zhanjiang 524005, Guangdong, China
| | - Zifu Li
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Lei Zhang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Dongwei Dai
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Bo Hong
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|