1
|
Hall BE, Mazhar K, Macdonald E, Cassidy M, Doty M, Judkins C, Terse A, Shiers S, Tadros S, Yun S, Burton MD, Price TJ, Kulkarni AB. Transcriptome analysis of rheumatoid arthritis uncovers genes linked to inflammation-induced pain. Sci Rep 2024; 14:25893. [PMID: 39472517 PMCID: PMC11522505 DOI: 10.1038/s41598-024-77212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. Overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Emma Macdonald
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- NIH Graduate Partnerships Program, Brown University, Providence, RI, 02912, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- U. Penn, Philadelphia, PA, 19104, USA
| | - Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- , Dartmouth, Hanover, NH, 03755, USA
| | - Christian Judkins
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- Millipore Sigma, Rockville, MD, 20850, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Saber Tadros
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc, Mountain View, CA, 94040, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
An Q, Gu X, Jiang Y. The Role of Interleukin-24 and Downstream Pathways in Inflammatory and Autoimmune Diseases. Cell Biochem Biophys 2024:10.1007/s12013-024-01576-3. [PMID: 39373906 DOI: 10.1007/s12013-024-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Inflammatory and autoimmune diseases are pathological immune disorders and pose significant public health challenges due to their impact on individuals and society. Cytokine dysregulation plays a critical role in the development of these disorders. Interleukin (IL)-24, a member of the IL-10 cytokine family, can be secreted by various cell types, including immune and non-immune cells. The downstream effects of IL-24 upon binding to its receptors can occur in dependence on, or independently of, the Janus kinase (JAK)/signal transducer and the activator of transcription (STAT) signaling pathway. IL-24 and its downstream pathways influence crucial processes such as cell differentiation, proliferation, apoptosis, and inflammation, with its role varying across different diseases. On the one hand, IL-24 can inhibit the activation of pathogenic cells and autoimmune responses in autoimmune ocular diseases; on the other hand, IL-24 has been also implicated in promoting tissue damage by fostering immune cell activation and infiltration in psoriasis and allergic diseases. It suggests that IL-24, as a multifunctional cytokine, has complex regulatory functions in immune cells and related diseases. In this paper, we summarize the current knowledge on IL-24's immunomodulatory actions and its involvement in inflammatory and autoimmune disorders. Such insights may pave the way for novel therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Qiyun An
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Ophthalmology, Changchun Children's Hospital, Changchun, Jilin, China
| | - Xiaoyu Gu
- Department of Ophthalmology, Changchun Children's Hospital, Changchun, Jilin, China
| | - Yuying Jiang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
3
|
Zhao J, Gui Y, Wu W, Li X, Wang L, Wang H, Luo Y, Zhou G, Yuan C. The function of long non-coding RNA IFNG-AS1 in autoimmune diseases. Hum Cell 2024; 37:1325-1335. [PMID: 39004663 DOI: 10.1007/s13577-024-01103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The prevalence of autoimmune diseases ranks as the third most common disease category globally, following cancer and heart disease. Numerous studies indicate that long non-coding RNA (lncRNA) plays a pivotal role in regulating human growth, development, and the pathogenesis of various diseases. It is more than 200 nucleotides in length and is mostly involve in the regulation of gene expression. Furthermore, lncRNAs are crucial in the development and activation of immune cells, with an expanding body of research exploring their association with autoimmune disorders in humans. LncRNA Ifng antisense RNA 1 (IFNG-AS1), a key regulatory factor in the immune system, also named NeST or TMEVPG1, is proximally located to IFNG and participates in the regulation of it. The dysregulation of IFNG-AS1 is implicated in the pathogenesis of several autoimmune diseases. This study examines the role and mechanism of IFNG-AS1 in various autoimmune diseases and considers its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiale Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Yibei Gui
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Xueqing Li
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Yiyang Luo
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China.
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
4
|
Shaji V, Dagamajalu S, Sanjeev D, George M, Kanekar S, Prasad G, Keshava Prasad TS, Raju R, Devasahayam Arokia Balaya R. Deciphering the Receptor-Mediated Signaling Pathways of Interleukin-19 and Interleukin-20. J Interferon Cytokine Res 2024; 44:388-398. [PMID: 38451706 DOI: 10.1089/jir.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Affiliation(s)
- Vineetha Shaji
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Diya Sanjeev
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Mejo George
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Saptami Kanekar
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Ganesh Prasad
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
5
|
Wang Y, Zhou W, Zhang F, Wei J, Wang S, Min K, Chen Y, Yang H, Lv X. Exploring the bidirectional causal associations between pain and circulating inflammatory proteins: A Mendelian randomization study. Clin Exp Pharmacol Physiol 2024; 51:e13905. [PMID: 38965671 DOI: 10.1111/1440-1681.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Multisite chronic pain (MCP) and site-specific chronic pain (SSCP) may be influenced by circulating inflammatory proteins, but the causal relationship remains unknown. To overcome this limitation, two-sample bidirectional Mendelian randomization (MR) analysis was used to analyse data for 91 circulating inflammatory proteins, MCP and SSCP encompassing headache, back pain, shoulder pain, hip pain, knee pain, stomach abdominal pain and facial pain. The primary MR method used was inverse variance weighting, sensitivity analyses included weighted median, MR pleiotropy residual sum and outlier and the Egger intercept method. Heterogeneity was also detected using Cochrane's Q test and leave-one-out analyses. Finally, a causal relationship between 29 circulating inflammatory proteins and chronic pain was identified. Among these proteins, 14 exhibited a protective effect, including MCP (T-cell surface glycoprotein cluster of differentiation 5), headache (4E-binding protein 1 [4EBP1], cluster of differentiation 40, cluster of differentiation 6 and C-X-C motif chemokine [CXCL] 11), back pain (leukaemia inhibitory factor), shoulder pain (fibroblast growth factor [FGF]-5 and interleukin [IL]-18R1), stomach abdominal pain (tumour necrosis factor [TNF]-α), hip pain (CXCL1, IL-20 and signalling lymphocytic activation molecule 1) and knee pain (IL-7 and TNF-β). Additionally, 15 proteins were identified as risk factors for MCP and SSCP: MCP (colony-stimulating factor 1, human glial cell line-derived neurotrophic factor and IL-17C), headache (fms-related tyrosine kinase 3 ligand, IL-20 receptor subunit α [IL-20RA], neurotrophin-3 and tumour necrosis factor receptor superfamily member 9), facial pain (CXCL1), back pain (TNF), shoulder pain (IL-17C and matrix metalloproteinase-10), stomach abdominal pain (IL-20RA), hip pain (C-C motif chemokine 11/eotaxin-1 and tumour necrosis factor ligand superfamily member 12) and knee pain (4EBP1). Importantly, in the opposite direction, MCP and SSCP did not exhibit a significant causal impact on circulating inflammatory proteins. Our study identified potential causal influences of various circulating inflammatory proteins on MCP and SSCP and provided promising treatments for the clinical management of MCP and SSCP.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Faqiang Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keting Min
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Soul J, Carlsson E, Hofmann SR, Russ S, Hawkes J, Schulze F, Sergon M, Pablik J, Abraham S, Hedrich CM. Tissue gene expression profiles and communication networks inform candidate blood biomarker identification in psoriasis and atopic dermatitis. Clin Immunol 2024; 265:110283. [PMID: 38880200 DOI: 10.1016/j.clim.2024.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Overlapping clinical and pathomechanistic features can complicate the diagnosis and treatment of inflammatory skin diseases, including psoriasis and atopic dermatitis (AD). Spatial transcriptomics allows the identification of disease- and cell-specific molecular signatures that may advance biomarker development and future treatments. This study identified transcriptional signatures in keratinocytes and sub-basal CD4+ and CD8+ T lymphocytes from patients with psoriasis and AD. In silico prediction of ligand:receptor interactions delivered key signalling pathways (interferon, effector T cells, stroma cell and matrix biology, neuronal development, etc.). Targeted validation of selected transcripts, including CCL22, RELB, and JUND, in peripheral blood T cells suggests the chosen approach as a promising tool also in other inflammatory diseases. Psoriasis and AD are characterized by transcriptional dysregulation in T cells and keratinocytes that may be targeted therapeutically. Spatial transcriptomics is a valuable tool in the search for molecular signatures that can be used as biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- J Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - E Carlsson
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - S R Hofmann
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - S Russ
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - J Hawkes
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - F Schulze
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - M Sergon
- Institut of Pathology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - J Pablik
- Institut of Pathology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - S Abraham
- Department of Dermatology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - C M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.
| |
Collapse
|
7
|
Toskas A, Milias S, Delis G, Meditskou S, Sioga A, Karachrysafi S, Papamitsou T. Immunohistochemical Analysis of IL-19 and IL-24 Expression in Inflammatory Bowel Disease (IBD) Patients: Results From a Single Center Retrospective Study. Cureus 2024; 16:e64441. [PMID: 39007024 PMCID: PMC11245665 DOI: 10.7759/cureus.64441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/16/2024] Open
Abstract
Background IL-19 and IL-24 induce proinflammatory cytokine production through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The primary objective of this study was to investigate any changes in IL-19 and IL-24 expression between inflammatory bowel disease (IBD) patients and healthy controls, as well as before and after the initiation of biologics. The secondary objective was to investigate any relation between their expression and disease phenotype and activity. Methods IL-19 and IL-24 expression was measured in intestinal tissue samples from 121 patients with moderate to severe IBD versus healthy controls using immunohistochemistry. Their expression was then measured 12 months after treatment on the patient group treated with biologics. The disease activity was measured before and after treatment using the Harvey Bradshaw Index (HBI) for Crohn's disease (CD) patients and the Mayo Score (MS) for ulcerative colitis (UC) patients. Data were analyzed using SPSS (IBM Inc., Armonk, New York). Results IL-19 expression was raised in the IBD group versus healthy controls. In the CD group, the IL-19 expression was related with the disease activity score post-biologic treatment. IL-24 was also highly expressed in patients with active UC and CD and was increased post-treatment. Its expression in UC was statistically related with the MS. Conclusions IL-24 and IL-19 are key factors in IBD-related intestinal inflammation and this is one of the few human studies to suggest that. An immunosuppressive role of IL-24 was demonstrated in the UC group. A future use as biomarkers of disease activity and response to treatment might be feasible.
Collapse
Affiliation(s)
| | - Stephanos Milias
- Histopathology, Private Histopathology Laboratory, Thessaloniki, GRC
| | - Georgios Delis
- Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Soultana Meditskou
- Histology and Embryology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Antonia Sioga
- Histology and Embryology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Sofia Karachrysafi
- Histology and Embryology, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Medicine, "George Papanikolaou" General Hospital of Thessaloniki, Thessaloniki, GRC
| | - Theodora Papamitsou
- Histology and Embryology, Aristotele University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
8
|
Zhu J, Jiang Q, Gao S, Xia Q, Zhang H, Liu B, Zhao R, Jiang H, Li X, Xu A, Zhou H, Xu Z, Yang C. IL20Rb aggravates pulmonary fibrosis through enhancing bone marrow derived profibrotic macrophage activation. Pharmacol Res 2024; 203:107178. [PMID: 38583686 DOI: 10.1016/j.phrs.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most fatal chronic interstitial lung diseases with unknown pathogenesis, current treatments cannot truly reverse the progression of the disease. Pulmonary macrophages, especially bone marrow derived pro-fibrotic macrophages, secrete multiple kinds of profibrotic mediators (SPP1, CD206, CD163, IL-10, CCL18…), thus further promote myofibroblast activation and fibrosis procession. IL20Rb is a cell-surface receptor that belongs to IL-20 family. The role of IL20Rb in macrophage activation and pulmonary fibrosis remains unclear. In this study, we established a bleomycin-induced pulmonary fibrosis model, used IL4/13-inducing THP1 cells to induce profibrotic macrophage (M2-like phenotype) polarization models. We found that IL20Rb is upregulated in the progression of pulmonary fibrosis, and its absence can alleviate the progression of pulmonary fibrosis. In addition, we demonstrated that IL20Rb promote the activation of bone marrow derived profibrotic macrophages by regulating the Jak2/Stat3 and Pi3k/Akt signaling pathways. In terms of therapeutic strategy, we used IL20Rb neutralizing antibodies for animal administration, which was found to alleviate the progression of IPF. Our results suggest that IL20Rb plays a profibrotic role by promoting profibrotic macrophage polarization, and IL20Rb may become a potential therapeutic target for IPF. Neutralizing antibodies against IL20Rb may become a potential drug for the clinical treatment of IPF.
Collapse
Affiliation(s)
- Jingyan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Qin Xia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Huizhe Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Bowen Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Ruixi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Haixia Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China
| | - Aiguo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China.
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, China.
| |
Collapse
|
9
|
Chen Z, Guo Y, Sun H, Zhang W, Hou S, Guo Y, Ma X, Meng H. Exploration of the causal associations between circulating inflammatory proteins, immune cells, and neuromyelitis optica spectrum disorder: a bidirectional Mendelian randomization study and mediation analysis. Front Aging Neurosci 2024; 16:1394738. [PMID: 38737586 PMCID: PMC11088236 DOI: 10.3389/fnagi.2024.1394738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Background An increasing body of research has demonstrated a robust correlation between circulating inflammatory proteins and neuromyelitis optica spectrum disorders (NMOSD). However, whether this association is causal or whether immune cells act as mediators currently remains unclear. Methods We employed bidirectional two-sample Mendelian randomization (TSMR) analysis to examine the potential causal association between circulating inflammatory proteins, immune cells, and NMOSD using data from genome-wide association studies (GWAS). Five different methods for Mendelian randomization analyses were applied, with the inverse variance-weighted (IVW) method being the primary approach. Sensitivity analyses were further performed to assess the presence of horizontal pleiotropy and heterogeneity in the results. Finally, a two-step Mendelian randomization (MR) design was employed to examine the potential mediating effects of immune cells. Results A notable causal relationship was observed between three circulating inflammatory proteins (CSF-1, IL-24, and TNFRSF9) and genetically predicted NMOSD. Furthermore, two immune cell phenotypes, genetically predicted CD8 on naive CD8+ T cells, and Hematopoietic Stem Cell Absolute Count were negatively and positively associated with genetically predicted NMOSD, respectively, although they did not appear to function as mediators. Conclusion Circulating inflammatory proteins and immune cells are causally associated with NMOSD. Immune cells do not appear to mediate the pathway linking circulating inflammatory proteins to NMOSD.
Collapse
Affiliation(s)
- Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yujin Guo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Guo
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaohui Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Hall BE, Mazhar K, Macdonald E, Cassidy M, Doty M, Judkins C, Terse A, Shiers S, Tadros S, Yun S, Burton MD, Price TJ, Kulkarni A. Transcriptome Analysis of Rheumatoid Arthritis Uncovers Genes Linked to Inflammation-Induced Pain. RESEARCH SQUARE 2024:rs.3.rs-4218885. [PMID: 38712195 PMCID: PMC11071542 DOI: 10.21203/rs.3.rs-4218885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic Inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing Inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.
Collapse
Affiliation(s)
- Bradford E Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | | | - Emma Macdonald
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Margaret Cassidy
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Megan Doty
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Christian Judkins
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | | | - Saber Tadros
- National Cancer Institute, National Institutes of Health
| | | | | | | | - Ashok Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| |
Collapse
|
11
|
Li J, Zhang J, Guo C, Lin P, Shen Q, Lin H, Zhang Y. Bibliometric analysis and description of research trends on T cells in psoriasis over the past two decades (2003-2022). Heliyon 2024; 10:e23542. [PMID: 38169994 PMCID: PMC10758876 DOI: 10.1016/j.heliyon.2023.e23542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Background It is now understood that T cells play a key role in the occurrence and development of psoriasis. Herein, a bibliometric analysis was conducted to summarize the content and trends of T cell-related research in psoriasis. Methods A bibliometric analysis was conducted on publications pertaining to T cells in psoriasis between 2003 and 2022 retrieved from the Web of Science Core Collection (WoSCC) database using tools such as CiteSpace, the Bibliometrix R package, and VOSviewer. Results The study included a total of 3595 articles authored by 14,188 individuals, including all coauthors in article bylines. The Laboratory for Investigative Dermatology at Rockefeller University, led by James G Krueger, has made significant contributions to this field through focusing on the pathogenesis of psoriasis and exploring the potential of using biological agents to treat psoriasis. Furthermore, targeted inhibitors have significantly impacted the treatment of psoriasis, with researchers focusing on small-molecule targeted drugs as a new area of research that could potentially replace biological agents. Conclusions Research has established the efficacy and long-term safety of targeted inhibition of T cell-related targets. Deucravacitinib, a psoriasis treatment drug targeting TYK2 as an allosteric inhibitor, has attracted significant attention and raised high expectations.
Collapse
Affiliation(s)
- Junchen Li
- Graduate school, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianfeng Zhang
- Graduate school, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenqi Guo
- Graduate school, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Lin
- Graduate school, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyue Lin
- Dermatology department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yu Zhang
- Dermatology department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
12
|
Dai Z, Chen Y, He E, Wang H, Guo W, Wu Z, Huang K, Zhao Q. Interleukin-19 promotes bone resorption by suppressing osteoprotegerin expression in BMSCs in a lipopolysaccharide-induced bone loss mouse model. Bone Joint Res 2023; 12:691-701. [PMID: 37918438 PMCID: PMC10622185 DOI: 10.1302/2046-3758.1211.bjr-2023-0101.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Aims Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action. Results In the LPS-induced bone loss mouse model, the levels of IL-19 in peripheral blood serum and femoral bone marrow suspension were significantly increased. The in vivo results indicated that global IL-19 deletion had no significant effect on RANKL content in the serum and bone marrow, but could increase the content of OPG in serum and femoral bone marrow, suggesting that IL-19 inhibits OPG expression in bone marrow mesenchymal stem cells (BMSCs) and thus increases bone resorption. Conclusion IL-19 promotes bone resorption by suppressing OPG expression in BMSCs in a LPS-induced bone loss mouse model, which highlights the potential benefits and side effects of IL-19 for future clinical applications.
Collapse
Affiliation(s)
- Zhicheng Dai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenkai Wu
- Department of Pediatric Orthopaedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital of Jing’an District, Shanghai, China
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Abosalif KOA, Abdalla AE, Junaid K, Eltayeb LB, Ejaz H. The interleukin-10 family: Major regulators of the immune response against Plasmodium falciparum infections. Saudi J Biol Sci 2023; 30:103805. [PMID: 37727525 PMCID: PMC10506046 DOI: 10.1016/j.sjbs.2023.103805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Malaria caused by the Plasmodium falciparum strain is more severe because of this protozoan's ability to disrupt the physiology of host cells during the blood stages of development by initiating the production of the interleukin-10 (IL-10) family of cytokines. P. falciparum feeds on hemoglobin and causes host cells to adhere to the walls of blood vessels by remodeling their composition. IL-10 is produced by CD4+ T cells that inhibits antigen-presenting cells' activity to prevent inflammation. This cytokine and its family members are crucial in promoting malarial infection by inhibiting the host's protective immune response, thus initiating Plasmodium parasitemia. IL-10 is also responsible for preventing severe pathology during Plasmodium infection and initiates several signaling pathways to alter the physiology of host cells during malarial infection. This review summarizes the critical aspects of P. falciparum infection, including its role in signaling pathways for cytokine exudation, its effect on microRNA, the human immune response in malaria, and the role played by the liver hormone hepcidin. Moreover, future aspects of vaccine development and therapeutic strategies to combat P. falciparum infections are also discussed in detail.
Collapse
Affiliation(s)
- Khalid Omer Abdalla Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, 11942 Riyadh, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
14
|
Ino Y, Maruyama M, Shimizu M, Morita R, Sakamoto A, Suzuki H, Sakai A. TSLP in DRG neurons causes the development of neuropathic pain through T cells. J Neuroinflammation 2023; 20:200. [PMID: 37660072 PMCID: PMC10474733 DOI: 10.1186/s12974-023-02882-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Peripheral nerve injury to dorsal root ganglion (DRG) neurons develops intractable neuropathic pain via induction of neuroinflammation. However, neuropathic pain is rare in the early life of rodents. Here, we aimed to identify a novel therapeutic target for neuropathic pain in adults by comprehensively analyzing the difference of gene expression changes between infant and adult rats after nerve injury. METHODS A neuropathic pain model was produced in neonatal and young adult rats by spared nerve injury. Nerve injury-induced gene expression changes in the dorsal root ganglion (DRG) were examined using RNA sequencing. Thymic stromal lymphopoietin (TSLP) and its siRNA were intrathecally injected. T cells were examined using immunofluorescence and were reduced by systemic administration of FTY720. RESULTS Differences in changes in the transcriptome in injured DRG between infant and adult rats were most associated with immunological functions. Notably, TSLP was markedly upregulated in DRG neurons in adult rats, but not in infant rats. TSLP caused mechanical allodynia in adult rats, whereas TSLP knockdown suppressed the development of neuropathic pain. TSLP promoted the infiltration of T cells into the injured DRG and organized the expressions of multiple factors that regulate T cells. Accordingly, TSLP caused mechanical allodynia through T cells in the DRG. CONCLUSION This study demonstrated that TSLP is causally involved in the development of neuropathic pain through T cell recruitment.
Collapse
Affiliation(s)
- Yuka Ino
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Motoyo Maruyama
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| |
Collapse
|
15
|
Murgo E, De Santis E, Sansico F, Melocchi V, Colangelo T, Padovano C, Colucci M, Carbone A, Totti B, Basti A, Gottschlich L, Relogio A, Capitanio N, Bianchi F, Mazzoccoli G, Giambra V. The circadian clock circuitry modulates leukemia initiating cell activity in T-cell acute lymphoblastic leukemia. J Exp Clin Cancer Res 2023; 42:218. [PMID: 37620852 PMCID: PMC10464343 DOI: 10.1186/s13046-023-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, characterized by restricted cellular subsets with asymmetrically enriched leukemia initiating cell (LIC) activity. Nonetheless, it is still unclear which signaling programs promote LIC maintenance and progression. METHODS Here, we evaluated the role of the biological clock in the regulation of the molecular mechanisms and signaling pathways impacting the cellular dynamics in T-ALL through an integrated experimental approach including gene expression profiling of shRNA-modified T-ALL cell lines and Chromatin Immunoprecipitation Sequencing (ChIP-Seq) of leukemic cells. Patient-derived xenograft (PDXs) cell subsets were also genetically manipulated in order to assess the LIC activity modulated by the loss of biological clock in human T-ALL. RESULTS We report that the disruption of the circadian clock circuitry obtained through shRNA-mediated knockdown of CLOCK and BMAL1 genes negatively impacted the growth in vitro as well as the activity in vivo of LIC derived from PDXs after transplantation into immunodeficient recipient mice. Additionally, gene expression data integrated with ChIP-Seq profiles of leukemic cells revealed that the circadian clock directly promotes the expression of genes, such as IL20RB, crucially involved in JAK/STAT signaling, making the T-ALL cells more responsive to Interleukin 20 (IL20). CONCLUSION Taken together, our data support the concept that the biological clock drives the expression of IL20R prompting JAK/STAT signaling and promoting LIC activity in T-ALL and suggest that the selective targeting of circadian components could be therapeutically relevant for the treatment of T-ALL patients.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Elisabetta De Santis
- Hematopathology Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Francesca Sansico
- Hematopathology Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Valentina Melocchi
- Cancer Biomarkers Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Tommaso Colangelo
- Cancer Biomarkers Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Costanzo Padovano
- Hematopathology Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Mattia Colucci
- Hematopathology Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Beatrice Totti
- Hematopathology Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Alireza Basti
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
- Present Address: Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | - Lisa Gottschlich
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relogio
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
- Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy.
| | - Vincenzo Giambra
- Hematopathology Unit, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, FG, 71013, Italy.
| |
Collapse
|
16
|
Wang J, Wong CH, Zhu Y, Yao X, Ng KKC, Zhou C, To KF, Chen Y. Identification of GRIN2D as a novel therapeutic target in pancreatic ductal adenocarcinoma. Biomark Res 2023; 11:74. [PMID: 37553583 PMCID: PMC10410818 DOI: 10.1186/s40364-023-00514-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal prognosis, and despite significant advances in our understanding of its genetic drivers, like KRAS, TP53, CDKN2A, and SMAD4, effective therapies remain limited. Here, we identified a new therapeutic target GRIN2D and then explored its functions and mechanisms in PDAC progression. METHODS We performed a genome-wide RNAi screen in a PDAC xenograft model and identified GRIN2D, which encodes the GluN2D subunit of N-methyl-D-aspartate receptors (NMDARs), as a potential oncogene. Western blot, immunohistochemistry, and analysis on Gene Expression Omnibus were used for detecting the expression of GRIN2D in PDAC. Cellular experiments were conducted for exploring the functions of GRIN2D in vitro while subcutaneous and orthotopic injections were used in in vivo study. To clarify the mechanism, we used RNA sequencing and cellular experiments to identify the related signaling pathway. Cellular assays, RT-qPCR, and western blot helped identify the impacts of the NMDAR antagonist memantine. RESULTS We demonstrated that GRIN2D was highly expressed in PDAC cells, and further promoted oncogenic functions. Mechanistically, transcriptome profiling identified GRIN2D-regulated genes in PDAC cells. We found that GRIN2D promoted PDAC progression by activating the p38 MAPK signaling pathway and transcription factor CREB, which in turn promoted the expression of HMGA2 and IL20RB. The upregulated GRIN2D could effectively promote tumor growth and liver metastasis in PDAC. We also investigated the therapeutic potential of NMDAR antagonism in PDAC and found that memantine reduced the expression of GRIN2D and inhibited PDAC progression. CONCLUSION Our results suggested that NMDA receptor GRIN2D plays important oncogenic roles in PDAC and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Jiatong Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Yinxin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Kelvin K C Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
17
|
Lu YS, Chiang PM, Huang YC, Yang SJ, Hung LY, Medeiros LJ, Chen YP, Chen TY, Chang MS, Chang KC. Overexpression of interleukin-20 correlates with favourable prognosis in diffuse large B-cell lymphoma. Pathology 2023; 55:94-103. [PMID: 36175183 DOI: 10.1016/j.pathol.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma worldwide, accounting for about 40% of cases. The role of cytokines in the pathogenesis of lymphomas has been rarely addressed, although cytokines have a close immunological relationship with lymphocytes. We observed overexpression of interleukin (IL)-20 in reactive germinal centres (GCs) leading us to hypothesise that IL-20 may play a role in lymphomagenesis. In this study, we surveyed for IL-20 expression in various types of lymphoma and found that IL-20 was expressed most frequently in follicular lymphoma (94%), but also in Burkitt lymphoma (81%), mantle cell lymphoma (57%), nodal marginal zone lymphoma (56%), Hodgkin lymphomas (50%), small lymphocytic lymphoma (50%) and diffuse large B-cell lymphoma (DLBCL, 48%). IL-20 was not expressed in extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma), lymphoplasmacytic lymphoma, and plasmacytoma. T-cell lymphomas were largely negative for IL-20 expression, except for anaplastic large cell lymphoma (ALCL, 61%), which frequently expressed IL-20, especially in cutaneous ALCL, and showed an inverse association with ALK expression (p=0.024). We further tested IL-20 expression in another large cohort of DLBCL and found IL-20 expression more frequently in germinal centre B-cell (GCB) than in non-GCB subtype [16/26 (62%) versus 24/64 (38%), p=0.038]. In this cohort, IL-20 was associated with a lower rate of extranodal involvement (p=0.009), bone marrow involvement (p=0.040), and better overall survival (p=0.020). Mechanistically, IL-20 overexpression promoted G1 cell cycle arrest and subsequent apoptosis of DLBCL cells and vice versa in vitro. We conclude that IL-20 may be involved in lymphomagenesis and may be useful as a prognostic marker in patients with DLBCL. In addition, IL-20 plays an inhibitory role in DLBCL growth, probably through cell cycle regulation.
Collapse
Affiliation(s)
- Yi-Sian Lu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Huang
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shiang-Jie Yang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ya-Ping Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Sil S, Bertilla J, Rupachandra S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech 2023; 13:18. [PMID: 36568500 PMCID: PMC9768089 DOI: 10.1007/s13205-022-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is the world's fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.
Collapse
Affiliation(s)
- Sagari Sil
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - Janet Bertilla
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - S. Rupachandra
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| |
Collapse
|
19
|
Dang H, Hassan Z, Jia Z, Wu Y, Xiao H, Huang W, Guo X, Zhao X, Li Y, Zou J, Wang J. Grass carp IL-20 binds to IL-20R2 but induces STAT3 phosphorylation via IL-20R1. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108445. [PMID: 36414129 DOI: 10.1016/j.fsi.2022.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
IL-20 is a pleiotropic cytokine that belongs to the IL-10 family and has a variety of biological functions in tissue homeostasis and regulation of host immune defenses. It signals through a heterodimeric receptor composed of a subunit with a long intracellular domain (R1 type receptor) and a subunit with a short intracellular domain (R2 type receptor). In this study, the R1 type receptor (CiIL-20R1/CRFB8) and the R2 type receptor (CiIL-20R2/CRFB16) were identified in grass carp Ctenopharyngodon idella. Expression analysis revealed that IL-20R2 was highly expressed in the gills and skin in healthy fish. Infection with Flavobacterium columnare resulted in the downregulation of both receptors in the gill at 48 and 72 h, whilst infection with grass carp reovirus induced their expression in the head kidney and spleen at 72 h. In the primary head kidney leucocytes, the expression levels of IL-20R1 and IL-20R2 were decreased after stimulation with 250 ng/mL IL-1β but not affected by IFN-γ. Co-immunoprecipitation analysis showed that CiIL-20R2/CRFB16 but not CiIL-20R1/CRFB8 bound to CiIL-20L. Furthermore, it was shown that CiIL-20R1/CRFB8 was responsible for activating the phosphorylation of STAT3, whilst CiIL-20R2/CRFB16 was not involved. Structural modeling analysis showed that key residues involved in the interaction between IL-20 and receptors were highly conserved between grass carp and humans, suggesting that the signal transduction and functions of IL-20/IL-20R axis are evolutionarily conserved.
Collapse
Affiliation(s)
- Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Zeinab Hassan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Department of Fish Diseases, Faculty of Veterinary Medicine, Aswan University, Sahari, Airport Way, 81528, Egypt
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaxin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xu Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China.
| |
Collapse
|
20
|
Multifunctional Interleukin-24 Resolves Neuroretina Autoimmunity via Diverse Mechanisms. Int J Mol Sci 2022; 23:ijms231911988. [PMID: 36233291 PMCID: PMC9570500 DOI: 10.3390/ijms231911988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022] Open
Abstract
IL-24 is a multifunctional cytokine that regulates both immune cells and epithelial cells. Although its elevation is associated with a number of autoimmune diseases, its tolerogenic properties against autoreactive T cells have recently been revealed in an animal model of central nervous system (CNS) autoimmunity by inhibiting the pathogenic Th17 response. To explore the potential of IL-24 as a therapeutic agent in CNS autoimmunity, we induced experimental autoimmune uveitis (EAU) in wildtype mice and intravitreally injected IL-24 into the inflamed eye after disease onset. We found that the progression of ocular inflammation was significantly inhibited in the IL-24-treated eye when compared to the control eye. More importantly, IL-24 treatment suppressed cytokine production from ocular-infiltrating, pathogenic Th1 and Th17 cells. In vitro experiments confirmed that IL-24 suppressed both Th1 and Th17 differentiation by regulating their master transcription factors T-bet and RORγt, respectively. In addition, we found that intravitreal injection of IL-24 suppressed the production of proinflammatory cytokines and chemokines from the retinas of the EAU-inflamed eyes. This observation appears to be applicable in humans, as IL-24 similarly inhibits human retinal pigment epithelium cells ARPE-19. In conclusion, we report here that IL-24, as a multifunctional cytokine, is capable of resolving ocular inflammation in EAU mice by targeting both uveitogenic T cells and RPE cells. This study sheds new light on IL-24 as a potential therapeutic candidate for autoimmune uveitis.
Collapse
|
21
|
Feng KN, Meng P, Zou XL, Zhang M, Li HK, Yang HL, Li HT, Zhang TT. IL-37 protects against airway remodeling by reversing bronchial epithelial-mesenchymal transition via IL-24 signaling pathway in chronic asthma. Respir Res 2022; 23:244. [PMID: 36100847 PMCID: PMC9472332 DOI: 10.1186/s12931-022-02167-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is one of the mechanisms of airway remodeling in chronic asthma. Interleukin (IL)-24 has been implicated in the promotion of tissue fibrosis, and increased IL-24 levels have been observed in the nasal secretions and sputum of asthmatic patients. However, the role of IL-24 in asthmatic airway remodeling, especially in EMT, remains largely unknown. We aimed to explore the effect and mechanism of IL-24 on EMT and to verify whether IL-37 could alleviate IL-24-induced EMT in chronic asthma. METHODS BEAS-2B cells were exposed to IL-24, and cell migration was assessed by wound healing and Transwell assays. The expression of EMT-related biomarkers (E-cadherin, vimentin, and α-SMA) was evaluated after the cells were stimulated with IL-24 with or without IL-37. A murine asthma model was established by intranasal administration of house dust mite (HDM) extracts for 5 weeks, and the effects of IL-24 and IL-37 on EMT and airway remodeling were investigated by intranasal administration of si-IL-24 and rhIL-37. RESULTS We observed that IL-24 significantly enhanced the migration of BEAS-2B cells in vitro. IL-24 promoted the expression of the EMT biomarkers vimentin and α-SMA via the STAT3 and ERK1/2 pathways. In addition, we found that IL-37 partially reversed IL-24-induced EMT in BEAS-2B cells by blocking the ERK1/2 and STAT3 pathways. Similarly, the in vivo results showed that IL-24 was overexpressed in the airway epithelium of an HDM-induced chronic asthma model, and IL-24 silencing or IL-37 treatment could reverse EMT biomarker expression. CONCLUSIONS Overall, these findings indicated that IL-37 mitigated HDM-induced airway remodeling by inhibiting IL-24-mediated EMT via the ERK1/2 and STAT3 pathways, thereby providing experimental evidence for IL-24 as a novel therapeutic target and IL-37 as a promising agent for treating severe asthma.
Collapse
Affiliation(s)
- Kang-ni Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Ping Meng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Xiao-ling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Min Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Hai-ke Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Hai-ling Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Hong-tao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Tian-tuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| |
Collapse
|
22
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
23
|
Cui Z, Zhu X, Zhao F, Li D, Deng Y, Tan A, Lai Y, Huang Z, Gong H. Molecular identification and functional exploration of interleukin-20 in snakehead (Channa argus) involved in bacterial invasion and the proliferation of head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 127:623-632. [PMID: 35810964 DOI: 10.1016/j.fsi.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
As an inflammatory cytokine of the interleukin-20 (IL-20) subfamily, IL-20 has various functions in immune defenses, inflammatory diseases, tissue regeneration, cancer, and metabolism. Although the characteristics and functions of mammalian IL-20 have been clarified, those of fish IL-20 remain unclear. In this study, the IL-20 gene from the snakehead Channa argus (shIL-20) was cloned and functionally characterized. Similar to the IL-20 homologues of other species, the shIL-20 has a five exon/four intron structure in the coding region. The open reading frame of shIL-20 consists of 528 base pairs and encodes 175 amino acids (aa), including a signal peptide (aa 1-24) and a mature peptide (aa 25-175). The mature shIL-20 protein has six conserved cysteine residues, which occur in the IL-20 proteins of all species analyzed, and an additional cysteine residue (Cys-82) found only in the IL-20 proteins of several teleosts. The modeled tertiary structure of shIL-20 is similar with that of Homo sapiens IL-20. The shIL-20 was expressed constitutively in all the tissues analyzed, and its transcription was induced in the spleen and head kidney by Aeromonas schubertii and Nocardia seriolae in vivo and in head kidney leukocytes (HKLs) by lipoteichoic acid, lipopolysaccharide, and polyinosinic-polycytidylic acid in vitro. The recombinant shIL-20 protein induced the transcription of tumor necrosis factor α1 (TNF-α1), TNF-α2, IL-1β, and endogenous shIL-20, and promoted the proliferation of HKLs. In conclusion, these findings demonstrate that shIL-20 participates in the immune response to bacterial invasion and promotes leukocyte proliferation, offering new insights into the functions of fish IL-20 during pathogen invasion.
Collapse
Affiliation(s)
- Zhengwei Cui
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueqing Zhu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Hua Gong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
24
|
Sie C, Kant R, Peter C, Muschaweckh A, Pfaller M, Nirschl L, Moreno HD, Chadimová T, Lepennetier G, Kuhlmann T, Öllinger R, Engleitner T, Rad R, Korn T. IL-24 intrinsically regulates Th17 cell pathogenicity in mice. J Exp Med 2022; 219:213347. [PMID: 35819408 PMCID: PMC9280194 DOI: 10.1084/jem.20212443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
In certain instances, Th17 responses are associated with severe immunopathology. T cell–intrinsic mechanisms that restrict pathogenic effector functions have been described for type 1 and 2 responses but are less well studied for Th17 cells. Here, we report a cell-intrinsic feedback mechanism that controls the pathogenicity of Th17 cells. Th17 cells produce IL-24, which prompts them to secrete IL-10. The IL-10–inducing function of IL-24 is independent of the cell surface receptor of IL-24 on Th17 cells. Rather, IL-24 is recruited to the inner mitochondrial membrane, where it interacts with the NADH dehydrogenase (ubiquinone) 1 α subcomplex subunit 13 (also known as Grim19), a constituent of complex I of the respiratory chain. Together, Grim19 and IL-24 promote the accumulation of STAT3 in the mitochondrial compartment. We propose that IL-24–guided mitochondrial STAT3 constitutes a rheostat to blunt extensive STAT3 deflections in the nucleus, which might then contribute to a robust IL-10 response in Th17 cells and a restriction of immunopathology in experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Christopher Sie
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Ravi Kant
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Christian Peter
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Monika Pfaller
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Lucy Nirschl
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Helena Domínguez Moreno
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Tereza Chadimová
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Gildas Lepennetier
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine, Munich, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany.,Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
25
|
Yang B, Fu C, Wu Y, Liu Y, Zhang Z, Chen X, Wu D, Gan Z, Chen Z, Cao Y. γ-secretase inhibitors suppress IL-20-mediated osteoclastogenesis via Notch signaling and are affected by Notch2 in vitro. Scand J Immunol 2022; 96:e13169. [PMID: 35384009 DOI: 10.1111/sji.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune disease involving the small joints, which often causes irreversible damage. In recent years, elevated interleukin 20 (IL-20) has been observed in synovial fluid, while IL-20 receptor overexpression has been observed in synovial cells. IL-20 is a pleiotropic cytokine that participates in various immune diseases. Further understanding of the relationship between IL-20 and RA can help to identify a potential clinical treatment for RA. This study demonstrated that IL-20 can regulate osteoclast differentiation and function in a dose-dependent manner, while influencing the expression of Notch signaling. Quantitative reverse transcription polymerase chain reaction and western blotting showed that γ-secretase-inhibiting drugs can reverse the effects of IL-20. The effects of Notch2 on IL-20-induced osteoclastogenesis were investigated by immunofluorescence and Notch2 gene silencing via transfection of small interfering RNA; the results showed that Notch2 obviously affected the expression levels of the key protein NFATc1 and downstream osteoclastic proteins. In conclusion, we found that IL-20 regulated the osteoclastogenesis in a dose-dependent manner via Notch signaling, primarily by means of Notch2 activity. This study may help to find new targets for RA treatment.
Collapse
Affiliation(s)
- Benyi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Chaoran Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yilin Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yuanbo Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhen Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xin Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Dongle Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ziqi Gan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhengyuan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
26
|
Wang Y, Jiang F, Chen F, Zhang D, Wang J. LncRNA XIST engages in psoriasis via sponging miR-338-5p to regulate keratinocyte proliferation and inflammation. Skin Pharmacol Physiol 2022; 35:196-205. [PMID: 35231918 DOI: 10.1159/000523781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Psoriasis is an immune-mediated polygenic inflammatory skin disease, keratinocyte proliferation is an important mechanism. The study investigated the role and regulatory relationship between lncRNA XIST and miR-338-5p in psoriatic patients and cell models. METHODS Serum samples were collected from 55 psoriasis patients. HaCaT was recruited for the cell experiments, and induced by M5 cytokines to mimic psoriasis in vitro. XIST and miR-338-5p levels were detected via qRT-PCR. Cell viability under different treatments was evaluated using CCK-8. ELISA was applied to measure the concentration of inflammatory cytokines. The regulatory relationship was confirmed using luciferase reporter gene assay. RESULTS Serum XIST was elevated in patients with psoriasis, and can distinguish the psoriasis patients from healthy controls according to the ROC curve. High level of XIST was positively correlated with with PASI score and serum TNF-α, IL-17A and IL-22 concentrations in psoriasis patients. XIST silencing suppressed M5-induced keratinocyte proliferation and restrained the discharge of inflammatory cytokines (TNF-α, IL-17A, IL-22) and chemokines (CXCL1, CXCL8, CCL20). XIST can sponge miR-338-5p, and miR-338-5p downregulation abolished the inhibitory effect of XIST silencing on cell proliferation and inflammation. miR-338-5p was at high expression in the clinical serum samples from psoriasis patients. The target relationship between miR-338-5p and IL-6 was proved. CONCLUSION LncRNA XIST is highly expressed in the serum of patients with psoriasis, and was positively correlated with disease severity and inflammation. XIST may regulate keratinocyte proliferation and inflammation via regulating miR-338-5p/IL-6 axis.
Collapse
Affiliation(s)
- Yitao Wang
- Department of Laboratory, Weihai Municipal Hospital, Weihai, China
| | - Feifei Jiang
- Department of Laboratory, Weihai Maternal and Child Health Care Hospital, Weihai, China
| | - Fang Chen
- Department of Medical Aesthetics, Linyi Central Hospital, Linyi, China
| | - Dapeng Zhang
- Department of Burn Plastic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Jian Wang
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|
27
|
Zhong Y, Zhang X, Chong W. Interleukin-24 Immunobiology and Its Roles in Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23020627. [PMID: 35054813 PMCID: PMC8776082 DOI: 10.3390/ijms23020627] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-24 belongs to the IL-10 family and signals through two receptor complexes, i.e., IL-20RA/IL-20RB and IL-20RB/IL22RA1. It is a multifunctional cytokine that can regulate immune response, tissue homeostasis, host defense, and oncogenesis. Elevation of IL-24 is associated with chronic inflammation and autoimmune diseases, such as psoriasis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). Its pathogenicity has been confirmed by inducing inflammation and immune cell infiltration for tissue damage. However, recent studies also revealed their suppressive functions in regulating immune cells, including T cells, B cells, natural killer (NK) cells, and macrophages. The tolerogenic properties of IL-24 were reported in various animal models of autoimmune diseases, suggesting the complex functions of IL-24 in regulating autoimmunity. In this review, we discuss the immunoregulatory functions of IL-24 and its roles in autoimmune diseases.
Collapse
|
28
|
Feng KN, Meng P, Zhang M, Zou XL, Li S, Huang CQ, Lai KF, Li HT, Zhang TT. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:505-527. [PMID: 36174993 PMCID: PMC9523421 DOI: 10.4168/aair.2022.14.5.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Purpose Neutrophilic asthma is associated with asthma exacerbation, steroid insensitivity, and severe asthma. Interleukin (IL)-24 is overexpressed in asthma and is involved in the pathogenesis of several allergic inflammatory diseases. However, the role and specific mechanism of IL-24 in neutrophilic asthma are unclear. We aimed to elucidate the roles of IL-24 and IL-37 in neutrophilic asthma, the relationships with IL-17A and the mechanisms regulating neutrophilic asthma progression. Methods Purified human neutrophils were isolated from healthy volunteers, and a cell coculture system was used to evaluate the function of IL-24 in epithelium-derived IL-17A-dependent neutrophil migration. IL-37 or a small interfering RNA (siRNA) targeting IL-24 was delivered intranasally to verify the effect in a murine model of house dust mite (HDM)/lipopolysaccharide (LPS)-induced neutrophilic asthma. Results IL-24 enhanced IL-17A production in bronchial epithelial cells via the STAT3 and ERK1/2 signaling pathways; this effect was reversed by exogenous IL-37. Anti-IL-17A monoclonal antibodies reduced neutrophil chemotaxis induced by IL-24-treated epithelial cells in vitro. Increased IL-24 and IL-17A expression in the airway epithelium was observed in HDM/LPS-induced neutrophilic asthma. IL-37 administration or IL-24 silencing attenuated neutrophilic asthma, reducing IL-17A levels and decreasing neutrophil airway infiltration, airway hyperresponsiveness, and goblet cell metaplasia. Silencing IL-24 inhibited T-helper 17 (Th17) immune responses, but not Th1 or Th2 immune responses, in the lungs of a neutrophilic asthma model. Conclusions IL-24 aggravated neutrophilic airway inflammation by increasing epithelium-derived IL-17A production, which could be suppressed by IL-37. Targeting the IL-24/IL-17A signaling axis is a potential strategy, and IL-37 is a potential candidate agent for alleviating neutrophilic airway inflammation in asthma.
Collapse
Affiliation(s)
- Kang-ni Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Ping Meng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Xiao-ling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Shuang Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Chu-qin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ke-fang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-tao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Tian-tuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Talker SC, Barut GT, Lischer HE, Rufener R, von Münchow L, Bruggmann R, Summerfield A. Monocyte biology conserved across species: Functional insights from cattle. Front Immunol 2022; 13:889175. [PMID: 35967310 PMCID: PMC9373011 DOI: 10.3389/fimmu.2022.889175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM.
Collapse
Affiliation(s)
- Stephanie C. Talker
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Stephanie C. Talker,
| | - G. Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heidi E.L. Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Prince C, Mitchell RE, Richardson TG. Integrative multiomics analysis highlights immune-cell regulatory mechanisms and shared genetic architecture for 14 immune-associated diseases and cancer outcomes. Am J Hum Genet 2021; 108:2259-2270. [PMID: 34741802 PMCID: PMC8715275 DOI: 10.1016/j.ajhg.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Developing functional insight into the causal molecular drivers of immunological disease is a critical challenge in genomic medicine. Here, we systematically apply Mendelian randomization (MR), genetic colocalization, immune-cell-type enrichment, and phenome-wide association methods to investigate the effects of genetically predicted gene expression on ten immune-associated diseases and four cancer outcomes. Using whole blood-derived estimates for regulatory variants from the eQTLGen consortium (n = 31,684), we constructed genetic risk scores for 10,104 genes. Applying the inverse-variance-weighted MR method transcriptome wide while accounting for linkage disequilibrium structure identified 664 unique genes with evidence of a genetically predicted effect on at least one disease outcome (p < 4.81 × 10-5). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci by using gene expression data derived from 18 types of immune cells. This highlighted many cell-type-dependent effects, such as PRKCQ expression and asthma risk (posterior probability = 0.998), which was T cell specific. Phenome-wide analyses on 311 complex traits and endpoints allowed us to explore shared genetic architecture and prioritize key drivers of disease risk, such as CASP10, which provided evidence of an effect on seven cancer-related outcomes. Our atlas of results can be used to characterize known and novel loci in immune-associated disease and cancer susceptibility, both in terms of elucidating cell-type-dependent effects as well as dissecting shared disease pathways and pervasive pleiotropy. As an exemplar, we have highlighted several key findings in this study, although similar evaluations can be conducted via our interactive web platform.
Collapse
Affiliation(s)
- Claire Prince
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Ruth E Mitchell
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom G Richardson
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Novo Nordisk Research Centre, Headington, Oxford OX3 7FZ, UK.
| |
Collapse
|
31
|
Dayton JR, Yuan Y, Pacumio LP, Dorflinger BG, Yoo SC, Olson MJ, Hernández-Suárez SI, McMahon MM, Cruz-Orengo L. Expression of IL-20 Receptor Subunit β Is Linked to EAE Neuropathology and CNS Neuroinflammation. Front Cell Neurosci 2021; 15:683687. [PMID: 34557075 PMCID: PMC8452993 DOI: 10.3389/fncel.2021.683687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Considerable clinical evidence supports that increased blood-brain barrier (BBB) permeability is linked to immune extravasation of CNS parenchyma during neuroinflammation. Although BBB permeability and immune extravasation are known to be provoked by vascular endothelial growth factor-A (i.e., VEGF-A) and C-X-C motif chemokine ligand 12 (CXCL12), respectively, the mechanisms that link both processes are still elusive. The interleukin-20 (i.e., IL-20) cytokine signaling pathway was previously implicated in VEGF-mediated angiogenesis and is known to induce cellular response by way of signaling through IL-20 receptor subunit β (i.e., IL-20RB). Dysregulated IL-20 signaling is implicated in many inflammatory pathologies, but it's contribution to neuroinflammation has yet to be reported. We hypothesize that the IL-20 cytokine, and the IL cytokine subfamily more broadly, play a key role in CNS neuroinflammation by signaling through IL-20RB, induce VEGF activity, and enhance both BBB-permeability and CXCL12-mediated immune extravasation. To address this hypothesis, we actively immunized IL-20RB-/- mice and wild-type mice to induce experimental autoimmune encephalomyelitis (EAE) and found that IL-20RB-/- mice showed amelioration of disease progression compared to wild-type mice. Similarly, we passively immunized IL-20RB-/- mice and wild-type mice with myelin-reactive Th1 cells from either IL-20RB-/- and wild-type genotype. Host IL-20RB-/- mice showed lesser disease progression than wild-type mice, regardless of the myelin-reactive Th1 cells genotype. Using multianalyte bead-based immunoassay and ELISA, we found distinctive changes in levels of pro-inflammatory cytokines between IL-20RB-/- mice and wild-type mice at peak of EAE. We also found detectable levels of all cytokines of the IL-20 subfamily within CNS tissues and specific alteration to IL-20 subfamily cytokines IL-19, IL-20, and IL-24, expression levels. Immunolabeling of CNS region-specific microvessels confirmed IL-20RB protein at the spinal cord microvasculature and upregulation during EAE. Microvessels isolated from macaques CNS tissues also expressed IL-20RB. Moreover, we identified the expression of all IL-20 receptor subunits: IL-22 receptor subunit α-1 (IL-22RA1), IL-20RB, and IL-20 receptor subunit α (IL-20RA) in human CNS microvessels. Notably, human cerebral microvasculature endothelial cells (HCMEC/D3) treated with IL-1β showed augmented expression of the IL-20 receptor. Lastly, IL-20-treated HCMEC/D3 showed alterations on CXCL12 apicobasal polarity consistent with a neuroinflammatory status. This evidence suggests that IL-20 subfamily cytokines may signal at the BBB via IL-20RB, triggering neuroinflammation.
Collapse
Affiliation(s)
- Jacquelyn R Dayton
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Yinyu Yuan
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Lisa P Pacumio
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Bryce G Dorflinger
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Samantha C Yoo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Mariah J Olson
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Sara I Hernández-Suárez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Bayer School of Natural and Environmental Sciences, Duquesne University of the Holy Spirit, Pittsburgh, PA, United States
| | - Moira M McMahon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Investigation of Possible Role of Chlamydia in Pseudoexfoliation Syndrome. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Pseudoexfoliation syndrome (PES) is a systemic disease characterized by the aggregation of fibrillar extracellular material in intraocular and extraocular tissues with unknown etiology. Clarifying the etiopathogenesis of PES would be important for public health. Objectives: We aimed to investigate the possible role of Chlamydia in the etiology of PES. Methods: This cross-sectional study was carried out in the ophthalmology clinic of a tertiary hospital. The study included two groups, including the patient group (PES patients with nuclear cataracts) and the control group (patients with nuclear cataracts). Patients with other ophthalmic problems and systemic diseases were excluded. Blood samples and conjunctival swabs taken from 49 patients and 42 controls were used in the study. Anti-Chlamydia trachomatis IgG and IgM, anti-C. pneumoniae IgG and IgM, Interleukin (IL)-6, and IL-20 were studied in the serum samples. The PCR study was performed with conjunctival swab samples and sequence analysis of PCR-positive samples was performed. Results: According to the results of the study, there was no statistically significant difference between the groups in terms of anti-C. trachmatis IgG, anti-C. trachmatis IgM, anti-C. pneumoniae IgM, IL-6, and PCR results. There was a statistically significant difference between patient and control groups in terms of anti-C. pneumoniae IgG and IL-20 levels. The DNA sequencing of all PCR products was found to be compatible with C. pneumoniae. Conclusions: It seems that C. pneumoniae might have an important role in the etiology and development of PES. However, further studies in larger groups are needed to clarify these results.
Collapse
|
33
|
Hassan Z, Wang J, Qin Y, Wang W, Liu Q, Lei L, Sun Z, Yang Y, Wu K, Zhu X, Wang Z, Feng H, Zou J. Functional characterization of an interleukin 20 like homologue in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2021; 115:43-57. [PMID: 33992768 DOI: 10.1016/j.fsi.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
IL-20 is a pleiotropic cytokine that belongs to the IL-10 family and plays an important biological role in tissue homeostasis and regulation of host immune defenses. IL-20 homologues have recently been discovered in fish, but their functions have not been studied. In this study, an IL-20 like (IL-20L) cytokine was cloned in grass carp (Ctenopharyngodon idella) and its bioactivities were investigated. Expression analysis showed that the CiIL-20L gene was constitutively expressed in tissues with the highest expression detected in the head kidney. It was upregulated in the head kidney after infection with Flavobactrium columnare (F. cloumnare) and grass carp reovirus II (GCRV II). The recombinant CiIL-20L produced in E. coli cells was shown to be effective in inducing the expression of Th cytokine genes (IFN-γ, IL-4/13A, IL-4/13B and IL-10), macrophage marker genes (arginase 2, IRF4, KLF4 and SOCS3) and inflammatory genes (IL-1β, IL-6, IL-8 and TNFα) in the head kidney leukocytes when stimulated at 12 h. Long term culture (6 days) of head kidney macrophages in the presence of CiIL-20L leads to high expression of IRF4, TGFβ1 and arginase 2. Our data suggest that IL-20 may play regulatory roles in promoting Th responses, macrophage differentiation and inflammation.
Collapse
Affiliation(s)
- Zeinab Hassan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Department of Fish Diseases, Faculty of Veterinary Medicine, Aswan University, Egypt
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuting Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lina Lei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yibin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
34
|
Lamichhane S, Mo JS, Sharma G, Choi TY, Chae SC. MicroRNA 452 regulates IL20RA-mediated JAK1/STAT3 pathway in inflammatory colitis and colorectal cancer. Inflamm Res 2021; 70:903-914. [PMID: 34283251 DOI: 10.1007/s00011-021-01486-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE MicroRNAs are a class of small, non-coding RNAs that play a key role in several biological and molecular processes, including tumorigenesis. We previously identified that MIR452 is upregulated in both colorectal cancer (CRC) and colitis. However, the functional mechanisms of MIR452 and its target genes in CRC and colitis are not well understood. So, we hypothesize that MIR452 can influence CRC and DSS-induced colitis model through the regulation of IL20RA and its downstream JAK-STATs signaling pathway. METHODS We used a luciferase reporter assay to confirm the effect of MIR452 on IL20RA expression. The protein and mRNA expression of a target gene and its associated molecules were measured by western blot, quantitative RT-PCR, and immunohistochemistry. RESULTS We found that the IL20RA was a direct target gene of MIR452. Overexpression of MIR452 in CRC cell lines significantly decreased IL20RA and its downstream Janus kinase 1 (JAK1), Signal transducer and activator of transcription 1 (STAT1) and STAT3. Knockdown of IL20RA in CRC cell lines by IL20RA gene silencing also decreased the expression of IL20RA, JAK1, and STAT3, but not of STAT1. CONCLUSION Our results suggest that MIR452 regulates STAT3 through the IL20RA-mediated JAK1 pathway, but not STAT1. Overall, MIR452 acts as tumor suppressor in human CRC and in a mouse colitis model. These findings suggest that MIR452 is a promising therapeutic target in the treatment of cancer and colitis.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Ji-Su Mo
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Grinsun Sharma
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Tae-Young Choi
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea. .,Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
| |
Collapse
|
35
|
He Y, Feng D, Hwang S, Mackowiak B, Wang X, Xiang X, Rodrigues RM, Fu Y, Ma J, Ren T, Ait-Ahmed Y, Xu M, Liangpunsakul S, Gao B. Interleukin-20 exacerbates acute hepatitis and bacterial infection by downregulating IκBζ target genes in hepatocytes. J Hepatol 2021; 75:163-176. [PMID: 33610678 PMCID: PMC8323118 DOI: 10.1016/j.jhep.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)-20 and IL-22 belong to the IL-10 family. IL-10 is a well-documented anti-inflammatory cytokine while IL-22 is well known for epithelial protection and its antibacterial function, showing great therapeutic potential for organ damage; however, the function of IL-20 remains largely unknown. METHODS Il20 knockout (Il20-/-) mice and wild-type littermates were generated and injected with Concanavalin A (ConA) and Klebsiella pneumoniae (K.P.) to induce acute hepatitis and bacterial infection, respectively. RESULTS Il20-/- mice were resistant to acute hepatitis and exhibited selectively elevated levels of the hepatoprotective cytokine IL-6. Such selective inhibition of IL-6 by IL-20 was due to IL-20 targeting hepatocytes that produce high levels of IL-6 but a limited number of other cytokines. Mechanistically, IL-20 upregulated NAD(P)H: quinone oxidoreductase 1 (NQO1) expression and subsequently promoted the protein degradation of transcription factor IκBζ, resulting in selective downregulation of the IκBζ-dependent gene Il6 as well several other IκBζ-dependent genes including lipocalin-2 (Lcn2). Given the important role of IL-6 and LCN2 in limiting bacterial infection, we examined the effect of IL-20 on bacterial infection and found Il20-/- mice were resistant to K.P. infection and exhibited elevated levels of hepatic IκBζ-dependent antibacterial genes. Moreover, IL-20 upregulated hepatic NQO1 by binding to IL-22R1/IL-20R2 and activating ERK/p38MAPK/NRF2 signaling pathways. Finally, the levels of hepatic IL1B, IL20, and IκBζ target genes were elevated, and correlated with each other, in patients with severe alcoholic hepatitis. CONCLUSIONS IL-20 selectively inhibits hepatic IL-6 production rather than exerting IL-10-like broad anti-inflammatory properties. Unlike IL-22, IL-20 aggravates acute hepatitis and bacterial infection. Thus, anti-IL-20 therapy could be a promising option to control acute hepatitis and bacterial infection. LAY SUMMARY Several interleukin (IL)-20 family cytokines have been shown to play important roles in controllimg inflammatory responses, infection and tissue damage, but the role of IL-20 remains unclear. Herein, we elucidated the role of IL-20 in liver disease and bacterial infection. We show that IL-20 can aggravate hepatitis and bacterial infection; thus, targeting IL-20 holds promise for the treatment of patients with liver disease.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait-Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Interleukin-20 Acts as a Promotor of Osteoclastogenesis and Orthodontic Tooth Movement. Stem Cells Int 2021; 2021:5539962. [PMID: 34122555 PMCID: PMC8172288 DOI: 10.1155/2021/5539962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Bones constitute organs that are engaged in constant self-remodelling. Osteoblast and osteoclast homeostasis during remodelling contribute to overall skeletal status. Orthodontics is a clinical discipline that involves the investigation and implementation of moving teeth through the bone. The application of mechanical force to the teeth causes an imbalance between osteogenesis and osteogenesis in alveolar bone, leading to tooth movement. Osteoimmunology comprises the crosstalk between the immune and skeletal systems that regulate osteoclast–osteoblast homeostasis. Interleukin- (IL-) 20, an IL-10 family member, is regarded as a proinflammatory factor for autoimmune diseases and has been implicated in bone loss disease. However, the mechanism by which IL-20 regulates osteoclast differentiation and osteoclastogenesis activation remains unclear. This study investigated the effects of IL-20 on osteoclast differentiation in a rat model; it explored the underlying molecular mechanism in vitro and the specific effects on orthodontic tooth movement in vivo. Methods For in vitro analyses, primary rat bone marrow-derived macrophages (BMMs) were prepared from Sprague–Dawley rats for osteoclast induction. After BMMs had been treated with combinations of recombinant IL-20 protein, siRNA, and plasmids, the expression levels of osteoclast-specific factors and signalling pathway proteins were detected through real-time polymerase chain reaction, western blotting, and immunofluorescence staining. For in vivo analyses, IL-20 was injected into the rat intraperitoneal cavity after the establishment of a rat orthodontic tooth movement (OTM) model. OTM distance was detected by Micro-CT and HE staining; the expression levels of protein were detected through immunofluorescence staining. Results In vitro analyses showed that a low concentration of IL-20 promoted preosteoclast proliferation and osteoclastogenesis. However, a high concentration of IL-20 inhibited BMM proliferation and osteoclastogenesis. IL-20 knockdown decreased the expression of osteoclast specific-markers, while IL-20 overexpression increased the expression of osteoclast specific-markers. Furthermore, IL-20 regulated osteoclast differentiation through the OPG/RANKL/RANK pathway. Overexpression of IL-20 could significantly upregulate RANKL-mediated osteoclast differentiation and osteoclast specific-marker expression; moreover, RANKL/NF-κB/NFATc1 acted as downstream signalling molecule for IL-20. In vivo analysis showed that OTM speed was significantly increased after intraperitoneal injection of IL-20; additionally, mechanical stress sensing proteins were markedly activated. Conclusions IL-20 augments osteoclastogenesis and osteoclast-mediated bone erosion through the RANKL/NF-κB/NFATc1 signalling pathway. IL-20 inhibition can effectively reduce osteoclast differentiation and diminish bone resorption. Furthermore, IL-20 can accelerate orthodontic tooth movement and activate mechanical stress sensing proteins.
Collapse
|
37
|
Horiuchi H, Parajuli B, Komiya H, Ogawa Y, Jin S, Takahashi K, Azuma YT, Tanaka F, Suzumura A, Takeuchi H. Interleukin-19 Abrogates Experimental Autoimmune Encephalomyelitis by Attenuating Antigen-Presenting Cell Activation. Front Immunol 2021; 12:615898. [PMID: 33776998 PMCID: PMC7990911 DOI: 10.3389/fimmu.2021.615898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-19 (IL-19) acts as a negative-feedback regulator to limit proinflammatory response of macrophages and microglia in autocrine/paracrine manners in various inflammatory diseases. Multiple sclerosis (MS) is a major neuroinflammatory disease in the central nervous system (CNS), but it remains uncertain how IL-19 contributes to MS pathogenesis. Here, we demonstrate that IL-19 deficiency aggravates experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by promoting IL-17-producing helper T cell (Th17 cell) infiltration into the CNS. In addition, IL-19-deficient splenic macrophages expressed elevated levels of major histocompatibility complex (MHC) class II, co-stimulatory molecules, and Th17 cell differentiation-associated cytokines such as IL-1β, IL-6, IL-23, TGF-β1, and TNF-α. These observations indicated that IL-19 plays a critical role in suppression of MS pathogenesis by inhibiting macrophage antigen presentation, Th17 cell expansion, and subsequent inflammatory responses. Furthermore, treatment with IL-19 significantly abrogated EAE. Our data suggest that IL-19 could provide significant therapeutic benefits in patients with MS.
Collapse
Affiliation(s)
- Hiroshi Horiuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Bijay Parajuli
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Ogawa
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shijie Jin
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
38
|
Xu S, Zhang J, Liu J, Ye J, Xu Y, Wang Z, Yu J, Ye D, Zhao M, Feng Y, Pan W, Wang M, Wan J. The role of interleukin-10 family members in cardiovascular diseases. Int Immunopharmacol 2021; 94:107475. [PMID: 33662690 DOI: 10.1016/j.intimp.2021.107475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-10 cytokine family members, including IL-10, IL-19, IL-20, IL-22, IL-24, IL-26 and the distantly related IL-28A, IL-28B, and IL-29, play critical roles in the regulation of inflammation. The occurrence and progression of cardiovascular diseases closely correlate with the regulation of inflammation, which may provide novel strategies for the treatment of cardiovascular diseases. In recent years, studies have focused on the association between the IL-10 cytokine family and the physiological and pathological progression of cardiovascular diseases. The aim of this review is to summarize relevant studies and clarify whether the IL-10 cytokine family contributes to the regulation of cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwan Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jun Wan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
39
|
Wang HH, Huang JH, Sue MH, Ho WC, Hsu YH, Chang KC, Chang MS. Interleukin-24 protects against liver injury in mouse models. EBioMedicine 2021; 64:103213. [PMID: 33508745 PMCID: PMC7841303 DOI: 10.1016/j.ebiom.2021.103213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Interleukin-24 (IL-24) binds to two kinds of receptor complexes, namely IL-20R1/IL-20R2 and IL-20R2/IL-22R1, which are also bound by IL-20. IL-20 plays a detrimental role in liver fibrosis. Due to the sharing of receptor complexes, we aimed to determine whether IL-24 also participates in liver fibrosis. Methods Clinical biopsy specimens from various stages of liver fibrosis were used to analyze IL-24 expression. IL-24 protein was administered to mice with thioacetamide (TAA)-induced liver injury. The direct effects of IL-24 on mouse primary hepatocytes or hepatic stellate cells (HSCs) were analyzed. Wild-type, IL-20R1-, and IL20R2-deficient mice were used to establish a model of acute TAA-induced liver injury. Findings Among patients with more severe liver fibrosis, there was a reduced IL-24/IL-20 ratio. Administration of IL-24 protein protected mice from TAA-induced liver injury and reduction of liver inflammation by antioxidant effects. IL-24 protected hepatocytes from TAA-induced apoptosis and prevented liver fibrosis through the inhibition of the HSCs activation. The protective role of IL-24 acted on liver cells were mainly IL-20R1-independent. IL-20R2-deficient mice exhibited more severe liver injury upon TAA treatment, thus confirming the protective role of IL-24. Interpretation IL-24 plays a key protective role in the progression of liver injury and has therapeutic potential for treating liver injuries. Funding This work was supported by the Ministry of Science and Technology of Taiwan (MOST 106–2320-B-006–024) and Taiwan Liver Disease Prevention & Treatment Research Foundation.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jian-Hao Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Hao Sue
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chih Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
40
|
IL-20R Activation via rIL-19 Enhances Hematoma Resolution through the IL-20R1/ERK/Nrf2 Pathway in an Experimental GMH Rat Pup Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5913424. [PMID: 33532035 PMCID: PMC7837781 DOI: 10.1155/2021/5913424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/11/2020] [Accepted: 01/02/2021] [Indexed: 11/17/2022]
Abstract
Aims Blood clots play the primary role in neurological deficits after germinal matrix hemorrhage (GMH). Previous studies have shown a beneficial effect in blood clot clearance after hemorrhagic stroke. The purpose of this study is to investigate interleukin-19's role in hematoma clearance after GMH and its underlying mechanism of IL-20R1/ERK/Nrf2 signaling pathway. Methods A total of 240 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. rIL-19 was administered intranasally 1 hour post-GMH. IL-20R1 CRISPR was administered intracerebroventricularly, or Nrf2 antagonist ML385 was administered intraperitoneally 48 hours and 1 hour before GMH induction, respectively. Neurobehavior, Western blot, immunohistochemistry, histology, and hemoglobin assay were used to evaluate treatment regiments in the short- and long-term. Results Endogenous IL-19, IL-20R1, IL-20R2, and scavenger receptor CD163 were increased after GMH. rIL-19 treatment improved neurological deficits, reduced hematoma volume and hemoglobin content, reduced ventriculomegaly, and attenuated cortical thickness loss. Additionally, treatment increased ERK, Nrf2, and CD163 expression, whereas IL-20R1 CRISPR-knockdown plasmid and ML385 inhibited the effects of rIL-19 on CD163 expression. Conclusion rIL-19 treatment improved hematoma clearance and attenuated neurological deficits induced by GMH, which was mediated through the upregulation of the IL-20R1/ERK/Nrf2 pathways. rIL-19 treatment may provide a promising therapeutic strategy for the GMH patient population.
Collapse
|
41
|
Vadadustat, a HIF Prolyl Hydroxylase Inhibitor, Improves Immunomodulatory Properties of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9112396. [PMID: 33139632 PMCID: PMC7693843 DOI: 10.3390/cells9112396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The therapeutic potential of mesenchymal stromal cells (MSCs) is largely attributed to their immunomodulatory properties, which can be further improved by hypoxia priming. In this study, we investigated the immunomodulatory properties of MSCs preconditioned with hypoxia-mimetic Vadadustat (AKB-6548, Akebia). Gene expression analysis of immunomodulatory factors was performed by real-time polymerase chain reaction (real-time PCR) on RNA isolated from six human bone-marrow derived MSCs populations preconditioned for 6 h with 40 μM Vadadustat compared to control MSCs. The effect of Vadadustat preconditioning on MSCs secretome was determined using Proteome Profiler and Luminex, while their immunomodulatory activity was assessed by mixed lymphocyte reaction (MLR) and Culturex transwell migration assays. Real-time PCR revealed that Vadadustat downregulated genes related to immune system: IL24, IL1B, CXCL8, PDCD1LG1, PDCD1LG2, HIF1A, CCL2 and IL6, and upregulated IL17RD, CCL28 and LEP. Vadadustat caused a marked decrease in the secretion of IL6 (by 51%), HGF (by 47%), CCL7 (MCP3) (by 42%) and CXCL8 (by 40%). Vadadustat potentiated the inhibitory effect of MSCs on the proliferation of alloactivated human peripheral blood mononuclear cells (PBMCs), and reduced monocytes-enriched PBMCs chemotaxis towards the MSCs secretome. Preconditioning with Vadadustat may constitute a valuable approach to improve the therapeutic properties of MSCs.
Collapse
|
42
|
Mehta P, Lawrence A, Aggarwal A. Paradoxical gastrointestinal effects of interleukin-17 blockers. Ann Rheum Dis 2020; 82:e152. [PMID: 32988844 DOI: 10.1136/annrheumdis-2020-218719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Pankti Mehta
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, UP, India
| | - Able Lawrence
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, UP, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, UP, India
| |
Collapse
|
43
|
Clinical Significance of the Interleukin 24 mRNA Level in Head and Neck Squamous Cell Carcinoma and Its Subgroups: An In Silico Investigation. JOURNAL OF ONCOLOGY 2020; 2020:7042025. [PMID: 33014054 PMCID: PMC7519990 DOI: 10.1155/2020/7042025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
IL24 mRNA is known to have an apoptotic effect on cancer cells but not on noncancer cells. However, the expression level of the IL24 mRNA in head and neck squamous cell carcinoma (HNSCC) and its subgroups is rarely studied. In this study, the clinical implication of IL24 mRNA was evaluated in the common subgroups of HNSCC, including oral squamous cell carcinoma (OSCC), nasopharyngeal carcinoma (NPC), and laryngeal squamous cell carcinoma (LSCC) for analysis. Substantial IL24 mRNA expression data were calculated from several databases, such as the Gene Expression Omnibus (GEO), ArrayExpress, Sequence Read Archive (SRA), ONCOMINE, and The Cancer Genome Atlas (TCGA) databases. We ultimately collected a total of 41 microarrays and RNA-seq including 1,564 HNSCC and 603 noncancer tissue samples. IL24 mRNA was highly expressed in OSCC, LSCC, and NPC as shown by the separated standard mean difference (SMD), as well as HNSCC as a whole part (SMD = 1.47, 95% confdence interval (CI) = 1.24−1.70, P < 0.0001). In all subgroups, the IL24 mRNA upregulation had the ability to distinguish cancer from noncancer tissue with area under the curves (AUCs) of the summary receiver operating characteristic (sROC) higher than 0.85. In conclusion, IL24 mRNA may be used as a potential marker for cancer screening, and its clinical diagnostic value needs to be further studied. It also provides a new idea for the treatment of the IL24 gene in HNSCC and its subgroups in the future.
Collapse
|
44
|
Leigh T, Scalia RG, Autieri MV. Resolution of inflammation in immune and nonimmune cells by interleukin-19. Am J Physiol Cell Physiol 2020; 319:C457-C464. [PMID: 32667867 PMCID: PMC7509264 DOI: 10.1152/ajpcell.00247.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
The inflammatory response is a complex, tightly regulated process activated by tissue wounding, foreign body invasion, and sterile inflammation. Over the decades, great progress has been made to advance our understanding of this process. One often overlooked aspect of inflammation is its sequel: resolution. We know that dysregulated resolution often results in numerous chronic degenerative diseases such as arthritis, cancer, and asthma. However, identification of components and mechanisms of resolving pathways lags behind those of proinflammatory processes, yet represents overlooked therapeutic opportunities. One approach is identification of endogenous, negative compensatory mechanisms, which are activated in response to inflammation for the purpose of resolution of that inflammatory stimuli. This review will focus on literature that describes expression and function of interleukin-19, a proposed anti-inflammatory cytokine, in numerous inflammatory diseases. The literature concerning IL-19 is complex, context-dependent, and often contradictory. The expression and function of IL-19 in the inflammatory response are in no way settled. We will attempt to clarify the role that this interesting and understudied cytokine plays in resolution of inflammation and discuss its mechanisms of action in different cell types. We will present a hypothesis that endogenous IL-19 expression in response to inflammatory stimuli is a cellular compensatory mechanism to dampen inflammation. We further present studies suggesting that while endogenously expressed IL-19 may be a response to inflammation, pharmacological levels may be necessary to effectively resolve the inflammatory cascade.
Collapse
Affiliation(s)
- Tani Leigh
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Rosario G Scalia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Chong WP, Mattapallil MJ, Raychaudhuri K, Bing SJ, Wu S, Zhong Y, Wang W, Chen Z, Silver PB, Jittayasothorn Y, Chan CC, Chen J, Horai R, Caspi RR. The Cytokine IL-17A Limits Th17 Pathogenicity via a Negative Feedback Loop Driven by Autocrine Induction of IL-24. Immunity 2020; 53:384-397.e5. [PMID: 32673565 PMCID: PMC7362799 DOI: 10.1016/j.immuni.2020.06.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/17/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022]
Abstract
Dysregulated Th17 cell responses underlie multiple inflammatory and autoimmune diseases, including autoimmune uveitis and its animal model, EAU. However, clinical trials targeting IL-17A in uveitis were not successful. Here, we report that Th17 cells were regulated by their own signature cytokine, IL-17A. Loss of IL-17A in autopathogenic Th17 cells did not reduce their pathogenicity and instead elevated their expression of the Th17 cytokines GM-CSF and IL-17F. Mechanistic in vitro studies revealed a Th17 cell-intrinsic autocrine loop triggered by binding of IL-17A to its receptor, leading to activation of the transcription factor NF-κB and induction of IL-24, which repressed the Th17 cytokine program. In vivo, IL-24 treatment ameliorated Th17-induced EAU, whereas silencing of IL-24 in Th17 cells enhanced disease. This regulatory pathway also operated in human Th17 cells. Thus, IL-17A limits pathogenicity of Th17 cells by inducing IL-24. These findings may explain the disappointing therapeutic effect of targeting IL-17A in uveitis. IL-17A deficiency does not reduce the pathogenicity of Th17 cells in uveitis IL-17A binds to its own receptor on Th17 cells, activating NF-κB NF-κB induces IL-24 production, repressing the Th17 cytokine program through SOCS1/3 Silencing or depleting IL-24 in Th17 cells exacerbates neuroinflammation
Collapse
Affiliation(s)
- Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China; Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Kumarkrishna Raychaudhuri
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - So Jin Bing
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Sihan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yajie Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - WeiWei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Zilin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Phyllis B Silver
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Yingyos Jittayasothorn
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA.
| |
Collapse
|
46
|
Mohammadzadeh I, Qujeq D, Yousefi T, Ferns GA, Maniati M, Vaghari-Tabari M. CRISPR/Cas9 gene editing: A new therapeutic approach in the treatment of infection and autoimmunity. IUBMB Life 2020; 72:1603-1621. [PMID: 32344465 DOI: 10.1002/iub.2296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9) may be viewed as an adaptive bacterial immune system. When a virus infects a bacterium, a fragment of the virus genome is inserted into the CRISPR sequence of the bacterial genome as a memory. When the bacterium becomes infected again with the same virus, an RNA molecule that is a transcript of the memory sequence, directs Cas9, an endonuclease, to the complementary region of the virus genome, and Cas9 disables the virus by a double-strand break. In recent years, studies have shown that by designing synthetic RNA molecules and delivering them along with Cas9 into eukaryotic cells, different regions of the cell's genome can be targeted and manipulated. These findings have drawn much attention to this new technology and it has been shown that CRISPR/Cas9 gene editing can be used to treat some human diseases. These include infectious diseases and autoimmune diseases. In this review article, in addition to a brief overview of the biology of the CRISPR/Cas9 system, we collected the most recent findings on the applications of CRISPR/Cas9 technology for better investigation of the pathogenesis and treatment of viral infections (human immunodeficiency virus infection, hepatitis virus infections, and onco-virus infections), non-viral infections (parasitic, fungal, and bacterial infections), and autoimmune diseases.
Collapse
Affiliation(s)
- Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Zhang Y, Liu Y, Xu Y. Interleukin-24 Regulates T Cell Activity in Patients With Colorectal Adenocarcinoma. Front Oncol 2019; 9:1401. [PMID: 31921658 PMCID: PMC6915036 DOI: 10.3389/fonc.2019.01401] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-24 plays a potential anti-tumor activity in colorectal cancer in a dose-dependent manner. However, the immunoregulatory role of IL-24 to peripheral and tumor-infiltrating T cell function in colorectal cancer was not fully elucidated. In this study, twenty-nine colorectal adenocarcinoma patients and fifteen healthy individuals were enrolled. IL-24 expression and IL-24 receptor (IL-20R1, IL-20R2, and IL-22R1) mRNA relative level was measured by ELISA and real-time PCR, respectively. CD4+ and CD8+ T cells were purified from peripheral bloods and cancer specimens, and were stimulated with low (10 ng/ml) and high (100 ng/ml) concentration of recombinant IL-24. CD4+ T cells activity was assessed by measurement of Th cell percentage, transcriptional factors, and cytokine production. CD8+ T cells activity was evaluated by investigation of cytotoxic molecules, target cell death, and interferon-γ (IFN-γ) secretion. IL-24 was decreasingly expressed in both peripheral bloods and cancer tissues in colorectal adenocarcinoma patients. However, IL-20R1 and IL-20R2 was comparable between healthy controls and colorectal adenocarcinoma patients. Low concentration of IL-24 suppressed CD4+ T cell proliferation. In contrast, high concentration of IL-24 not only promoted CD4+ T cell proliferation, but also enhanced CD4+ T cell activity, which mainly presented as up-regulation of Th1/Th17 frequency, T-bet/RORγt mRNA, and IFN-γ/IL-17 production but down-regulation of Treg percentage, FoxP3 mRNA, and IL-10/IL-35 secretion. Moreover, high concentration of IL-24 also increased perforin and granzyme B expression in CD8+ T cells, and elevated cytolytic and non-cytolytic activity of CD8+ T cells, which presented as induction of target cell death and elevation of IFN-γ expression. However, low concentration of IL-24 did not affect bioactivity of CD8+ T cells. The current data indicated that IL-24 might regulate T cell function in a dose-dependent manner. High-concentration of IL-24 might promote anti-tumor immune responses in development novel therapeutic approaches to colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ye Liu
- Intensive Care Unit, 964th Hospital of PLA, Changchun, China
| | - Yuechao Xu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Cui XF, Cui XG, Leng N. Overexpression of interleukin-20 receptor subunit beta (IL20RB) correlates with cell proliferation, invasion and migration enhancement and poor prognosis in papillary renal cell carcinoma. J Toxicol Pathol 2019; 32:245-251. [PMID: 31719751 PMCID: PMC6831501 DOI: 10.1293/tox.2019-0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/17/2019] [Indexed: 01/19/2023] Open
Abstract
Papillary renal cell carcinoma (PRCC) accounts for about 10 percent of all renal cell carcinomas, and the prognosis is poor for people with advanced disease. Interleukin-20 receptor subunit beta (IL20RB) is a single-pass type I membrane protein of the type II cytokine receptor family and is related to the pathogenesis of chronic inflammation and autoimmune diseases, including psoriasis, glaucoma, vitiligo, rheumatoid arthritis, and inflammatory bowel disease. However, little has been reported on IL20RB with respect to cancer, especially in PRCC. Thus, we performed this study to explore its biological characteristics in PRCC. Data from the TCGA database were used to analyze the expression and prognosis of IL20RB. qRT-PCR was used to detect the expression of IL20RB in PRCC cells in vitro. After knockdown of IL20RB with small interfering RNA (siRNA) technology, the proliferation, migration, and invasion of Ketr-3 cells and the expression of related proteins in the epithelial-mesenchymal transition (EMT) pathway were measured with Cell Counting Kit-8 (CCK-8), transwell, and western blot assays. The findings demonstrated that the expression of IL20RB was upregulated in both PRCC tissues and cells and that the high expression of IL20RB led to low overall survival (OS). Furthermore, after knockdown of IL20RB in vitro, the proliferation, migration, and invasion of Ketr-3 cells were reduced, and the expression of related proteins in the EMT pathway declined, suggesting that IL20RB plays a vital role in PRCC through the EMT pathway. These results reveal the biological significance of IL20RB in PRCC and provide new insight for future targeted drugs.
Collapse
Affiliation(s)
- Xi-Feng Cui
- Department of Nephrology, The Laiyang Central Hospital of Yantai, 111 Changshan Road, Laiyang, Shandong, 265200, P.R. China
| | - Xi-Gang Cui
- Department of Gastrointestinal Surgery, The Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road, Yantai, Shandong 264200, P.R. China
| | - Ning Leng
- Department of Nephrology, The Laiyang Central Hospital of Yantai, 111 Changshan Road, Laiyang, Shandong, 265200, P.R. China
| |
Collapse
|
49
|
Abstract
OBJECTIVE This study aimed to assess IL-24 levels and their association with clinical manifestations in patients with systemic lupus erythematosus (SLE). METHODS There were 75 patients with SLE and 58 healthy controls recruited in this study. Serum levels of IL-24 were measured by enzyme-linked immunosorbent assays, and mRNA levels of IL-24 were tested by quantitative real-time polymerase chain reaction . The area under the curve of the receiver operating characteristic (ROC) curve was used for diagnostic ability of the inflammatory cytokine. RESULTS Serum IL-24 levels were significantly higher in SLE patients than that in healthy controls. SLE patients with nephritis had higher IL-24 levels than those without nephritis. Active SLE patients showed higher expression of IL-24 as compared to less active disease patients. The mRNA levels of IL-24 were much higher in SLE patients. Correlation analysis showed significant correlation between serum IL-24 levels and SLE disease activity index. In addition, ROC analysis may suggest good ability of serum IL-24 in differentiating SLE. CONCLUSION The inflammatory cytokine correlated with SLE disease activity, and may be involved in this disease pathogenesis.
Collapse
Affiliation(s)
- R C Li
- 1 Health Management Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - J Guo
- 2 Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - L C Su
- 3 Department of Rheumatology and Immunology, Affiliated Minda Hospital of Hubei Institute for Nationalities, Enshi, People's Republic of China
| | - A F Huang
- 4 Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
50
|
Wei H, Li B, Sun A, Guo F. Interleukin-10 Family Cytokines Immunobiology and Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:79-96. [PMID: 31628652 DOI: 10.1007/978-981-13-9367-9_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Interleukin (IL)-10 cytokine family includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26, which are considered as Class 2α-helical cytokines. IL-10 is the most important cytokine in suppressing pro-inflammatory responses in all kinds of autoimmune diseases and limiting excessive immune responses. Due to protein structure homology and shared usage of receptor complexes as well as downstream signaling pathway, other IL-10 family cytokines also show indispensable functions in immune regulation, tissue homeostasis, and host defense. In this review, we focus on immune functions and structures of different cytokines in this family and try to better understand how their molecular mechanisms connect to their biological functions. The molecular details regarding their actions also provide useful information in developing candidate immune therapy reagents for a variety of diseases.
Collapse
Affiliation(s)
- Huaxing Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Bofeng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
| | - Anyuan Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Feng Guo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| |
Collapse
|