1
|
Fan Y, Pavani KC, Smits K, Van Soom A, Peelman L. tRNA Glu-derived fragments from embryonic extracellular vesicles modulate bovine embryo hatching. J Anim Sci Biotechnol 2024; 15:23. [PMID: 38424649 PMCID: PMC10905895 DOI: 10.1186/s40104-024-00997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells. However, it is unknown whether tsRNAs also regulate embryo hatching. In this study, we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA (miRNA) cargo of preimplantation embryonic extracellular vesicles (EVs) influences embryo development. We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts. The majority of tsRNAs was identified as tRNA halves originating from the 5´ ends of tRNAs. Among the 148 differentially expressed tsRNAs, the 19 nt tRNA fragment (tRF) tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts. RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group (P < 0.05). Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching (P < 0.05). Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation. In summary, tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions, and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching, while influencing embryo implantation-related genes and pathways. These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.
Collapse
Affiliation(s)
- Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| |
Collapse
|
2
|
Fabian-Fine R, Aiken AM, Aug JR, Boucher JD, Butler DC, Clancy LJ, Clem SA, Crotty SC, Dalpe AM, Donzello-Jewett EJ, Galgay TM, Gillis BK, Heinrich BW, Hines KR, Kimmel JE, McGrath JM, Miles MM, Morey JA, Ortiz IA, Pham KQ, Quinn LC, Radican CJ, Speidel NT, Thomas BJ, Troisi AR, Weiss JL, Wentzheimer KV, Weaver AL. Neurodegeneration in a novel invertebrate model system: Failed microtubule-mediated cell adhesion and unraveling of macroglia. J Comp Neurol 2023; 531:618-638. [PMID: 36594894 PMCID: PMC10037207 DOI: 10.1002/cne.25450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Neurodegenerative diseases are among the main causes of death in the United States, leading to irreversible disintegration of neurons. Despite intense international research efforts, cellular mechanisms that initiate neurodegeneration remain elusive, thus inhibiting the development of effective preventative and early onset medical treatment. To identify underlying cellular mechanisms that initiate neuron degeneration, it is critical to identify histological and cellular hallmarks that can be linked to underlying biochemical processes. Due to the poor tissue preservation of degenerating mammalian brain tissue, our knowledge regarding histopathological hallmarks of early to late degenerative stages is only fragmentary. Here, we introduce a novel model organism to study histological hallmarks of neurodegeneration, the spider Cupiennius salei. We utilized toluidine blue-stained 0.9-μm serial semithin and 50-nm ultrathin sections of young and old spider nervous tissue. Our findings suggest that the initial stages of neurodegeneration in spiders may be triggered by (1) dissociation of neuron- and glia-derived microtubules, and (2) the weakening of microtubule-associated desmosomal junctions that lead to the unraveling of neuron-insulating macroglia, compromising the structural integrity of affected neurons. The involvement of macroglia in the disposal of neuronal debris described here-although different in the proposed transport mechanisms-shows resemblance to the mammalian glymphatic system. We propose that this model system is highly suitable to investigate invertebrate neurodegenerative processes from early onset to scar formation and that this knowledge may be useful for the study of neurodegeneration in mammalian tissue.
Collapse
Affiliation(s)
- Ruth Fabian-Fine
- Department of Biology and Neuroscience, Saint Michael’s College, Colchester, Vermont, 05439, United States of America
| | - Anna M. Aiken
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Julia R. Aug
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Jason D. Boucher
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Liam J. Clancy
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Shaun A. Clem
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Abigail M. Dalpe
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Taylor M. Galgay
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Bonnie K. Gillis
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Kai R. Hines
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Jordan E. Kimmel
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Marissa M. Miles
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Jordyn A. Morey
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Isaiah A. Ortiz
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Kevin Q. Pham
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Liam C. Quinn
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Colin J. Radican
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Nolan T. Speidel
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Bailey J. Thomas
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Angela R. Troisi
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Joshua L. Weiss
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Adam L. Weaver
- Department of Biology and Neuroscience, Saint Michael’s College, Colchester, Vermont, 05439, United States of America
| |
Collapse
|
3
|
Kalam SN, Dowland S, Lindsay L, Murphy CR. Porosomes in uterine epithelial cells: Ultrastructural identification and characterization during early pregnancy. J Morphol 2022; 283:1381-1389. [PMID: 36059156 PMCID: PMC9828572 DOI: 10.1002/jmor.21504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
Porosomes are plasma membrane structures in secretory cells that allow transient docking and/or partial fusion of vesicles during which they release their content then disengage. This is referred to as "kiss and run" exocytosis. During early pregnancy, at the time of receptivity, there is a high level of vesicle activity in uterine epithelial cells (UECs). One of the secretory pathways for these vesicles could be via porosomes, which have yet to be identified in UECs. This study identified porosomes in the apical plasma membrane of UECs for the first time. These structures were present on days 1, 5.5, and 6 of early pregnancy, where they likely facilitate partial secretion via "kiss and run" exocytosis. The porosomes were measured and quantified on days 1, 5.5, and 6, which showed there are significantly more porosomes on day 5.5 (receptive) compared to day 1 (nonreceptive) of pregnancy. This increase in porosome numbers may reflect major morphological and molecular changes in the apical plasma membrane at this time such as increased cholesterol and soluble NSF attachment protein receptor proteins, as these are structural and functional components of the porosome complex assembly. Porosomes were observed in both resting (inactive) and dilated (active) states on days 1, 5.5, and 6 of early pregnancy. Porosomes on day 5.5 are significantly more active than on day 1 as demonstrated by the dilation of their base diameter. Further two-way ANOVA analysis of base diameter in resting and dilated states found a significant increase in porosome activity in day 5.5 compared to day 1. This study therefore indicates an increase in the number and activity of porosomes at the time of uterine receptivity in the rat, revealing a mechanism by which the UECs modify the uterine luminal environment at this time.
Collapse
Affiliation(s)
- Sadaf N. Kalam
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Samson Dowland
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Laura Lindsay
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Christopher R. Murphy
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Chen Y, Stagg C, Schlessinger D, Nagaraja R. PLAC1 affects cell to cell communication by interacting with the desmosome complex. Placenta 2021; 110:39-45. [PMID: 34118612 DOI: 10.1016/j.placenta.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION X-linked PLAC1 is highly expressed in placenta during embryogenesis, and when ablated in mice, causes aberrant placental cell layer organization. It is also highly expressed in many types of cancer cell-lines. Although it has been shown that it promotes AKT phosphorylation in cancer cells, the exact mechanism by which it influences placental layer differentiation is unclear. METHODS To investigate the mechanism of action of PLAC1 we did cell fractionation and immunoprecipitation of the protein and Mass Spectrometry analysis to identify its interaction partners. The associated proteins were directly tested for interactions by co-transfection with PLAC1 and immunoprecipitation. Mutations in the ZP-N domain of PLAC1 were introduced to assess its involvement in the interactions. RESULTS We provide evidence that Desmoglein-2 (DSG2), a component of the membrane-associated desmosomal complex, directly interacts with PLAC1. Mutations of cysteines in ZP-N domain disrupt the interaction between PLAC1 and DSG-2. DISCUSSION Because desmosomes are responsible for establishing lateral cell-cell junctions, we suggest that direct interaction with the lateral junction protein complex may be implicated in the PLAC1 effects on cell-cell interactions, and thereby on the layer structure of the placenta.
Collapse
Affiliation(s)
- Yaohui Chen
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Carole Stagg
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Ramaiah Nagaraja
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA.
| |
Collapse
|
5
|
Buck VU, Kohlen MT, Sternberg AK, Rösing B, Neulen J, Leube RE, Classen-Linke I. Steroid hormones and human choriogonadotropin influence the distribution of alpha6-integrin and desmoplakin 1 in gland-like endometrial epithelial spheroids. Histochem Cell Biol 2021; 155:581-591. [PMID: 33502623 PMCID: PMC8134296 DOI: 10.1007/s00418-020-01960-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
In human glandular endometrial epithelial cells, desmosomal and adherens junction proteins have been shown to extend from a subapically restricted lateral position to the entire lateral membrane during the implantation window of the menstrual cycle. Similarly, a menstrual cycle stage-dependent redistribution of the extracellular matrix adhesion protein α6-integrin has been reported. These changes are believed to be important for endometrial receptiveness and successful embryo implantation. To prove the hypothesis that steroid hormones and human choriogonadotropin can induce the redistribution of these adhesion molecules, we used the human endometrial cell line Ishikawa in a 3D culture system. Gland-like spheroids were grown in reconstituted basement membrane (Matrigel™). The lumen-bearing spheroids were treated for 2 or 4 days with ovarian steroids or human choriogonadotropin and then assessed by immunofluorescence microscopy. In addition, human endometrial biopsies were obtained from patients, who were in therapy for assisted reproductive technology, and were examined in parallel. Lateral redistribution of the desmosomal plaque protein desmoplakin 1 was observed in the spheroids treated either with progesterone, medroxyprogesterone acetate or human choriogonadotropin. Furthermore, the extracellular matrix adhesion protein α6-integrin showed an increased lateral membrane localization upon gestagen stimulation in the 3D culture system. The results of this study demonstrate that the 3D endometrial Ishikawa cell culture might be suited as an experimental model system to prove the effect of hormonal changes like those occurring during the window of implantation.
Collapse
Affiliation(s)
- V U Buck
- Institute of Molecular and Cellular Anatomy, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - M T Kohlen
- Institute of Molecular and Cellular Anatomy, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - A K Sternberg
- Institute of Molecular and Cellular Anatomy, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - B Rösing
- Clinic for Gynaecological Endocrinology and Reproductive Medicine, Uniklinik RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - J Neulen
- Clinic for Gynaecological Endocrinology and Reproductive Medicine, Uniklinik RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - R E Leube
- Institute of Molecular and Cellular Anatomy, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - I Classen-Linke
- Institute of Molecular and Cellular Anatomy, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| |
Collapse
|
6
|
Rab13 and Desmosome Redistribution in Uterine Epithelial Cells During Early Pregnancy. Reprod Sci 2021; 28:1981-1988. [PMID: 33527312 DOI: 10.1007/s43032-021-00478-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The luminal uterine epithelial cells are the first point of contact with the implanting blastocyst. Dramatic changes occur in the structure and function of these cells at the time of receptivity including changes in the lateral junctional complex. While these morphological changes are important for uterine receptivity, currently there is no known mechanism of regulation of the lateral junctional complexes. Rab13, a member of the Rab (Ras-related in the brain) family of GTPases has a critical role in endosomal trafficking to the lateral plasma membrane and is involved in modulation of the tight junction in several cell types. The aim of this study is to investigate the role of Rab13 in changes to the lateral junctional complex at the time of receptivity. Immunofluorescence microscopy demonstrated no association between Rab13 and ZO-1 (a tight junction protein) or Rab13 and E-cadherin (an integral component of adherens junctions). Co-localisation was demonstrated between Rab 13 and desmoglein-2 at the time of fertilization and also at receptivity suggesting involvement of Rab13 in relocalisation of desmoglein-2 and formation of giant desmosomes in the apical part of the lateral plasma membrane at the time of uterine receptivity. We suggest that despite the loss of the adherens junction at the time of receptivity, the presently reported redistribution of desmosomes regulated by Rab13 allows the uterine epithelium to maintain structural integrity.
Collapse
|
7
|
Dudley JS, Murphy CR, Thompson MB, Lindsay LA, McAllan BM. Sex steroids influence the plasma membrane transformation in the uterus of the fat-tailed dunnart (Sminthopsis crassicaudata, Marsupialia). Reprod Fertil Dev 2019; 31:633-644. [PMID: 30449299 DOI: 10.1071/rd18202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
The uterine epithelium undergoes remodelling to become receptive to blastocyst implantation during pregnancy in a process known as the plasma membrane transformation. There are commonalities in ultrastructural changes to the epithelium, which, in eutherian, pregnancies are controlled by maternal hormones, progesterone and oestrogens. The aim of this study was to determine the effects that sex steroids have on the uterine epithelium in the fat-tailed dunnart Sminthopsis crassicaudata, the first such study in a marsupial. Females were exposed to exogenous hormones while they were reproductively quiescent, thus not producing physiological concentrations of ovarian hormones. We found that changes to the protein E-cadherin, which forms part of the adherens junction, are controlled by progesterone and that changes to the desmoglein-2 protein, which forms part of desmosomes, are controlled by 17β-oestradiol. Exposure to a combination of progesterone and 17β-oestradiol causes changes to the microvilli on the apical surface and to the ultrastructure of the uterine epithelium. There is a decrease in lateral adhesion when the uterus is exposed to progesterone and 17β-oestradiol that mimics the hormone environment of uterine receptivity. We conclude that uterine receptivity and the plasma membrane transformation in marsupial and eutherian pregnancies are under the same endocrine control and may be an ancestral feature of therian mammals.
Collapse
Affiliation(s)
- Jessica S Dudley
- School of Medical Sciences and Bosch Institute, Anderson Stuart Building (F13), University of Sydney, Sydney, NSW 2006, Australia
| | - Christopher R Murphy
- School of Medical Sciences and Bosch Institute, Anderson Stuart Building (F13), University of Sydney, Sydney, NSW 2006, Australia
| | - Michael B Thompson
- School of Life and Environmental Science, Heydon-Laurence Building (A08), University of Sydney, Sydney, NSW 2006, Australia
| | - Laura A Lindsay
- School of Medical Sciences and Bosch Institute, Anderson Stuart Building (F13), University of Sydney, Sydney, NSW 2006, Australia
| | - Bronwyn M McAllan
- School of Medical Sciences and Bosch Institute, Anderson Stuart Building (F13), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Buddle AL, Thompson MB, Lindsay LA, Murphy CR, Whittington CM, McAllan BM. Dynamic changes to claudins in the uterine epithelial cells of the marsupial
Sminthopsis crassicaudata
(Dasyuridae) during pregnancy. Mol Reprod Dev 2019; 86:639-649. [DOI: 10.1002/mrd.23140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Alice L. Buddle
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| | - Michael B. Thompson
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| | - Laura A. Lindsay
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| | - Camilla M. Whittington
- School of Life and Environmental Sciences University of Sydney Sydney Australia
- Sydney School of Veterinary Science University of Sydney Sydney Australia
| | - Bronwyn M. McAllan
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| |
Collapse
|
9
|
Ultrastructural changes in endometrial desmosomes of desmoglein 2 mutant mice. Cell Tissue Res 2018; 374:317-327. [PMID: 29938327 DOI: 10.1007/s00441-018-2869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/25/2018] [Indexed: 10/28/2022]
Abstract
The intercellular binding of desmosomal junctions is mediated by cadherins of the desmoglein (Dsg) and desmocollin (Dsc) type. Dsg2 mutant mice with deletion of a substantial segment of the extracellular EC1-EC2 domain, which is believed to participate in homo- and heterophilic desmosomal cadherin interactions, develop cardiac fibrosis and ventricular dilation. Widening of the intercellular cleft and complete intercalated disc ruptures can be observed in the hearts of these mice. Since a reduced litter size of homozygous Dsg2 mutant mice was noted and a functional correlation between desmosomes and embryo implantation has been deduced from animal studies, we looked for an alteration of desmosomes in uterine endometrial epithelium. Shape and number of desmosomes as well as the expression of Dsg2 and the desmosomal plaque protein desmoplakin (Dsp) were investigated by electron microscopy and immunohistochemistry in 12 oestrous-dated mice (7 wild type and 5 homozygous Dsg2 mutant mice) at the age of 9-17 weeks. The immunohistochemical detection of Dsg2 was diminished in the mutants and the number of desmosomes was significantly reduced as revealed by electron microscopy. In addition, the intercellular desmosomal space measured in electron micrographs was considerably widened in the Dsg2 mutants. The increased intercellular spacing can be explained by the partial deletion of the extracellular EC1-EC2 domain of Dsg2. Whether these changes explain the reduced number of offspring of homozygous Dsg2 mutant mice remains to be further investigated.
Collapse
|
10
|
Laird MK, McShea H, Murphy CR, McAllan BM, Shaw G, Renfree MB, Thompson MB. Non‐invasive placentation in the marsupials
Macropus eugenii
(Macropodidae) and
Trichosurus vulpecula
(Phalangeridae) involves redistribution of uterine Desmoglein‐2. Mol Reprod Dev 2018; 85:72-82. [DOI: 10.1002/mrd.22940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/10/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Melanie K. Laird
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Hanon McShea
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch InstituteUniversity of SydneySydneyNew South WalesAustralia
| | - Bronwyn M. McAllan
- School of Medical Sciences and Bosch InstituteUniversity of SydneySydneyNew South WalesAustralia
| | - Geoff Shaw
- School of BioSciencesUniversity of MelbourneVictoriaAustralia
| | | | - Michael B. Thompson
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
11
|
Dowland SN, Madawala RJ, Poon CE, Lindsay LA, Murphy CR. Prominin-2 Prevents the Formation of Caveolae in Normal and Ovarian Hyperstimulated Pregnancy. Reprod Sci 2017; 25:1231-1242. [PMID: 29113580 DOI: 10.1177/1933719117737842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During early pregnancy, uterine epithelial cells (UECs) become less adherent to the underlying basal lamina and are subsequently removed so the blastocyst can invade the underlying stroma. This process involves the removal of focal adhesions from the basal plasma membrane of UECs. These focal adhesions are thought to be internalized by caveolae, which significantly increase in abundance at the time of blastocyst implantation. A recent in vitro study indicated that prominin-2 prevents the formation of caveolae by sequestering membrane cholesterol. The present study examines whether prominin-2 affects the formation of caveolae and loss of focal adhesions in UECs during normal and ovarian hyperstimulation (OH) pregnancy in the rat. At the time of fertilization during normal pregnancy, prominin-2 is distributed throughout the basolateral plasma membrane. However, at the time of implantation and coincident with an increase in caveolae, prominin-2 is lost from the basal plasma membrane. In contrast, prominin-2 remains in the basolateral plasma membrane throughout OH pregnancy. Transmission electron microscopy showed that this membrane contained few caveolae throughout OH pregnancy. Our results indicate that prominin-2 prevents the formation of caveolae. We suggest the retention of prominin-2 in the basal plasma membrane during OH pregnancy prevents the formation of caveolae and is responsible for the retention of focal adhesions in this membrane, thereby contributing to the reduced implantation rate observed after such treatments.
Collapse
Affiliation(s)
- Samson N Dowland
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Romanthi J Madawala
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Connie E Poon
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura A Lindsay
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Murphy
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Almeida LLD, Teixeira ÁAC, Soares AF, Cunha FMD, Silva VAD, Vieira Filho LD, Wanderley-Teixeira V. Effects of melatonin in rats in the initial third stage of pregnancy exposed to sub-lethal doses of herbicides. Acta Histochem 2017; 119:220-227. [PMID: 28202179 DOI: 10.1016/j.acthis.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/22/2022]
Abstract
Exposure to the herbicides Paraquat (PQ) and Roundup® may cause cell lesions due to an increase in oxidative stress levels in different biological systems, even in the reproductive system. OBJECTIVE Evaluate the possible changes in reproductive parameters and hepatic, as well as its prevention by simultaneous application of melatonin. METHODS Thirty-five female rats at the age of 3 months were divided into seven groups: three groups exposed to sub-lethal doses of the herbicides PQ (50mg/kg) and Roundup® (500mg/kg) (n=5, G2, G3 and G4); three groups exposed to herbicides and simultaneous treatment with 10mg/kg of Melatonin (n=5, G5, G6 and G7) and control group (n=5, G1) from the first to the seventh day of pregnancy. On the seventh day of pregnancy, the rats were anesthetized and euthanized, followed by laparotomy to remove their reproductive tissues and liver. Body and ovary weights were taken and the number of implantation sites, corpora lutea, preimplantation losses, implantation rates were counted and histopathology of the implantation sites, morphometry of the surface and glandular epithelia of endometrium and hepatic oxidative stress were undertaken. RESULTS The present study shows the decrease in body and ovary weight, decrease in the number of implantation sites, implantation rate, in the total number of corpora lutea and increase of preimplantation percentages were observed when compared to the G1: Fig. 1 and Table 1, (p>0.001 ANOVA/Tukey). The histopathological analysis of the implantation sites showed a disorder of the cytotrophoblast and cell degeneration within the blastocyst cavity in Fig. 4. Morphometry revealed a reduction in surface and glandular epithelia and in the diameter of the endometrial glands (Table 2; p>0.05 ANOVA/Tukey), whereas in liver, serum levels of thiobarbituric acid reactive substances (TBARS) were found to be significantly elevated (Fig. 2; p>0.001; p>0.05 ANOVA/Tukey), and serum level of reduced glutathione (GSH) was significantly lower (Fig. 3; p>0.001 ANOVA/Tukey). However, treatments with melatonin exhibited improvements in reproductive parameters, as well as reduced lesions in the implantation sites (Fig. 4.) and in serum levels TBARS (Fig. 2; p>0.001 ANOVA/Tukey), serum levels GSH (Fig. 3; p>0.001; p>0.05 ANOVA/Tukey). CONCLUSIONS These results reveal that melatonin is a protective agent against experimentally induced maternal/embryo toxicity with herbicides and favoring normalization of reproductive parameters and hepatic.
Collapse
Affiliation(s)
| | | | - Anísio Francisco Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Valdemiro Amaro da Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
13
|
Martínez-Peña AA, Rivera-Baños J, Méndez-Carrillo LL, Ramírez-Solano MI, Galindo-Bustamante A, Páez-Franco JC, Morimoto S, González-Mariscal L, Cruz ME, Mendoza-Rodríguez CA. Perinatal administration of bisphenol A alters the expression of tight junction proteins in the uterus and reduces the implantation rate. Reprod Toxicol 2017; 69:106-120. [PMID: 28216266 DOI: 10.1016/j.reprotox.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 11/24/2022]
Abstract
We studied the effect of bisphenol-A (BPA) administration to rats, during the perinatal period, on the fertility of F1 generation and on the expression of tight junction (TJ) proteins in the uterus during early pregnancy. Pregnant Wistar dams (F0) received: BPA-L (0.05mg/kg/day), BPA-H (20mg/kg/day) or vehicle, from gestational day (GD) 6 to lactation day 21. F1 female pups were mated at 3 months of age and sacrificed at GD 1, 3, 6, and 7. Serum hormonal levels, ovulation rate, number of implantation sites and expression of TJ proteins in the uterus of F1 females were evaluated. BPA treatment induced no change in ovulation rate, but induced alterations in progesterone (P4) and estradiol (E2) serum levels, and in implantation rate. With regards to TJ proteins, BPA-H increased claudin-1 during all GDs; eliminated the peaks of claudins -3 and -4 at GD 3 and 6, respectively; and decreased claudin-7 at GD 6, ZO-1 from GD 1-6, and claudin-3 at GD 7 in stromal cells. BPA-L instead, eliminated claudin-3 peak at GD 3, increased claudin-4 and decreased claudin-7 from GD 1-6, decreased claudin-1 at GD 3 and 7 and claudin-4 at GD 7 in stromal cells. BPA-L also decreased ZO-1 at GDs 1 and 3 and increased ZO-1 at GD 6. Thus, BPA treatment during perinatal period perturbed, when the animals reached adulthood and became pregnant, the particular expression of TJ proteins in the uterine epithelium and reduced in consequence the number of implantation sites.
Collapse
Affiliation(s)
- Annia A Martínez-Peña
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Jorge Rivera-Baños
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Laura L Méndez-Carrillo
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Marcos I Ramírez-Solano
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Aarón Galindo-Bustamante
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - J Carlos Páez-Franco
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y de la Nutrición Salvador Zubirán, Mexico, D.F. 14080, Mexico
| | - Lorenza González-Mariscal
- Centro de Investigación y Estudios Avanzados (CINVESTAV), Departamento de Fisiología, Biofísica y Neurociencias, Mexico, D.F. 07360, Mexico
| | - M Esther Cruz
- Facultad de Estudios Superiores Zaragoza, Laboratorio de Neuroendocrinología, Universidad Nacional Autónoma de Mexico, Mexico, D.F. 15000, Mexico
| | - C Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico.
| |
Collapse
|
14
|
Poon CE, Madawala RJ, Dowland SN, Murphy CR. Nectin-3 Is Increased in the Cell Junctions of the Uterine Epithelium at Implantation. Reprod Sci 2016; 23:1580-1592. [DOI: 10.1177/1933719116648216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Connie E. Poon
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Romanthi J. Madawala
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Samson N. Dowland
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R. Murphy
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Dowland SN, Madawala RJ, Lindsay LA, Murphy CR. The adherens junction is lost during normal pregnancy but not during ovarian hyperstimulated pregnancy. Acta Histochem 2016; 118:137-43. [PMID: 26738975 DOI: 10.1016/j.acthis.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
During early pregnancy in the rat, the luminal uterine epithelial cells (UECs) must transform to a receptive state to permit blastocyst attachment and implantation. The implantation process involves penetration of the epithelial barrier, so it is expected that the transformation of UECs includes alterations in the lateral junctional complex. Previous studies have demonstrated a deepening of the tight junction (zonula occludens) and a reduction in the number of desmosomes (macula adherens) in UECs at the time of implantation. However, the adherens junction (zonula adherens), which is primarily responsible for cell-cell adhesion, has been little studied during early pregnancy. This study investigated the adherens junction in rat UECs during the early stages of normal pregnancy and ovarian hyperstimulated (OH) pregnancy using transmission electron microscopy. The adherens junction is present in UECs at the time of fertilisation, but is lost at the time of blastocyst implantation during normal pregnancy. Interestingly, at the time of implantation after OH, adherens junctions are retained and may impede blastocyst penetration of the epithelium. The adherens junction anchors the actin-based terminal web, which is known to be disrupted in UECs during early pregnancy. However, artificial disruption of the terminal web, using cytochalasin D, did not cause removal of the adherens junction in UECs. This study revealed that adherens junction disassembly occurs during early pregnancy, but that this process does not occur during OH pregnancy. Such disassembly does not appear to depend on the disruption of the terminal web.
Collapse
|
16
|
Buck V, Gellersen B, Leube R, Classen-Linke I. Interaction of human trophoblast cells with gland-like endometrial spheroids: a model system for trophoblast invasion. Hum Reprod 2015; 30:906-16. [DOI: 10.1093/humrep/dev011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Laird MK, Thompson MB, Murphy CR, McAllan BM. Uterine epithelial cell changes during pregnancy in a marsupial (Sminthopsis crassicaudata; Dasyuridae). J Morphol 2014; 275:1081-92. [DOI: 10.1002/jmor.20282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/25/2014] [Accepted: 03/21/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Melanie K. Laird
- School of Biological Sciences, University of Sydney; Sydney New South Wales 2006 Australia
| | - Michael B. Thompson
- School of Biological Sciences, University of Sydney; Sydney New South Wales 2006 Australia
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch Institute, University of Sydney; Sydney New South Wales 2006 Australia
| | - Bronwyn M. McAllan
- School of Medical Sciences and Bosch Institute, University of Sydney; Sydney New South Wales 2006 Australia
| |
Collapse
|
18
|
Van Dyke JU, Brandley MC, Thompson MB. The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes. Reproduction 2014; 147:R15-26. [DOI: 10.1530/rep-13-0309] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Squamate reptiles (lizards and snakes) are an ideal model system for testing hypotheses regarding the evolution of viviparity (live birth) in amniote vertebrates. Viviparity has evolved over 100 times in squamates, resulting in major changes in reproductive physiology. At a minimum, all viviparous squamates exhibit placentae formed by the appositions of maternal and embryonic tissues, which are homologous in origin with the tissues that form the placenta in therian mammals. These placentae facilitate adhesion of the conceptus to the uterus as well as exchange of oxygen, carbon dioxide, water, sodium, and calcium. However, most viviparous squamates continue to rely on yolk for nearly all of their organic nutrition. In contrast, some species, which rely on the placenta for at least a portion of organic nutrition, exhibit complex placental specializations associated with the transport of amino acids and fatty acids. Some viviparous squamates also exhibit reduced immunocompetence during pregnancy, which could be the result of immunosuppression to protect developing embryos. Recent molecular studies using both candidate-gene and next-generation sequencing approaches have suggested that at least some of the genes and gene families underlying these phenomena play similar roles in the uterus and placenta of viviparous mammals and squamates. Therefore, studies of the evolution of viviparity in squamates should inform hypotheses of the evolution of viviparity in all amniotes, including mammals.
Collapse
|
19
|
Real-time sensing of enteropathogenic E. coli-induced effects on epithelial host cell height, cell-substrate interactions, and endocytic processes by infrared surface plasmon spectroscopy. PLoS One 2013; 8:e78431. [PMID: 24194932 PMCID: PMC3806826 DOI: 10.1371/journal.pone.0078431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.
Collapse
|
20
|
|
21
|
Redistribution of adhering junctions in human endometrial epithelial cells during the implantation window of the menstrual cycle. Histochem Cell Biol 2012; 137:777-90. [DOI: 10.1007/s00418-012-0929-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2012] [Indexed: 10/14/2022]
|
22
|
Bartosch C, Lopes JM, Beires J, Sousa M. Human endometrium ultrastructure during the implantation window: a new perspective of the epithelium cell types. Reprod Sci 2011; 18:525-39. [PMID: 21421901 DOI: 10.1177/1933719110392055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human endometrium is a hormonally regulated tissue that cyclically growths and differentiates in order to become a structure adequate for implantation. Molecular studies have shown some contradicting results and thus a reappraisal of the endometrium ultrastructure is warranted. In our study, endometrium biopsies were taken during the implantation window of 10 healthy women of reproductive age and analyzed using electron microscopy. Our results showed that during implantation window, the endometrial epithelium encompassed 4 cell types: microvilli-rich cells, pinopode cells, vesiculated cells, and ciliated cells. These cells showed signs of active communication with their external environment and neighboring cells, such as endocytosis, transcytosis and exocytosis. We highlighted important differences between surface and glandular epitheliums and characterized apocrine and holocrine secretion. It is likely that the features described reflect distinct functions in endometrium physiology that should be taken into account in the evaluation of the endometrium during the implantation window.
Collapse
Affiliation(s)
- Carla Bartosch
- Institute of Biomedical Sciences Abel Salazar, Portugal Medical Faculty, University of Porto, Portugal.
| | | | | | | |
Collapse
|
23
|
|
24
|
Actin binding protein expression is altered in uterine luminal epithelium by clomiphene citrate, a synthetic estrogen receptor modulator. Theriogenology 2008; 69:700-13. [PMID: 18258291 DOI: 10.1016/j.theriogenology.2007.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/24/2022]
Abstract
Clomiphene citrate (CC), a synthetic oestrogen, is often prescribed as a superovulator in treating infertility. Although CC works efficiently, pregnancy rates following CC treatment are approximately 10 times lower than "natural" rates. This study investigates how a dose of 1.25 mg CC given to ovariectomized rats before the implantation priming hormones (a single dose of progesterone for 3 days and a dose of estradiol-17beta on d3, P-P-PE), alters the expression and distribution of alpha-actinin, gelsolin and vinculin. Actin binding proteins show a specific distribution within the uterine epithelium during implantation, linking the actin cytoskeleton to integrin expression on the uterine surface and in this way aiding "adhesiveness" for blastocyst apposition to the uterine epithelium. In this study, immunocytochemistry on frozen uterine sections using mouse monoclonal antibodies against alpha-actinin, gelsolin and vinculin and peroxidase-conjugated secondary antibodies, show that CC, administered before the P-P-PE regimen, down-regulates the expression of vinculin, does not alter the expression of gelsolin and up-regulates alpha-actinin on the uterine apical surface, when compared to P-P-PE treated animals. All three proteins are down-regulated on the apical surface of the luminal epithelium and glands in all groups when compared to pregnant controls. Vinculin was only localized in the basolateral compartment of the uterine epithelial cells in the CC treated groups. By down-regulating these proteins on the uterine surface and up-regulating vinculin on the basolateral membrane of the epithelium, CC may impede adhesion and invasion of blastocysts at implantation. These results may aid the exogenous manipulation of uterine tissue to control fertility and improve assisted reproductive out-comes.
Collapse
|
25
|
Kurihara I, Lee DK, Petit FG, Jeong J, Lee K, Lydon JP, DeMayo FJ, Tsai MJ, Tsai SY. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet 2007; 3:e102. [PMID: 17590085 PMCID: PMC1892047 DOI: 10.1371/journal.pgen.0030102] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/09/2007] [Indexed: 11/29/2022] Open
Abstract
Progesterone and estrogen are critical regulators of uterine receptivity. To facilitate uterine remodeling for embryo attachment, estrogen activity in the uterine epithelia is attenuated by progesterone; however, the molecular mechanism by which this occurs is poorly defined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma and its expression is regulated by the progesterone–Indian hedgehog–Patched signaling axis that emanates from the epithelium. To further assess COUP-TFII uterine function, a conditional COUP-TFII knockout mouse was generated. This mutant mouse is infertile due to implantation failure, in which both embryo attachment and uterine decidualization are impaired. Using this animal model, we have identified a novel genetic pathway in which BMP2 lies downstream of COUP-TFII. Epithelial progesterone-induced Indian hedgehog regulates stromal COUP-TFII, which in turn controls BMP2 to allow decidualization to manifest in vivo. Interestingly, enhanced epithelial estrogen activity, which impedes maturation of the receptive uterus, was clearly observed in the absence of stromal-derived COUP-TFII. This finding is consistent with the notion that progesterone exerts its control of implantation through uterine epithelial-stromal cross-talk and reveals that stromal-derived COUP-TFII is an essential mediator of this complex cross-communication pathway. This finding also provides a new signaling paradigm for steroid hormone regulation in female reproductive biology, with attendant implications for furthering our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in such human reproductive disorders as endometriosis and endometrial cancer. Pregnancy is established and maintained through a series of precisely choreographed cellular and molecular events that are controlled by two sex hormones, estrogen and progesterone. Both hormones exert their actions through their distinct nuclear receptors. During the peri-implantation period, estrogen activity is attenuated by progesterone to facilitate epithelial remodeling and embryo attachment, but the detailed molecular mechanism of how this process is achieved remains largely undefined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma, and its expression is controlled by progesterone–Indian hedgehog–Patched signaling from the epithelium to the stroma. To assess the uterine function of COUP-TFII, uterine-specific COUP-TFII knockout mice were generated. These mutant mice are infertile due to failure of implantation. We identified a novel genetic pathway in which the epithelial Ihh regulates the stroma COUP-TFII to control BMP2 and regulates decidualization. Interestingly, enhanced epithelial estrogen activity, which impedes the maturation of receptive uterus, was clearly noted in the absence of COUP-TFII. This finding reveals that COUP-TFII plays a critical role in maintaining the balance between estrogen and progesterone activities to establish proper implantation. This finding also provides new insights into women's health care associated with uncontrolled estrogen activity, such as breast cancer and endometriosis.
Collapse
Affiliation(s)
- Isao Kurihara
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dong-Kee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabrice G Petit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jaewook Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kevin Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail: (MJT); (SYT)
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail: (MJT); (SYT)
| |
Collapse
|