1
|
Hu XM, Peng L, Wu J, Wu G, Liang X, Yang JL. Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides. NPJ Biofilms Microbiomes 2024; 10:38. [PMID: 38575604 PMCID: PMC10994910 DOI: 10.1038/s41522-024-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Lihua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Jingxian Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Guanju Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| |
Collapse
|
2
|
Liu C, Goh SG, You L, Yuan Q, Mohapatra S, Gin KYH, Chen B. Low concentration quaternary ammonium compounds promoted antibiotic resistance gene transfer via plasmid conjugation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:163781. [PMID: 37149193 PMCID: PMC10158037 DOI: 10.1016/j.scitotenv.2023.163781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
During the pandemic of COVID-19, the amounts of quaternary ammonium compounds (QACs) used to inactivate the virus in public facilities, hospitals and households increased, which raised concerns about the evolution and transmission of antimicrobial resistance (AMR). Although QACs may play an important role in the propagation of antibiotic resistance gene (ARGs), the potential contribution and mechanism remains unclear. Here, the results showed that benzyl dodecyl dimethyl ammonium chloride (DDBAC) and didecyl dimethyl ammonium chloride (DDAC) significantly promoted plasmid RP4-mediated ARGs transfer within and across genera at environmental relevant concentrations (0.0004-0.4 mg/L). Low concentrations of QACs did not contribute to the permeability of the cell plasma membrane, but significantly increased the permeability of the cell outer membrane due to the decrease in content of lipopolysaccharides. QACs altered the composition and content of extracellular polymeric substances (EPS) and were positively correlated with the conjugation frequency. Furthermore, transcriptional expression levels of genes encode for mating pairing formation (trbB), DNA replication and translocation (trfA), and global regulators (korA, korB, trbA) are regulated by QACs. And we demonstrate for the first time that QACs decreased the concentration of extracellular AI-2 signals, which was verified to be involved in regulating conjugative transfer genes (trbB, trfA). Collectively, our findings underscore the risk of increased disinfectant concentrations of QACs on the ARGs transfer and provide new mechanisms of plasmid conjugation.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Shin Giek Goh
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Luhua You
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Qiyi Yuan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Sanjeeb Mohapatra
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
3
|
Volle C, Núñez ME, Spain EM, Hart BC, Wengen MB, Lane S, Criollo A, Mahoney CA, Ferguson MA. AFM Force Mapping Elucidates Pilus Deployment and Key Lifestyle-Dependent Surface Properties in Bdellovibrio bacteriovorus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4233-4244. [PMID: 36926913 PMCID: PMC10062353 DOI: 10.1021/acs.langmuir.2c03134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Bdellovibrio bacteriovorus is known for predation of a wide variety of Gram-negative bacteria, making it of interest as an alternative or supplement to chemical antibiotics. However, a fraction of B. bacteriovorus follows a nonpredatory, "host-independent" (HI) life cycle. In this study, live predatory and HI B. bacteriovorus were captured on a surface and examined, in buffer, by collecting force maps using atomic force microscopy (AFM). The approach curves obtained on HI cells are similar to those on other Gram-negative cells, with a short nonlinear region followed by a linear region. In contrast, the approach curves obtained on predatory cells have a large nonlinear region, reflecting the unusual flexibility of the predatory cell. As the AFM tip is retracted, it shows virtually no adhesion to predatory B. bacteriovorus but has multiple adhesion events on HI cells and the 200-500+ nm region immediately surrounding them. Measured pull-off forces, pull-off distances, and effective spring constants are consistent with the multiple stretching events of Type IV pili, both on and especially adjacent to the cells. Exposure of the HI B. bacteriovorus to a pH-neutral 10% cranberry juice solution, which contains type A proanthocyanidins that are known to interfere with the adhesion of multiple types of pili, results in a substantial reduction in adhesion. Type IV pili are required for successful predation by B. bacteriovorus, but pili used in the predation process are located at the non-flagellated pole of the cell and can retract when not in use. Such pili are rarely observed under the conditions of this study, where the predator has not encountered a prey cell. In contrast, HI cells appear to have many pili distributed on and around the whole cell, presumably ready to be utilized for a variety of HI cell activities including attachment to surfaces.
Collapse
Affiliation(s)
- Catherine
B. Volle
- Departments
of Chemistry and Biology, Cornell College, Mount Vernon, Iowa 52314, United States
| | - Megan E. Núñez
- Department
of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Eileen M. Spain
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Bridget C. Hart
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Michael B. Wengen
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Sophia Lane
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Alexa Criollo
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Catherine A. Mahoney
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Megan A. Ferguson
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| |
Collapse
|
4
|
Mohamed Z, Shin JH, Ghosh S, Sharma AK, Pinnock F, Bint E Naser Farnush S, Dörr T, Daniel S. Clinically Relevant Bacterial Outer Membrane Models for Antibiotic Screening Applications. ACS Infect Dis 2021; 7:2707-2722. [PMID: 34227387 DOI: 10.1021/acsinfecdis.1c00217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance is a growing global health concern that has been increasing in prevalence over the past few decades. In Gram-negative bacteria, the outer membrane is an additional barrier through which antibiotics must traverse to kill the bacterium. In addition, outer membrane features and properties, like membrane surface charge, lipopolysaccharide (LPS) length, and membrane porins, can be altered in response to antibiotics and therefore, further mediate resistance. Model membranes have been used to mimic bacterial membranes to study antibiotic-induced membrane changes but often lack the compositional complexity of the actual outer membrane. Here, we developed a surface-supported membrane platform using outer membrane vesicles (OMVs) from clinically relevant Gram-negative bacteria and use it to characterize membrane biophysical properties and investigate its interaction with antibacterial compounds. We demonstrate that this platform maintains critical features of outer membranes, like fluidity, while retaining complex membrane components, like OMPs and LPS, which are central to membrane-mediated antibiotic resistance. This platform offers a non-pathogenic, cell-free surface to study such phenomena that is compatible with advanced microscopy and surface characterization tools like quartz crystal microbalance. We confirm these OMV bilayers recapitulate membrane interactions (or lack thereof) with the antibiotic compounds polymyxin B, bacitracin, and vancomycin, validating their use as representative models for the bacterial surface. By forming OMV bilayers from different strains, we envision that this platform could be used to investigate underlying biophysical differences in outer membranes leading to resistance, to screen and identify membrane-active antibiotics, or for the development of phage technologies targeting a particular membrane surface component.
Collapse
Affiliation(s)
- Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York United States
| | - Jung-Ho Shin
- Weill Institute for Cell and Molecular Biology and Department of Microbiology, Cornell University, Ithaca, New York United States
| | - Surajit Ghosh
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Abhishek K. Sharma
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Ferra Pinnock
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Samavi Bint E Naser Farnush
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology and Department of Microbiology, Cornell University, Ithaca, New York United States
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| |
Collapse
|
5
|
Nasompag S, Siritongsuk P, Thammawithan S, Srichaiyapol O, Prangkio P, Camesano TA, Sinthuvanich C, Patramanon R. AFM Study of Nanoscale Membrane Perturbation Induced by Antimicrobial Lipopeptide C 14 KYR. MEMBRANES 2021; 11:membranes11070495. [PMID: 34208993 PMCID: PMC8307486 DOI: 10.3390/membranes11070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Lipopeptides have been extensively studied as potential antimicrobial agents. In this study, we focused on the C14-KYR lipopeptide, a modified version of the KYR tripeptide with myristic acid at the N-terminus. Here, membrane perturbation of live E. coli treated with the parent KYR and C14-KYR peptides was compared at the nanoscale level using AFM imaging. AFM analyses, including average cellular roughness and force spectroscopy, revealed the severe surface disruption mechanism of C14-KYR. A loss of surface roughness and changes in topographic features included membrane shrinkage, periplasmic membrane separation from the cell wall, and cytosolic leakage. Additional evidence from synchrotron radiation FTIR microspectroscopy (SR-FTIR) revealed a marked structural change in the membrane component after lipopeptide attack. The average roughness of the E. coli cell before and after treatment with C14-KYR was 129.2 ± 51.4 and 223.5 ± 14.1 nm, respectively. The average rupture force of the cell treated with C14-KYR was 0.16 nN, four times higher than that of the untreated cell. Our study demonstrates that the mechanistic effect of the lipopeptide against bacterial cells can be quantified through surface imaging and adhesion force using AFM.
Collapse
Affiliation(s)
- Sawinee Nasompag
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (S.N.); (C.S.)
| | - Pawinee Siritongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Panchika Prangkio
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Chomdao Sinthuvanich
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (S.N.); (C.S.)
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
- Correspondence:
| |
Collapse
|
6
|
Xu Z, Niu WA, Rivera SL, Tuominen MT, Siegrist MS, Santore MM. Surface Chemistry Guides the Orientations of Adhering E. coli Cells Captured from Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7720-7729. [PMID: 34125547 DOI: 10.1021/acs.langmuir.1c00764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Motivated by observations of cell orientation at biofilm-substrate interfaces and reports that cell orientation and adhesion play important roles in biofilm evolution and function, we investigated the influence of surface chemistry on the orientation of Escherichia coli cells captured from flow onto surfaces that were cationic, hydrophobic, or anionic. We characterized the initial orientations of nonmotile cells captured from gentle shear relative to the surface and flow directions. The broad distribution of captured cell orientations observed on cationic surfaces suggests that rapid electrostatic attractions of cells to oppositely charged surfaces preserve the instantaneous orientations of cells as they rotate in the near-surface shearing flow. By contrast, on hydrophobic and anionic surfaces, cells were oriented slightly more in the plane of the surface and in the flow direction compared with that on the cationic surface. This suggests slower development of adhesion at hydrophobic and anionic surfaces, allowing cells to tip toward the surface as they adhere. Once cells were captured, the flow was increased by 20-fold. Cells did not reorient substantially on the cationic surface, suggesting a strong cell-surface bonding. By contrast, on hydrophobic and anionic surfaces, increased shear forced cells to tip toward the surface and align in the flow direction, a process that was reversible upon reducing the shear. These findings suggest mechanisms by which surface chemistry may play a role in the evolving structure and function of microbial communities.
Collapse
Affiliation(s)
- Zhou Xu
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wuqi Amy Niu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sylvia L Rivera
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark T Tuominen
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Maria M Santore
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Grzeszczuk Z, Rosillo A, Owens Ó, Bhattacharjee S. Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. Front Pharmacol 2020; 11:517165. [PMID: 33123004 PMCID: PMC7567160 DOI: 10.3389/fphar.2020.517165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
The worldwide emergence of antimicrobial resistance (AMR) in pathogenic microorganisms, including bacteria and viruses due to a plethora of reasons, such as genetic mutation and indiscriminate use of antimicrobials, is a major challenge faced by the healthcare sector today. One of the issues at hand is to effectively screen and isolate resistant strains from sensitive ones. Utilizing the distinct nanomechanical properties (e.g., elasticity, intracellular turgor pressure, and Young’s modulus) of microbes can be an intriguing way to achieve this; while atomic force microscopy (AFM), with or without modification of the tips, presents an effective way to investigate such biophysical properties of microbial surfaces or an entire microbial cell. Additionally, advanced AFM instruments, apart from being compatible with aqueous environments—as often is the case for biological samples—can measure the adhesive forces acting between AFM tips/cantilevers (conjugated to bacterium/virion, substrates, and molecules) and target cells/surfaces to develop informative force-distance curves. Moreover, such force spectroscopies provide an idea of the nature of intercellular interactions (e.g., receptor-ligand) or propensity of microbes to aggregate into densely packed layers, that is, the formation of biofilms—a property of resistant strains (e.g., Staphylococcus aureus, Pseudomonas aeruginosa). This mini-review will revisit the use of single-cell force spectroscopy (SCFS) and single-molecule force spectroscopy (SMFS) that are emerging as powerful additions to the arsenal of researchers in the struggle against resistant microbes, identify their strengths and weakness and, finally, prioritize some future directions for research.
Collapse
Affiliation(s)
| | | | - Óisín Owens
- School of Physics, Technological University Dublin, Dublin, Ireland
| | | |
Collapse
|
9
|
Ananchenko B, Belozerov V, Byvalov A, Konyshev I, Korzhavina A, Dudina L. Evaluation of intermolecular forces between lipopolysaccharides and monoclonal antibodies using atomic force microscopy. Int J Biol Macromol 2020; 156:841-850. [PMID: 32305368 DOI: 10.1016/j.ijbiomac.2020.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022]
Abstract
Understanding of interactions between a bacterium and an immune or non-immune host organism at the cellular and subcellular level is important in order to improve new and existing immunobiological tools for the treatment of bacterial infections (including pseudotuberculosis). The aim of this work was to quantify the interaction force between Yersinia pseudotuberculosis and monoclonal antibodies (mAbs) in the model system "lipopolysaccharide (LPS) - mAbs" by atomic force microscopy (AFM). Our research findings provided the methodical approaches to force measurements between an AFM probe, which was functionalized with Y. pseudotuberculosis LPS, and mica coated by different mAbs. Based on the criteria for force estimation there was shown a greater binding force in the system "LPS - complementary mAbs" than in the system "LPS - heterologous mAbs". In both cases binding force increase followed by increase a contact time between the functionalized AFM probe and mica from 1 to 5 s. It has been shown that single bonds between LPS and complementary mAbs molecules also included a clearly defined non-specific component along with immunochemically specific one. The evidence suggests a significant proportion of applied force exerted to unfolding of high-molecular aggregates whose length may attain many hundreds of nanometers.
Collapse
Affiliation(s)
| | - Vladislav Belozerov
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| | - Andrey Byvalov
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation.
| | - Ilya Konyshev
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| | | | - Lyubov Dudina
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| |
Collapse
|
10
|
Offroy M, Razafitianamaharavo A, Beaussart A, Pagnout C, Duval JFL. Fast automated processing of AFM PeakForce curves to evaluate spatially resolved Young modulus and stiffness of turgescent cells. RSC Adv 2020; 10:19258-19275. [PMID: 35515432 PMCID: PMC9054095 DOI: 10.1039/d0ra00669f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023] Open
Abstract
Atomic Force Microscopy (AFM) is a powerful technique for the measurement of mechanical properties of individual cells in two (x × y) or three (x × y × time) dimensions. The instrumental progress makes it currently possible to generate a large amount of data in a relatively short time, which is particularly true for AFM operating in so-called PeakForce tapping mode (Bruker corporation). The latter corresponds to an AFM probe that periodically hits the sample surface while the pico-newton level interaction force is recorded from cantilever deflection. The method provides unprecedented high-resolution (a few tens of nm) imaging of the mechanical features of soft biological samples (e.g. bacteria, yeasts) and of hard abiotic surfaces (e.g. minerals). The rapid conversion of up to several tens of thousands spatially resolved force curves typically collected in AFM PeakForce tapping mode over a given cell surface area into comprehensive nanomechanical information requires the development of robust data analysis methodologies and dedicated numerical tools. In this work, we report an automated algorithm for (i) a rapid and unambiguous detection of the indentation regimes corresponding to non-linear and linear deformations of bacterial surfaces upon compression by the AFM probe, (ii) the subsequent evaluation of the Young modulus and cell surface stiffness, and (iii) the generation of spatial mappings of relevant nanomechanical properties at the single cell level. The procedure involves consistent evaluation of the contact point between the AFM probe and sample biosurface and that of the threshold indentation value marking the transition between non-linear and linear deformation regimes. For comparison purposes, the former regime is here analyzed on the basis of Hertz and Sneddon models corrected or not for effects of finite sample thickness. Analysis of AFM measurements performed on a selected Escherichia coli strain is detailed to demonstrate the feasibility, rapidity and robustness of the here-proposed PeakForce data treatment process. The flexibility of the algorithm allows consideration of force curve parameterizations other than that detailed here, which may be desired for investigation of e.g. eukaryotes nanomechanics. The performance of the adopted Hertz-based and Sneddon-based contact mechanics formalisms in recovering experimental data and in identifying nanomechanical heterogeneities at the bacterium scale is further thoroughly discussed. A numerical method is proposed for the modeling of AFM PeakForce curves and the automated extraction of relevant spatially-resolved nanomechanical properties of turgescent cells.![]()
Collapse
Affiliation(s)
- Marc Offroy
- Université de Lorraine
- CNRS
- LIEC
- F-54000 Nancy
- France
| | | | | | | | | |
Collapse
|
11
|
Goss JW, Volle CB. Using Atomic Force Microscopy To Illuminate the Biophysical Properties of Microbes. ACS APPLIED BIO MATERIALS 2019; 3:143-155. [PMID: 32851362 DOI: 10.1021/acsabm.9b00973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its invention in 1986, atomic force microscopy (AFM) has grown from a system designed for imaging inorganic surfaces to a tool used to probe the biophysical properties of living cells and tissues. AFM is a scanning probe technique and uses a pyramidal tip attached to a flexible cantilever to scan across a surface, producing a highly detailed image. While many research articles include AFM images, fewer include force-distance curves, from which several biophysical properties can be determined. In a single force-distance curve, the cantilever is lowered and raised from the surface, while the forces between the tip and the surface are monitored. Modern AFM has a wide variety of applications, but this review will focus on exploring the mechanobiology of microbes, which we believe is of particular interest to those studying biomaterials. We briefly discuss experimental design as well as different ways of extracting meaningful values related to cell surface elasticity, cell stiffness, and cell adhesion from force-distance curves. We also highlight both classic and recent experiments using AFM to illuminate microbial biophysical properties.
Collapse
Affiliation(s)
- John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Catherine B Volle
- Departments of Biology and Chemistry, Cornell College, Mount Vernon, Iowa 52314, United States
| |
Collapse
|
12
|
Byvalov AA, Konyshev IV. Yersinia pseudotuberculosis-derived adhesins. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-3-4-437-448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Around fifteen surface components referred to adhesins have been identified in Yersinia pseudotuberculosis combining primarily microbiological, molecular and genetic, as well as immunochemical and biophysical methods. Y. pseudotuberculosis-derived adhesins vary in structure and chemical composition but they are mainly presented by protein molecules. Some of them were shown to participate not only in adhesive but in other pathogen-related physiological functions in the host-parasite interplay. Adhesins can mediate bacterial adhesion to eukaryotic cell either directly or via the extracellular matrix components. These adhesion molecules are encoded by chromosomal DNA excepting YadA protein which gene is located in the calcium-dependence plasmid pYV common for pathogenic yersisniae. An optimum temperature for adhesin biosynthesis is located close to the body temperature of warm-blooded animals; however, at low temperature only invasin InvA, full-length smooth lipopolysaccharide and porin OmpF are produced in Y. pseudotuberculosis. Several adhesins (Psa, InvA) can be expressed at low pH (corresponds to intracellular content), thereby defining pathogenic yersiniae as facultative intracellular parasites. Three human Yersinia genus pathogens differ by ability to produce adhesins. Y. pseudotuberculosis adherence to host cells or extracellular matrix components is determined by a cumulative adhesion-based activity, which expression depends on chemical composition and physicochemical environmental conditions. It’s proposed that at the initial stage of infectious process adherence of Y. pseudotuberculosis to intestinal epithelium is mediated by InvA protein and “smooth” LPS form. These adhesins are produced in bacterial cells at low (lower than 30°С) temperature occurring in environment from which a pathogen invades into the host. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, possibly, liver and spleen. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, perhaps, liver and spleen. Qualitative and quantitative spectrum of Y. pseudotuberculosis adhesins is determined by environmental parameters (intercellular space, intracellular content within the diverse eukaryotic cells).
Collapse
|
13
|
Chang H, Gnanasekaran K, Gianneschi NC, Geiger FM. Bacterial Model Membranes Deform (resp. Persist) upon Ni2+ Binding to Inner Core (resp. O-Antigen) of Lipopolysaccharides. J Phys Chem B 2019; 123:4258-4270. [DOI: 10.1021/acs.jpcb.9b02762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- HanByul Chang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Karthikeyan Gnanasekaran
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Nathan C. Gianneschi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| |
Collapse
|
14
|
Sharp C, Boinett C, Cain A, Housden NG, Kumar S, Turner K, Parkhill J, Kleanthous C. O-Antigen-Dependent Colicin Insensitivity of Uropathogenic Escherichia coli. J Bacteriol 2019; 201:e00545-18. [PMID: 30510143 PMCID: PMC6351738 DOI: 10.1128/jb.00545-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Gram-negative bacteria presents a significant barrier for molecules entering the cell. Nevertheless, colicins, which are antimicrobial proteins secreted by Escherichia coli, can target other E. coli cells by binding to cell surface receptor proteins and activating their import, resulting in cell death. Previous studies have documented high rates of nonspecific resistance (insensitivity) of various E. coli strains toward colicins that is independent of colicin-specific immunity and is instead associated with lipopolysaccharide (LPS) in the outer membrane. This observation poses a contradiction: why do E. coli strains have colicin-expressing plasmids, which are energetically costly to retain, if cells around them are likely to be naturally insensitive to the colicin they produce? Here, using a combination of transposon sequencing and phenotypic microarrays, we show that colicin insensitivity of uropathogenic E. coli sequence type 131 (ST131) is dependent on the production of its O-antigen but that minor changes in growth conditions render the organism sensitive toward colicins. The reintroduction of O-antigen into E. coli K-12 demonstrated that it is the density of O-antigen that is the dominant factor governing colicin insensitivity. We also show, by microscopy of fluorescently labelled colicins, that growth conditions affect the degree of occlusion by O-antigen of outer membrane receptors but not the clustered organization of receptors. The result of our study demonstrate that environmental conditions play a critical role in sensitizing E. coli toward colicins and that O-antigen in LPS is central to this role.IMPORTANCEEscherichia coli infections can be a major health burden, especially with the organism becoming increasingly resistant to "last-resort" antibiotics such as carbapenems. Although colicins are potent narrow-spectrum antimicrobials with potential as future antibiotics, high levels of naturally occurring colicin insensitivity have been documented which could limit their efficacy. We identify O-antigen-dependent colicin insensitivity in a clinically relevant uropathogenic E. coli strain and show that this insensitivity can be circumvented by minor changes to growth conditions. The results of our study suggest that colicin insensitivity among E. coli organisms has been greatly overestimated, and as a consequence, colicins could in fact be effective species-specific antimicrobials targeting pathogenic E. coli such as uropathogenic E. coli (UPEC).
Collapse
Affiliation(s)
- Connor Sharp
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Amy Cain
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Macquarie University, Sydney, Australia
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sandip Kumar
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Keith Turner
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Pellequer JL, Parot P, Navajas D, Kumar S, Svetličić V, Scheuring S, Hu J, Li B, Engler A, Sousa S, Lekka M, Szymoński M, Schillers H, Odorico M, Lafont F, Janel S, Rico F. Fifteen years of Servitude et Grandeur
to the application of a biophysical technique in medicine: The tale of AFMBioMed. J Mol Recognit 2018; 32:e2773. [DOI: 10.1002/jmr.2773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Daniel Navajas
- Institute for Bioengineering of Catalonia and CIBER de Enfermedades Respiratorias; Universitat de Barcelona; Barcelona Spain
| | - Sanjay Kumar
- Departments of Bioengineering and Chemical & Biomolecular Engineering; University of California, Berkeley; Berkeley California USA
| | | | - Simon Scheuring
- Department of Anesthesiology, Department of Physiology and Biophysics; Weill Cornell Medicine; New York City New York USA
| | - Jun Hu
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; Shanghai China
- Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai China
| | - Bin Li
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; Shanghai China
- Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai China
| | - Adam Engler
- Department of Bioengineering; University of California San Diego; La Jolla California USA
| | - Susana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto Portugal
- ISEP-Instituto Superior de Engenharia; Politécnico do Porto; Portugal
| | - Małgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences; Kraków Poland
| | - Marek Szymoński
- Center for Nanometer-scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science; Jagiellonian University; Kraków Poland
| | | | - Michael Odorico
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ Montpellier, Marcoule; Montpellier France
| | - Frank Lafont
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Univ Lille; Lille France
| | - Sebastien Janel
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Univ Lille; Lille France
| | - Felix Rico
- LAI, U1067, Aix-Marseille Univ, CNRS, INSERM; Marseille France
| |
Collapse
|
16
|
Santos RS, Figueiredo C, Azevedo NF, Braeckmans K, De Smedt SC. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv Drug Deliv Rev 2018; 136-137:28-48. [PMID: 29248479 DOI: 10.1016/j.addr.2017.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
With the dramatic consequences of bacterial resistance to antibiotics, nanomaterials and molecular transporters have started to be investigated as alternative antibacterials or anti-infective carrier systems to improve the internalization of bactericidal drugs. However, the capability of nanomaterials/molecular transporters to overcome the bacterial cell envelope is poorly understood. It is critical to consider the sophisticated architecture of bacterial envelopes and reflect how nanomaterials/molecular transporters can interact with these envelopes, being the major aim of this review. The first part of this manuscript overviews the permeability of bacterial envelopes and how it limits the internalization of common antibiotic and novel oligonucleotide drugs. Subsequently we critically discuss the mechanisms that allow nanomaterials/molecular transporters to overcome the bacterial envelopes, focusing on the most promising ones to this end - siderophores, cyclodextrins, metal nanoparticles, antimicrobial/cell-penetrating peptides and fusogenic liposomes. This review may stimulate drug delivery and microbiology scientists in designing effective nanomaterials/molecular transporters against bacterial infections.
Collapse
|
17
|
Wu D, He L, Ge Z, Tong M, Kim H. Different electrically charged proteins result in diverse bacterial transport behaviors in porous media. WATER RESEARCH 2018; 143:425-435. [PMID: 29986251 DOI: 10.1016/j.watres.2018.06.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The influence of proteins on bacterial transport and deposition behaviors in quartz sand was examined in both NaCl (10 and 25 mM) and CaCl2 solutions (1.2 and 5 mM). Bovine Serum Albumin (BSA) and bovine trypsin were used to represent negatively and positively charged proteins in natural aquatic systems, respectively. The presence of negatively charged BSA in suspensions increased the transport and decreased bacterial deposition in quartz sand, regardless of the ionic strength and ion types. Whereas, positively charged trypsin inhibited the transport and enhanced bacterial deposition under all experimental conditions. The potential mechanisms controlling the changes of bacterial transport behaviors varied for different charged proteins. The steric repulsion resulting from BSA adsorption onto both bacteria and quartz sand was found to play a dominant role in the transport and deposition of bacteria in porous media with BSA copresent in suspension. BSA adsorption onto bacterial surfaces and competition for deposition sites onto sand surfaces (adsorption of quartz sand surfaces) contributed to the increased cell transport with BSA in suspension. In contrast, the attractive patch-charged interaction induced by the adsorption of trypsin onto both bacteria and quartz sand had great contribution to the decreased bacterial transport in porous media with trypsin copresent in suspension. The increase in bacteria size, and the adsorption of trypsin onto cell surfaces (resulting in less negative cell surface charge) and quartz sand surfaces (providing extra deposition sites) were found to be the main contributors to the decreased transport and increased deposition of bacteria in quartz sand with trypsin in suspension.
Collapse
Affiliation(s)
- Dan Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhi Ge
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
18
|
Kjaervik M, Schwibbert K, Dietrich P, Thissen A, Unger WES. Surface characterisation ofEscherichia coliunder various conditions by near-ambient pressure XPS. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6480] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marit Kjaervik
- Division 6.1 Surface Analysis and Interfacial Chemistry; Bundesanstalt für Materialforschung und -prüfung; Unter den Eichen 44-46 Berlin 12203 Germany
| | - Karin Schwibbert
- Division 4.1 Biodeterioration and Reference Organisms; Bundesanstalt für Materialforschung und -prüfung; Unter den Eichen 87 Berlin 12205 Germany
| | - Paul Dietrich
- SPECS Surface Nano Analysis GmbH; Voltastraße 5 Berlin 13355 Germany
| | - Andreas Thissen
- SPECS Surface Nano Analysis GmbH; Voltastraße 5 Berlin 13355 Germany
| | - Wolfgang E. S. Unger
- Division 6.1 Surface Analysis and Interfacial Chemistry; Bundesanstalt für Materialforschung und -prüfung; Unter den Eichen 44-46 Berlin 12203 Germany
| |
Collapse
|
19
|
Che Y, Wang L, Wu X, Chen R, Wang C, Zhou L. Characterization of Haemophilus Parasuis Serovar 2 CL120103, a Moderately Virulent Strain in China. Open Life Sci 2018; 13:217-226. [PMID: 33817086 PMCID: PMC7874736 DOI: 10.1515/biol-2018-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/27/2018] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is an important bacterium affecting pigs, causing Glässer’s disease. To further characterize this species, we determined the complete genomic sequence of H. parasuis CL120103, which was isolated from diseased pigs. The strain H. parasuis CL120103 was identified as serovar 2. The size of the largest scaffold is 2,326,318 bp and contains 145 large contigs, with the N50 contig being 20,573 bp in length. The complete genome of H. parasuis CL120103 is 2,305,354 bp in length with 39.97% GC content and contains 2227 protein-coding genes, 19 ribosomal rRNA operons and 60 tRNA genes. Sequence similarity of the genome of H. parasuis CL120103 to the previously sequenced genome of H. parasuis was up to 96% and query cover to 86%. Annotation of the genome of H. parasuis CL120103 identified a number of genes encoding potential virulence factors. These virulence factors are involved in metabolism, adhesion, secretion and LPS biosynthesis. These related genes pave the way to better understand mechanisms underlying metabolic capabilities. The comprehensive genetic and phylogenetic analysis shows that H. parasuis is closely related to Actinobacillus pleuropneumoniae and provides a foundation for future experimental confirmation of the virulence and pathogen-host interactions in H. parasuis.
Collapse
Affiliation(s)
- Yongliang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Longbai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Rujing Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Chenyan Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| |
Collapse
|
20
|
Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display. Sci Rep 2018; 8:9801. [PMID: 29955099 PMCID: PMC6023875 DOI: 10.1038/s41598-018-28102-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots) combine synthetic cargo with motile living bacteria that enable propulsion and steering. Although fabrication and potential use of such bacteriabots have attracted much attention, existing methods of fabrication require an extensive sample preparation that can drastically decrease the viability and motility of bacteria. Moreover, chemotactic behavior of bacteriabots in a liquid medium with chemical gradients has remained largely unclear. To overcome these shortcomings, we designed Escherichia coli to autonomously display biotin on its cell surface via the engineered autotransporter antigen 43 and thus to bind streptavidin-coated cargo. We show that the cargo attachment to these bacteria is greatly enhanced by motility and occurs predominantly at the cell poles, which is greatly beneficial for the fabrication of motile bacteriabots. We further performed a systemic study to understand and optimize the ability of these bacteriabots to follow chemical gradients. We demonstrate that the chemotaxis of bacteriabots is primarily limited by the cargo-dependent reduction of swimming speed and show that the fabrication of bacteriabots using elongated E. coli cells can be used to overcome this limitation.
Collapse
|
21
|
Byvalov AA, Kononenko VL, Konyshev IV. Single-Cell Force Spectroscopy of Interaction of Lipopolysaccharides from Yersinia pseudotuberculosis and Yersinia pestis with J774 Macrophage Membrane Using Optical Tweezers. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818020058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hernando-Pérez M, Setayeshgar S, Hou Y, Temam R, Brun YV, Dragnea B, Berne C. Layered Structure and Complex Mechanochemistry Underlie Strength and Versatility in a Bacterial Adhesive. mBio 2018; 9:e02359-17. [PMID: 29437925 PMCID: PMC5801468 DOI: 10.1128/mbio.02359-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
While designing synthetic adhesives that perform in aqueous environments has proven challenging, microorganisms commonly produce bioadhesives that efficiently attach to a variety of substrates, including wet surfaces. The aquatic bacterium Caulobacter crescentus uses a discrete polysaccharide complex, the holdfast, to strongly attach to surfaces and resist flow. The holdfast is extremely versatile and has impressive adhesive strength. Here, we used atomic force microscopy in conjunction with superresolution microscopy and enzymatic assays to unravel the complex structure of the holdfast and to characterize its chemical constituents and their role in adhesion. Our data support a model whereby the holdfast is a heterogeneous material organized as two layers: a stiffer nanoscopic core layer wrapped into a sparse, far-reaching, flexible brush layer. Moreover, we found that the elastic response of the holdfast evolves after surface contact from initially heterogeneous to more homogeneous. From a composition point of view, besides N-acetyl-d-glucosamine (NAG), the only component that had been identified to date, our data show that the holdfast contains peptides and DNA. We hypothesize that, while polypeptides are the most important components for adhesive force, the presence of DNA mainly impacts the brush layer and the strength of initial adhesion, with NAG playing a primarily structural role within the core. The unanticipated complexity of both the structure and composition of the holdfast likely underlies its versatility as a wet adhesive and its distinctive strength. Continued improvements in understanding of the mechanochemistry of this bioadhesive could provide new insights into how bacteria attach to surfaces and could inform the development of new adhesives.IMPORTANCE There is an urgent need for strong, biocompatible bioadhesives that perform underwater. To strongly adhere to surfaces and resist flow underwater, the bacterium Caulobacter crescentus produces an adhesive called the holdfast, the mechanochemistry of which remains undefined. We show that the holdfast is a layered structure with a stiff core layer and a polymeric brush layer and consists of polysaccharides, polypeptides, and DNA. The DNA appears to play a role in the structure of the brush layer and initial adhesion, the peptides in adhesive strength, and the polysaccharides in the structure of the core. The complex, multilayer organization and diverse chemistry described here underlie the distinctive adhesive properties of the holdfast and will provide important insights into the mechanisms of bacterial adhesion and bioadhesive applications.
Collapse
Affiliation(s)
| | - Sima Setayeshgar
- Department of Physics, Indiana University, Bloomington, Indiana, USA
| | - Yifeng Hou
- Department of Mathematics, Indiana University, Bloomington, Indiana, USA
| | - Roger Temam
- Department of Mathematics, Indiana University, Bloomington, Indiana, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Cécile Berne
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
23
|
Brandt S, Krauel K, Jaax M, Renné T, Helm CA, Hammerschmidt S, Delcea M, Greinacher A. Polyphosphates form antigenic complexes with platelet factor 4 (PF4) and enhance PF4-binding to bacteria. Thromb Haemost 2017. [DOI: 10.1160/th15-01-0062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SummaryShort chain polyphosphates (polyP) are pro-coagulant and pro-inflammatory platelet released inorganic polymers. The platelet chemokine platelet factor 4 (PF4) binds to lipid A on bacteria, inducing an antibody mediated host defense mechanism, which can be misdirected against PF4/heparin complexes leading to the adverse drug reaction heparin-induced thrombocytopenia (HIT). Here, we demonstrate that PF4 complex formation with soluble short chain polyP contributes to host defense mechanisms. Circular dichroism spectroscopy and isothermal titration calorimetry revealed that PF4 changed its structure upon binding to polyP in a similar way as seen in PF4/heparin complexes. Consequently, PF4/polyP complexes exposed neoepitopes to which human anti-PF4/heparin antibodies bound. PolyP enhanced binding of PF4 to Escherichia coli, hereby facilitating bacterial opsonisation and, in the presence of human anti-PF4/polyanion antibodies, phagocytosis. Our study indicates a role of polyP in enhancing PF4-mediated defense mechanisms of innate immunity.
Collapse
|
24
|
O’Donoghue EJ, Sirisaengtaksin N, Browning DF, Bielska E, Hadis M, Fernandez-Trillo F, Alderwick L, Jabbari S, Krachler AM. Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells. PLoS Pathog 2017; 13:e1006760. [PMID: 29186191 PMCID: PMC5724897 DOI: 10.1371/journal.ppat.1006760] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/11/2017] [Accepted: 11/17/2017] [Indexed: 11/19/2022] Open
Abstract
Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections.
Collapse
Affiliation(s)
- Eloise J. O’Donoghue
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
| | - Douglas F. Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ewa Bielska
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mohammed Hadis
- Institute of Microbiology and Infection, School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Francisco Fernandez-Trillo
- Institute of Microbiology and Infection, School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Luke Alderwick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sara Jabbari
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Exploiting pH-Regulated Dimer-Tetramer Transformation of Concanavalin A to Develop Colorimetric Biosensing of Bacteria. Sci Rep 2017; 7:1452. [PMID: 28469128 PMCID: PMC5431225 DOI: 10.1038/s41598-017-01371-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Gold nanoparticles (AuNPs) aggregation-based colorimetric biosensing remains a challenge for bacteria due to their large size. Here we propose a novel colorimetric biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk samples based on pH-regulated transformation of dimer/tetramer of Concanavalin A (Con A) and the Con A-glycosyl recognition. Briefly, antibody-modified magnetic nanoparticles was used to capture and concentrate E. coli O157:H7 and then to label with Con A; pH adjusted to 5 was then applied to dissociate Con A tetramer to release dimer, which was collected and re-formed tetramer at pH of 7 to cause the aggregation of dextran-modified AuNPs. The interesting pH-dependent conformation-transformation behavior of Con A innovated the design of the release from the bacteria surface and then the reconstruction of Con A. Therefore, we realized the sensitive colorimetric biosensing of bacteria, which are much larger than AuNPs that is generally not suitable for this kind of method. The proposed biosensor exhibited a limit of detection down to 41 CFU/mL, short assay time (~95 min) and satisfactory specificity. The biosensor also worked well for the detection in milk sample, and may provide a universal concept for the design of colorimetric biosensors for bacteria and virus.
Collapse
|
26
|
Byvalov AA, Kononenko VL, Konyshev IV. Effect of lipopolysaccharide O-side chains on the adhesiveness of Yersinia pseudotuberculosis to J774 macrophages as revealed by optical tweezers. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Yu C, Li M, Sun Y, Wang X, Chen Y. Phosphatidylethanolamine Deficiency ImpairsEscherichia coliAdhesion by Downregulating Lipopolysaccharide Synthesis, Which is Reversible by High Galactose/Lactose Cultivation. ACTA ACUST UNITED AC 2017; 23:1-10. [DOI: 10.1080/15419061.2017.1282468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chuan Yu
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ming Li
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanan Sun
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xingguo Wang
- Faculty of Life Sciences, Hubei University, Wuchang, Hubei, P.R. China
| | - Yong Chen
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
28
|
Polyspecificity of Anti-lipid A Antibodies and Its Relevance to the Development of Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:181-202. [PMID: 28887790 DOI: 10.1007/5584_2017_94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The process of natural selection favours germ-line gene segments that encode CDRs that have the ability to recognize a range of structurally related antigens. This presents an immunological advantage to the host, as it can confer protection against a common pathogen and still cope with new or changing antigens. Cross-reactive and polyspecific antibodies also play a central role in autoimmune responses, and a link has been shown to exist between auto-reactive B cells and certain bacterial infections. Bacterial DNA, lipids, and carbohydrates have been implicated in the progression of autoimmune diseases such as systemic lupus erythematosus. As well, reports of anti-lipid A antibody polyspecificity towards single-stranded DNA together with the observed sequence homology amongst isolated auto- and anti-lipid A antibodies has prompted further study of this phenomenon. Though the lipid A epitope appears cryptic during Gram-negative bacterial infection, there have been several reported instances of lipid A-specific antibodies isolated from human sera, some of which have exhibited polyspecificity for single stranded DNA. In such cases, the breakdown of negative selection through polyspecificity can have the unfortunate consequence of autoimmune disease. This review summarizes current knowledge regarding such antibodies and emphasizes the features of S1-15, A6, and S55-5, anti-lipid A antibodies whose structures were recently determined by X-ray crystallography.
Collapse
|
29
|
Perni S, Preedy EC, Landini P, Prokopovich P. Influence of csgD and ompR on Nanomechanics, Adhesion Forces, and Curli Properties of E. coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7965-7974. [PMID: 27434665 DOI: 10.1021/acs.langmuir.6b02342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Curli are bacterial appendages involved in the adhesion of cells to surfaces; their synthesis is regulated by many genes such as csgD and ompR. The expression of the two curli subunits (CsgA and CsgB) in Escherichia coli (E. coli) is regulated by CsgD; at the same time, csgD transcription is under the control of OmpR. Therefore, both genes are involved in the control of curli production. In this work, we elucidated the role of these genes in the nanomechanical and adhesive properties of E. coli MG1655 (a laboratory strain not expressing significant amount of curli) and its curli-producing mutants overexpressing OmpR and CsgD, employing atomic force microscopy (AFM). Nanomechanical analysis revealed that the expression of these genes gave origin to cells with a lower Young's modulus (E) and turgidity (P0), whereas the adhesion forces were unaffected when genes involved in curli formation were expressed. AFM was also employed to study the primary structure of the curli expressed through the freely jointed chain (FJC) model for polymers. CsgD increased the number of curli on the surface more than OmpR did, and the overexpression of both genes did not result in a greater number of curli. Neither of the genes had an impact on the structure (total length of the polymer and number and length of Kuhn segments) of the curli. Our results further suggest that, despite the widely assumed role of curli in cell adhesion, cell adhesion force is also dictated by surface properties because no relation between the number of curli expressed on the surface and cell adhesion was found.
Collapse
Affiliation(s)
- Stefano Perni
- Cardiff School of Pharmacy and Pharmaceutical Science, Cardiff University , Cardiff, U.K. CF10 3NB
| | - Emily Callard Preedy
- Cardiff School of Pharmacy and Pharmaceutical Science, Cardiff University , Cardiff, U.K. CF10 3NB
| | - Paolo Landini
- Department of Biomolecular Sciences and Biotechnology, University of Milan , 20122 Milan, Italy
| | - Polina Prokopovich
- Cardiff School of Pharmacy and Pharmaceutical Science, Cardiff University , Cardiff, U.K. CF10 3NB
| |
Collapse
|
30
|
Ostvar S, Wood BD. Multiscale Model Describing Bacterial Adhesion and Detachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5213-5222. [PMID: 27129780 DOI: 10.1021/acs.langmuir.6b00882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial surfaces are complex structures with nontrivial adhesive properties. The physics of bacterial adhesion deviates from that of ideal colloids as a result of cell-surface roughness and because of the mechanical properties of the polymers covering the cell surface. In the present study, we develop a simple multiscale model for the interplay between the potential energy functions that characterize the cell surface biopolymers and their interaction with the extracellular environment. We then use the model to study a discrete network of bonds in the presence of significant length heterogeneities in cell-surface polymers. The model we present is able to generate force curves (both approach and retraction) that closely resemble those measured experimentally. Our results show that even small-length-scale heterogeneities can lead to macroscopically nonlinear behavior that is qualitatively and quantitatively different from the homogeneous case. We also report on the energetic consequences of such structural heterogeneity.
Collapse
Affiliation(s)
- Sassan Ostvar
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| | - Brian D Wood
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
31
|
Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials 2016; 89:38-55. [PMID: 26946404 DOI: 10.1016/j.biomaterials.2016.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
|
32
|
Wu D, Tong M, Kim H. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2381-2388. [PMID: 26866280 DOI: 10.1021/acs.est.5b05496] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.
Collapse
Affiliation(s)
- Dan Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, P. R. China
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University , Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756, Republic of Korea
| |
Collapse
|
33
|
Karahan HE, Wei L, Goh K, Wiraja C, Liu Z, Xu C, Jiang R, Wei J, Chen Y. Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:951-62. [PMID: 26707949 DOI: 10.1002/smll.201502496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/08/2015] [Indexed: 05/14/2023]
Abstract
Graphene oxide (GO) is promising in the fight against pathogenic bacteria. However, the antibacterial activity of pristine GO is relatively low and concern over human cytotoxicity further limits its potential. This study demonstrates a general approach to address both issues. The developed approach synergistically combines the water shock treatment (i.e., a sudden decrease in environmental salinity) and the use of a biocompatible block copolymer (Pluronic F-127) as a synergist co-agent. Hypoosmotic stress induced by water shock makes gram-negative pathogens more susceptible to GO. Pluronic forms highly stable nanoassemblies with GO (Pluronic-GO) that can populate around bacterial envelopes favoring the interactions between GO and bacteria. The antibacterial activity of GO at a low concentration (50 μg mL(-1) ) increases from <30% to virtually complete killing (>99%) when complemented with water shock and Pluronic (5 mg mL(-1) ) at ≈2-2.5 h of exposure. Results suggest that the enhanced dispersion of GO and the osmotic pressure generated on bacterial envelopes by polymers together potentiate GO. Pluronic also significantly suppresses the toxicity of GO toward human fibroblast cells. Fundamentally, the results highlight the crucial role of physicochemical milieu in the antibacterial activity of GO. The demonstrated strategy has potentials for daily-life bacterial disinfection applications, as hypotonic Pluronic-GO mixture is both safe and effective.
Collapse
Affiliation(s)
- H Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- Singapore Institute of Manufacturing Technology (SIMTech), Singapore, 638075, Singapore
| | - Li Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Kunli Goh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Zhe Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- NTU-Northwestern Institute of Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rongrong Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jun Wei
- Singapore Institute of Manufacturing Technology (SIMTech), Singapore, 638075, Singapore
| | - Yuan Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
34
|
Gupta P, Song B, Neto C, Camesano TA. Atomic force microscopy-guided fractionation reveals the influence of cranberry phytochemicals on adhesion of Escherichia coli. Food Funct 2016; 7:2655-66. [DOI: 10.1039/c6fo00109b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of cranberry juice fractions for their role in anti-adhesive properties against pathogenicE. coliusing Atomic Force Microscopy (AFM).
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Chemical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| | - Biqin Song
- Department of Chemistry and Biochemistry
- University of Massachusetts-Dartmouth
- North Dartmouth
- USA
| | - Catherine Neto
- Department of Chemistry and Biochemistry
- University of Massachusetts-Dartmouth
- North Dartmouth
- USA
| | - Terri A. Camesano
- Department of Chemical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| |
Collapse
|
35
|
Jacobson KH, Gunsolus IL, Kuech TR, Troiano JM, Melby ES, Lohse SE, Hu D, Chrisler WB, Murphy CJ, Orr G, Geiger FM, Haynes CL, Pedersen JA. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10642-10650. [PMID: 26207769 PMCID: PMC4643684 DOI: 10.1021/acs.est.5b01841] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations and assessment of the potential implications of nanoparticle release into the environment requires understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate the electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the outer leaflet-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed the electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. The association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.
Collapse
Affiliation(s)
- Kurt H. Jacobson
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ian L. Gunsolus
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Thomas R. Kuech
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Julianne M. Troiano
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric S. Melby
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Samuel E. Lohse
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William B. Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Corresponding Authors: Phone: 608-263-4971; . Phone: 612-626-1096,
| | - Joel A. Pedersen
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Corresponding Authors: Phone: 608-263-4971; . Phone: 612-626-1096,
| |
Collapse
|
36
|
Nasompag S, Dechsiri P, Hongsing N, Phonimdaeng P, Daduang S, Klaynongsruang S, Camesano TA, Patramanon R. Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2351-64. [PMID: 26170198 DOI: 10.1016/j.bbamem.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/13/2015] [Accepted: 07/08/2015] [Indexed: 01/26/2023]
Abstract
Peptide lipidation has proven to be an inexpensive and effective strategy for designing next-generation peptide-based drug compounds. In this study, the effect of the acyl chain length of ultrashort LiPs (CX-KYR-NH2; X=10, 12, 14 and 16) on their bacterial killing and membrane disruption kinetics was investigated. The geometric mean of the minimum inhibitory concentration (MIC) values for 4 pathogenic bacterial strains was 25 μM, with a selectivity index of 10.24 for C14-KYR-NH2. LiPs at all concentrations exhibited no cytotoxicity towards human erythrocytes, but towards Vero cells at 80 μM. All the LiPs adopted secondary structure in a membrane mimicking environment. C14-KYR-NH2 aggregated above 256 μM, while C16-KYR-NH2 did above 80 μM. All LiPs showed outer membrane permeabilization within 3 min after treatment, yet the extent and kinetics of inner membrane penetration and depolarization were dependent on the acyl chain length. Cell death subsequently occurred within 10 min, and killing activity appeared to correlate most with depolarization activity but not with outer or inner membrane permeability. AFM imaging of cells treated with C14-KYR-NH2 revealed rupture of the cell surface and cytosolic leakage depending on the length of incubation. This study highlights and follows the progression of events that occur during the membrane disintegration process over time, and determines the optimal amphipathicity of ultrashort LiPs with 12-14 carbon atoms for this membrane disrupting activity. The fast acting bactericidal properties of ultrashort LiPs with optimal chain lengths make them promising candidates for drug lead compounds.
Collapse
Affiliation(s)
- Sawinee Nasompag
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Punpimon Dechsiri
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nuttaya Hongsing
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prasart Phonimdaeng
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terri A Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, MA 01609, USA
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
37
|
Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:518-26. [DOI: 10.1016/j.bbamem.2014.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/01/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022]
|
38
|
Wang S, Czuchry D, Liu B, Vinnikova AN, Gao Y, Vlahakis JZ, Szarek WA, Wang L, Feng L, Brockhausen I. Characterization of two UDP-Gal:GalNAc-diphosphate-lipid β1,3-galactosyltransferases WbwC from Escherichia coli serotypes O104 and O5. J Bacteriol 2014; 196:3122-33. [PMID: 24957618 PMCID: PMC4135647 DOI: 10.1128/jb.01698-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli displays O antigens on the outer membrane that play an important role in bacterial interactions with the environment. The O antigens of enterohemorrhagic E. coli O104 and O5 contain a Galβ1-3GalNAc disaccharide at the reducing end of the repeating unit. Several other O antigens contain this disaccharide, which is identical to the mammalian O-glycan core 1 or the cancer-associated Thomsen-Friedenreich (TF) antigen. We identified the wbwC genes responsible for the synthesis of the disaccharide in E. coli serotypes O104 and O5. To functionally characterize WbwC, an acceptor substrate analog, GalNAcα-diphosphate-phenylundecyl, was synthesized. WbwC reaction products were isolated by high-pressure liquid chromatography and analyzed by mass spectrometry, nuclear magnetic resonance, galactosidase and O-glycanase digestion, and anti-TF antibody. The results clearly showed that the Galβ1-3GalNAcα linkage was synthesized, confirming WbwCECO104 and WbwCECO5 as UDP-Gal:GalNAcα-diphosphate-lipid β1,3-Gal-transferases. Sequence analysis revealed a conserved DxDD motif, and mutagenesis showed the importance of these Asp residues in catalysis. The purified enzymes require divalent cations (Mn(2+)) for activity and are specific for UDP-Gal and GalNAc-diphosphate lipid substrates. WbwC was inhibited by bis-imidazolium salts having aliphatic chains of 18 to 22 carbons. This work will help to elucidate mechanisms of polysaccharide synthesis in pathogenic bacteria and provide technology for vaccine synthesis.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicine and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Diana Czuchry
- Department of Medicine and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Anna N Vinnikova
- Department of Medicine and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yin Gao
- Department of Medicine and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jason Z Vlahakis
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Walter A Szarek
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Inka Brockhausen
- Department of Medicine and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
39
|
Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. mBio 2014; 5:e01363-14. [PMID: 25053785 PMCID: PMC4120197 DOI: 10.1128/mbio.01363-14] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights.
Collapse
|
40
|
Pillet F, Chopinet L, Formosa C, Dague E. Atomic Force Microscopy and pharmacology: from microbiology to cancerology. Biochim Biophys Acta Gen Subj 2013; 1840:1028-50. [PMID: 24291690 DOI: 10.1016/j.bbagen.2013.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atomic Force Microscopy (AFM) has been extensively used to study biological samples. Researchers take advantage of its ability to image living samples to increase our fundamental knowledge (biophysical properties/biochemical behavior) on living cell surface properties, at the nano-scale. SCOPE OF REVIEW AFM, in the imaging modes, can probe cells morphological modifications induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be used to map single molecule distribution at the cell surface. We will focus on a collection of results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in getting a better understanding of drug mechanism of action. MAJOR CONCLUSIONS This review demonstrates that AFM is a versatile tool, useful in pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or Pseudomonas aeruginosa. The major conclusions are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative diagnostic technology. AFM has provided original results on cultured cells, cells extracted from patient and directly on patient biopsies. GENERAL SIGNIFICANCE This review enhances the interest of AFM technologies for pharmacology. The applications reviewed range from microbiology to cancerology.
Collapse
Affiliation(s)
- Flavien Pillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Louise Chopinet
- CNRS, IPBS-UMR 5089, BP64182, 205 route de Narbonne, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Cécile Formosa
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS, UMR 7565, SRSMC, Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, Faculté de Pharmacie, Nancy, France
| | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS; ITAV-USR 3505; F31106 Toulouse, France.
| |
Collapse
|
41
|
Feriancikova L, Bardy SL, Wang L, Li J, Xu S. Effects of outer membrane protein TolC on the transport of Escherichia coli within saturated quartz sands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5720-8. [PMID: 23627691 PMCID: PMC3705718 DOI: 10.1021/es400292x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The outer membrane protein (OMP) TolC is the cell surface component of several drug efflux pumps that are responsible for bacterial resistance against a variety of antibiotics. In this research, we investigated the effects of OMP TolC on E. coli transport within saturated sands through column experiments using a wild-type E. coli K12 strain (with OMP TolC), as well as the corresponding transposon mutant (tolC::kan) and the markerless deletion mutant (ΔtolC). Our results showed OMP TolC could significantly enhance the transport of E. coli when the ionic strength was 20 mM NaCl or higher. The deposition rate coefficients for the wild-type E. coli strain (with OMP TolC) was usually >50% lower than those of the tolC-negative mutants. The measurements of contact angles using three probe liquids suggested that TolC altered the surface tension components of E. coli cells and lead to lower Hamaker constants for the cell-water-sand system. The interaction energy calculations using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory suggested that the deposition of the E. coli cell primarily occurred at the secondary energy minimum. The depth of the secondary energy minimum increased with ionic strength, and was greater for the TolC-deletion strains under high ionic strength conditions. Overall, the transport behavior of three E. coli strains within saturated sands could be explained by the XDLVO calculations. Results from this research suggested that antibiotic resistant bacteria expressing OMP TolC could spread more widely within sandy aquifers.
Collapse
Affiliation(s)
- Lucia Feriancikova
- Department of Geosciences, 3209 N Maryland Ave, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Sonia L. Bardy
- Department of Biological Sciences, 3209 N Maryland Ave, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Lixia Wang
- Department of Civil Engineering and Mechanics, 3209 N Maryland Ave, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Jin Li
- Department of Civil Engineering and Mechanics, 3209 N Maryland Ave, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Shangping Xu
- Department of Geosciences, 3209 N Maryland Ave, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
- Corresponding author, , phone: 414-229-6148
| |
Collapse
|
42
|
A 7-plex microbead-based immunoassay for serotyping Shiga toxin-producing Escherichia coli. J Microbiol Methods 2013; 92:226-30. [DOI: 10.1016/j.mimet.2012.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 11/21/2022]
|
43
|
Oh YJ, Cui Y, Kim H, Li Y, Hinterdorfer P, Park S. Characterization of curli A production on living bacterial surfaces by scanning probe microscopy. Biophys J 2012; 103:1666-71. [PMID: 23083709 DOI: 10.1016/j.bpj.2012.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/07/2012] [Accepted: 09/04/2012] [Indexed: 11/18/2022] Open
Abstract
Curli are adhesive surface fibers produced by many Enterobacteriaceae, such as Escherichia coli and Salmonella enterica. They are implicated in bacterial attachment and invasion to epithelial cells. In this study, atomic force microscopy was used to determine the effects of curli on topology and mechanical properties of live E. coli cells. Young's moduli of both curli-deficient and curli-overproducing mutants were significantly lower than that of their wild-type (WT) strain, while decay lengths of the former strains were higher than that of the latter strain. Surprisingly, topological images showed that, unlike the WT and curli-overproducing mutant, the curli-deficient mutant produced a large number of flagella-like fibers, which may explain why the strain had a lower Young's modulus than the WT. These results suggest that the mechanical properties of bacterial surfaces are greatly affected by the presence of filamentous structures such as curli and flagella.
Collapse
Affiliation(s)
- Yoo Jin Oh
- Institute for Biophysics, Johannes Kepler University Linz, Linz, Austria
| | | | | | | | | | | |
Collapse
|
44
|
Meraz IM, Melendez B, Gu J, Wong STC, Liu X, Andersson HA, Serda RE. Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node. Mol Pharm 2012; 9:2049-62. [PMID: 22680980 DOI: 10.1021/mp3001292] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the NLRP3-dependent inflammasome. Inoculation of BALB/c mice with ligand-bound microparticles induces a significant increase in circulating levels of IL-1β, TNF-α, and IL-6. Stimulation of BMDC with ligand-bound microparticles increases surface expression of costimulatory and MHC molecules, and enhances migration of BMDC to the draining lymph node. LPS-microparticles stimulate in vivo C57BL/6 BMDC and OT-1 transgenic T cell interactions in the presence of OVA SIINFEKL peptide in lymph nodes, with intact nodes imaged using two-photon microscopy. Formation of in vivo and in vitro immunological synapses between BMDC, loaded with OVA peptide and LPS-microparticles, and OT-1 T cells are presented, as well as elevated intracellular interferon gamma levels in CD8(+) T cells stimulated by BMDC carrying peptide-loaded microparticles. In short, ligand-bound microparticles enhance (1) phagocytosis of microparticles; (2) BMDC inflammasome activation and upregulation of costimulatory and MHC molecules; (3) cellular migration of BMDC to lymphatic tissue; and (4) cellular interactions leading to T cell activation in the presence of antigen.
Collapse
Affiliation(s)
- Ismail M Meraz
- Department of Nanomedicine and §Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | | | | | | | | | | | | |
Collapse
|
45
|
Gao Y, Liu B, Strum S, Schutzbach JS, Druzhinina TN, Utkina NS, Torgov VI, Danilov LL, Veselovsky VV, Vlahakis JZ, Szarek WA, Wang L, Brockhausen I. Biochemical characterization of WbdN, a β1,3-glucosyltransferase involved in O-antigen synthesis in enterohemorrhagic Escherichia coli O157. Glycobiology 2012; 22:1092-102. [PMID: 22556057 DOI: 10.1093/glycob/cws081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The enterohemorrhagic O157 strain of Escherichia coli, which is one of the most well-known bacterial pathogens, has an O-antigen repeating unit structure with the sequence [-2-d-Rha4NAcα1-3-l-Fucα1-4-d-Glcβ1-3-d-GalNAcα1-]. The O-antigen gene cluster of E. coli O157 contains the genes responsible for the assembly of this repeating unit and includes wbdN. In spite of cloning many O-antigen genes, biochemical characterization has been done on very few enzymes involved in O-antigen synthesis. In this work, we expressed the wbdN gene in E. coli BL21, and the His-tagged protein was purified. WbdN activity was characterized using the donor substrate UDP-[(14)C]Glc and the synthetic acceptor substrate GalNAcα-O-PO(3)-PO(3)-(CH(2))(11)-O-Ph. The enzyme product was isolated by high pressure liquid chromatography, and mass spectrometry showed that one Glc residue was transferred to the acceptor by WbdN. Nuclear magnetic resonance analysis of the product structure indicated that Glc was β1-3 linked to GalNAc. WbdN contains a conserved DxD motif and requires divalent metal ions for full activity. WbdN activity has an optimal pH between 7 and 8 and is highly specific for UDP-Glc as the donor substrate. GalNAcα derivatives lacking the diphosphate group were inactive as substrates, and the enzyme did not transfer Glc to GlcNAcα-O-PO(3)-PO(3)-(CH(2))(11)-O-Ph. Our results illustrate that WbdN is a specific UDP-Glc:GalNAcα-diphosphate-lipid β1,3-Glc-transferase. The enzyme is a target for the development of inhibitors to block O157-antigen synthesis.
Collapse
Affiliation(s)
- Yin Gao
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shen Y, Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T. Evaluation of the single yeast cell's adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system. IEEE Trans Nanobioscience 2012; 10:217-24. [PMID: 22249767 DOI: 10.1109/tnb.2011.2177099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cell-surface adhesion force is important for cell activities and the development of bio materials. In this paper, a method for in situ single cell (W303) adhesion force measurement was proposed based on nanorobotic manipulation system inside an environment scanning electron microscope (ESEM). An end effector was fabricated from a commercial atomic force microscope (AFM) cantilever by focused ion beam (FIB) etching. The spring constant of it was calibrated by nanomanipulation approach. Three kinds of hydrophilic and hydrophobic ITO plates were prepared by using VUV-irradiation and OTS coating techniques. The shear adhesion strength of the single yeast cell to each substrate was measured based on the deflection of the end effector. The results demonstrated that the cell adhesion force was larger under the wet condition in the ESEM environment than in the aqueous condition. It also showed that the cell adhesion force to hydrophilic surface was larger than that to the hydrophobic surface. Studies of single cell's adhesion on various plate surfaces and environments could give new insights into the tissue engineering and biological field.
Collapse
Affiliation(s)
- Yajing Shen
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Wang L, Xu S, Li J. Effects of phosphate on the transport of Escherichia coli O157:H7 in saturated quartz sand. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9566-9573. [PMID: 21955132 DOI: 10.1021/es201132s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Consumption of groundwater contaminated with E. coli O157:H7 has led to several waterborne disease outbreaks over the past decade. A thorough understanding of the transport of E. coli O157:H7 within the soil-groundwater system is critical to the protection of public health. Although phosphate is ubiquitous in the natural environment, the influence of phosphate on the transport of E. coli O157:H7 in the groundwater system remains unknown. In this research, we performed column transport experiments to evaluate the effect of phosphate on the transport of E. coli O157:H7 cells within saturated sand. The pH of the solutions was maintained at 7.2, the ionic strength varied from 10 to 100 mM, and the phosphate concentration ranged from 0 to 1 mM. Our results show that (1) phosphate could enhance the transport of E. coli O157:H7 cells under both ionic strength conditions; (2) E. coli O157:H7 displayed lower retention in sand under higher ionic strength conditions; (3) increased phosphate in the mobile aqueous phase led to the release of previously immobilized E. coli O157:H7 cells. The response of E. coli O157:H7 cells to variations in phosphate concentrations and ionic strength conditions are explained using the extended DLVO (XDLVO) theory and the steric repulsion caused by extracellular macromolecules. In summary, our results suggest that phosphate could widen the spread of E. coli O157:H7 cells, and potentially other types of bacterial cells, within the soil-groundwater system.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | | | | |
Collapse
|
48
|
Oliveira MD, Andrade CA, Correia MT, Coelho LC, Singh PR, Zeng X. Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition. J Colloid Interface Sci 2011; 362:194-201. [DOI: 10.1016/j.jcis.2011.06.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/29/2022]
|
49
|
Soon RL, Nation RL, Harper M, Adler B, Boyce JD, Tan CH, Li J, Larson I. Effect of colistin exposure and growth phase on the surface properties of live Acinetobacter baumannii cells examined by atomic force microscopy. Int J Antimicrob Agents 2011; 38:493-501. [PMID: 21925844 DOI: 10.1016/j.ijantimicag.2011.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/17/2022]
Abstract
The diminishing antimicrobial development pipeline has forced the revival of colistin as a last line of defence against infections caused by multidrug-resistant Gram-negative 'superbugs' such as Acinetobacter baumannii. The complete loss of lipopolysaccharide (LPS) mediates colistin resistance in some A. baumannii strains. Atomic force microscopy was used to examine the surface properties of colistin-susceptible and -resistant A. baumannii strains at mid-logarithmic and stationary growth phases in liquid and in response to colistin treatment. The contribution of LPS to surface properties was investigated using A. baumannii strains constructed with and without the lpxA gene. Bacterial spring constant measurements revealed that colistin-susceptible cells were significantly stiffer than colistin-resistant cells at both growth phases (P<0.01), whilst colistin treatment at high concentrations (32 mg/L) resulted in more rigid surfaces for both phenotypes. Multiple, large adhesive peaks frequently noted in force curves captured on colistin-susceptible cells were not evident for colistin-resistant cells. Adhesion events were markedly reduced following colistin exposure. The cell membranes of strains of both phenotypes remained intact following colistin treatment, although fine topographical details were illustrated. These studies, conducted for the first time on live A. baumannii cells in liquid, have contributed to our understanding of the action of colistin in this problematic pathogen.
Collapse
Affiliation(s)
- Rachel L Soon
- Facility for Anti-infective Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 2011; 7:2015-28. [PMID: 21194574 DOI: 10.1016/j.actbio.2010.12.024] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/01/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022]
Abstract
Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.
Collapse
Affiliation(s)
- Kateryna Bazaka
- Electronic Materials Research Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland, Australia
| | | | | | | |
Collapse
|