1
|
Joy A, Lin M, Joines M, Saucedo A, Lee-Felker S, Baker J, Chien A, Emir U, Macey PM, Thomas MA. Ensemble Learning for Breast Cancer Lesion Classification: A Pilot Validation Using Correlated Spectroscopic Imaging and Diffusion-Weighted Imaging. Metabolites 2023; 13:835. [PMID: 37512542 PMCID: PMC10385820 DOI: 10.3390/metabo13070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The main objective of this work was to evaluate the application of individual and ensemble machine learning models to classify malignant and benign breast masses using features from two-dimensional (2D) correlated spectroscopy spectra extracted from five-dimensional echo-planar correlated spectroscopic imaging (5D EP-COSI) and diffusion-weighted imaging (DWI). Twenty-four different metabolite and lipid ratios with respect to diagonal fat peaks (1.4 ppm, 5.4 ppm) from 2D spectra, and water and fat peaks (4.7 ppm, 1.4 ppm) from one-dimensional non-water-suppressed (NWS) spectra were used as the features. Additionally, water fraction, fat fraction and water-to-fat ratios from NWS spectra and apparent diffusion coefficients (ADC) from DWI were included. The nine most important features were identified using recursive feature elimination, sequential forward selection and correlation analysis. XGBoost (AUC: 93.0%, Accuracy: 85.7%, F1-score: 88.9%, Precision: 88.2%, Sensitivity: 90.4%, Specificity: 84.6%) and GradientBoost (AUC: 94.3%, Accuracy: 89.3%, F1-score: 90.7%, Precision: 87.9%, Sensitivity: 94.2%, Specificity: 83.4%) were the best-performing models. Conventional biomarkers like choline, myo-Inositol, and glycine were statistically significant predictors. Key features contributing to the classification were ADC, 2D diagonal peaks at 0.9 ppm, 2.1 ppm, 3.5 ppm, and 5.4 ppm, cross peaks between 1.4 and 0.9 ppm, 4.3 and 4.1 ppm, 2.3 and 1.6 ppm, and the triglyceryl-fat cross peak. The results highlight the contribution of the 2D spectral peaks to the model, and they demonstrate the potential of 5D EP-COSI for early breast cancer detection.
Collapse
Affiliation(s)
- Ajin Joy
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Marlene Lin
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Melissa Joines
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Andres Saucedo
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
- Physics and Biology in Medicine-Inter-Departmental Graduate Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie Lee-Felker
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Jennifer Baker
- Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Aichi Chien
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
| | - Uzay Emir
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Paul M. Macey
- School of Nursing, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - M. Albert Thomas
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.J.); (M.L.); (M.J.); (A.S.); (S.L.-F.); (A.C.)
- Physics and Biology in Medicine-Inter-Departmental Graduate Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- BioEngineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Joy A, Saucedo A, Joines M, Lee-Felker S, Kumar S, Sarma MK, Sayre J, DiNome M, Thomas MA. Correlated MR spectroscopic imaging of breast cancer to investigate metabolites and lipids: acceleration and compressed sensing reconstruction. BJR Open 2022; 4:20220009. [PMID: 36860693 PMCID: PMC9969076 DOI: 10.1259/bjro.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
Objectives The main objective of this work was to detect novel biomarkers in breast cancer by spreading the MR spectra over two dimensions in multiple spatial locations using an accelerated 5D EP-COSI technology. Methods The 5D EP-COSI data were non-uniformly undersampled with an acceleration factor of 8 and reconstructed using group sparsity-based compressed sensing reconstruction. Different metabolite and lipid ratios were then quantified and statistically analyzed for significance. Linear discriminant models based on the quantified metabolite and lipid ratios were generated. Spectroscopic images of the quantified metabolite and lipid ratios were also reconstructed. Results The 2D COSY spectra generated using the 5D EP-COSI technique showed differences among healthy, benign, and malignant tissues in terms of their mean values of metabolite and lipid ratios, especially the ratios of potential novel biomarkers based on unsaturated fatty acids, myo-inositol, and glycine. It is further shown the potential of choline and unsaturated lipid ratio maps, generated from the quantified COSY signals across multiple locations in the breast, to serve as complementary markers of malignancy that can be added to the multiparametric MR protocol. Discriminant models using metabolite and lipid ratios were found to be statistically significant for classifying benign and malignant tumor from healthy tissues. Conclusions Accelerated 5D EP-COSI technique demonstrates the potential to detect novel biomarkers such as glycine, myo-inositol, and unsaturated fatty acids in addition to commonly reported choline in breast cancer, and facilitates metabolite and lipid ratio maps which have the potential to play a significant role in breast cancer detection. Advances in knowledge This study presents the first evaluation of a multidimensional MR spectroscopic imaging technique for the detection of potentially novel biomarkers based on glycine, myo-inositol, and unsaturated fatty acids, in addition to commonly reported choline. Spatial mapping of choline and unsaturated fatty acid ratios with respect to water in malignant and benign breast masses are also shown. These metabolic characteristics may serve as additional biomarkers for improving the diagnostic and therapeutic evaluation of breast cancer.
Collapse
Affiliation(s)
- Ajin Joy
- Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | | | - Melissa Joines
- Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Stephanie Lee-Felker
- Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Sumit Kumar
- Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Manoj K Sarma
- Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - James Sayre
- Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Maggie DiNome
- Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
3
|
Mallikourti V, Cheung SM, Gagliardi T, Senn N, Masannat Y, McGoldrick T, Sharma R, Heys SD, He J. Phased-array combination of 2D MRS for lipid composition quantification in patients with breast cancer. Sci Rep 2020; 10:20041. [PMID: 33208767 PMCID: PMC7676263 DOI: 10.1038/s41598-020-74397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Lipid composition in breast cancer, a central marker of disease progression, can be non-invasively quantified using 2D MRS method of double quantum filtered correlation spectroscopy (DQF-COSY). The low signal to noise ratio (SNR), arising from signal retention of only 25% and depleted lipids within tumour, demands improvement approaches beyond signal averaging for clinically viable applications. We therefore adapted and examined combination algorithms, designed for 1D MRS, for 2D MRS with both internal and external references. Lipid composition spectra were acquired from 17 breast tumour specimens, 15 healthy female volunteers and 25 patients with breast cancer on a clinical 3 T MRI scanner. Whitened singular value decomposition (WSVD) with internal reference yielded maximal SNR with an improvement of 53.3% (40.3-106.9%) in specimens, 84.4 ± 40.6% in volunteers, 96.9 ± 54.2% in peritumoural adipose tissue and 52.4% (25.1-108.0%) in tumours in vivo. Non-uniformity, as variance of improvement across peaks, was low at 21.1% (13.7-28.1%) in specimens, 5.5% (4.2-7.2%) in volunteers, 6.1% (5.0-9.0%) in peritumoural tissue, and 20.7% (17.4-31.7%) in tumours in vivo. The bias (slope) in improvement ranged from - 1.08 to 0.21%/ppm along the diagonal directions. WSVD is therefore the optimal algorithm for lipid composition spectra with highest SNR uniformly across peaks, reducing acquisition time by up to 70% in patients, enabling clinical applications.
Collapse
Affiliation(s)
- Vasiliki Mallikourti
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK.
| | - Sai Man Cheung
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| | - Tanja Gagliardi
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
- Department of Radiology, Royal Marsden Hospital, London, UK
| | - Nicholas Senn
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| | | | | | - Ravi Sharma
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Steven D Heys
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
- Breast Unit, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Jiabao He
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Solitary thyroid nodule: Diagnostic yield of combined diffusion weighted imaging and magnetic resonance spectroscopy. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2017.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Stabler CL, Long RC, Constantinidis I, Sambanis A. In Vivo Noninvasive Monitoring of a Tissue Engineered Construct Using 1H NMR Spectroscopy. Cell Transplant 2017; 14:139-49. [PMID: 15881423 DOI: 10.3727/000000005783983197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Direct, noninvasive monitoring of tissue engineered substitutes containing live, functional cells would provide valuable information on dynamic changes that occur postimplantation. Such changes include remodeling both within the construct and at the interface of the implant with the surrounding host tissue, and may result in changes in the number of viable cells in the construct. This study investigated the use of 1H NMR spectroscopy in noninvasively monitoring the viable cell number within a tissue engineered construct in vivo. The construct consisted of mouse βTC3 insulinomas in a disk-shaped agarose gel, surrounded by a cell-free agarose gel layer. Localized 1H NMR spectra were acquired from within implanted constructs, and the total choline resonance was measured. Critical issues that had to be addressed in accurately quantifying total choline from the implanted cells included avoiding signal from host tissue and correcting for interfering signal from diffusing solutes. In vivo NMR measurements were correlated with MTT assays and NMR measurements performed in vitro on explanted constructs. Total choline measurements accurately and noninvasively quantified viable βTC3 cell numbers in vivo, in the range of 1 × 106 to more than 14 × 106 cells, and monitored changes in viable cell number that occurred in the same construct over time. This is the first study using NMR techniques to monitor viable cell numbers in an implanted tissue substitute. It established architectural characteristics that a construct should have to be amenable to NMR monitoring, and it set the foundation for future in vivo investigations with other tissue engineered implants.
Collapse
Affiliation(s)
- C L Stabler
- Georgia Institute of Technology/Emory University Center for the Engineering of Living Tissues, 315 Ferst Drive, Atlanta, GA 30332-0363, USA
| | | | | | | |
Collapse
|
6
|
Clauser P, Marcon M, Dietzel M, Baltzer PA. A new method to reduce false positive results in breast MRI by evaluation of multiple spectral regions in proton MR-spectroscopy. Eur J Radiol 2017. [DOI: 10.1016/j.ejrad.2017.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Taha Ali TF, El Hariri MA. Combined diffusion-weighted MRI and MR spectroscopy: Feasibility to improve the MRI capability in differentiation between benign and malignant neck lymphadenopathy. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Thomas MA, Wyckoff N, Yue K, Binesh N, Banakar S, Chung HK, Sayre J, DeBruhl N. Two-dimensional MR Spectroscopic Characterization of Breast Cancer In Vivo. Technol Cancer Res Treat 2016; 4:99-106. [PMID: 15649093 DOI: 10.1177/153303460500400113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The major goal of this work was to characterize invasive ductal carcinoma and healthy fatty breast tissues noninvasively using the classification and regression tree analysis (CART) of 2D MR spectral data. 2D L-COSY spectra were acquired in 14 invasive breast carcinoma and 21 healthy fatty breasts using a GE 1.5 Tesla MRI/MRS scanner equipped with a 2-channel phased-array breast MR coil. The 2D spectra were recorded in approximately 10 minutes using a minimum voxel size of 1 ml without any water suppression technique. For healthy breasts, spectra were acquired from at least one fatty region. 2D L-COSY spectra were recorded in a total of 43 voxels. Five diagonal and six cross peak volumes were integrated and at least eighteen ratios were selected as potential features for the statistical method, namely CART. The 2D L-COSY data showed a significant increase for the majority of these ratios in invasive breast carcinomas compared to healthy fatty tissues. Better accuracy of identifying carcinomas and fatty tissues is reported using CART analysis of different combinations of ratios calculated from the relative levels of water, choline, and saturated and unsaturated lipids. This is a first report on the statistical classification of 2D L-COSY in human breast carcinomas in vivo.
Collapse
Affiliation(s)
- M Albert Thomas
- Radiological Sciences, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1721, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Near infrared spectroscopy (NIRS) utilizes intrinsic optical absorption signals of blood, water, and lipid concentration available in the NIR window (600–1000 nm) as well as a developing array of extrinsic organic compounds to detect and localize cancer. This paper reviews optical cancer detection made possible through high tumor-tissue signal-to-noise ratio (SNR) and providing biochemical and physiological data in addition to those obtained via other methods. NIRS detects cancers in vivo through a combination of blood volume and oxygenation from measurements of oxy- and deoxy-hemoglobin giving signals of tumor angiogenesis and hypermetabolism. The Chance lab tends towards CW breast cancer systems using manually scannable detectors with calibrated low pressure tissue contact. These systems calculate angiogenesis and hypermetabolism by using a pair of wavelengths and referencing the mirror image position of the contralateral breast to achieve high ROC/AUC. Time domain and frequency domain spectroscopy were also used to study similar intrinsic breast tumor characteristics such as high blood volume. Other NIRS metrics are water-fat ratio and the optical scattering coefficient. An extrinsic FDA approved dye, ICG, has been used to measure blood pooling with extravasation, similar to Gadolinium in MRI. A key future development in NIRS will be new Molecular Beacons targeting cancers and fluorescing in the NIR window to enhance in vivo tumor-tissue ratios and to afford biochemical specificity with the potential for effective photodynamic anti-cancer therapies.
Collapse
Affiliation(s)
- S Nioka
- University of Pennsylvania, Department of Biochemistry and Biophysics, 250 Anatomy-Chemistry Bldg., Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
10
|
In vivo MR spectroscopy of human breast tissue: quantification of fatty acid composition at a clinical field strength (3 T). MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:1-4. [DOI: 10.1007/s10334-015-0506-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
|
11
|
Chen JH, Su MY. Clinical application of magnetic resonance imaging in management of breast cancer patients receiving neoadjuvant chemotherapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:348167. [PMID: 23862143 PMCID: PMC3687601 DOI: 10.1155/2013/348167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022]
Abstract
Neoadjuvant chemotherapy (NAC), also termed primary, induction, or preoperative chemotherapy, is traditionally used to downstage inoperable breast cancer. In recent years it has been increasingly used for patients who have operable cancers in order to facilitate breast-conserving surgery, achieve better cosmetic outcome, and improve prognosis by reaching pathologic complete response (pCR). Many studies have demonstrated that magnetic resonance imaging (MRI) can assess residual tumor size after NAC, and that provides critical information for planning of the optimal surgery. NAC also allows for timely adjustment of administered drugs based on response, so ineffective regimens could be terminated early to spare patients from unnecessary toxicity while allowing other effective regimens to work sooner. This review article summarizes the clinical application of MRI during NAC. The use of different MR imaging methods, including dynamic contrast-enhanced MRI, proton MR spectroscopy, and diffusion-weighted MRI, to monitor and evaluate the NAC response, as well as how changes of parameters measured at an early time after initiation of a drug regimen can predict final treatment outcome, are reviewed. MRI has been proven a valuable tool and will continue to provide important information facilitating individualized image-guided treatment and personalized management for breast cancer patients undergoing NAC.
Collapse
Affiliation(s)
- Jeon-Hor Chen
- Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697-5020, USA
- Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung 82445, Taiwan
| | - Min-Ying Su
- Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697-5020, USA
| |
Collapse
|
12
|
L-COSY of breast cancer at 3T. Eur J Radiol 2012; 81 Suppl 1:S129-31. [DOI: 10.1016/s0720-048x(12)70053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Zhao C, Bolan PJ, Royce M, Lakkadi N, Eberhardt S, Sillerud L, Lee SJ, Posse S. Quantitative mapping of total choline in healthy human breast using proton echo planar spectroscopic imaging (PEPSI) at 3 Tesla. J Magn Reson Imaging 2012; 36:1113-23. [PMID: 22782667 DOI: 10.1002/jmri.23748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 06/01/2012] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI). MATERIALS AND METHODS The two-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (∼7 min). RESULTS A tCho peak with a signal to noise ratio larger than 2 was detected in 10 subjects using both PEPSI and SVS. The average tCho concentration in these subjects was 0.45 ± 0.2 mmol/kg using PEPSI and 0.48 ± 0.3 mmol/kg using SVS. Comparable results were obtained in two subjects using conventional MRSI. High lipid content in the spectra of nine tCho negative subjects was associated with spectral line broadening of more than 26 Hz, which made tCho detection impossible. Conventional MRSI with PRESS prelocalization in glandular tissue in two of these subjects yielded tCho concentrations comparable to PEPSI. CONCLUSION The detection sensitivity of PEPSI is comparable to SVS and conventional PRESS-MRSI. PEPSI can be potentially used in the evaluation of tCho in breast cancer. A tCho threshold concentration value of ∼0.7 mmol/kg might be used to differentiate between cancerous and healthy (or benign) breast tissues based on this work and previous studies.
Collapse
Affiliation(s)
- Chenguang Zhao
- Department of Neurology and UNM Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Role of diffusion-weighted imaging with ADC mapping and in vivo 1H-MR spectroscopy in thyroid nodules. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2012. [DOI: 10.1016/j.ejrnm.2012.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Korteweg MA, Veldhuis WB, Mali WP, Diepstraten SC, Luijten PR, van den Bosch MA, Eijkemans RM, van Diest PJ, Klomp DW. Investigation of lipid composition of dissected sentinel lymph nodes of breast cancer patients by 7T proton MR spectroscopy. J Magn Reson Imaging 2011; 35:387-92. [DOI: 10.1002/jmri.22820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/26/2011] [Indexed: 12/14/2022] Open
|
16
|
Thakur SB, Brennan SB, Ishill NM, Morris EA, Liberman L, Dershaw DD, Bartella L, Koutcher JA, Huang W. Diagnostic usefulness of water-to-fat ratio and choline concentration in malignant and benign breast lesions and normal breast parenchyma: an in vivo (1) H MRS study. J Magn Reson Imaging 2011; 33:855-63. [PMID: 21448950 DOI: 10.1002/jmri.22493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To compare total choline concentrations ([Cho]) and water-to-fat (W/F) ratios of subtypes of malignant lesions, benign lesions, and normal breast parenchyma and determine their usefulness in breast cancer diagnosis. Reference standard was histology. MATERIALS AND METHODS In this HIPPA compliant study, proton MRS was performed on 93 patients with suspicious lesions (>1 cm) who underwent MRI-guided interventional procedures, and on 27 prospectively accrued women enrolled for screening MRI. (W/F) and [Cho] values were calculated using MRS data. RESULTS Among 88 MRS-evaluable histologically-confirmed lesions, 40 invasive ductal carcinoma (IDC); 10 invasive lobular carcinoma (ILC); 4 ductal carcinoma in situ (DCIS); 3 invasive mammary carcinoma (IMC); 31 benign. No significant difference observed in (W/F) between benign lesions and normal breast tissue. The area under curve (AUC) of receiver operating characteristic (ROC) curves for discriminating the malignant group from the benign group were 0.97, 0.72, and 0.99 using [Cho], (W/F) and their combination as biomarkers, respectively. (W/F) performs significantly (P < 0.0001;AUC = 0.96) better than [Cho] (AUC = 0.52) in differentiating IDC and ILC lesions. CONCLUSION Although [Cho] and (W/F) are good biomarkers for differentiating malignancy, [Cho] is a better marker. Combining both can further improve diagnostic accuracy. IDC and ILC lesions have similar [Cho] levels but are discriminated using (W/F) values.
Collapse
Affiliation(s)
- Sunitha B Thakur
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lipnick S, Liu X, Sayre J, Bassett LW, Debruhl N, Thomas MA. Combined DCE-MRI and single-voxel 2D MRS for differentiation between benign and malignant breast lesions. NMR IN BIOMEDICINE 2010; 23:922-930. [PMID: 20878970 DOI: 10.1002/nbm.1511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and proton (1H) magnetic resonance spectroscopy (MRS) provide structural and biochemical information, including vascular volume, vascular permeability and tissue metabolism. In this study, we performed analysis of the enhancement characteristic from DCE-MRI and the biochemical information provided by two-dimensional (2D) Localized Correlated Spectroscopy (L-COSY) MRS to determine the sensitivity and specificity of using DCE-MRI alone compared to the combination with 2D MRS. The metabolite ratios from the 2D MRS spectra were analyzed using multivariate statistical analyses to determine a method capable of automatic separation of the patient cohort into malignant and benign lesions. A total of 24 lesions were studied with 21 diagnosed accurately using the enhancement characteristics alone resulting in sensitivity and specificity of 100% and 73%, respectively. Analysis of the 2D MRS data demonstrated a significant difference (p < 0.05) in 12 of 18 metabolite ratios analyzed for malignant compared to benign lesions. Previous research focused on utilizing the choline signal to noise ratio (SNR) as a marker for malignancy has been verified using 2D MRS in this study. Using Fisher's linear discriminant test using water (WAT)/olefinic fat diagonal (UFD), choline (CHO)/fat (FAT), CHO/UFD, and FAT/methyl fat (FMETD) as predictors the sensitivity and specificity increased to 92% and 100%, respectively. Using the Classification and Regression Tree (CART) statistical analysis the resulting sensitivity and specificity were 100% and 91%, respectively, with the most accurate predictor for differentiating malignant and benign determined to be FAT/FMETD. The cases within the study that presented a indeterminate diagnosis using DCE-MRI alone were able to be accurately diagnosed when the metabolic information from 2D MRS was incorporated. The results suggest improved breast cancer detection through the combination of morphological and enhancement information from DCE-MRI and metabolic information from 2D MRS.
Collapse
Affiliation(s)
- Scott Lipnick
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Tafreshi NK, Kumar V, Morse DL, Gatenby RA. Molecular and Functional Imaging of Breast Cancer. Cancer Control 2010; 17:143-55. [DOI: 10.1177/107327481001700302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Significant efforts have been directed toward developing and enhancing imaging methods for the early detection, diagnosis, and characterization of small breast tumors. Molecular and functional imaging sets the stage for enhancement of current methodology. Methods Current imaging modalities are described based on the molecular characteristics of normal and malignant tissue. New molecular imaging methods that have the potential for clinical use are also discussed. Results: Dynamic contrast-enhanced magnetic resonance imaging is more sensitive than mammography in BRCA1 carriers. It is used in screening and in the early evaluation of neoadjuvant therapy. Positron emission mammography is 91% sensitive and 93% specific in detecting primary breast cancers. Sentinel node scintigraphy is a key component of axillary lymph node evaluation. Other imaging modalities being studied include Tc99m sestamibi, radiolabeled thymidine or uridine, estrogen receptor imaging, magnetic resonance spectroscopy, and diffusion magnetic resonance imaging. Conclusions Molecular and functional imaging of the breast will likely alter clinical practice in diagnosing and staging primary breast cancer and assessing response to therapy since it will provide earlier information regarding the underlying biology of individual breast cancers, tumor stage, potential treatment strategies, and biomarkers for early evaluation of treatment effects.
Collapse
Affiliation(s)
| | - Virendra Kumar
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - David L. Morse
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | |
Collapse
|
19
|
Hu J, Feng W, Hua J, Jiang Q, Xuan Y, Li T, Haacke EM. A high spatial resolution in vivo 1H magnetic resonance spectroscopic imaging technique for the human breast at 3 T. Med Phys 2010; 36:4870-7. [PMID: 19994494 DOI: 10.1118/1.3213087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The technical challenges that have prevented routine proton magnetic resonance spectroscopic imaging (1H MRSI) examinations of the breast include insufficient spatial resolution, increased difficulties in shimming compared to the brain, and strong lipid contamination at short echo time (TE) at 1.5 T. The authors investigated the feasibility of high spatial resolution 1H MRSI of human breast cancer in a clinical setting at 3 T. METHODS Ten patient studies (eight cancers and two benign lesions) were performed in a 3 T whole-body clinical imager using a pulse sequence consisting of optional outer volume presaturation, optional CHESS pulse for lipid suppression, CHESS pulse for water suppression, and standard 2D/3D PRESS pulse sequence with an elliptical weighted k-space sampling scheme. RESULTS All ten studies were technically successful. The spectral quality was acceptable for all cases even the one with a 65 Hz width of water peak at half height. Choline (Cho) signals were clearly visible in malignant lesion areas, while there was no detectable Cho in normal appearing breast or in benign lesions. It was also observed that the distribution of Cho signal can be nonuniform across MRI demonstrated lesions. CONCLUSIONS To the author's knowledge, this is the first 2D/3D MRSI study of human breast cancer with short TE (less than 135 ms) at 3 T and the highest spatial resolution (up to 0.25 cm3) to date. In conclusion, the authors have presented a robust technique for high spatial resolution in vivo 1H MRSI of human breast cancer that uses the combined advantages of high field, short TE, multivoxel, and high spatial resolution itself to overcome the major technical challenges and illustrated its potential for routine clinical examination as well as advantages over single-voxel techniques in studying metabolite heterogeneity.
Collapse
Affiliation(s)
- Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Thomas MA, Lipnick S, Velan SS, Liu X, Banakar S, Binesh N, Ramadan S, Ambrosio A, Raylman RR, Sayre J, DeBruhl N, Bassett L. Investigation of breast cancer using two-dimensional MRS. NMR IN BIOMEDICINE 2009; 22:77-91. [PMID: 19086016 DOI: 10.1002/nbm.1310] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proton (1H) MRS enables non-invasive biochemical assay with the potential to characterize malignant, benign and healthy breast tissues. In vitro studies using perchloric acid extracts and ex vivo magic angle spinning spectroscopy of intact biopsy tissues have been used to identify detectable metabolic alterations in breast cancer. The challenges of 1H MRS in vivo include low sensitivity and significant overlap of resonances due to limited chemical shift dispersion and significant inhomogeneous broadening at most clinical magnetic field strengths. Improvement in spectral resolution can be achieved in vivo and in vitro by recording the MR spectra spread over more than one dimension, thus facilitating unambiguous assignment of metabolite and lipid resonances in breast cancer. This article reviews the recent progress with two-dimensional MRS of breast cancer in vitro, ex vivo and in vivo. The discussion includes unambiguous detection of saturated and unsaturated fatty acids, as well as choline-containing groups such as free choline, phosphocholine, glycerophosphocholine and ethanolamines using two-dimensional MRS. In addition, characterization of invasive ductal carcinomas and healthy fatty/glandular breast tissues non-invasively using the classification and regression tree (CART) analysis of two-dimensional MRS data is reviewed.
Collapse
Affiliation(s)
- M Albert Thomas
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1721, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Breast MRI is an area of intense research and is fast becoming an important tool for the diagnosis of breast cancer. This review covers recent advances in breast MRI, MRS, and image post-processing and analysis. Several studies have explored a multi-parametric approach to breast imaging that combines analysis of traditional contrast enhancement patterns and lesion architecture with novel methods such as diffusion, perfusion, and spectroscopy to increase the specificity of breast MRI studies. Diffusion-weighted MRI shows some potential for increasing the specificity of breast lesion diagnosis and is even more promise for monitoring early response to therapy. MRS also has great potential for increasing specificity and for therapeutic monitoring. A limited number of studies have evaluated perfusion imaging based on first-pass contrast bolus tracking, and these clearly identify that vascular indices have great potential to increase specificity. The review also covers the relatively new acquisition technique of MR elastography for breast lesion characterization. A brief survey of image processing algorithms tailored for breast MR, including registration of serial dynamic images, segmentation and extraction of morphological features of breast lesions, and contrast uptake modeling, is also included. Recent advances in MRI, MRS, and automated image analysis have increased the utility of breast MR in diagnosis, screening, management, and therapy monitoring of breast cancer.
Collapse
Affiliation(s)
- S Sinha
- Department of Radiology, University of California-San Diego, San Diego, CA 92121-0852, USA.
| | | |
Collapse
|
22
|
Haddadin IS, McIntosh A, Meisamy S, Corum C, Styczynski Snyder AL, Powell NJ, Nelson MT, Yee D, Garwood M, Bolan PJ. Metabolite quantification and high-field MRS in breast cancer. NMR IN BIOMEDICINE 2009; 22:65-76. [PMID: 17957820 PMCID: PMC2628417 DOI: 10.1002/nbm.1217] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In vivo 1H MRS is rapidly developing as a clinical tool for diagnosing and characterizing breast cancers. Many in vivo and in vitro experiments have demonstrated that alterations in concentrations of choline-containing metabolites are associated with malignant transformation. In recent years, considerable efforts have been made to evaluate the role of 1H MRS measurements of total choline-containing compounds in the management of patients with breast cancer. Current technological developments, including the use of high-field MR scanners and quantitative spectroscopic analysis methods, promise to increase the sensitivity and accuracy of breast MRS. This article reviews the literature describing in vivo MRS in breast cancer, with an emphasis on the development of high-field MR scanning and quantitative methods. Potential applications of these technologies for diagnosing suspicious lesions and monitoring response to chemotherapy are discussed.
Collapse
Affiliation(s)
- Ihab S. Haddadin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Adeka McIntosh
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sina Meisamy
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Curt Corum
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Angela L. Styczynski Snyder
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nathaniel J. Powell
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael T. Nelson
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Douglas Yee
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Patrick J. Bolan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
23
|
Mountford C, Ramadan S, Stanwell P, Malycha P. Proton MRS of the breast in the clinical setting. NMR IN BIOMEDICINE 2009; 22:54-64. [PMID: 19086012 DOI: 10.1002/nbm.1301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Information for determining whether a primary breast lesion is invasive and its receptor status and grade can be obtained before surgery by performing proton MRS on a fine-needle aspiration biopsy (FNAB) specimen and analyzing the MRS information by a pattern recognition method. Two-dimensional MRS, on either specimens or cells, allows the unambiguous assignment of most resonances. When correlated with the spectral regions selected by the pattern recognition method, there are strong indications for the biochemical markers responsible for prognostic information of invasive capacity and metastatic spread. Spectral assignments and biological correlations can be made using cell models. In vivo MRS can distinguish invasive from benign lesions. This pathological distinction can be made from the presence of resonances at discrete frequencies. To achieve this level of spectral resolution and signal-to-noise ratio, there are stringent requirements when acquiring and processing the data. The challenge now is to implement two-dimensional MRS in vivo. Until this is realized, the combination of in vivo MR, for diagnosis and spatial location, and MRS, for image-guided biopsy to provide information on tumor spread, promises to provide a higher level of preoperative diagnosis than previously achieved.
Collapse
Affiliation(s)
- Carolyn Mountford
- Centre for Clinical Spectroscopy, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
24
|
Sharma U, Sah RG, Jagannathan NR. Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) in Breast Cancer. MAGNETIC RESONANCE INSIGHTS 2008. [DOI: 10.4137/mri.s991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI) provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise. In-vivo MR spectroscopy (MRS) is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in beast cancer management.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi–-110029, India
| | - Rani Gupta Sah
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi–-110029, India
| | | |
Collapse
|
25
|
Gupta N, Kakar AK, Chowdhury V, Gulati P, Shankar LR, Vindal A. Magnetic resonance spectroscopy as a diagnostic modality for carcinoma thyroid. Eur J Radiol 2007; 64:414-8. [PMID: 17462842 DOI: 10.1016/j.ejrad.2007.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 12/16/2006] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
AIM The aim of this study was to observe the findings of magnetic resonance spectroscopy of solitary thyroid nodules and its correlation with histopathology. MATERIALS AND METHODS In this study, magnetic resonance spectroscopy was carried out on 26 patients having solitary thyroid nodules. Magnetic resonance spectroscopy (MRS) was performed on a 1.5T super conductive system with gradient strength of 33mTs. Fine needle aspiration cytology was done after MRS. All 26 patients underwent surgery either because of cytopathologically proven malignancy or because of cosmetic reasons. Findings of magnetic resonance spectroscopy were compared with histopathology of thyroid specimens. RESULTS AND CONCLUSION It was seen that presence or absence of choline peak correlates very well with presence or absence of malignant foci with in the nodule (sensitivity=100%; specificity=88.88%). These results indicate that magnetic resonance spectroscopy may prove to be an useful diagnostic modality for carcinoma thyroid.
Collapse
Affiliation(s)
- Nikhil Gupta
- Department of Surgery, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi, India.
| | | | | | | | | | | |
Collapse
|
26
|
Hu J, Yu Y, Kou Z, Huang W, Jiang Q, Xuan Y, Li T, Sehgal V, Blake C, Haacke EM, Soulen RL. A high spatial resolution 1H magnetic resonance spectroscopic imaging technique for breast cancer with a short echo time. Magn Reson Imaging 2007; 26:360-6. [PMID: 17904326 PMCID: PMC3805364 DOI: 10.1016/j.mri.2007.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/16/2007] [Accepted: 07/16/2007] [Indexed: 12/31/2022]
Abstract
The high sensitivity but low specificity of breast MRI has prompted exploration of breast (1)H MRS for breast cancer detection. However, several obstacles still prevent the routine application of in vivo breast (1)H MRS, including poor spatial resolution, long acquisition time associated with conventional multi-voxel MRS imaging (MRSI) techniques, and the difficulty of "extra" lipid suppression in a magnetic field with relatively poor achievable homogeneity compared to the brain. Using a combination of a recently developed echo-filter (EF) suppression technique and an elliptical sampling scheme, we demonstrate the feasibility of overcoming these difficulties. It is robust (the suppression technique is insensitive to magnetic field inhomogeneity), fast (acquisition time of about 12 min) and offers high spatial resolution (up to 0.6 cm(3) per voxel at 1.5 T with a TE of only 60 ms). This approach should be even better at 3 T with higher resolution and/or shorter TE.
Collapse
Affiliation(s)
- Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Over the past two decades, proton magnetic resonance spectroscopy (proton MRS) of the brain has made the transition from research tool to a clinically useful modality. In this review, we first describe the localization methods currently used in MRS studies of the brain and discuss the technical and practical factors that determine the applicability of the methods to particular clinical studies. We also describe each of the resonances detected by localized solvent-suppressed proton MRS of the brain and discuss the metabolic and biochemical information that can be derived from an analysis of their concentrations. We discuss spectral quantitation and summarize the reproducibility of both single-voxel and multivoxel methods at 1.5 and 3-4 T. We have selected three clinical neurologic applications in which there has been a consensus as to the diagnostic value of MRS and summarize the information relevant to clinical applications. Finally, we speculate about some of the potential technical developments, either in progress or in the future, that may lead to improvements in the performance of proton MRS.
Collapse
Affiliation(s)
- Yael Rosen
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts
| | - Robert E. Lenkinski
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts
| |
Collapse
|
28
|
Soher BJ, Young K, Bernstein A, Aygula Z, Maudsley AA. GAVA: spectral simulation for in vivo MRS applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 185:291-9. [PMID: 17257868 PMCID: PMC1940040 DOI: 10.1016/j.jmr.2007.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/11/2006] [Accepted: 01/10/2007] [Indexed: 05/13/2023]
Abstract
An application that provides a flexible and easy to use interface to the GAMMA spectral simulation package is described that is targeted at investigations using in vivo MR spectroscopic methods. The program makes available a number of widely used spatially localized MRS pulse sequences and NMR parameters for commonly observed tissue metabolites, enabling spectra to be simulated for any pulse sequence parameter and viewed in an integrated display. The application is interfaced with a database for storage of all simulation parameters and results of the simulations. This application provides a convenient method for generating a priori spectral information used in parametric spectral analyses and for visual examination of the effects of difference pulse sequences and parameter settings.
Collapse
Affiliation(s)
- Brian J Soher
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
29
|
He Q, Shkarin P, Hooley RJ, Lannin DR, Weinreb JC, Bossuyt VIJ. In vivo MR spectroscopic imaging of polyunsaturated fatty acids (PUFA) in healthy and cancerous breast tissues by selective multiple-quantum coherence transfer (Sel-MQC): A preliminary study. Magn Reson Med 2007; 58:1079-85. [DOI: 10.1002/mrm.21335] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Kumar M, Jagannathan NR, Seenu V, Dwivedi SN, Julka PK, Rath GK. Monitoring the therapeutic response of locally advanced breast cancer patients: Sequential in vivo proton MR spectroscopy study. J Magn Reson Imaging 2006; 24:325-32. [PMID: 16786567 DOI: 10.1002/jmri.20646] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the use of the water-to-fat (W-F) value obtained from in vivo proton ((1)H) MR spectroscopy (MRS) as a response indicator of cytologically confirmed patients with locally advanced breast cancer (LABC), and to monitor the therapeutic response of such patients to neoadjuvant chemotherapy (NACT). MATERIALS AND METHODS Serial (1)H MR spectra were recorded both before and after the completion of chemotherapy in 33 LABC patients (with infiltrating ductal carcinoma (IDC)) at 1.5T. In addition, spectra from normal breast tissues of 28 healthy volunteers were recorded. RESULTS Malignant breast tissues showed elevated W-F values compared to normal breast tissues of controls. Statistically significant higher pretherapy W-F value (P < 0.01) was observed in patients compared to controls. In patients who received NACT resulting in the reduction of the primary tumor size, the W-F value showed a decrease that was statistically significant (P < 0.01). Analysis of the MR data further indicates that the W-F value had no correlation with the menstrual status of the patients. A comparison of pretherapy W-F value with pretherapy tumor volume showed a fair correlation (P = 0.05), while the posttherapy W-F value showed no such correlation with the posttherapy tumor volume. CONCLUSION This study demonstrates that simple, conventional in vivo (1)H MRS is a useful technique for monitoring the therapeutic response of breast cancer patients. The observed trend in the reduction of W-F value provides a noninvasive response indicator to monitor the clinical outcome of locally advanced breast cancer patients to NACT.
Collapse
Affiliation(s)
- Mahesh Kumar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Magnetic resonance spectroscopy (MRS) has been used for more than two decades to interrogate metabolite distributions in living cells and tissues. Techniques have been developed that allow multiple spectra to be obtained simultaneously with individual volume elements as small as 1 uL of tissue (i.e., 1 x 1 x 1 mm(3)). The most common modern applications of in vivo MRS use endogenous signals from (1)H, (31)P, or (23)Na. Important contributions have also been made using exogenous compounds containing (19)F, (13)C, or (17)O. MRS has been used to investigate cardiac and skeletal muscle energetics, neurobiology, and cancer. This review focuses on the latter applications, with specific reference to the measurement of tissue choline, which has proven to be a tumor biomarker that is significantly affected by anticancer therapies.
Collapse
Affiliation(s)
- Robert J Gillies
- Arizona Cancer Center, 1515 Campbell Avenue, Tucson, AZ 85724-5024, USA.
| | | |
Collapse
|
32
|
Bolan PJ, Nelson MT, Yee D, Garwood M. Imaging in breast cancer: Magnetic resonance spectroscopy. Breast Cancer Res 2005; 7:149-52. [PMID: 15987466 PMCID: PMC1175074 DOI: 10.1186/bcr1202] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A technique called in vivo magnetic resonance spectroscopy (MRS) can be performed along with magnetic resonance imaging (MRI) to obtain information about the chemical content of breast lesions. This information can be used for several clinical applications, such as monitoring the response to cancer therapies and improving the accuracy of lesion diagnosis. Initial MRS studies of breast cancer show promising results, and a growing number of research groups are incorporating the technique into their breast MRI protocols. This article introduces 1H-MRS of the breast, reviews the literature, discusses current methods and technical issues, and describes applications for treatment monitoring and lesion diagnosis.
Collapse
Affiliation(s)
- Patrick J Bolan
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael T Nelson
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
- Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Douglas Yee
- Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
- Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
33
|
Pavic D, Koomen MA, Kuzmiak CM, Lee YH, Pisano ED. The role of magnetic resonance imaging in diagnosis and management of breast cancer. Technol Cancer Res Treat 2005; 3:527-41. [PMID: 15560710 DOI: 10.1177/153303460400300602] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A review of the literature on the current applications of breast magnetic resonance imaging (MRI) indications, their rationale and their place in diagnosis and management of breast cancer was given. Contrast-enhanced breast MRI is developing as a valuable adjunct to mammography and sonography. Its high sensitivity for invasive breast cancer establishes its superiority in evaluation of multifocality/multicentricity, tumor response to neoadjuvant chemotherapy, detection of recurrence, and staging. Emerging applications include spectroscopy, usage of new contrast agents, and MRI-guided interventions, including noninvasive treatment of breast cancer. Its potential benefit in screening high-risk women has yet to be established with prospective studies, particularly with regard to false positive results.
Collapse
Affiliation(s)
- Dag Pavic
- Department of Radiology, University of North Carolina at Chapel Hill Medical School, CB 7510, 101 Manning Dr., Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
34
|
Sela N, Degani H, Frydman L. Ultrafast 2D NMR spectroscopy using sinusoidal gradients: principles and ex vivo brain investigations. Magn Reson Med 2005; 52:893-7. [PMID: 15389964 DOI: 10.1002/mrm.20204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new methodology capable of delivering complete 2D NMR spectra within a single scan was recently introduced. The resulting potential gain in time resolution could open new opportunities for in vivo spectroscopy, provided that the technical demands of the methodology are satisfied by the corresponding hardware. Foremost among these demands are the relatively short switching times expected from the applied gradient-echo trains. These rapid transitions may be particularly difficult to accomplish on imaging systems. As a step toward solving this problem, we assessed the possibility of replacing the square-wave gradient train currently used during the course of the acquisition by a shaped sinusoidal gradient. Examples of the implementation of this protocol are given, and successful ultrafast acquisitions of 2D NMR spectra with suitable spectral widths on a microimaging probe (for both phantom solutions and ex vivo mouse brains) are demonstrated.
Collapse
Affiliation(s)
- Noa Sela
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
35
|
Thomas MA, Chung HK, Middlekauff H. Localized two-dimensional1H magnetic resonance exchange spectroscopy: A preliminary evaluation in human muscle. Magn Reson Med 2005; 53:495-502. [PMID: 15723396 DOI: 10.1002/mrm.20376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A localized two-dimensional (2D) (1)H MR chemical exchange spectroscopic (L-EXSY) sequence has been implemented on a whole-body 1.5-T MRI/MRS scanner. The second spectroscopic encoding to monitor the chemical exchange was an integral part of the single-volume localization using three slice-selective 90 degrees radiofrequency (RF) pulses, thereby eliminating the need for any additional RF pulses, off-resonance/continuous wave saturation, or selective inversion, which are essential in the one-dimensional (1)H MR exchange spectroscopy. Even though the TM-crusher dephased single- and higher-order multiple-quantum coherences, the zero-quantum coherences were indistinguishable from the longitudinal magnetization leading to J-coupled 2D cross peaks similar to COSY. With TM of 300 ms, two different exchange cross peaks were recorded in human calf muscle: a first peak, between the mobile tissue water and total creatine pools, and a second peak, possibly between the olefinic and magnetically equivalent poly methylene protons of unsaturated lipids. Our preliminary results demonstrate that the intermolecular and intramolecular chemical exchange mechanisms can be monitored noninvasively in human calf muscle using 2D L-EXSY.
Collapse
Affiliation(s)
- M Albert Thomas
- Department of Radiological Sciences, Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1721, USA.
| | | | | |
Collapse
|
36
|
Méric P, Autret G, Doan BT, Gillet B, Sébrié C, Beloeil JC. In vivo 2D magnetic resonance spectroscopy of small animals. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:317-38. [PMID: 15625585 DOI: 10.1007/s10334-004-0084-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 01/05/2023]
Abstract
Localized in vivo NMR spectroscopy, chemical shift imaging or multi-voxel spectroscopy are potentially useful tools in small animals that are complementary to MRI, adding biochemical information to the mainly anatomical data provided by imaging of water protons. However the contribution of such methods remains hampered by the low spectral resolution of the in vivo 1D spectra. Two-dimensional methods widely developed for in vitro studies have been proposed as suitable approaches to overcome these limitations in resolution. The different homonuclear and heteronuclear sequences adapted to in vivo studies are reviewed. Their specific contributions to the spectral resolution of spectroscopic data and their limitations for in vivo investigations are discussed. The applications to experimental models of pathological processes or pharmacological treatment in mainly brain and muscle are presented. According to their combined sensitivity, acquisition duration and spatial resolution, the heteronuclear 2D experiments, which are mainly used for 1H detected-13C spectroscopy after administration of 13C-labeled compounds, appear to be less efficient than 1H detected-13C 1D methods at high field. However, the applications of 2D proton homonuclear methods show that they remain the best tools for in vivo studies when an improved resolution is required.
Collapse
Affiliation(s)
- P Méric
- Laboratoire de RMN Biologique, ICSN-CNRS, Avenue de la Terrasse, 91198, Gif sur Yvette, France.
| | | | | | | | | | | |
Collapse
|
37
|
Stanwell P, Gluch L, Clark D, Tomanek B, Baker L, Giuffrè B, Lean C, Malycha P, Mountford C. Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5�T. Eur Radiol 2004; 15:1037-43. [PMID: 15351906 DOI: 10.1007/s00330-004-2475-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 05/07/2004] [Accepted: 08/02/2004] [Indexed: 11/24/2022]
Abstract
The purpose was to determine if in vivo proton magnetic resonance spectroscopy ((1)H MRS) at 1.5 T can accurately provide the correct pathology of breast disease. Forty-three asymptomatic volunteers including three lactating mothers were examined and compared with 21 breast cancer patients. Examinations were undertaken at 1.5 T using a purpose-built transmit-receive single breast coil. Single voxel spectroscopy was undertaken using echo times of 135 and 350 ms. The broad composite resonance at 3.2 ppm, which includes contributions from choline, phosphocholine (PC), glycerophosphocholine (GPC), myo-inositol and taurine, was found not to be a unique marker for malignancy providing a diagnostic sensitivity and specificity of 80.0 and 86.0%, respectively. This was due to three of the asymptomatic volunteers and all of the lactating mothers also generating the broad composite resonance at 3.2 ppm. Optimised post-acquisitional processing of the spectra resolved a resonance at 3.22 ppm, consistent with PC, in patients with cancer. In contrast the spectra recorded for three false-positive volunteers, and the three lactating mothers had a resonance centred at 3.28 ppm (possibly taurine, myo-inositol or GPC). This improved the specificity of the test to 100%. Careful referencing of the spectra and post-acquisitional processing intended to optimise spectral resolution of in vivo MR proton spectra from human breast tissue resolves the composite choline resonance. This allows the distinction of patients with malignant disease from volunteers with a sensitivity of 80% and specificity of 100%. Therefore, resolution of the composite choline resonance into its constituent components improves the specificity of the in vivo (1)H MRS method, but does not overcome the problem of 20% false-negatives.
Collapse
Affiliation(s)
- Peter Stanwell
- Institute for Magnetic Resonance Research and Department of Magnetic Resonance in Medicine, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mountford CE, Doran S, Lean CL, Russell P. Proton MRS Can Determine the Pathology of Human Cancers with a High Level of Accuracy. Chem Rev 2004; 104:3677-704. [PMID: 15303833 DOI: 10.1021/cr030410g] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carolyn E Mountford
- Institute for Magnetic Resonance Research, P.O. Box 148, St. Leonards, 1590 NSW, Australia.
| | | | | | | |
Collapse
|
39
|
Hiba B, Faure B, Lamalle L, Décorps M, Ziegler A. Out-and-in spiral spectroscopic imaging in rat brain at 7 T. Magn Reson Med 2004; 50:1127-33. [PMID: 14648560 DOI: 10.1002/mrm.10622] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
With standard spectroscopic imaging, high spatial resolution is achieved at the price of a large number of phase-encoding steps, leading to long acquisition times. Fast spatial encoding methods reduce the minimum total acquisition time. In this article, a k-space scanning scheme using a continuous series of growing and shrinking, or "out-and-in," spiral trajectories is implemented and the feasibility of spiral spectroscopic imaging for animal models at high B(0) field is demonstrated. This method was applied to rat brain at 7 T. With a voxel size of about 8.7 microl (as calculated from the point-spread function), a 30 x 30 matrix, and a spectral bandwidth of 11 kHz, the minimum scan time was 9 min 20 sec for a signal-to-noise ratio of 7.1 measured on the N-acetylaspartate peak.
Collapse
Affiliation(s)
- Bassem Hiba
- Laboratoire mixte INSERM U594 / Université Joseph Fourier Neuroimagerie fonctionnelle et métabolique, Laboratoire de Recherche Conventionné (30V) du CEA, Centre Hospitalier Universitaire, Grenoble, France
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Jacobs MA, Barker PB, Argani P, Ouwerkerk R, Bhujwalla ZM, Bluemke DA. Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging: A feasibility study. J Magn Reson Imaging 2004; 21:23-8. [PMID: 15611934 DOI: 10.1002/jmri.20239] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To investigate the feasibility of combined dynamic contrast enhanced (DCE) and magnetic resonance spectroscopy (MRS) in evaluating breast lesions. METHODS Nine patients with positive mammograms scheduled for either biopsy or mastectomy were examined on a 1.5-T MR scanner. DCE was performed with administration of gadolinium-DTPA contrast using a two-dimensional spoiled gradient recall echo (SPGR) sequence. Proton spectroscopy (TR/TE = 2000/272 msec) was performed using PRESS single slice (10 mm). Lesion time intensity curves were classified as persistent (type 1), plateau (type 2), or washout (type 3) pattern enhancement. Choline (Cho) signal-to-noise ratios (SNRs) and enhancement patterns were compared between benign and malignant lesions as determined by histopathology. RESULTS Five patients had breast carcinoma and four had benign lesions. Type 1 enhancement was found in two benign cases, type 2 enhancement in two of four benign and four of five malignant lesions, and one malignant case exhibited a type 3 pattern. Choline SNR was significantly different (P < 0.003) between benign and malignant lesions (2.0 +/- 0.3 vs. 5.7 +/- 1.4; P < 0.003). Choline SNR was less than 4.0 in all of the benign lesions, including the two lesions with type 2 enhancement. CONCLUSION Proton MRS appears to be a promising technique for classification of breast lesions when DCE results are equivocal. A combination of DCE and MRS is feasible, and may have improved specificity compared to either modality alone.
Collapse
Affiliation(s)
- Michael A Jacobs
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Jacobs MA, Barker PB, Bottomley PA, Bhujwalla Z, Bluemke DA. Proton magnetic resonance spectroscopic imaging of human breast cancer: A preliminary study. J Magn Reson Imaging 2003; 19:68-75. [PMID: 14696222 DOI: 10.1002/jmri.10427] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To investigate the diagnostic value of proton magnetic resonance spectroscopic imaging (MRSI) in patients with breast lesions. MATERIALS AND METHODS Eighteen patients underwent breast MRSI and MRI at 1.5 T. Contrast-enhanced MR was used to identify the lesion, after which single-slice MRSI (TR/TE = 2000/272 msec, 10-mm slice thickness) was performed. Water, lipid, and choline (Cho) images were reconstructed from MRSI data. The area of the Cho was measured in the lesion and expressed relative to the background noise level (signal-to-noise ratio (SNR)), measured between 7.0 and 9.0 ppm. Cho SNRs were compared between benign and malignant lesions as determined by histopathology. RESULTS Three cases were considered technical failures on MRSI. Of the remaining 15 cases, on histopathology, eight were classified as malignant carcinoma and seven were benign. The Cho SNR from malignant tissue was significantly elevated compared to benign tissue (6.2 +/- 2.1 vs. 2.4 +/- 0.7, P < 0.0008). CONCLUSIONS MRSI measurements of Cho are feasible in the human breast, and the SNR for Cho was significantly different between benign and malignant lesions. The potential advantages of MRSI over SV spectroscopy include the ability to assess multiple lesions as well as tissue with normal MRI appearance, as well as to perhaps gauge lesion borders and infiltration into surrounding tissue.
Collapse
Affiliation(s)
- Michael A Jacobs
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
43
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2002; 15:251-262. [PMID: 11968141 DOI: 10.1002/nbm.748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|