1
|
Choi HJ, Han M, Jung B, Huh H, Lee EH, Choi JR, Park J. Evaluation of blood-tumor barrier permeability and doxorubicin delivery in rat brain tumor models using additional focused ultrasound stimulation. Sci Rep 2025; 15:6592. [PMID: 39994241 PMCID: PMC11850853 DOI: 10.1038/s41598-025-88379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Focused ultrasound (FUS) has emerged as a promising technique for temporarily disrupting the blood-brain barrier (BBB) and blood-tumor barrier (BTB) to enhance the delivery of therapeutic agents. Despite its potential, optimizing FUS to maximize drug delivery while minimizing adverse effects remains a significant challenge. In this study, we evaluated a novel FUS protocol that incorporates additional FUS stimulation without microbubbles (MBs) ("FUS protocol") prior to conventional BBB disruption with MBs ("BBBD protocol") in a rat brain tumor model (n = 35). This approach aimed to validate its effectiveness in enhancing BBB/BTB disruption and facilitating doxorubicin delivery. T1-weighted contrast-enhanced and dynamic contrast-enhanced (DCE) MRI demonstrated significant increases in signal intensity and permeability (Ktrans) in the tumor region under the "FUS + BBBD protocol", with 2.65-fold and 2.08-fold increases, respectively, compared to the non-sonicated contralateral region. These values were also elevated compared to the conventional "BBBD protocol" by 1.45-fold and 1.25-fold, respectively. Furthermore, doxorubicin delivery in the targeted region increased by 1.91-fold under the "FUS + BBBD protocol", compared to a 1.44-fold increase using the conventional "BBBD protocol". This novel FUS approach offers a promising, cost-effective strategy for enhancing drug delivery to brain tumors. While further studies are required to assess its applicability with different chemotherapeutics and tumor types, it holds significant potential for improving brain tumor treatment in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Hyo Jin Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Mun Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Byeongjin Jung
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
- BioHealth Convergence Center, Daegu Technopark, 46-17 Seongseogongdan-ro, Dalseo-gu, Daegu, 42716, Republic of Korea
| | - Hyungkyu Huh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Juyoung Park
- College of IT Convergence, Department of Biomedical Device, Gachon University, 1342, Seongnam-daero, Sujeong-gu, 1342, Seongnam, 13120, Gyeonggi, Republic of Korea.
- Neumous Inc., 1526, Seongnam-daero, Sujeong-gu, Seongnam-si, 13113, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Lam WW, Chudzik A, Lehman N, Łazorczyk A, Kozioł P, Niedziałek A, Gananathan A, Orzyłowska A, Rola R, Stanisz GJ. Saturation transfer (CEST and MT) MRI for characterization of U-87 MG glioma in the rat. NMR IN BIOMEDICINE 2025; 38:e5282. [PMID: 39473129 PMCID: PMC11631369 DOI: 10.1002/nbm.5282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 12/12/2024]
Abstract
The focus of this work was to identify the optimal magnetic resonance imaging (MRI) contrast between orthotopic U-87 MG tumours and normal appearing brain with the eventual goal of treatment response monitoring. U-87 MG human glioblastoma cells were injected into the brain of RNU nude rats (n = 9). The rats were imaged at 7 T at three timepoints for all animals: 3-5, 7-9, and 11-13 days after implantation. Whole-brain T1-weighted (before and after gadolinium contrast agent injection), diffusion, and fluid-attenuated inversion recovery scans were performed. In addition, single-slice saturation-transfer-weighted chemical exchange saturation transfer (CEST), magnetization transfer (MT), and water saturation shift referencing (WASSR) contrast Z-spectra and T1 and T2 maps were also acquired. The MT and WASSR Z-spectra and T1 map were fitted to a two-pool quantitative MT model to estimate the T2 of the free and macromolecular-bound water molecules, the relative macromolecular pool size (M0, MT), and the magnetization exchange rate from the macromolecular pool to the free pool (RMT). The T1-corrected apparent exchange-dependent relaxation (AREX) metric to isolate the CEST contributions was also calculated. The lesion on M0, MT and AREX maps with a B1 of 2 μT best matched the hyperintensity on the post-contrast T1-weighted image. There was also good separation in Z-spectra between the lesion and contralateral cortex in the 2-μT CEST and 3- and 5-μT MT Z-spectra at all time points. A pairwise Wilcoxon signed-rank tests with Holm-Bonferroni adjustment on MRI parameters was performed and the differences between enhancing lesion and contralateral cortex for the MT ratio with 2 μT saturation at 3.6 ppm frequency offset (corresponding to the amide chemical group) and M0, MT were both strongly significant (p < 0.001) at all time points. This work has identified that differences between enhancing lesion and contralateral cortex are strongest in MTR with B1 = 2 μT at 3.6 ppm and relative macromolecular pool size (M0, MT) images over entire period of 3-13 days after cancer cell implantation.
Collapse
Affiliation(s)
- Wilfred W. Lam
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
| | - Agata Chudzik
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Natalia Lehman
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Artur Łazorczyk
- Department of RadiographyMedical University of LublinLublinPoland
| | - Paulina Kozioł
- Department of RadiographyMedical University of LublinLublinPoland
| | - Anna Niedziałek
- Department of RadiographyMedical University of LublinLublinPoland
| | - Athavan Gananathan
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
| | - Anna Orzyłowska
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Radosław Rola
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Greg J. Stanisz
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Lu YS, Chen J, He XR, Yang SL, Ma BJ, Yu J, Qiu J, Qian YZ, Xu YY. Perfluorooctane sulfonate (PFOS) and benzo[a]pyrene (BaP) synergistically induce neurotoxicity in C6 rat glioma cells via the activation of neurotransmitter and Cyp1a1-mediated steroid hormone synthesis pathways. Food Chem Toxicol 2024; 193:115058. [PMID: 39423996 DOI: 10.1016/j.fct.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Humans are often exposed to complex mixtures of multiple pollutants rather than a single pollutant. However, the combined toxic effects and the molecular mechanism of PFOS and BaP remain poorly understood. In this study, two typical environmental pollutants, perfluorooctane sulfonate acid (PFOS) and benzo [a]pyrene (BaP), were selected to investigate their combined neurotoxic effects on rat C6 glioma cells at environmentally relevant concentrations. The results showed that coexposure to low-dose PFOS and BaP induced greater toxicity (synergistic effect) than did single exposure. PFOS-BaP coexposure had stronger toxic effects on inducing oxidative stress and promoting early apoptosis. Targeted metabolomics confirmed that increased levels of the neurotransmitters 5-hydroxytryptophan, dopamine, tryptophan and serotonin disturb the phenylalanine, tyrosine and tryptophan biosynthesis pathways. Mechanistically, exposure to a low-dose PFOS-BaP binary mixture induces steroid hormone synthesis disorder through the activation of Cyp1a1 and Hsd17b8 (steroid hormone synthesis genes) and Dhcr24 and Dhcr7 (cholesterol synthesis genes). These findings are useful for comprehensively and systematically elucidating the biological safety of PFOS-BaP and its potential threats to human health.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ju Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao-Rong He
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shang-Lin Yang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bing-Jie Ma
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Iyer VJ, Donahue JE, Osman MA. Role of scaffold proteins in the heterogeneity of glioblastoma. Cell Commun Signal 2024; 22:477. [PMID: 39375741 PMCID: PMC11457365 DOI: 10.1186/s12964-024-01809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
Glioblastoma (GB) is a highly heterogeneous type of incurable brain cancer with a low survival rate. Intensive ongoing research has identified several potential targets; however, GB is marred by the activation of multiple pathways, and thus common targets are highly sought. The signal regulatory scaffold IQGAP1 is an oncoprotein implicated in GB. IQGAP1 nucleates a myriad of pathways in a contextual manner and modulates many of the targets altered in GB like MAPK, NF-κB, and mTOR/PI3K/Akt1, thus positioning it as a plausible common therapeutic target. Here, we review the targets that are subjects of GB treatment clinical trials and the commonly used animal models that facilitate target identification. We propose a model in which the dysfunction of various IQGAP1 pathways can explain to a larger extent some of the GB heterogeneity and offer a platform for personalized medicine.
Collapse
Affiliation(s)
- Varun J Iyer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - John E Donahue
- Division of Neuropathology, Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Mahasin A Osman
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
5
|
Salas-Gallardo GA, Lorea-Hernández JJ, Robles-Gómez ÁA, Del Campo CCM, Peña-Ortega F. Morphological differentiation of peritumoral brain zone microglia. PLoS One 2024; 19:e0297576. [PMID: 38451958 PMCID: PMC10919594 DOI: 10.1371/journal.pone.0297576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The Peritumoral Brain Zone (PBZ) contributes to Glioblastoma (GBM) relapse months after the resection of the original tumor, which is influenced by a variety of pathological factors. Among those, microglia are recognized as one of the main regulators of GBM progression and probably relapse. Although microglial morphology has been analyzed inside GBM and its immediate surroundings, it has not been objectively characterized throughout the PBZ. Thus, we aimed to perform a thorough characterization of microglial morphology in the PBZ and its likely differentiation not just from the tumor-associated microglia but from control tissue microglia. For this purpose, Sprague Dawley rats were intrastriatally implanted with C6 cells to induce a GBM formation. Gadolinium-based magnetic resonance imaging (MRI) was performed to locate the tumor and to define the PBZ (2 mm beyond the tumor border), thus delimitating the different regions of interest (ROIs: core tumoral zone and immediate interface; contralateral striatum as control). Brain slices were obtained and immunolabeled with the microglia marker Iba-1. Sixteen morphological parameters were measured for each cell, significative differences were found in all parameters when comparing the four ROIs. To determine if PBZ microglia could be morphologically differentiated from microglia in other ROIs, hierarchical clustering analysis was performed, revealing that microglia can be separated into four morphologically differentiated clusters, each of them mostly integrated by cells sampled in each ROI. Furthermore, a classifier based on linear discriminant analysis, including only three morphological parameters, categorized microglial cells across the studied ROIs and showed a gradual transition between them. The robustness of this classification was assessed through principal component analysis with the remaining 13 morphological parameters, corroborating the obtained results. Thus, in this study we provided objective and quantitative evidence that PBZ microglia represent a differentiable microglial morphotype that could contribute to the recurrence of GBM in this area.
Collapse
Affiliation(s)
- G. Anahí Salas-Gallardo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Jonathan-Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Ángel Abdiel Robles-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Claudia Castillo-Martin Del Campo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
6
|
Fletcher SMP, Chisholm A, Lavelle M, Guthier R, Zhang Y, Power C, Berbeco R, McDannold N. A study combining microbubble-mediated focused ultrasound and radiation therapy in the healthy rat brain and a F98 glioma model. Sci Rep 2024; 14:4831. [PMID: 38413663 PMCID: PMC10899261 DOI: 10.1038/s41598-024-55442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
Focused Ultrasound (FUS) has been shown to sensitize tumors outside the brain to Radiotherapy (RT) through increased ceramide-mediated apoptosis. This study investigated the effects of FUS + RT in healthy rodent brains and F98 gliomas. Tumors, or striata in healthy rats, were targeted with microbubble-mediated, pulsed FUS (220 kHz, 102-444 kPa), followed by RT (4, 8, 15 Gy). FUS + RT (8, 15 Gy) resulted in ablative lesions, not observed with FUS or RT only, in healthy tissue. Lesions were visible using Magnetic Resonance Imaging (MRI) within 72 h and persisted until 21 days post-treatment, indicating potential applications in ablative neurosurgery. In F98 tumors, at 8 and 15 Gy, where RT only had significant effects, FUS + RT offered limited improvements. At 4 Gy, where RT had limited effects compared with untreated controls, FUS + RT reduced tumor volumes observed on MRI by 45-57%. However, survival benefits were minimal (controls: 27 days, RT: 27 days, FUS + RT: 28 days). Histological analyses of tumors 72 h after FUS + RT (4 Gy) showed 93% and 396% increases in apoptosis, and 320% and 336% increases in vessel-associated ceramide, compared to FUS and RT only. Preliminary evidence shows that FUS + RT may improve treatment of glioma, but additional studies are required to optimize effect size.
Collapse
Affiliation(s)
- Stecia-Marie P Fletcher
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Amanda Chisholm
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Lavelle
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Romy Guthier
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Chanikarn Power
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Pournajaf S, Afsordeh N, Pourgholami MH. In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs. Rev Neurosci 2024; 35:183-195. [PMID: 37651618 DOI: 10.1515/revneuro-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Glioblastoma multiform (GBM) is the most common primary brain tumor with a poor prognosis and few therapeutic choices. In vivo, tumor models are useful for enhancing knowledge of underlying GBM pathology and developing more effective therapies/agents at the preclinical level, as they recapitulate human brain tumors. The C6 glioma cell line has been one of the most widely used cell lines in neuro-oncology research as they produce tumors that share the most similarities with human GBM regarding genetic, invasion, and expansion profiles and characteristics. This review provides an overview of the distinctive features and the different animal models produced by the C6 cell line. We also highlight specific applications of various C6 in vivo models according to the purpose of the study and offer some technical notes for more convenient/repeatable modeling. This work also includes novel findings discovered in our laboratory, which would further enhance the feasibility of the model in preclinical GBM investigations.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | | |
Collapse
|
8
|
Al-Gizawiy MM, Wujek RT, Alhajala HS, Cobb JM, Prah MA, Doan NB, Connelly JM, Chitambar CR, Schmainda KM. Potent in vivo efficacy of oral gallium maltolate in treatment-resistant glioblastoma. Front Oncol 2024; 13:1278157. [PMID: 38288102 PMCID: PMC10822938 DOI: 10.3389/fonc.2023.1278157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Background Treatment-resistant glioblastoma (trGBM) is an aggressive brain tumor with a dismal prognosis, underscoring the need for better treatment options. Emerging data indicate that trGBM iron metabolism is an attractive therapeutic target. The novel iron mimetic, gallium maltolate (GaM), inhibits mitochondrial function via iron-dependent and -independent pathways. Methods In vitro irradiated adult GBM U-87 MG cells were tested for cell viability and allowed to reach confluence prior to stereotactic implantation into the right striatum of male and female athymic rats. Advanced MRI at 9.4T was carried out weekly starting two weeks after implantation. Daily oral GaM (50mg/kg) or vehicle were provided on tumor confirmation. Longitudinal MRI parameters were processed for enhancing tumor ROIs in OsiriX 8.5.1 (lite) with Imaging Biometrics Software (Imaging Biometrics LLC). Statistical analyses included Cox proportional hazards regression models, Kaplan-Meier survival plots, linear mixed model comparisons, and t-statistic for slopes comparison as indicator of tumor growth rate. Results In this study we demonstrate non-invasively, using longitudinal MRI surveillance, the potent antineoplastic effects of GaM in a novel rat xenograft model of trGBM, as evidenced by extended suppression of tumor growth (23.56 mm3/week untreated, 5.76 mm3/week treated, P < 0.001), a blunting of tumor perfusion, and a significant survival benefit (median overall survival: 30 days untreated, 56 days treated; P < 0.001). The therapeutic effect was confirmed histologically by the presence of abundant cytotoxic cellular swelling, a significant reduction in proliferation markers (P < 0.01), and vessel normalization characterized by prominent vessel pruning, loss of branching, and uniformity of vessel lumina. Xenograft tumors in the treatment group were further characterized by an absence of an invasive edge and a significant reduction in both, MIB-1% and mitotic index (P < 0.01 each). Transferrin receptor and ferroportin expression in GaM-treated tumors illustrated cellular iron deprivation. Additionally, treatment with GaM decreased the expression of pro-angiogenic markers (von Willebrand Factor and VEGF) and increased the expression of anti-angiogenic markers, such as Angiopoietin-2. Conclusion Monotherapy with the iron-mimetic GaM profoundly inhibits trGBM growth and significantly extends disease-specific survival in vivo.
Collapse
Affiliation(s)
- Mona M. Al-Gizawiy
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert T. Wujek
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hisham S. Alhajala
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan M. Cobb
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa A. Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ninh B. Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher R. Chitambar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Anderson HG, Takacs GP, Harris DC, Kuang Y, Harrison JK, Stepien TL. Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma. J Math Biol 2023; 88:10. [PMID: 38099947 PMCID: PMC10724342 DOI: 10.1007/s00285-023-02027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/30/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023]
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the approximate Bayesian computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended fourier amplitude sensitivity test. Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.
Collapse
Affiliation(s)
- Hannah G Anderson
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Gregory P Takacs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Duane C Harris
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Tracy L Stepien
- Department of Mathematics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Anderson HG, Takacs GP, Harris DC, Kuang Y, Harrison JK, Stepien TL. Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540846. [PMID: 37292799 PMCID: PMC10245580 DOI: 10.1101/2023.05.15.540846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the Approximate Bayesian Computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended Fourier Amplitude Sensitivity Test (eFAST). Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.
Collapse
|
11
|
Mozaffari M, Nyström NN, Li A, Bellyou M, Scholl TJ, Bartha R. Intracellular Acidification in a Rat C6 Glioma Model following Cariporide Injection Investigated by CEST-MRI. Metabolites 2023; 13:823. [PMID: 37512530 PMCID: PMC10386045 DOI: 10.3390/metabo13070823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Acidification of cancerous tissue induced pharmacologically may slow tumor growth and can be detected using magnetic resonance imaging. Numerous studies have shown that pharmacologically inhibiting specific transporters, such as the Na+/H+ exchanger 1 (NHE1), can alter glycolitic metabolism and affect tumor acidosis. The sodium proton exchanger inhibitor Cariporide can acidify U87MG gliomas in mice. This study aimed to determine whether Cariporide could acidify C6 glioma tumors in rats with an intact immune system. C6 glioma cells were implanted in the right brain hemisphere of ten rats. Chemical exchange saturation transfer (CEST) MRI (9.4T) was acquired on days 7-8 and 14-15 after implantation to measure in vivo tissue intracellular pH (pHi) within the tumors and on the contralateral side. pHi was basic relative to contralateral tissue at both time points assessed using the amine and amide concentration-independent detection (AACID) value. On day 14-15, measurements were made before and up to 160 min after Cariporide injection (N = 6). Twenty minutes after drug injection, the average AACID value in the tumor significantly increased by ∼6.4% compared to pre-injection, corresponding to 0.31 ± 0.20 lower pHi, while in contralateral tissue, AACID value increased significantly by ∼4.3% compared to pre-injection, corresponding to 0.22 ± 0.19 lower pHi. Control rats without tumors showed no changes following injection of Cariporide dissolved in 10% or 1% DMSO and diluted in PBS. This study demonstrates the sensitivity of CEST-based pH-weighted imaging for monitoring the response of tumors to pharmacologically induced acidification.
Collapse
Affiliation(s)
- Maryam Mozaffari
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Nivin N Nyström
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Li
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
12
|
Rangel-López E, Robles-Bañuelos B, Guadiana-Ramírez N, Alvarez-Garduño V, Galván-Arzate S, Zazueta C, Karasu C, Túnez I, Tinkov A, Aschner M, Santamaría A. Thallium Induces Antiproliferative and Cytotoxic Activity in Glioblastoma C6 and U373 Cell Cultures via Apoptosis and Changes in Cell Cycle. Neurotox Res 2022; 40:814-824. [PMID: 35476314 DOI: 10.1007/s12640-022-00514-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Thallium (Tl+) is a heavy metal that causes toxicity in several organs, including the brain. Its cytotoxic profile, combined with its affinity for tumor cells when used as a radioligand for labeling these cells, suggests its potential use as antitumor therapy. In this study, glioblastoma cell lines C6 (from rat) and U373 (from human) were exposed to increased concentrations of thallium(I) acetate (5, 10, 50, 100, or 200 µM) and several toxic endpoints were evaluated, including loss of confluence and morphological changes, loss of cell viability, changes in cell cycle, and apoptosis. Tl+ was detected in cells exposed to thallium(I) acetate, demonstrating efficient uptake mechanism. Confluence in both cell lines decreased in a concentration-dependent manner (50-200 µM), while morphological changes (cell shrinkage and decreased cell volume) were more evident at exposures to higher Tl+ concentrations. For both parameters, the effects of Tl+ were more prominent in C6 cells compared to U373 cells. The same trend was observed for cell viability, with Tl+ affecting this parameter in C6 cells at low concentrations, whereas U373 cells showed greater resistance, with significant changes observed only at the higher concentrations. C6 and U373 cells treated with Tl+ also showed morphological characteristics corresponding to apoptosis. The cytotoxic effects of Tl+ were also assessed in neural and astrocytic primary cultures from the whole rat brain. Primary neural and astrocytic cultures were less sensitive than C6 and U373 cells, showing changes in cell viability at 50 and 100 µM concentrations, respectively. Cell cycle in both brain tumor cell lines was altered by Tl+ in G1/G2 and S phases. In addition, when combined with temozolamide (500 µM), Tl+ elicited cell cycle alterations, increasing SubG1 population. Combined, our novel results characterize and validate the cytotoxic and antiproliferative effects of Tl+ in glioblastoma cells.
Collapse
Affiliation(s)
- Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - Benjamín Robles-Bañuelos
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Natalia Guadiana-Ramírez
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Valeria Alvarez-Garduño
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Cimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Turkey
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Córdoba, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain.,Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| |
Collapse
|
13
|
Shaffer A, Kwok SS, Naik A, Anderson AT, Lam F, Wszalek T, Arnold PM, Hassaneen W. Ultra-High-Field MRI in the Diagnosis and Management of Gliomas: A Systematic Review. Front Neurol 2022; 13:857825. [PMID: 35449515 PMCID: PMC9016277 DOI: 10.3389/fneur.2022.857825] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Importance: Gliomas, tumors of the central nervous system, are classically diagnosed through invasive surgical biopsy and subsequent histopathological study. Innovations in ultra-high field (UHF) imaging, namely 7-Tesla magnetic resonance imaging (7T MRI) are advancing preoperative tumor grading, visualization of intratumoral structures, and appreciation of small brain structures and lesions. Objective Summarize current innovative uses of UHF imaging techniques in glioma diagnostics and treatment. Methods A systematic review in accordance with PRISMA guidelines was performed utilizing PubMed. Case reports and series, observational clinical trials, and randomized clinical trials written in English were included. After removing unrelated studies and those with non-human subjects, only those related to 7T MRI were independently reviewed and summarized for data extraction. Some preclinical animal models are briefly described to demonstrate future usages of ultra-high-field imaging. Results We reviewed 46 studies (43 human and 3 animal models) which reported clinical usages of UHF MRI in the diagnosis and management of gliomas. Current literature generally supports greater resolution imaging from 7T compared to 1.5T or 3T MRI, improving visualization of cerebral microbleeds and white and gray matter, and providing more precise localization for radiotherapy targeting. Additionally, studies found that diffusion or susceptibility-weighted imaging techniques applied to 7T MRI, may be used to predict tumor grade, reveal intratumoral structures such as neovasculature and microstructures like axons, and indicate isocitrate dehydrogenase 1 mutation status in preoperative imaging. Similarly, newer imaging techniques such as magnetic resonance spectroscopy and chemical exchange saturation transfer imaging can be performed on 7T MRI to predict tumor grading and treatment efficacy. Geometrical distortion, a known challenge of 7T MRI, was at a tolerable level in all included studies. Conclusion UHF imaging has the potential to preoperatively and non-invasively grade gliomas, provide precise therapy target areas, and visualize lesions not seen on conventional MRI.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Susanna S Kwok
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Aaron T Anderson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Illinois Advanced Imaging Center, University of Illinois and Carle Health, Urbana, IL, United States
| | - Fan Lam
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Illinois Advanced Imaging Center, University of Illinois and Carle Health, Urbana, IL, United States
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, United States
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, United States
| |
Collapse
|
14
|
Evaluation of Temozolomide Treatment for Glioblastoma Using Amide Proton Transfer Imaging and Diffusion MRI. Cancers (Basel) 2022; 14:cancers14081907. [PMID: 35454814 PMCID: PMC9031574 DOI: 10.3390/cancers14081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Glioblastoma (GBM), the most frequent and malignant histological type of glioma, is associated with a very high mortality rate. MRI is a useful method for the evaluation of tumor growth. However, there are few studies that have quantitatively evaluated the changes in disease state after TMZ treatment against GBM, and it is not fully understood how the effects of treatment are reflected in the quantitative values measured on MRI. We used the C6 glioma rat model to evaluate the tumor changes due to chemotherapy at different doses of TMZ in terms of quantitative values measured by neurite orientation dispersion and density imaging (NODDI) and amide proton transfer (APT) imaging using 7T-MRI. These methods can evaluate the microstructural changes caused by TMZ-induced tumor growth inhibition. Abstract This study aimed to evaluate tumor changes due to chemotherapy with temozolomide (TMZ) in terms of quantitative values measured by APT imaging and NODDI. We performed TMZ treatment (administered orally by gavage to the TMZ-40 mg and TMZ-60 mg groups) on 7-week-old male Wistar rats with rat glioma C6 implanted in the right brain. T2WI, APT imaging, diffusion tensor imaging (DTI), and NODDI were performed on days 7 and 14 after implantation using 7T-MRI, and the calculated quantitative values were statistically compared. Then, HE staining was performed on brain tissue at day 7 and day 14 for each group to compare the results with the MR images. TMZ treatment inhibited tumor growth and necrotic area formation. The necrotic areas observed upon hematoxylin and eosin (HE) staining were consistent with the MTR low-signal areas observed upon APT imaging. The intracellular volume fraction (ICVF) map of the NODDI could best show the microstructure of the tumor, and its value could significantly highlight the difference in treatment effects at different TMZ doses. APT imaging and NODDI can be used to detect the microstructural changes caused by TMZ-induced tumor growth inhibition. The ICVF may be useful as a parameter for determining the effect of TMZ.
Collapse
|
15
|
Kumar M, Nanga RPR, Verma G, Wilson N, Brisset JC, Nath K, Chawla S. Emerging MR Imaging and Spectroscopic Methods to Study Brain Tumor Metabolism. Front Neurol 2022; 13:789355. [PMID: 35370872 PMCID: PMC8967433 DOI: 10.3389/fneur.2022.789355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) provides a non-invasive biochemical profile of brain tumors. The conventional 1H-MRS methods present a few challenges mainly related to limited spatial coverage and low spatial and spectral resolutions. In the recent past, the advent and development of more sophisticated metabolic imaging and spectroscopic sequences have revolutionized the field of neuro-oncologic metabolomics. In this review article, we will briefly describe the scientific premises of three-dimensional echoplanar spectroscopic imaging (3D-EPSI), two-dimensional correlation spectroscopy (2D-COSY), and chemical exchange saturation technique (CEST) MRI techniques. Several published studies have shown how these emerging techniques can significantly impact the management of patients with glioma by determining histologic grades, molecular profiles, planning treatment strategies, and assessing the therapeutic responses. The purpose of this review article is to summarize the potential clinical applications of these techniques in studying brain tumor metabolism.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Neil Wilson
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Sanjeev Chawla
| |
Collapse
|
16
|
Yamamoto A, Takaki K, Morikawa S, Murata K, Ito R. Histologic Distribution and Characteristics on MR Imaging of Ultrasmall Superparamagnetic Iron Oxide in Ethyl-nitrosourea-induced Endogenous Rat Glioma. Magn Reson Med Sci 2021; 20:264-271. [PMID: 32830172 PMCID: PMC8424023 DOI: 10.2463/mrms.mp.2019-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE (1) To evaluate the enhancement patterns of an ultrasmall superparamagnetic iron oxide contrast agent (USPIO-CA) compared with those of a gadolinium-based contrast agent (Gd-BCA). (2) To compare the histologic distribution of USPIO-related iron particles (USPIO-IPs) with the USPIO-enhancement area in the early vascular and in the cellular imaging phase (E- and L-phase, respectively) after intravenous CA administration. METHODS We performed USPIO-enhanced MRI of N-ethyl-N-nitrosourea (ENU)-induced endogenous rat glioma, including spin-echo (SE) T1-weighted images (T1WIs) and gradient-recalled-echo (GRE) T2-weighted images (T2WIs), before and at 3-6 h after USPIO-CA administration for E-phase images. For L-phase images, MRI was performed at 16-19 and 62-69 h after administration. Two observers determined the USPIO-enhancement area on E-phase images and Gd-enhancement areas. We compared the USPIO-enhancement size (USPIO-ES) and Gd-ES on SE T1WIs, and the hypo-intense USPIO-ES on GRE T2WIs and Gd-ES using the Wilcoxon signed-rank test. In addition, two raters visually evaluated the correspondence between the histologic distribution of USPIO-IPs and the USPIO-enhancement area on corresponding GRE T2WIs at each phase using a 3-rating scale. RESULTS Significantly smaller hyper-intense, hypo-intense and combined hyper-/hypo-intense areas were observed on USPIO-enhanced SE T1WIs compared with Gd-enhanced images (all P < 0.001). The hypo-intense USPIO-ES on GRE T2WIs was significantly smaller than the Gd-ES (P = 0.001). The distribution of USPIO-IPs on histopathological specimen and USPIO-enhancement on GRE T2WIs exhibited poor agreement in 5 of 9 tumors with enhancement from rats sacrificed early. The distribution of microglia containing USPIO-IPs corresponded with the pattern of USPIO-enhancement in the 2 tumors with late enhancement. CONCLUSION The enhancement pattern and size of USPIO-CA in a rat glioma model were statistically different from those of Gd-BCA. Our histological data suggests that USPIO-enhanced MRI offers vascular bed imaging in E-phase and might depict the intra-tumoral distribution of immune effector cells in L-phase.
Collapse
Affiliation(s)
| | - Kai Takaki
- Department of Radiology, Shiga University of Medical Science
| | - Shigehiro Morikawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Kiyoshi Murata
- Department of Radiology, Shiga University of Medical Science
| | - Ryuta Ito
- Department of Radiology, Shiga University of Medical Science
| |
Collapse
|
17
|
Rat Adipose-Derived Stromal Cells (ADSCs) Increases the Glioblastoma Growth and Decreases the Animal Survival. Stem Cell Rev Rep 2021; 18:1495-1509. [PMID: 34403074 DOI: 10.1007/s12015-021-10227-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.
Collapse
|
18
|
Yang Z, Shi H, Chinnathambi A, Salmen SH, Alharbi SA, Veeraraghavan VP, Surapaneni KM, Arulselvan P. Arbutin exerts anticancer activity against rat C6 glioma cells by inducing apoptosis and inhibiting the inflammatory markers and P13/Akt/mTOR cascade. J Biochem Mol Toxicol 2021; 35:e22857. [PMID: 34338399 DOI: 10.1002/jbt.22857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Gliomas are a type of brain cancer that occurs in the supporting glial cells of the brain. It is highly malignant and accounts for 80% of brain tumors with high mortality and morbidity. Phytomedicines are potent alternatives for allopathic drugs which cause side effects. They have been used from ancient times by traditional Chinese, Ayurveda, and Siddha medicine. Arubtin is a glycoside phytochemical extracted from plants and belongs to the family of Ericaceae. Arbutin possesses various pharmacological properties such as anti-inflammatory, antioxidant, antitumor, and so on. Hence in the present study, we analyzed the anticancer potency of arbutin against rat C6 glioma cells. Rat C6 glioma cells were procured from American Type Culture Collection and the cells were cultured in Roswell Park Memorial Institute-1640 medium. To assess the cytotoxicity effect of the arbutin against C6 glioma cells, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test was performed with different doses from 10 to 60 µM. Arbutin effectively induced apoptosis in the cells and the IC50 dose was obtained at 30 µM. For further studies, we selected the 30 µM IC50 dose and a higher dose of 40 µM. Reactive oxygen species (ROS) generated were analyzed with DCFDA/H2DCFDA stain and the destruction of mitochondrial membrane permeability which is the initiator of apoptosis was analyzed with a cationic stain Rhodamine 123. Dual staining with acridine orange and ethidium bromide was performed to assess the viable and dead cells. Cell adhesion properties of glioma cells were analyzed with Matrigel assay. The apoptotic, inflammatory, and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling molecules were analyzed with quantitative polymerase chain reaction (qPCR) analysis to confirm the anticancer effect of arbutin. Arbutin generated excessive ROS and disrupted the mitochondrial membrane, which induced apoptosis in cells, it also inhibited the cell adhesion property of C6 glioma cells. qPCR analysis clearly indicates arbutin increases the apoptotic genes and decreased the inflammatory and PI3K/mTOR signaling molecules. Overall, our results authentically confirm that arbutin can be a potent alternative for treating glioma.
Collapse
Affiliation(s)
- Zhangkai Yang
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Hangyu Shi
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman A Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Department of Biochemistry, Clinical Skills & Simulation, Molecular Virology and Research, Panimalar Medical College Hospital & Research Institute, Chennai, Tamil Nadu, India
| | | |
Collapse
|
19
|
Lamirault C, Brisebard E, Patriarca A, Juchaux M, Crepin D, Labiod D, Pouzoulet F, Sebrie C, Jourdain L, Le Dudal M, Hardy D, De Marzi L, Dendale R, Jouvion G, Prezado Y. Spatially Modulated Proton Minibeams Results in the Same Increase of Lifespan as a Uniform Target Dose Coverage in F98-Glioma-Bearing Rats. Radiat Res 2021; 194:715-723. [PMID: 32991712 DOI: 10.1667/rade-19-00013.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/14/2020] [Indexed: 11/03/2022]
Abstract
Proton minibeam radiation therapy (pMBRT) is a new approach in proton radiotherapy, by which a significant increase in the therapeutic index has already been demonstrated in RG2 glioma-bearing rats. In the current study we investigated the response of other types of glioma (F98) and performed a comparative evaluation of tumor control effectiveness by pMBRT (with different levels of dose heterogeneity) versus conventional proton therapy. The results of our study showed an equivalent increase in the lifespan for all evaluated groups (conventional proton irradiation and pMBRT) and no significant differences in the histopathological analysis of the tumors or remaining brain tissue. The reduced long-term toxicity observed with pMBRT in previous evaluations at the same dose suggests a possible use of pMBRT to treat glioma with less side effects while ensuring the same tumor control achieved with standard proton therapy.
Collapse
Affiliation(s)
- Charlotte Lamirault
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Elise Brisebard
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Laboratoire d'Histopathologie, VetAgro-Sup, Université de Lyon, Marcy l'Etoile, Lyon, France
| | - Annalisa Patriarca
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France
| | - Marjorie Juchaux
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Delphine Crepin
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Dalila Labiod
- Experimental Radiotherapy Platform Institut Curie, University Paris Saclay, Orsay, France
| | - Frederic Pouzoulet
- Experimental Radiotherapy Platform Institut Curie, University Paris Saclay, Orsay, France
| | - Catherine Sebrie
- BioMaps, Université Paris-Saclay, CEA, CNRS, Inserm,Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Laurene Jourdain
- BioMaps, Université Paris-Saclay, CEA, CNRS, Inserm,Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Marine Le Dudal
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Histologie, Embryologie et Anatomie Pathologique, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - David Hardy
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France
| | - Ludovic De Marzi
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France.,Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| | - Remi Dendale
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France
| | - Gregory Jouvion
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Sorbonne Université, INSERM, Pathophysiology of Pediatric Genetic Diseases, Assistance Publique - Hôpitaux de Paris, Hôpital Armand-Trousseau, UF Génétique Moléculaire, Paris, France
| | - Yolanda Prezado
- Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| |
Collapse
|
20
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
21
|
Soliman MA, Guccione J, Reiter AM, Moawad AW, Etchison A, Kamel S, Khatchikian AD, Elsayes KM. Current Concepts in Multi-Modality Imaging of Solid Tumor Angiogenesis. Cancers (Basel) 2020; 12:cancers12113239. [PMID: 33153067 PMCID: PMC7692820 DOI: 10.3390/cancers12113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The recent increase in the use of targeted molecular therapy including anti-angiogenetic agents in cancer treatment necessitate the use of robust tools to assess and guide treatment. Angiogenesis, the formation of new disorganized blood vessels, is used by tumor cells to grow and spread using different mechanisms that could be targeted by anti-angiogenetic agents. In this review, we discuss the biological principles of tumor angiogenesis and the imaging modalities that could provide information beyond gross tumor size and morphology to capture the efficacy of anti-angiogenetic therapeutic response. Abstract There have been rapid advancements in cancer treatment in recent years, including targeted molecular therapy and the emergence of anti-angiogenic agents, which necessitate the need to quickly and accurately assess treatment response. The ideal tool is robust and non-invasive so that the treatment can be rapidly adjusted or discontinued based on efficacy. Since targeted therapies primarily affect tumor angiogenesis, morphological assessment based on tumor size alone may be insufficient, and other imaging modalities and features may be more helpful in assessing response. This review aims to discuss the biological principles of tumor angiogenesis and the multi-modality imaging evaluation of anti-angiogenic therapeutic responses.
Collapse
Affiliation(s)
- Moataz A. Soliman
- Department of Diagnostic Radiology, Northwestern University, Evanston, IL 60201, USA;
| | - Jeffrey Guccione
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA;
| | - Anna M. Reiter
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| | - Ahmed W. Moawad
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ashley Etchison
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 76798, USA;
| | - Serageldin Kamel
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Aline D. Khatchikian
- Department of Diagnostic Radiology, McGill University, Montreal, QC H3G 1A4, Canada;
| | - Khaled M. Elsayes
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
22
|
Chu C, Davis CM, Lan X, Hienz RD, Jablonska A, Thomas AM, Velarde E, Li S, Janowski M, Kai M, Walczak P. Neuroinflammation After Stereotactic Radiosurgery-Induced Brain Tumor Disintegration Is Linked to Persistent Cognitive Decline in a Mouse Model of Metastatic Disease. Int J Radiat Oncol Biol Phys 2020; 108:745-757. [PMID: 32470502 PMCID: PMC8758056 DOI: 10.1016/j.ijrobp.2020.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE Improved efficacy of anticancer therapy and a growing pool of survivors give rise to a question about their quality of life and return to premorbid status. Radiation is effective in brain metastasis eradication, although the optimal approach and long-term effects on brain function are largely unknown. We studied the effects of radiosurgery on brain function. METHODS AND MATERIALS Adult C57BL/6J mice with or without brain metastases (rat 9L gliosarcoma) were treated with cone beam single-arc stereotactic radiosurgery (SRS; 40 Gy). Tumor growth was monitored using bioluminescence, whereas longitudinal magnetic resonance imaging, behavioral studies, and histologic analysis were performed to evaluate brain response to the treatment for up to 18 months. RESULTS Stereotactic radiosurgery (SRS) resulted in 9L metastases eradication within 4 weeks with subsequent long-term survival of all treated animals, whereas all nontreated animals succumbed to the brain tumor. Behavioral impairment, as measured with a recognition memory test, was observed earlier in mice subjected to radiosurgery of tumors (6 weeks) in comparison to SRS of healthy brain tissue (10 weeks). Notably, the deficit resolved by 18 weeks only in mice not bearing a tumor, whereas tumor eradication was complicated by the persistent cognitive deficits. In addition, the results of magnetic resonance imaging were unremarkable in both groups, and histopathology revealed changes. SRS-induced tumor eradication triggered long-lasting and exacerbated neuroinflammatory response. No demyelination, neuronal loss, or hemorrhage was detected in any of the groups. CONCLUSIONS Tumor disintegration by SRS leads to exacerbated neuroinflammation and persistent cognitive deficits; therefore, methods aiming at reducing inflammation after tumor eradication or other therapeutic methods should be sought.
Collapse
Affiliation(s)
- Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine M Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaoyan Lan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert D Hienz
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Esteban Velarde
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
23
|
Lesbats C, Kelly CL, Czanner G, Poptani H. Diffusion kurtosis imaging for characterizing tumor heterogeneity in an intracranial rat glioblastoma model. NMR IN BIOMEDICINE 2020; 33:e4386. [PMID: 32729637 DOI: 10.1002/nbm.4386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The utility of diffusion kurtosis imaging (DKI) for assessing intra-tumor heterogeneity was evaluated in a rat model of glioblastoma multiforme. Longitudinal MRI including T2 -weighted and diffusion-weighted MRI (DWI) was performed on six female Fischer rats 8, 11 and 14 days after intracranial transplantation of F98 cells. T2 -weighted images were used to measure the tumor volumes and DWI images were used to compute diffusion tensor imaging (DTI) and DWI based parametric maps including mean diffusivity (MD), mean kurtosis (MK), axial diffusivity (AD), axial kurtosis, radial diffusivity, radial kurtosis, fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA). Median values from the segmented normal contralateral cortex, tumor and edema from the diffusion parameters were compared at the three imaging time points to assess any changes in tumor heterogeneity over time. ex vivo DKI was also performed in a representative sample and compared with histology. Significant differences were observed between normal cortex, tumor and edema in both the DTI and DKI parameters. Notably, at the earliest time point MK and KFA were significantly different between normal cortex and tumor in comparison with MD or FA. Although a decreasing trend in MD, AD and FA values of the tumor were observed as the tumor grew, no significant changes in any of the DTI or DKI parameters were observed longitudinally. While DKI was equally sensitive to DTI in differentiating tumor from edema and normal brain, it was unable to detect longitudinal increases in intra-tumoral heterogeneity in the F98 model of glioblastoma multiforme.
Collapse
Affiliation(s)
- Clémentine Lesbats
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claire Louise Kelly
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Gabriela Czanner
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Harish Poptani
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
24
|
Zhou B, Wu Q, Wang M, Hoover A, Wang X, Zhou F, Towner RA, Smith N, Saunders D, Song J, Qu J, Chen WR. Immunologically modified MnFe 2O 4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2020; 396:125239. [PMID: 32523422 PMCID: PMC7286552 DOI: 10.1016/j.cej.2020.125239] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Immunotherapy has been a promising candidate for cancer treatment. The combination of photothermal therapy (PTT) and immunotherapy have shown to cause tumor ablation and induce host immune response. However, this strategy is often hampered by a limited immune response and undesirable immunosuppression. In this work, we developed an immunologically modified nanoplatform, using ovalbumin (OVA)-coated PEGylated MnFe2O4 nanoparticles (NPs) loaded with R837 immunoadjuvant (R837-OVA-PEG-MnFe2O4 NPs) to synergize PTT and immunotherapy for the treatment of breast cancer. The designed R837-OVA-PEG-MnFe2O4 NPs are able to elicit significant immune responses in vitro and in vivo. MnFe2O4 NPs also allowed for a reduction of systemic immunosuppression through downregulation of M2-associated cytokines. More importantly, the R837-OVA-PEG-MnFe2O4 NPs under laser irradiation effectively inhibited tumor growth and prevented lung metastases, leading to a prolonged survival time and improved survival rate. In addition, the designed multitasking MnFe2O4 NPs showed as a good contrast agent for magnetic resonance (MR) imaging to detect orthotopic breast tumor in vivo. Our work provides a novel strategy for combined PTT and improved immunotherapy in the treatment of breast and other metastatic cancers.
Collapse
Affiliation(s)
- Benqing Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, P. R. China
| | - Qiang Wu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Meng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ashley Hoover
- Biophotonics Research Laboratory, Center of Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma, 73034, USA
| | - Xin Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feifan Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Rheal A. Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, USA
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Corresponding author. (J. Song), (J. Qu), and (W. Chen)
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Corresponding author. (J. Song), (J. Qu), and (W. Chen)
| | - Wei R. Chen
- Biophotonics Research Laboratory, Center of Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma, 73034, USA
- Corresponding author. (J. Song), (J. Qu), and (W. Chen)
| |
Collapse
|
25
|
McKelvey KJ, Hudson AL, Prasanna Kumar R, Wilmott JS, Attrill GH, Long GV, Scolyer RA, Clarke SJ, Wheeler HR, Diakos CI, Howell VM. Temporal and spatial modulation of the tumor and systemic immune response in the murine Gl261 glioma model. PLoS One 2020; 15:e0226444. [PMID: 32240177 PMCID: PMC7117758 DOI: 10.1371/journal.pone.0226444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma, the most aggressive form of glioma, has a 5-year survival rate of <5%. While radiation and immunotherapies are routinely studied in the murine Gl261 glioma model, little is known about its inherent immune response. This study quantifies the temporal and spatial localization of immune cell populations and mediators during glioma development. Eight-week old male C57Bl/6 mice were orthotopically inoculated with 1x106 Gl261 cells and tumor morphology, local and systemic immune cell populations, and plasma cytokines/chemokines assessed at day 0, 1, 3, 7, 14, and 21 post-inoculation by magnetic resonance imaging, chromogenic immunohistochemistry, multiplex immunofluorescent immunohistochemistry, flow cytometry and multiplex immunoassay respectively. From day 3 tumors were distinguishable with >30% Ki67 and increased tissue vascularization (p<0.05). Increasing tumor proliferation/malignancy and vascularization were associated with significant temporal changes in immune cell populations within the tumor (p<0.05) and systemic compartments (p = 0.02 to p<0.0001). Of note, at day 14 16/24 plasma cytokine/chemokines levels decreased coinciding with an increase in tumor cytotoxic T cells, natural killer and natural killer/T cells. Data derived provide baseline characterization of the local and systemic immune response during glioma development. They reveal that type II macrophages and myeloid-derived suppressor cells are more prevalent in tumors than regulatory T cells, highlighting these cell types for further therapeutic exploration.
Collapse
Affiliation(s)
- Kelly J. McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- The Brain Cancer Group, St Leonards, NSW, Australia
- * E-mail:
| | - Amanda L. Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- The Brain Cancer Group, St Leonards, NSW, Australia
| | - Ramyashree Prasanna Kumar
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Grace H. Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Mater Hospital, North Sydney, NSW, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, NSW, Australia
| | - Stephen J. Clarke
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Helen R. Wheeler
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- The Brain Cancer Group, St Leonards, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Connie I. Diakos
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- The Brain Cancer Group, St Leonards, NSW, Australia
| |
Collapse
|
26
|
Hoxworth JM, Eschbacher JM, Gonzales AC, Singleton KW, Leon GD, Smith KA, Stokes AM, Zhou Y, Mazza GL, Porter AB, Mrugala MM, Zimmerman RS, Bendok BR, Patra DP, Krishna C, Boxerman JL, Baxter LC, Swanson KR, Quarles CC, Schmainda KM, Hu LS. Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies. AJNR Am J Neuroradiol 2020; 41:408-415. [PMID: 32165359 DOI: 10.3174/ajnr.a6486] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Perfusion MR imaging measures of relative CBV can distinguish recurrent tumor from posttreatment radiation effects in high-grade gliomas. Currently, relative CBV measurement requires normalization based on user-defined reference tissues. A recently proposed method of relative CBV standardization eliminates the need for user input. This study compares the predictive performance of relative CBV standardization against relative CBV normalization for quantifying recurrent tumor burden in high-grade gliomas relative to posttreatment radiation effects. MATERIALS AND METHODS We recruited 38 previously treated patients with high-grade gliomas (World Health Organization grades III or IV) undergoing surgical re-resection for new contrast-enhancing lesions concerning for recurrent tumor versus posttreatment radiation effects. We recovered 112 image-localized biopsies and quantified the percentage of histologic tumor content versus posttreatment radiation effects for each sample. We measured spatially matched normalized and standardized relative CBV metrics (mean, median) and fractional tumor burden for each biopsy. We compared relative CBV performance to predict tumor content, including the Pearson correlation (r), against histologic tumor content (0%-100%) and the receiver operating characteristic area under the curve for predicting high-versus-low tumor content using binary histologic cutoffs (≥50%; ≥80% tumor). RESULTS Across relative CBV metrics, fractional tumor burden showed the highest correlations with tumor content (0%-100%) for normalized (r = 0.63, P < .001) and standardized (r = 0.66, P < .001) values. With binary cutoffs (ie, ≥50%; ≥80% tumor), predictive accuracies were similar for both standardized and normalized metrics and across relative CBV metrics. Median relative CBV achieved the highest area under the curve (normalized = 0.87, standardized = 0.86) for predicting ≥50% tumor, while fractional tumor burden achieved the highest area under the curve (normalized = 0.77, standardized = 0.80) for predicting ≥80% tumor. CONCLUSIONS Standardization of relative CBV achieves similar performance compared with normalized relative CBV and offers an important step toward workflow optimization and consensus methodology.
Collapse
Affiliation(s)
- J M Hoxworth
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| | | | | | - K W Singleton
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - G D Leon
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - K A Smith
- Keller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - A M Stokes
- Keller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - Y Zhou
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| | - G L Mazza
- Department of Health Sciences Research (G.L.M.), Division of Biomedical Statistics and Informatics, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | | | | | | | - B R Bendok
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - D P Patra
- Departments of Neurosurgery (D.P.P.)
| | | | - J L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - L C Baxter
- Neuropsychology (L.C.B.), Mayo Clinic Hospital, Phoenix, Arizona
| | - K R Swanson
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | | | - K M Schmainda
- Department of Radiology (K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - L S Hu
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| |
Collapse
|
27
|
Rivera JF, Sridharan SV, Nolan JK, Miloro SA, Alam MA, Rickus JL, Janes DB. Real-time characterization of uptake kinetics of glioblastoma vs. astrocytes in 2D cell culture using microelectrode array. Analyst 2018; 143:4954-4966. [PMID: 30225487 DOI: 10.1039/c8an01198b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extracellular measurement of uptake/release kinetics and associated concentration dependencies provides mechanistic insight into the underlying biochemical processes. Due to the recognized importance of preserving the natural diffusion processes within the local microenvironment, measurement approaches which provide uptake rate and local surface concentration of adherent cells in static media are needed. This paper reports a microelectrode array device and a methodology to measure uptake kinetics as a function of cell surface concentration in adherent 2D cell cultures in static fluids. The microelectrode array simultaneously measures local concentrations at five positions near the cell surface in order to map the time-dependent concentration profile which in turn enables determination of surface concentrations and uptake rates, via extrapolation to the cell plane. Hydrogen peroxide uptake by human astrocytes (normal) and glioblastoma multiforme (GBM43, cancer) was quantified for initial concentrations of 20 to 500 μM over time intervals of 4000 s. For both cell types, the overall uptake rate versus surface concentration relationships exhibited non-linear kinetics, well-described by a combination of linear and Michaelis-Menten mechanisms and in agreement with the literature. The GBM43 cells showed a higher uptake rate over the full range of concentrations, primarily due to a larger linear component. Diffusion-reaction models using the non-linear parameters and standard first-order relationships are compared. In comparison to results from typical volumetric measurements, the ability to extract both uptake rate and surface concentration in static media provides kinetic parameters that are better suited for developing reaction-diffusion models to adequately describe behavior in more complex culture/tissue geometries. The results also highlight the need for characterization of the uptake rate over a wider range of cell surface concentrations in order to evaluate the potential therapeutic role of hydrogen peroxide in cancerous cells.
Collapse
Affiliation(s)
- Jose F Rivera
- Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Giakoumettis D, Kritis A, Foroglou N. C6 cell line: the gold standard in glioma research. Hippokratia 2018; 22:105-112. [PMID: 31641331 PMCID: PMC6801124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Glioblastoma multiforme is the most aggressive brain tumor with poor prognosis and an average survival of 1-2 years. Animal models that simulate the features of human glioma are the key to newer agents or therapeutic strategies. In order to establish such models, the C6 glioma cell line has been mostly used in neuro-oncology research. METHODS In this narrative review, we systematically reviewed the international literature in order to retrieve and present the most important biological and molecular features of C6 cell line. RESULTS Even though many cell lines have been developed, each cell line presents with slight differences from human glioma behavior. C6 cancer cell line is a rat glioma cell line, which can simulate in overall the high growth rate, the high vascularization, and the highly infiltrative character of glioblastoma multiforme. CONCLUSIONS Most of the C6 glioma research has been focused on testing a wide diversity of agents for their tumoricidal activity. C6 cell line is considered to be a safe and popular glioma model in the literature, providing a good simulation of glioblastoma multiforme. HIPPOKRATIA 2018, 22(3): 105-112.
Collapse
Affiliation(s)
- D Giakoumettis
- First Department of Neurosurgery, University of Athens Medical School, "Evangelismos" General Hospital, Athens
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Kritis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences
- cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences
| | - N Foroglou
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
29
|
Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget 2018; 8:36614-36627. [PMID: 28402271 PMCID: PMC5482681 DOI: 10.18632/oncotarget.16625] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma.
Collapse
|
30
|
Resende FFB, Titze-de-Almeida SS, Titze-de-Almeida R. Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells. Oncol Lett 2018; 15:4891-4899. [PMID: 29552127 DOI: 10.3892/ol.2018.7917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Astrocytic tumors, including astrocytomas and glioblastomas, are the most common type of primary brain tumors. Treatment for glioblastomas includes radiotherapy, chemotherapy with temozolomide (TMZ) and surgical ablation. Despite certain therapeutic advances, the survival time of patients is no longer than 12-14 months. Cancer cells overexpress the neuronal isoform of nitric oxide synthase (nNOS). In the present study, it was examined whether the nNOS enzyme serves a role in the damage of astrocytoma (U251MG and U138MG) and glioblastoma (U87MG) cells caused by TMZ. First, TMZ (250 µM) triggered an increase in oxidative stress at 2, 48 and 72 h in the U87MG, U251MG and U138MG cell lines, as revealed by 2',7'-dichlorofluorescin-diacetate assay. The drug also reduced cell viability, as measured by MTT assay. U87MG cells presented a more linear decline in cell viability at time-points 2, 48 and 72 h, compared with the U251MG and U138MG cell lines. The peak of oxidative stress occurred at 48 h. To examine the role of NOS enzymes in the cell damage caused by TMZ, N(ω)-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI) were used. L-NAME increased the cell damage caused by TMZ while reducing the oxidative stress at 48 h. The preferential nNOS inhibitor 7-NI also improved the TMZ effects. It caused a 12.8% decrease in the viability of TMZ-injured cells. Indeed, 7-NI was more effective than L-NAME in restraining the increase in oxidative stress triggered by TMZ. Silencing nNOS with a synthetic small interfering (si)RNA (siRNAnNOShum_4400) increased by 20% the effects of 250 µM of TMZ on cell viability (P<0.05). Hoechst 33342 nuclear staining confirmed that nNOS knock-down enhanced TMZ injury. In conclusion, our data reveal that nNOS enzymes serve a role in the damage produced by TMZ on astrocytoma and glioblastoma cells. RNA interference with nNOS merits further studies in animal models to disclose its potential use in brain tumor anticancer therapy.
Collapse
Affiliation(s)
- Fernando Francisco Borges Resende
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|
31
|
Gieryng A, Pszczolkowska D, Bocian K, Dabrowski M, Rajan WD, Kloss M, Mieczkowski J, Kaminska B. Immune microenvironment of experimental rat C6 gliomas resembles human glioblastomas. Sci Rep 2017; 7:17556. [PMID: 29242629 PMCID: PMC5730558 DOI: 10.1038/s41598-017-17752-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, with ineffective anti-tumor responses and a poor prognosis despite aggressive treatments. GBM immune microenvironment is heterogenous and activation of specific immune populations in GBM is not fully characterized. Reliable animal models are critical for defining mechanisms of anti-tumor immunity. First we analyzed the immune subpopulations present in rat C6 gliomas. Using flow cytometry we determined kinetics of infiltration of myeloid cells and T lymphocytes into glioma-bearing brains. We found significant increases of the amoeboid, pro-tumorigenic microglia/macrophages, T helper (Th) and T regulatory (Treg) cells in tumor-bearing brains, and rare infiltrating T cytotoxic (Tc) cells. Transcriptomic analyses of glioma-bearing hemispheres revealed overexpression of invasion and immunosuppression-related genes, reflecting the immunosuppressive microenvironment. Microglia, sorted as CD11b+CD45low cells from gliomas, displayed the pro-invasive and immunosuppressive type of activation. Accumulation of Th and Treg cells combined with the reduced presence of Tc lymphocytes in rat gliomas may result in the lack of effective anti–tumor responses. Transcriptional profiles of CD11b+ cells and composition of immune infiltrates in C6 gliomas indicate that rat C6 gliomas employ similar immune system evasion strategies as human GBMs.
Collapse
Affiliation(s)
- Anna Gieryng
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Dominika Pszczolkowska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Katarzyna Bocian
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Wenson David Rajan
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Michal Kloss
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
32
|
Hormuth DA, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V, Yankeelov TE. A mechanically coupled reaction-diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth. J R Soc Interface 2017; 14:rsif.2016.1010. [PMID: 28330985 DOI: 10.1098/rsif.2016.1010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
While gliomas have been extensively modelled with a reaction-diffusion (RD) type equation it is most likely an oversimplification. In this study, three mathematical models of glioma growth are developed and systematically investigated to establish a framework for accurate prediction of changes in tumour volume as well as intra-tumoural heterogeneity. Tumour cell movement was described by coupling movement to tissue stress, leading to a mechanically coupled (MC) RD model. Intra-tumour heterogeneity was described by including a voxel-specific carrying capacity (CC) to the RD model. The MC and CC models were also combined in a third model. To evaluate these models, rats (n = 14) with C6 gliomas were imaged with diffusion-weighted magnetic resonance imaging over 10 days to estimate tumour cellularity. Model parameters were estimated from the first three imaging time points and then used to predict tumour growth at the remaining time points which were then directly compared to experimental data. The results in this work demonstrate that mechanical-biological effects are a necessary component of brain tissue tumour modelling efforts. The results are suggestive that a variable tissue carrying capacity is a needed model component to capture tumour heterogeneity. Lastly, the results advocate the need for additional effort towards capturing tumour-to-tissue infiltration.
Collapse
Affiliation(s)
- David A Hormuth
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jared A Weis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Stephanie L Barnes
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael I Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Erin C Rericha
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Thomas E Yankeelov
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX, USA .,Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.,Internal Medicine, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
33
|
Ferber S, Tiram G, Sousa-Herves A, Eldar-Boock A, Krivitsky A, Scomparin A, Yeini E, Ofek P, Ben-Shushan D, Vossen LI, Licha K, Grossman R, Ram Z, Henkin J, Ruppin E, Auslander N, Haag R, Calderón M, Satchi-Fainaro R. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. eLife 2017; 6:25281. [PMID: 28976305 PMCID: PMC5644959 DOI: 10.7554/elife.25281] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma is a highly aggressive brain tumor. Current standard-of-care results in a marginal therapeutic outcome, partly due to acquirement of resistance and insufficient blood-brain barrier (BBB) penetration of chemotherapeutics. To circumvent these limitations, we conjugated the chemotherapy paclitaxel (PTX) to a dendritic polyglycerol sulfate (dPGS) nanocarrier. dPGS is able to cross the BBB, bind to P/L-selectins and accumulate selectively in intracranial tumors. We show that dPGS has dual targeting properties, as we found that P-selectin is not only expressed on tumor endothelium but also on glioblastoma cells. We delivered dPGS-PTX in combination with a peptidomimetic of the anti-angiogenic protein thrombospondin-1 (TSP-1 PM). This combination resulted in a remarkable synergistic anticancer effect on intracranial human and murine glioblastoma via induction of Fas and Fas-L, with no side effects compared to free PTX or temozolomide. This study shows that our unique therapeutic approach offers a viable alternative for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Sousa-Herves
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laura Isabel Vossen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, Evanston, United States
| | - Eytan Ruppin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, United States.,Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel.,Department of Computer Science, University of Maryland, College Park, United States
| | - Noam Auslander
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, United States.,Department of Computer Science, University of Maryland, College Park, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marcelo Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Ziegler J, Pody R, Coutinho de Souza P, Evans B, Saunders D, Smith N, Mallory S, Njoku C, Dong Y, Chen H, Dong J, Lerner M, Mian O, Tummala S, Battiste J, Fung KM, Wren JD, Towner RA. ELTD1, an effective anti-angiogenic target for gliomas: preclinical assessment in mouse GL261 and human G55 xenograft glioma models. Neuro Oncol 2017; 19:175-185. [PMID: 27416955 PMCID: PMC5464087 DOI: 10.1093/neuonc/now147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/05/2016] [Indexed: 11/13/2022] Open
Abstract
Background Despite current therapies, glioblastoma is a devastating cancer, and validation of effective biomarkers for it will enable better diagnosis and therapeutic intervention for this disease. We recently discovered a new biomarker for high-grade gliomas, ELTD1 (epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1) via bioinformatics, and validated that ELTD1 protein levels are significantly higher in human and rodent gliomas. The focus of this study was to assess the effect on tumor growth of an antibody against ELTD1 in orthotopic, GL261, and G55 xenograft glioma models. Methods The effect of anti-ELTD1 antibody therapy was assessed by animal survival, MRI measured tumor volumes, MR angiography, MR perfusion imaging, and immunohistochemistry (IHC) characterization of microvessel density in mouse glioma models. Comparative treatments included anti-vascular endothelial growth factor (VEGF) and anti-c-Met antibody therapies, compared with untreated controls. Results Tumor volume and survival data in this study show that antibodies against ELTD1 inhibit glioma growth just as effectively or even more so compared with other therapeutic targets studied, including anti-VEGF antibody therapy. Untreated GL261 or G55 tumors were found to have significantly higher ELTD1 levels (IHC) compared with contralateral normal brain. The anti-angiogenic effect of ELTD1 antibody therapy was observed in assessment of microvessel density, as well as from MR angiography and perfusion measurements, which indicated that anti-ELTD1 antibody therapy significantly decreased vascularization compared with untreated controls. Conclusions Either as a single therapy or in conjunction with other therapeutic approaches, anti-ELTD1 antibodies could be a valuable new clinical anti-angiogenic therapeutic for high-grade gliomas.
Collapse
Affiliation(s)
- Jadith Ziegler
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,Department of Pathology, Oklahoma City, Oklahoma
| | - Richard Pody
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | - Blake Evans
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Samantha Mallory
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,The University of Oklahoma Children's Hospital, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Charity Njoku
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Karp Family Research Laboratories, Boston, Massachusetts, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Karp Family Research Laboratories, Boston, Massachusetts, USA
| | - Jiali Dong
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Megan Lerner
- Department of Surgery Research Laboratory, Oklahoma City, Oklahoma
| | - Osamah Mian
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Sai Tummala
- Comparative Medicine, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | - Kar-Ming Fung
- The Stephenson Cancer Center, Oklahoma City, Oklahoma.,Department of Pathology, Oklahoma City, Oklahoma
| | - Jonathan D Wren
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,Department of Biochemistry and Molecular Biology, Oklahoma City, Oklahoma
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,The Stephenson Cancer Center, Oklahoma City, Oklahoma.,Department of Pathology, Oklahoma City, Oklahoma
| |
Collapse
|
35
|
Shan W, Wang XL. Clinical application value of 3.0T MR diffusion tensor imaging in grade diagnosis of gliomas. Oncol Lett 2017; 14:2009-2014. [PMID: 28781644 PMCID: PMC5530196 DOI: 10.3892/ol.2017.6378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/17/2017] [Indexed: 01/15/2023] Open
Abstract
The clinical value of MR diffusion tensor imaging (DTI) in grade diagnosis of gliomas was investigated. A total of 31 patients with glioma were administered 3.0T MR convention and DTI examination, with quantitative measurement of anisotropy coefficient fractional anisotropy (FA) and apparent dispersion coefficient (ADC) value, and the comparison of quantitative parameters of glioma between low- and high-grade, which was detected by Mann-Whitney U test. The receiver operation characteristic (ROC) curve was drawn to take the value of ADC and FA in tumor ROI as a critical point, to calculate the area under the curve and to confirm the diagnosis threshold value and evaluate its diagnostic efficiency. The FA value of 14 low-grade glioma cases was 139.4±81.3, with an ADC value of (1.36±0.21) ×10-3 mm2/sec. The FA value of 17 high-grade glioma cases was 103.1±41.5, with ADC value of (1.09±0.28)-3 mm2/sec; the difference between the two groups was statistically significant (P<0.05). The ADC value was taken as the critical point to judge tumor grade and draw the ROC curve; the area under the curve was 0.79. As the diagnosis threshold value, the ADC value of 1.11×10-3 mm2/sec was used to distinguish between low- and high-grade tumor with a sensitivity of 58.8% and specificity of 92.9%. The FA value was taken as a critical point to judge tumor grade and draw the ROC curve; the area under the curve was 0.62. As the diagnosis threshold value, the FA value of 178.9 was applied to distinguish between low- and high-grade tumor sensitivity of 94.1% and specificity of 35.7%. Therefore, the FA value and ADC value in DTI has an important estimated value for the pathological grade of glioma.
Collapse
Affiliation(s)
- Wei Shan
- Medical Image Center, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Xing-Long Wang
- Medical Image Center, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| |
Collapse
|
36
|
Rutter EM, Stepien TL, Anderies BJ, Plasencia JD, Woolf EC, Scheck AC, Turner GH, Liu Q, Frakes D, Kodibagkar V, Kuang Y, Preul MC, Kostelich EJ. Mathematical Analysis of Glioma Growth in a Murine Model. Sci Rep 2017; 7:2508. [PMID: 28566701 PMCID: PMC5451439 DOI: 10.1038/s41598-017-02462-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/13/2017] [Indexed: 11/21/2022] Open
Abstract
Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.
Collapse
Affiliation(s)
- Erica M Rutter
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA. .,Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Tracy L Stepien
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Department of Mathematics, Univeristy of Arizona, Tucson, AZ, 85721, USA
| | - Barrett J Anderies
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA.,School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Jonathan D Plasencia
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Eric C Woolf
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Adrienne C Scheck
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.,Department of Neurosurgery, Neurosurgery Research Lab, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Gregory H Turner
- BNI-ASU Center for Preclinical Imaging, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Qingwei Liu
- BNI-ASU Center for Preclinical Imaging, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - David Frakes
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Vikram Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mark C Preul
- Department of Neurosurgery, Neurosurgery Research Lab, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Eric J Kostelich
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
37
|
Ziegler J, Bastian A, Lerner M, Bailey-Downs L, Saunders D, Smith N, Sutton J, Battiste JD, Ihnat MA, Gangjee A, Towner RA. AG488 as a therapy against gliomas. Oncotarget 2017; 8:71833-71844. [PMID: 29069750 PMCID: PMC5641093 DOI: 10.18632/oncotarget.18284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas such as glioblastomas (GBM) present a deadly prognosis following diagnosis and very few effective treatment options. Here, we investigate if the small molecule AG488 can be an effective therapy against GBM with both anti-angiogenic as well as an anti-microtubule inhibiting modalities, using a human G55 glioma xenograft model in nude mice. From in vitro studies, we report that AG488 incubation reduced cell viability in G55 and HMEC-1 cells more so than TMZ treatment, and AG488 treatment also decreased cell viability in normal astrocytes, but not as much as for G55 cells (p<0.0001). In vivo investigations indicated that AG488 therapy helped reduce tumor volumes (p<0.0001), prolong survival (p<0.01), increase tumor perfusion (p<0.01), and decrease microvessel density (MVD) (p<0.05), compared to untreated mice or mice treated with non-specific IgG, in the G55 xenograft model. Additionally, AG488 did not induce apoptosis in normal mouse brain tissue. Animal survival and tumor volume changes for AG488 were comparable to TMZ or anti-VEGF therapies, however AG488 was found to be more effective in decreasing tumor-related vascularity (perfusion and MVD). AG488 is a potential novel therapy against high-grade gliomas.
Collapse
Affiliation(s)
- Jadith Ziegler
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anja Bastian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Megan Lerner
- Department of Surgery Research Laboratory, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lora Bailey-Downs
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jake Sutton
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - James D Battiste
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aleem Gangjee
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
38
|
Cai K, Tain RW, Zhou XJ, Damen FC, Scotti AM, Hariharan H, Poptani H, Reddy R. Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness. Mol Imaging Biol 2017; 19:225-232. [PMID: 27541025 PMCID: PMC5824619 DOI: 10.1007/s11307-016-0995-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Creatine (Cr) is a major metabolite in the bioenergetic system. Measurement of Cr using conventional MR spectroscopy (MRS) suffers from low spatial resolution and relatively long acquisition times. Creatine chemical exchange saturation transfer (CrCEST) magnetic resonance imaging (MRI) is an emerging molecular imaging method for tissue Cr measurements. Our previous study showed that the CrCEST contrast, obtained through multicomponent Z-spectral fitting, was lower in tumors compared to normal brain, which further reduced with tumor progression. The current study was aimed to investigate if CrCEST MRI can also be useful for differentiating gliomas with different degrees of aggressiveness. PROCEDURES Intracranial 9L gliosarcoma and F98 glioma bearing rats with matched tumor size were scanned with a 9.4 T MRI scanner at two time points. CEST Z-spectra were collected using a customized sequence with a frequency-selective rectangular saturation pulse (B1 = 50 Hz, duration = 3 s) followed by a single-shot readout. Z spectral data were fitted pixel-wise with five Lorentzian functions, and maps of CrCEST peak amplitude, linewidth, and integral were produced. For comparison, single-voxel proton MR spectroscopy (1H-MRS) was performed to quantify and compare the total Cr concentration in the tumor. RESULTS CrCEST contrasts decreased with tumor progression from weeks 3 to 4 in both 9L and F98 phenotypes. More importantly, F98 tumors had significantly lower CrCEST integral compared to 9L tumors. On the other hand, integrals of other Z-spectral components were unable to differentiate both tumor progression and phenotype with limited sample size. CONCLUSIONS Given that F98 is a more aggressive tumor than 9L, this study suggests that CrCEST MRI may help differentiate gliomas with different aggressiveness.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Rong-Wen Tain
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Frederick C Damen
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro M Scotti
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Hari Hariharan
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Ravinder Reddy
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Timbie KF, Afzal U, Date A, Zhang C, Song J, Wilson Miller G, Suk JS, Hanes J, Price RJ. MR image-guided delivery of cisplatin-loaded brain-penetrating nanoparticles to invasive glioma with focused ultrasound. J Control Release 2017; 263:120-131. [PMID: 28288892 DOI: 10.1016/j.jconrel.2017.03.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 12/24/2022]
Abstract
Systemically administered chemotherapeutic drugs are often ineffective in the treatment of invasive brain tumors due to poor therapeutic index. Within gliomas, despite the presence of heterogeneously leaky microvessels, dense extracellular matrix and high interstitial pressure generate a "blood-tumor barrier" (BTB), which inhibits drug delivery and distribution. Meanwhile, beyond the contrast MRI-enhancing edge of the tumor, invasive cancer cells are protected by the intact blood-brain barrier (BBB). Here, we tested whether brain-penetrating nanoparticles (BPN) that possess dense surface coatings of polyethylene glycol (PEG) and are loaded with cisplatin (CDDP) could be delivered across both the blood-tumor and blood-brain barriers with MR image-guided focused ultrasound (MRgFUS), and whether this treatment could control glioma growth and invasiveness. To this end, we first established that MRgFUS is capable of significantly enhancing the delivery of ~60nm fluorescent tracer BPN across the blood-tumor barrier in both the 9L (6-fold improvement) gliosarcoma and invasive F98 (28-fold improvement) glioma models. Importantly, BPN delivery across the intact BBB, just beyond the tumor edge, was also markedly increased in both tumor models. We then showed that a CDDP loaded BPN formulation (CDDP-BPN), composed of a blend of polyaspartic acid (PAA) and heavily PEGylated polyaspartic acid (PAA-PEG), was highly stable, provided extended drug release, and was effective against F98 cells in vitro. These CDDP-BPN were delivered from the systemic circulation into orthotopic F98 gliomas using MRgFUS, where they elicited a significant reduction in tumor invasiveness and growth, as well as improved animal survival. We conclude that this therapy may offer a powerful new approach for the treatment invasive gliomas, particularly for preventing and controlling recurrence.
Collapse
Affiliation(s)
- Kelsie F Timbie
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road Building MR5, Charlottesville, VA 22908, United States
| | - Umara Afzal
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Department of Biochemistry, PMAS-Arid Agriculture University, Shamsabad, Muree Road, Rawalpindi, Pakistan
| | - Abhijit Date
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States
| | - Clark Zhang
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road Building MR5, Charlottesville, VA 22908, United States
| | - G Wilson Miller
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22908, United States
| | - Jung Soo Suk
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States
| | - Justin Hanes
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road Building MR5, Charlottesville, VA 22908, United States.
| |
Collapse
|
40
|
Lemasson B, Pannetier N, Coquery N, Boisserand LSB, Collomb N, Schuff N, Moseley M, Zaharchuk G, Barbier EL, Christen T. MR Vascular Fingerprinting in Stroke and Brain Tumors Models. Sci Rep 2016; 6:37071. [PMID: 27883015 PMCID: PMC5121626 DOI: 10.1038/srep37071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/25/2016] [Indexed: 02/08/2023] Open
Abstract
In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.
Collapse
Affiliation(s)
- B Lemasson
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - N Pannetier
- Center for Imaging of Neurodegenerative diseases, Veterans Affairs Medical Centrer, San Francisco, USA.,Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - N Coquery
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Ligia S B Boisserand
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Nora Collomb
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - N Schuff
- Center for Imaging of Neurodegenerative diseases, Veterans Affairs Medical Centrer, San Francisco, USA.,Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - M Moseley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - G Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| | - E L Barbier
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - T Christen
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
41
|
Kirschner S, Mürle B, Felix M, Arns A, Groden C, Wenz F, Hug A, Glatting G, Kramer M, Giordano FA, Brockmann MA. Imaging of Orthotopic Glioblastoma Xenografts in Mice Using a Clinical CT Scanner: Comparison with Micro-CT and Histology. PLoS One 2016; 11:e0165994. [PMID: 27829015 PMCID: PMC5102379 DOI: 10.1371/journal.pone.0165994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/23/2016] [Indexed: 01/24/2023] Open
Abstract
Purpose There is an increasing need for small animal in vivo imaging in murine orthotopic glioma models. Because dedicated small animal scanners are not available ubiquitously, the applicability of a clinical CT scanner for visualization and measurement of intracerebrally growing glioma xenografts in living mice was validated. Materials and Methods 2.5x106 U87MG cells were orthotopically implanted in NOD/SCID/ᵞc-/- mice (n = 9). Mice underwent contrast-enhanced (300 μl Iomeprol i.v.) imaging using a micro-CT (80 kV, 75 μAs, 360° rotation, 1,000 projections, scan time 33 s, resolution 40 x 40 x 53 μm) and a clinical CT scanner (4-row multislice detector; 120 kV, 150 mAs, slice thickness 0.5 mm, feed rotation 0.5 mm, resolution 98 x 98 x 500 μm). Mice were sacrificed and the brain was worked up histologically. In all modalities tumor volume was measured by two independent readers. Contrast-to-noise ratio (CNR) and Signal-to-noise ratio (SNR) were measured from reconstructed CT-scans (0.5 mm slice thickness; n = 18). Results Tumor volumes (mean±SD mm3) were similar between both CT-modalities (micro-CT: 19.8±19.0, clinical CT: 19.8±18.8; Wilcoxon signed-rank test p = 0.813). Moreover, between reader analyses for each modality showed excellent agreement as demonstrated by correlation analysis (Spearman-Rho >0.9; p<0.01 for all correlations). Histologically measured tumor volumes (11.0±11.2) were significantly smaller due to shrinkage artifacts (p<0.05). CNR and SNR were 2.1±1.0 and 1.1±0.04 for micro-CT and 23.1±24.0 and 1.9±0.7 for the clinical CTscanner, respectively. Conclusion Clinical CT scanners may reliably be used for in vivo imaging and volumetric analysis of brain tumor growth in mice.
Collapse
Affiliation(s)
- Stefanie Kirschner
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Bettina Mürle
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Manuela Felix
- Medical Radiation Physics/Radiation Protection, Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Anna Arns
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Andreas Hug
- Spinal Cord Injury Center, University Hospital Heidelberg, Schlierbacher Landstr. 200a, 69118, Heidelberg, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University, 35392, Giessen, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
- * E-mail:
| |
Collapse
|
42
|
Boult JKR, Borri M, Jury A, Popov S, Box G, Perryman L, Eccles SA, Jones C, Robinson SP. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR IN BIOMEDICINE 2016; 29:1608-1617. [PMID: 27671990 PMCID: PMC5082561 DOI: 10.1002/nbm.3594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co-option in regions of invasive growth (in which the blood-brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd-DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)-enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k-means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA-MB-231 LM2-4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR1 (the change in transverse relaxation rate R1 induced by Gd-DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA-MB-231 LM2-4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA-MB-231 LM2-4 tumours on T2 -weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR1 ) were predominantly located at the tumour margins, regions of MDA-MB-231 LM2-4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties, coupled with cluster analysis, allows for the assessment of heterogeneity within invasive brain tumours and the designation of functionally diverse subregions that may provide more informative predictive biomarkers.
Collapse
Affiliation(s)
- Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | - Marco Borri
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Alexa Jury
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Sergey Popov
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Gary Box
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Lara Perryman
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Suzanne A Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|
43
|
Cidon EU, Alonso P, Masters B. Markers of Response to Antiangiogenic Therapies in Colorectal Cancer: Where Are We Now and What Should Be Next? CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2016; 10:41-55. [PMID: 27147901 PMCID: PMC4849423 DOI: 10.4137/cmo.s34542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/15/2016] [Accepted: 03/13/2016] [Indexed: 12/17/2022]
Abstract
Despite advances in the treatment of colorectal cancer (CRC), it remains the second most common cause of cancer-related death in the Western world. Angiogenesis is a complex process that involves the formation of new blood vessels from preexisting vessels. It is essential for promoting cancer survival, growth, and dissemination. The inhibition of angiogenesis has been shown to prevent tumor progression experimentally, and several chemotherapeutic targets of tumor angiogenesis have been identified. These include anti-vascular endothelial growth factor (VEGF) treatments, such as bevacizumab (a VEGF-specific binding antibody) and anti-VEGF receptor tyrosine kinase inhibitors, although antiangiogenic therapy has been shown to be effective in the treatment of several cancers, including CRC. However, it is also associated with its own side effects and financial costs. Therefore, the identification of biomarkers that are able to identify patients who are more likely to benefit from antiangiogenic treatment is very important. This article intends to be a concise summary of the potential biomarkers that can predict or prognosticate the benefit of antiangiogenic treatments in CRC, and also what we can expect in the near future.
Collapse
Affiliation(s)
- E Una Cidon
- Department of Medical Oncology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, UK
| | - P Alonso
- Department of Clinical Oncology, Clinical University Hospital, Valladolid, Spain
| | - B Masters
- Department of Oncology, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|
44
|
Bell C, Dowson N, Fay M, Thomas P, Puttick S, Gal Y, Rose S. Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation. Semin Nucl Med 2015; 45:136-50. [PMID: 25704386 DOI: 10.1053/j.semnuclmed.2014.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
There is significant interest in the development of improved image-guided therapy for neuro-oncology applications. Glioblastomas (GBM) in particular present a considerable challenge because of their pervasive nature, propensity for recurrence, and resistance to conventional therapies. MRI is routinely used as a guide for planning treatment strategies. However, this imaging modality is not able to provide images that clearly delineate tumor boundaries and affords only indirect information about key tumor pathophysiology. With the emergence of PET imaging with new oncology radiotracers, mapping of tumor infiltration and other important molecular events such as hypoxia is now feasible within the clinical setting. In particular, the importance of imaging hypoxia levels within the tumoral microenvironment is gathering interest, as hypoxia is known to play a central role in glioma pathogenesis and resistance to treatment. One of the hypoxia radiotracers known for its clinical utility is (18)F-fluoromisodazole ((18)F-FMISO). In this review, we highlight the typical causes of treatment failure in gliomas that may be linked to hypoxia and outline current methods for the detection of hypoxia. We also provide an overview of the growing body of studies focusing on the clinical translation of (18)F-FMISO PET imaging, strengthening the argument for the use of (18)F-FMISO hypoxia imaging to help optimize and guide treatment strategies for patients with glioblastoma.
Collapse
Affiliation(s)
- Christopher Bell
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Queensland, Australia; CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Queensland, Australia; School of Medicine, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas Dowson
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Queensland, Australia; CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Queensland, Australia
| | - Mike Fay
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Herston, Brisbane, Queensland, Australia
| | - Paul Thomas
- Specialised PET Services Queensland, Royal Brisbane and Women's Hospital, Herston, Brisbane, Queensland, Australia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Yaniv Gal
- Centre for Medical Diagnostic Technologies in Queensland, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Stephen Rose
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Queensland, Australia; CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Queensland, Australia; School of Medicine, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
45
|
Evaluation of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid accumulation in low-grade glioma in chemically induced rat models: PET and autoradiography compared with morphological images and histopathological findings. Nucl Med Biol 2015; 42:664-72. [DOI: 10.1016/j.nucmedbio.2015.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022]
|
46
|
Towner RA, Ihnat M, Saunders D, Bastian A, Smith N, Pavana RK, Gangjee A. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model. BMC Cancer 2015; 15:522. [PMID: 26177924 PMCID: PMC4504175 DOI: 10.1186/s12885-015-1538-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. METHODS GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. RESULTS Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21-31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. CONCLUSIONS These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine transferase (MGMT) mediated resistance, as is the case with TMZ, indicating that AG119 may be potentially useful in treating resistant gliomas.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| | - Michael Ihnat
- Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Anja Bastian
- Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA. .,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Roheeth Kumar Pavana
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, USA.
| | - Aleem Gangjee
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
47
|
Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma. J Control Release 2015; 210:95-104. [DOI: 10.1016/j.jconrel.2015.05.272] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/25/2023]
|
48
|
Grigore F, Brehar FM, Gorgan MR. Current perspectives concerning the multimodal therapy in Glioblastoma. ROMANIAN NEUROSURGERY 2015. [DOI: 10.1515/romneu-2015-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
GBM (Glioblastoma) is the most common, malignant type of primary brain tumor. It has a dismal prognosis, with an average life expectancy of less than 15 months. A better understanding of the tumor biology of GBM has been achieved in the past decade and set up new directions in the multimodal therapy by targeting the molecular paths involved in tumor initiation and progression. Invasion is a hallmark of GBM, and targeting the complex invasive mechanism of the tumor is mandatory in order to achieve a satisfactory result in GBM therapy. The goal of this review is to describe the tumor biology and key features of GBM and to provide an up-to-date overview of the current identified molecular alterations involved both in tumorigenesis and tumor progression.
Collapse
|
49
|
Danhier F, Messaoudi K, Lemaire L, Benoit JP, Lagarce F. Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation. Int J Pharm 2015; 481:154-61. [PMID: 25644286 DOI: 10.1016/j.ijpharm.2015.01.051] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 12/21/2022]
Abstract
Glioblastoma is the most frequent primary malignant brain tumor in adults. Despite treatments including surgery, radiotherapy and chemotherapy by oral Temozolomide (TMZ), the prognosis of patients with glioblastoma remains very poor. This is partly due to the resistance of malignant cells to therapy particularly TMZ. Overexpression of epidermal growth factor receptor (EGFR) and Galectin-1 by tumor cells significantly contributes to TMZ resistance. The purpose of this study was to evaluate in vivo, the effect of local administration by convection enhanced delivery (CED) of the anti-EGFR and anti-Galectin-1 siRNAs administered separately or in combination on (i) the survival of nude mice-bearing orthotopic U87MG glioblastoma cells and on (ii) the EGFR and Galectin-1 expression in excised U87MG tumor tissue. Both siRNAs were carried by chitosan lipid nanocapsules (LNCs). Survival of mice treated 14 days after tumor implantation by the combination of anti-EGFR and anti-Galectin-1 siRNAs and TMZ (40 mg/kg) was significantly increased compared to animals treated by single anti-EGFR or anti-Galectin-1 siRNAs carried by chitosan-LNCs. This was confirmed by a decreased EGFR and Galectin-1 expression at the protein level in excised U87MG tumor tissue, 8 days post-transfection, visualized by immunofluorescence. This study demonstrates the potential of our strategy in glioblastoma therapy.
Collapse
Affiliation(s)
- Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, bte B1 73.12, B-1200 Brussels, Belgium
| | - Khaled Messaoudi
- L'Universit Nantes Angers Le Mans, INSERM U1066, Micro et nanomédecines biomimétiques, IBS-CHU Angers, 4 rue Larrey, 49933 Angers, Cedex 9, France
| | - Laurent Lemaire
- L'Universit Nantes Angers Le Mans, INSERM U1066, Micro et nanomédecines biomimétiques, IBS-CHU Angers, 4 rue Larrey, 49933 Angers, Cedex 9, France
| | - Jean-Pierre Benoit
- L'Universit Nantes Angers Le Mans, INSERM U1066, Micro et nanomédecines biomimétiques, IBS-CHU Angers, 4 rue Larrey, 49933 Angers, Cedex 9, France; Pharmacy Department, Angers University Hospital, CHU Angers, 4 rue Larrey, 49933 Angers, Cedex 9, France
| | - Frédéric Lagarce
- L'Universit Nantes Angers Le Mans, INSERM U1066, Micro et nanomédecines biomimétiques, IBS-CHU Angers, 4 rue Larrey, 49933 Angers, Cedex 9, France; Pharmacy Department, Angers University Hospital, CHU Angers, 4 rue Larrey, 49933 Angers, Cedex 9, France.
| |
Collapse
|
50
|
Park JH, Lee H, Makaryus R, Yu M, Smith SD, Sayed K, Feng T, Holland E, Van der Linden A, Bolwig TG, Enikolopov G, Benveniste H. Metabolic profiling of dividing cells in live rodent brain by proton magnetic resonance spectroscopy (1HMRS) and LCModel analysis. PLoS One 2014; 9:e94755. [PMID: 24819091 PMCID: PMC4018321 DOI: 10.1371/journal.pone.0094755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/19/2014] [Indexed: 02/04/2023] Open
Abstract
Rationale Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive shock in the live rodent brain via spectral signatures representing mobile lipids resonating at ∼1.30 ppm. In addition, we also apply the same 1HMRS methodology to metabolically profile glioblastomas with actively dividing cells growing in RCAS-PDGF mice. Methods 1HMRS metabolic profiles were acquired on a 9.4T MRI instrument in combination with LCModel spectral analysis of: 1) rat brains before and after ECS or sham treatments and 2) RCAS-PDGF mice with glioblastomas and wild-type controls. Quantified 1HMRS data were compared to post-mortem histology. Results Dividing cells in the rat hippocampus increased ∼3-fold after ECS compared to sham treatment. Quantification of hippocampal metabolites revealed significant decreases in N-acetyl-aspartate but no evidence of an elevated signal at ∼1.3 ppm (Lip13a+Lip13b) in the ECS compared to the sham group. In RCAS-PDGF mice a high density (22%) of dividing cells characterized glioblastomas. Nile Red staining revealed a small fraction (3%) of dying cells with intracellular lipid droplets in the tumors of RCAS-PDGF mice. Concentrations of NAA were lower, whereas lactate and Lip13a+Lip13b were found to be significantly higher in glioblastomas of RCAS-PDGF mice, when compared to normal brain tissue in the control mice. Conclusions Metabolic profiling using 1HMRS in combination with LCModel analysis did not reveal correlation between Lip13a+Lip13b spectral signatures and an increase in neurogenesis in adult rat hippocampus after ECS. However, increases in Lip13a+Lip13b were evident in glioblastomas suggesting that a higher density of actively dividing cells and/or the presence of lipid droplets is necessary for LCModel to reveal mobile lipids.
Collapse
Affiliation(s)
- June-Hee Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Hedok Lee
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, New York, United States of America
| | - Rany Makaryus
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, New York, United States of America
| | - Mei Yu
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, New York, United States of America
| | - S. David Smith
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, New York, United States of America
| | - Kasim Sayed
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Tian Feng
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, United States of America
| | - Eric Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Annemie Van der Linden
- Department of Biomedical Sciences, Bio-Imaging Laboratory, University of Antwerp, Belgium
| | - Tom G. Bolwig
- Neuropsychiatry Laboratory, Copenhagen University Hospital, Copenhagen, Denmark
| | - Grigori Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Helene Benveniste
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, New York, United States of America
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|