1
|
Warmerdam EG, Westenberg JJM, Voskuil M, Rijnberg FM, Roest AAW, Lamb HJ, van Wijk B, Sieswerda GT, Doevendans PA, Ter Heide H, Krings GJ, Leiner T, Grotenhuis HB. Comparison of Four-Dimensional Flow MRI, Two-Dimensional Phase-Contrast MRI and Echocardiography in Transposition of the Great Arteries. Pediatr Cardiol 2024; 45:1627-1635. [PMID: 37488239 PMCID: PMC11442473 DOI: 10.1007/s00246-023-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Pulmonary artery (PA) stenosis is a common complication after the arterial switch operation (ASO) for transposition of the great arteries (TGA). Four-dimensional flow (4D flow) CMR provides the ability to quantify flow within an entire volume instead of a single plane. The aim of this study was to compare PA maximum velocities and stroke volumes between 4D flow CMR, two-dimensional phase-contrast (2D PCMR) and echocardiography. A prospective study including TGA patients after ASO was performed between December 2018 and October 2020. All patients underwent echocardiography and CMR, including 2D PCMR and 4D flow CMR. Maximum velocities and stroke volumes were measured in the main, right, and left PA (MPA, LPA, and RPA, respectively). A total of 39 patients aged 20 ± 8 years were included. Maximum velocities in the MPA, LPA, and RPA measured by 4D flow CMR were significantly higher compared to 2D PCMR (p < 0.001 for all). PA assessment by echocardiography was not possible in the majority of patients. 4D flow CMR maximum velocity measurements were consistently higher than those by 2D PCMR with a mean difference of 65 cm/s for the MPA, and 77 cm/s for both the RPA and LPA. Stroke volumes showed good agreement between 4D flow CMR and 2D PCMR. Maximum velocities in the PAs after ASO for TGA are consistently lower by 2D PCMR, while echocardiography only allows for PA assessment in a minority of cases. Stroke volumes showed good agreement between 4D flow CMR and 2D PCMR.
Collapse
Affiliation(s)
- Evangeline G Warmerdam
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Friso M Rijnberg
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Arno A W Roest
- Department of Paedidatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram van Wijk
- Department of Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Gertjan T Sieswerda
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Henriette Ter Heide
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Gregor J Krings
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heynric B Grotenhuis
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
2
|
Trauzeddel RF, Müller M, Demir A, Wiesemann S, Daud E, Schmitter S, Viezzer D, Hadler T, Schulz-Menger J. The influence of post-processing software on quantitative results in 4D flow cardiovascular magnetic resonance examinations. Front Cardiovasc Med 2024; 11:1465554. [PMID: 39399512 PMCID: PMC11467864 DOI: 10.3389/fcvm.2024.1465554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background Several commercially available software packages exist for the analysis of three-dimensional cine phase-contrast cardiovascular magnetic resonance (CMR) with three-directional velocity encoding (four-dimensional (4D) flow CMR). Only sparse data are available on the impact of these different software solutions on quantitative results. We compared two different commercially available and widely used software packages and their impact on the forward flow volume (FFV), peak velocity (PV), and maximum wall shear stress (WSS) per plane. Materials and methods 4D flow CMR datasets acquired by 3 Tesla magnetic resonance imaging of 10 healthy volunteers, 13 aortic stenosis patients, and 7 aortic valve replacement patients were retrospectively analyzed for FFV, PV, and WSS using two software packages in six analysis planes along the thoracic aorta. Absolute (AD) and relative differences (RD), intraclass correlation coefficients (ICC), Bland-Altman analysis, and Spearman's correlation analysis were calculated. Results For the FFV and PV in healthy volunteers, there was good to excellent agreement between both software packages [FFV: ICC = 0.93-0.97, AD: 0.1 ± 5.4 ml (-2.3 ± 2.4 ml), RD: -0.3 ± 8% (-5.7 ± 6.0%); PV: ICC = 0.81-0.99, AD: -0.02 ± 0.02 ml (-0.1 ± 0.1 ml), RD: -1.6 ± 2.1% (-9.3 ± 6.1%)]. In patients, the FFV showed good to excellent agreement [ICC: 0.75-0.91, AD: -1.8 ± 6.5 ml (-8.3 ± 9.9 ml), RD: -2.2 ± 9.2% (-13.8 ± 17.4%)]. In the ascending aorta, PV showed only poor to moderate agreement in patients (plane 2 ICC: 0.33, plane 3 ICC: 0.72), whereas the rest of the thoracic aorta revealed good to excellent agreement [ICC: 0.95-0.98, AD: -0.03 ± 0.07 (-0.1 ± 0.1 m/s), RD: -3.5 ± 7.9% (-7.8 ± 9.9%)]. WSS analysis showed no to poor agreement between both software packages. Global correlation analyses revealed good to very good correlation between FFV and PV and only poor correlation for WSS. Conclusions There was good to very good agreement for the FFV and PV except for the ascending aorta in patients when comparing PV and no agreement for WSS. Standardization is therefore necessary.
Collapse
Affiliation(s)
- Ralf F. Trauzeddel
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Müller
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Aylin Demir
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Stephanie Wiesemann
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Elias Daud
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- The Cardiology Department, Galilee Medical Center, Azrieli Faculty of Medicine Bar-Ilan University, Nahariya, Israel
| | | | - Darian Viezzer
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Thomas Hadler
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Jeanette Schulz-Menger
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| |
Collapse
|
3
|
Aalbregt E, Indrakusuma R, Jalalzadeh H, Planken RN, van Schuppen J, Meijboom L, Balm R, Nederveen AJ, Yeung KK, van Ooij P. Four-Dimensional Flow MRI-Derived Hemodynamics in Abdominal Aortic Aneurysms: Reproducibility and Associations With Diameter, Intraluminal Thrombus Volume, and Vorticity. J Magn Reson Imaging 2024; 60:878-888. [PMID: 38006298 DOI: 10.1002/jmri.29138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Maximum diameter measurements are used to assess the rupture risk of abdominal aortic aneurysms (AAAs); however, these are not precise enough to predict all ruptures. Four-dimensional (4D) flow MRI-derived parameters provide additional information by visualizing hemodynamics in AAAs but merit further investigation before they are clinically applicable. PURPOSE To assess the reproducibility of 4D flow MRI-derived hemodynamics, to investigate possible correlations with lumen and maximum diameter, and to explore potential relationships with vorticity and aneurysm growth. STUDY TYPE Prospective single-arm study. POPULATION A total of 22 (71.5 ± 6.1 years, 20 male) asymptomatic AAA patients with a maximum diameter of at least 30 mm. FIELD STRENGTH/SEQUENCE A 3.0 T/Free-breathing 4D flow MRI phase-contrast acquisition with retrospective ECG-gating. ASSESSMENT Patients underwent two consecutive 4D flow MRI scans 1-week apart. Aortic volumes were segmented from time-averaged phase contrast magnetic resonance angiographies. Reproducibility was assessed by voxelwise analysis after registration. Mean flow velocity, mean wall shear stress (WSS), mean lumen diameter, and qualitative vorticity scores were assessed. In addition, Dixon MRI and retrospective surveillance data were used to study maximum diameter (including thrombus), intraluminal thrombus volume (ILT), and growth rate. STATISTICAL TESTS For reproducibility assessment, Bland-Altman analyses, Pearson correlation, Spearman's correlation, and orthogonal regression were conducted. Potential correlations between hemodynamics and vorticity scores were assessed using linear regression. P < 0.05 was considered statistically significant. RESULTS Test-retest median Pearson correlation coefficients for flow velocity and WSS were 0.85 (IQR = 0.08) m/sec and 0.82 (IQR = 0.10) Pa, respectively. Mean WSS significantly correlated with mean flow velocity (R = 0.75) and inversely correlated with mean lumen diameter (R = -0.73). No significant associations were found between 4D flow MRI-derived hemodynamic parameters and maximum diameter (flow velocity: P = 0.98, WSS: P = 0.22). DATA CONCLUSION A 4D flow MRI is robust for assessing the hemodynamics within AAAs. No correlations were found between hemodynamic parameters and maximum diameter, ILT volume and growth rate. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Eva Aalbregt
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Reza Indrakusuma
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hamid Jalalzadeh
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R Nils Planken
- Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Joost van Schuppen
- Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Lilian Meijboom
- Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Ron Balm
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Pim van Ooij
- Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Manini C, Hüllebrand M, Walczak L, Nordmeyer S, Jarmatz L, Kuehne T, Stern H, Meierhofer C, Harloff A, Erley J, Kelle S, Bannas P, Trauzeddel RF, Schulz-Menger J, Hennemuth A. Impact of training data composition on the generalizability of convolutional neural network aortic cross-section segmentation in four-dimensional magnetic resonance flow imaging. J Cardiovasc Magn Reson 2024; 26:101081. [PMID: 39127260 PMCID: PMC11422555 DOI: 10.1016/j.jocmr.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Four-dimensional cardiovascular magnetic resonance flow imaging (4D flow CMR) plays an important role in assessing cardiovascular diseases. However, the manual or semi-automatic segmentation of aortic vessel boundaries in 4D flow data introduces variability and limits the reproducibility of aortic hemodynamics visualization and quantitative flow-related parameter computation. This paper explores the potential of deep learning to improve 4D flow CMR segmentation by developing models for automatic segmentation and analyzes the impact of the training data on the generalization of the model across different sites, scanner vendors, sequences, and pathologies. METHODS The study population consists of 260 4D flow CMR datasets, including subjects without known aortic pathology, healthy volunteers, and patients with bicuspid aortic valve (BAV) examined at different hospitals. The dataset was split to train segmentation models on subsets with different representations of characteristics, such as pathology, gender, age, scanner model, vendor, and field strength. An enhanced three-dimensional U-net convolutional neural network (CNN) architecture with residual units was trained for time-resolved two-dimensional aortic cross-sectional segmentation. Model performance was evaluated using Dice score, Hausdorff distance, and average symmetric surface distance on test data, datasets with characteristics not represented in the training set (model-specific), and an overall evaluation set. Standard diagnostic flow parameters were computed and compared with manual segmentation results using Bland-Altman analysis and interclass correlation. RESULTS The representation of technical factors, such as scanner vendor and field strength, in the training dataset had the strongest influence on the overall segmentation performance. Age had a greater impact than gender. Models solely trained on BAV patients' datasets performed well on datasets of healthy subjects but not vice versa. CONCLUSION This study highlights the importance of considering a heterogeneous dataset for the training of widely applicable automatic CNN segmentations in 4D flow CMR, with a particular focus on the inclusion of different pathologies and technical aspects of data acquisition.
Collapse
Affiliation(s)
- Chiara Manini
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Markus Hüllebrand
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Fraunhofer MEVIS, Berlin, Germany
| | - Lars Walczak
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Fraunhofer MEVIS, Berlin, Germany
| | - Sarah Nordmeyer
- Department of Diagnostic and Interventional Radiology, Tübingen University Hospital, Tübingen, Germany
| | - Lina Jarmatz
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
| | - Titus Kuehne
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Heiko Stern
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | - Christian Meierhofer
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | - Andreas Harloff
- Department of Neurology and Neurophysiology, University Medical Center Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer Erley
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sebastian Kelle
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Felix Trauzeddel
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jeanette Schulz-Menger
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Anja Hennemuth
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Fraunhofer MEVIS, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Guala A, Ferrer-Cornet M, Dux-Santoy L. Editorial for "Multiyear Interval Changes in Aortic Wall Shear Stress in Patients With Bicuspid Aortic Valve Assessed by 4D Flow MRI". J Magn Reson Imaging 2024. [PMID: 38970394 DOI: 10.1002/jmri.29513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 07/08/2024] Open
Affiliation(s)
- Andrea Guala
- Cardiovascular diseases Department, Vall d'Hebron Institut de Recerca, Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ferrer-Cornet
- Cardiovascular diseases Department, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Lydia Dux-Santoy
- Cardiovascular diseases Department, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| |
Collapse
|
6
|
Maroun A, Scott MB, Catania R, Berhane H, Jarvis K, Allen BD, Barker AJ, Markl M. Multiyear Interval Changes in Aortic Wall Shear Stress in Patients with Bicuspid Aortic Valve Assessed by 4D Flow MRI. J Magn Reson Imaging 2024. [PMID: 38426608 DOI: 10.1002/jmri.29305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In patients with bicuspid aortic valve (BAV), 4D flow MRI can quantify regions exposed to abnormal aortic hemodynamics, including high wall shear stress (WSS), a known stimulus for arterial wall dysfunction. However, the long-term multiscan reproducibility of 4D flow MRI-derived hemodynamic parameters is unknown. PURPOSE To investigate the long-term stability of 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps in patients with BAV undergoing multiyear surveillance imaging. STUDY TYPE Retrospective. POPULATION 20 BAV patients (mean age 48.4 ± 13.9 years; 14 males) with five 4D flow MRI scans, with intervals of at least 6 months between scans, and 125 controls (mean age: 50.7 ± 15.8 years; 67 males). FIELD STRENGTH/SEQUENCE 1.5 and 3.0T, prospectively ECG and respiratory navigator-gated aortic 4D flow MRI. ASSESSMENT Automated AI-based 4D flow analysis pipelines were used for data preprocessing, aorta 3D segmentation, and quantification of ascending aorta (AAo) peak velocity, peak systolic WSS, and heatmap-derived relative area of elevated WSS compared to WSS ranges in age and sex-matched normative control populations. Growth rate was derived from the maximum AAo diameters measured on the first and fifth MRI scans. STATISTICAL TESTS One-way repeated measures analysis of variance. P < 0.05 indicated significance. RESULTS One hundred 4D flow MRI exams (five per patient) were analyzed. The mean total follow-up duration was 5.5 ± 1.1 years, and the average growth rate was 0.3 ± 0.2 mm/year. Peak velocity, peak systolic WSS, and relative area of elevated WSS did not change significantly over the follow-up period (P = 0.64, P = 0.69, and P = 0.35, respectively). The patterns and areas of elevated WSS demonstrated good reproducibility on semiquantitative assessment. CONCLUSION 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps showed good multiyear and multiscan stability in BAV patients with low aortic growth rates. These findings underscore the reliability of these metrics in monitoring BAV patients for potential risk of dilation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Anthony Maroun
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael B Scott
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Roberta Catania
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Haben Berhane
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly Jarvis
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Ma P, Zhu L, Wen R, Lv F, Li Y, Li X, Zhang Z. Revolutionizing vascular imaging: trends and future directions of 4D flow MRI based on a 20-year bibliometric analysis. Quant Imaging Med Surg 2024; 14:1873-1890. [PMID: 38415143 PMCID: PMC10895087 DOI: 10.21037/qims-23-1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/08/2023] [Indexed: 02/29/2024]
Abstract
Background Four-dimensional flow magnetic resonance imaging (4D flow MRI) is a promising new technology with potential clinical value in hemodynamic quantification. Although an increasing number of articles on 4D flow MRI have been published over the past decades, few studies have statistically analyzed these published articles. In this study, we aimed to perform a systematic and comprehensive bibliometric analysis of 4D flow MRI to explore the current hotspots and potential future directions. Methods The Web of Science Core Collection searched for literature on 4D flow MRI between 2003 and 2022. CiteSpace was utilized to analyze the literature data, including co-citation, cooperative network, cluster, and burst keyword analysis. Results A total of 1,069 articles were extracted for this study. The main research hotspots included the following: quantification and visualization of blood flow in different clinical settings, with keywords such as "cerebral aneurysm", "heart", "great vessel", "tetralogy of Fallot", "portal hypertension", and "stiffness"; optimization of image acquisition schemes, such as "resolution" and "reconstruction"; measurement and analysis of flow components and patterns, as indicated by keywords "pattern", "KE", "WSS", and "fluid dynamics". In addition, international consensus for metrics derived from 4D flow MRI and multimodality imaging may also be the future research direction. Conclusions The global domain of 4D flow MRI has grown over the last 2 decades. In the future, 4D flow MRI will evolve towards becoming a relatively short scan duration with adequate spatiotemporal resolution, expansion into the diagnosis and treatment of vascular disease in other related organs, and a shift in focus from vascular structure to function. In addition, artificial intelligence (AI) will assist in the clinical promotion and application of 4D flow MRI.
Collapse
Affiliation(s)
- Peisong Ma
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lishu Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ru Wen
- Department of Radiology, Guizhou Provincial People Hospital, Guiyang, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyou Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Merton R, Bosshardt D, Strijkers GJ, Nederveen AJ, Schrauben EM, van Ooij P. Reproducibility of 3D thoracic aortic displacement from 3D cine balanced SSFP at 3 T without contrast enhancement. Magn Reson Med 2024; 91:466-480. [PMID: 37831612 DOI: 10.1002/mrm.29856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE Aortic motion has direct impact on the mechanical stresses acting on the aorta. In aortic disease, increased stiffness of the aorta may lead to decreased aortic motion over time, which could be a predictor for aortic dissection or rupture. This study investigates the reproducibility of obtaining 3D displacement and diameter maps quantified using accelerated 3D cine MRI at 3 T. METHODS A noncontrast-enhanced, free-breathing 3D cine sequence based on balanced SSFP and pseudo-spiral undersampling with high spatial isotropic resolution was developed (spatial/temporal resolution [1.6 mm]3 /67 ms). The thoracic aorta of 14 healthy volunteers was prospectively scanned three times at 3 T: twice on the same day and a third time 2 weeks later. Aortic displacement was calculated using iterative closest point nonrigid registration of manual segmentations of the 3D aorta at end-systole and mid-diastole. Interexamination and interobserver regional analysis of mean displacement for five regions of interest was performed using Bland-Altman analysis. Additionally, a complementary voxel-by-voxel analysis was done, allowing a more local inspection of the method. RESULTS No significant differences were found in mean and maximum displacement for any of the regions of interest for the interexamination and interobserver analysis. The maximum displacement measured in the lower half of the ascending aorta was 11.0 ± 3.4 mm (range: 3.0-17.5 mm) for the first scan. The smallest detectable change in mean displacement in the lower half of the ascending aorta was 3 mm. CONCLUSION Detailed 3D cine balanced SSFP at 3 T allows for reproducible quantification of systolic-diastolic mean aortic displacement within acceptable limits.
Collapse
Affiliation(s)
- Renske Merton
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Daan Bosshardt
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Biomedical Physics and Engineering, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Eric M Schrauben
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Pim van Ooij
- Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
9
|
van Tuijl RJ, Timmins KM, Velthuis BK, van Ooij P, Zwanenburg JJM, Ruigrok YM, van der Schaaf IC. Hemodynamic Parameters in the Parent Arteries of Unruptured Intracranial Aneurysms Depend on Aneurysm Size and Are Different Compared to Contralateral Arteries: A 7 Tesla 4D Flow MRI Study. J Magn Reson Imaging 2024; 59:223-230. [PMID: 37144669 DOI: 10.1002/jmri.28756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Different Circle of Willis (CoW) variants have variable prevalences of aneurysm development, but the hemodynamic variation along the CoW and its relation to presence and size of unruptured intracranial aneurysms (UIAs) are not well known. PURPOSE Gain insight into hemodynamic imaging markers of the CoW for UIA development by comparing these outcomes to the corresponding contralateral artery without an UIA using 4D flow magnetic resonance imaging (MRI). STUDY TYPE Retrospective, cross-sectional study. SUBJECTS Thirty-eight patients with an UIA, whereby 27 were women and a mean age of 62 years old. FIELD STRENGTH/SEQUENCE Four-dimensional phase-contrast (PC) MRI with a 3D time-resolved velocity encoded gradient echo sequence at 7 T. ASSESSMENT Hemodynamic parameters (blood flow, velocity pulsatility index [vPI], mean velocity, distensibility, and wall shear stress [peak systolic (WSSMAX ), and time-averaged (WSSMEAN )]) in the parent artery of the UIA were compared to the corresponding contralateral artery without an UIA and were related to UIA size. STATISTICAL TESTS Paired t-tests and Pearson Correlation tests. The threshold for statistical significance was P < 0.05 (two-tailed). RESULTS Blood flow, mean velocity, WSSMAX , and WSSMEAN were significantly higher, while vPI was lower, in the parent artery relative to contralateral artery. The WSSMAX of the parent artery significantly increased linearly while the WSSMEAN decreased linearly with increasing UIA size. CONCLUSIONS Hemodynamic parameters and WSS differ between parent vessels of UIAs and corresponding contralateral vessels. WSS correlates with UIA size, supporting a potential hemodynamic role in aneurysm pathology. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Rick J van Tuijl
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kimberley M Timmins
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Birgitta K Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim van Ooij
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaco J M Zwanenburg
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
10
|
Pirola S, Pirola S, Mastroiacovo G, Bonomi A, Manchester EL, Fisichella SM, Maragna R, Baggiano A, Mushtaq S, Muscogiuri G, Guglielmo M, Yun Xu X, Pontone G, Polvani G. Does the AVNeo valve reduce wall stress on the aortic wall? A cardiac magnetic resonance analysis with 4D-flow for the evaluation of aortic valve replacement with the Ozaki technique. Eur J Cardiothorac Surg 2023; 64:ezad299. [PMID: 37656941 DOI: 10.1093/ejcts/ezad299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES Aortic valve neocuspidalization aims to replace the 3 aortic cusps with autologous pericardium pre-treated with glutaraldehyde, and it is a surgical alternative to the classical aortic valve replacement (AVR). Image-based patient-specific computational fluid dynamics allows the derivation of shear stress on the aortic wall [wall shear stress (WSS)]. Previous studies support a potential link between increased WSS and histological alterations of the aortic wall. The aim of this study is to compare the WSS of the ascending aorta in patients undergoing aortic valve neocuspidalization versus AVR with biological prostheses. METHODS This is a prospective nonrandomized clinical trial. Each patient underwent a 4D-flow cardiac magnetic resonance scan after surgery, which informed patient-specific computational fluid dynamics models to evaluate WSS at the ascending aortic wall. The adjusted variables were calculated by summing the residuals obtained from a multivariate linear model (with ejection fraction and left ventricle outflow tract-aorta angle as covariates) to the mean of the variables. RESULTS Ten patients treated with aortic valve neocuspidalization were enrolled and compared with 10 AVR patients. The aortic valve neocuspidalization group showed a significantly lower WSS in the outer curvature segments of the proximal and distal ascending aorta as compared to AVR patients (P = 0.0179 and 0.0412, respectively). WSS levels remained significantly lower along the outer curvature of the proximal aorta in the aortic valve neocuspidalization population, even after adjusting the WSS for the ejection fraction and the left ventricle outflow tract-aorta angle [2.44 Pa (2.17-3.01) vs 1.94 Pa (1.72-2.01), P = 0.02]. CONCLUSIONS Aortic valve neocuspidalization hemodynamical features are potentially associated with a lower WSS in the ascending aorta as compared to commercially available bioprosthetic valves.
Collapse
Affiliation(s)
- Sergio Pirola
- Department of Cardiovascular Surgery, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Selene Pirola
- Institute of Clinical Sciences, Imperial College London, London, UK
- Department of BioMechanical Engineering, TU Delft, Delft, Netherlands
| | - Giorgio Mastroiacovo
- Department of Cardiovascular Surgery, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Alice Bonomi
- Department of Biostatistics, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | | | | | - Riccardo Maragna
- Department of Cardiac imaging, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Andrea Baggiano
- Department of Cardiac imaging, IRCCS Centro Cardiologico Monzino, Milan, Italy
- Department of Cardiovascular Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, Netherlands
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, UK
| | - Gianluca Pontone
- Department of Cardiac imaging, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Gianluca Polvani
- Department of Cardiovascular Surgery, IRCCS Centro Cardiologico Monzino, Milan, Italy
- Department of Surgical and Dental Biomedical Sciences, University of Milan, Italy
| |
Collapse
|
11
|
Ebrahimkhani M, Johnson EMI, Sodhi A, Robinson JD, Rigsby CK, Allen BD, Markl M. A Deep Learning Approach to Using Wearable Seismocardiography (SCG) for Diagnosing Aortic Valve Stenosis and Predicting Aortic Hemodynamics Obtained by 4D Flow MRI. Ann Biomed Eng 2023; 51:2802-2811. [PMID: 37573264 DOI: 10.1007/s10439-023-03342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
In this paper, we explored the use of deep learning for the prediction of aortic flow metrics obtained using 4-dimensional (4D) flow magnetic resonance imaging (MRI) using wearable seismocardiography (SCG) devices. 4D flow MRI provides a comprehensive assessment of cardiovascular hemodynamics, but it is costly and time-consuming. We hypothesized that deep learning could be used to identify pathological changes in blood flow, such as elevated peak systolic velocity ([Formula: see text]) in patients with heart valve diseases, from SCG signals. We also investigated the ability of this deep learning technique to differentiate between patients diagnosed with aortic valve stenosis (AS), non-AS patients with a bicuspid aortic valve (BAV), non-AS patients with a mechanical aortic valve (MAV), and healthy subjects with a normal tricuspid aortic valve (TAV). In a study of 77 subjects who underwent same-day 4D flow MRI and SCG, we found that the [Formula: see text] values obtained using deep learning and SCGs were in good agreement with those obtained by 4D flow MRI. Additionally, subjects with non-AS TAV, non-AS BAV, non-AS MAV, and AS could be classified with ROC-AUC (area under the receiver operating characteristic curves) values of 92%, 95%, 81%, and 83%, respectively. This suggests that SCG obtained using low-cost wearable electronics may be used as a supplement to 4D flow MRI exams or as a screening tool for aortic valve disease.
Collapse
Affiliation(s)
- Mahmoud Ebrahimkhani
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ethan M I Johnson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Aparna Sodhi
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
| | - Joshua D Robinson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cynthia K Rigsby
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradly D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
12
|
Rodríguez-Palomares JF, Dux-Santoy L, Guala A, Galian-Gay L, Evangelista A. Mechanisms of Aortic Dilation in Patients With Bicuspid Aortic Valve: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:448-464. [PMID: 37495282 DOI: 10.1016/j.jacc.2022.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 07/28/2023]
Abstract
Bicuspid aortic valve is the most common congenital heart disease and exposes patients to an increased risk of aortic dilation and dissection. Aortic dilation is a slow, silent process, leading to a greater risk of aortic dissection. The prevention of adverse events together with optimization of the frequency of the required lifelong imaging surveillance are important for both clinicians and patients and motivated extensive research to shed light on the physiopathologic processes involved in bicuspid aortic valve aortopathy. Two main research hypotheses have been consolidated in the last decade: one supports a genetic basis for the increased prevalence of dilation, in particular for the aortic root, and the second supports the damaging impact on the aortic wall of altered flow dynamics associated with these structurally abnormal valves, particularly significant in the ascending aorta. Current opinion tends to rule out mutually excluding causative mechanisms, recognizing both as important and potentially clinically relevant.
Collapse
Affiliation(s)
- Jose F Rodríguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | - Andrea Guala
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Galian-Gay
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| |
Collapse
|
13
|
Huellebrand M, Jarmatz L, Manini C, Laube A, Ivantsits M, Schulz-Menger J, Nordmeyer S, Harloff A, Hansmann J, Kelle S, Hennemuth A. Radiomics-based aortic flow profile characterization with 4D phase-contrast MRI. Front Cardiovasc Med 2023; 10:1102502. [PMID: 37077748 PMCID: PMC10106758 DOI: 10.3389/fcvm.2023.1102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
4D PC MRI of the aorta has become a routinely available examination, and a multitude of single parameters have been suggested for the quantitative assessment of relevant flow features for clinical studies and diagnosis. However, clinically applicable assessment of complex flow patterns is still challenging. We present a concept for applying radiomics for the quantitative characterization of flow patterns in the aorta. To this end, we derive cross-sectional scalar parameter maps related to parameters suggested in literature such as throughflow, flow direction, vorticity, and normalized helicity. Derived radiomics features are selected with regard to their inter-scanner and inter-observer reproducibility, as well as their performance in the differentiation of sex-, age- and disease-related flow properties. The reproducible features were tested on user-selected examples with respect to their suitability for characterizing flow profile types. In future work, such signatures could be applied for quantitative flow assessment in clinical studies or disease phenotyping.
Collapse
Affiliation(s)
- Markus Huellebrand
- Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany
- Correspondence: Markus Huellebrand
| | - Lina Jarmatz
- Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Chiara Manini
- Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ann Laube
- Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Matthias Ivantsits
- Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité Universitätsmedizin Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Helios Hospital Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Sarah Nordmeyer
- Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Andreas Harloff
- Department of Neurology, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Hansmann
- Department of Radiology, Theresienkrankenhaus und St. Hedwig-Klinik, Mannheim, Germany
| | - Sebastian Kelle
- Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Anja Hennemuth
- Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Qu H, Wang K, Lin Z, Li S, Tang C, Yin C. Cellulose nanocrystal as an enhancing core for antitumor polymeric micelles to overcome biological barriers. Int J Biol Macromol 2023; 238:124337. [PMID: 37030467 DOI: 10.1016/j.ijbiomac.2023.124337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polymeric micelles are extensively studied nanocarriers to improve the solubility, blood circulation, biodistribution, and adverse effects of chemotherapeutic drugs. However, the antitumor efficacy of polymeric micelles is often restricted due to multiple biological barriers, including blood fluid shear stress (FSS) and limited tumor penetration in vivo. Herein, cellulose nanocrystal (CNC) as a green material with rigidity and rod-shaped structure is developed to be an enhancing core for polymeric micelles to overcome these biological barriers. Doxorubicin (DOX) loaded methoxy poly (ethylene glycol)-block-poly (D, L-lactic acid) (mPEG-PLA, PP) ligated CNC nanoparticles (PPC/DOX NPs) are fabricated via one-pot synthesis. In comparison to the self-assembled DOX loaded mPEG-PLA micelles (PP/DOX NPs), PPC/DOX NPs exhibit remarkable improvements in FSS resistance, cellular internalization, blood circulation, tumor penetration, and antitumor efficacy owing to the unique rigidity and rod-shaped structure of CNC core. Moreover, PPC/DOX NPs present various advantages beyond DOX·HCl and CNC/DOX NPs. The superiority of PPC/DOX NPs in antitumor efficacy reveals the effectiveness of adopting CNC as the enhancing core for polymeric micelles, suggesting that CNC is a promising biomaterial in advancing nanomedicine.
Collapse
Affiliation(s)
- Hongfei Qu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ke Wang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ziyun Lin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shengqi Li
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
15
|
Oechtering TH, Nowak A, Sieren MM, Stroth AM, Kirschke N, Wegner F, Balks M, König IR, Jin N, Graessner J, Kooijman-Kurfuerst H, Hennemuth A, Barkhausen J, Frydrychowicz A. Repeatability and reproducibility of various 4D Flow MRI postprocessing software programs in a multi-software and multi-vendor cross-over comparison study. J Cardiovasc Magn Reson 2023; 25:22. [PMID: 36978131 PMCID: PMC10052852 DOI: 10.1186/s12968-023-00921-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Different software programs are available for the evaluation of 4D Flow cardiovascular magnetic resonance (CMR). A good agreement of the results between programs is a prerequisite for the acceptance of the method. Therefore, the goal was to compare quantitative results from a cross-over comparison in individuals examined on two scanners of different vendors analyzed with four postprocessing software packages. METHODS Eight healthy subjects (27 ± 3 years, 3 women) were each examined on two 3T CMR systems (Ingenia, Philips Healthcare; MAGNETOM Skyra, Siemens Healthineers) with a standardized 4D Flow CMR sequence. Six manually placed aortic contours were evaluated with Caas (Pie Medical Imaging, SW-A), cvi42 (Circle Cardiovascular Imaging, SW-B), GTFlow (GyroTools, SW-C), and MevisFlow (Fraunhofer Institute MEVIS, SW-D) to analyze seven clinically used parameters including stroke volume, peak flow, peak velocity, and area as well as typically scientifically used wall shear stress values. Statistical analysis of inter- and intrareader variability, inter-software and inter-scanner comparison included calculation of absolute and relative error (ER), intraclass correlation coefficient (ICC), Bland-Altman analysis, and equivalence testing based on the assumption that inter-software differences needed to be within 80% of the range of intrareader differences. RESULTS SW-A and SW-C were the only software programs showing agreement for stroke volume (ICC = 0.96; ER = 3 ± 8%), peak flow (ICC: 0.97; ER = -1 ± 7%), and area (ICC = 0.81; ER = 2 ± 22%). Results from SW-A/D and SW-C/D were equivalent only for area and peak flow. Other software pairs did not yield equivalent results for routinely used clinical parameters. Especially peak maximum velocity yielded poor agreement (ICC ≤ 0.4) between all software packages except SW-A/D that showed good agreement (ICC = 0.80). Inter- and intrareader consistency for clinically used parameters was best for SW-A and SW-D (ICC = 0.56-97) and worst for SW-B (ICC = -0.01-0.71). Of note, inter-scanner differences per individual tended to be smaller than inter-software differences. CONCLUSIONS Of all tested software programs, only SW-A and SW-C can be used equivalently for determination of stroke volume, peak flow, and vessel area. Irrespective of the applied software and scanner, high intra- and interreader variability for all parameters have to be taken into account before introducing 4D Flow CMR in clinical routine. Especially in multicenter clinical trials a single image evaluation software should be applied.
Collapse
Affiliation(s)
- Thekla H Oechtering
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany.
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - André Nowak
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Malte M Sieren
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Andreas M Stroth
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Nicolas Kirschke
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Franz Wegner
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Maren Balks
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, Universität zu Lübeck, Lübeck, Germany
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Cleveland, OH, USA
| | | | | | - Anja Hennemuth
- Fraunhofer MEVIS, Am Fallturm 1, 28359, Bremen, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Amrumer Str. 32, 13353, Berlin, Germany
| | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Alex Frydrychowicz
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Jonnagiri R, Sundström E, Gutmark E, Anderson S, Pednekar AS, Taylor MD, Tretter JT, Gutmark-Little I. Influence of aortic valve morphology on vortical structures and wall shear stress. Med Biol Eng Comput 2023; 61:1489-1506. [PMID: 36763231 DOI: 10.1007/s11517-023-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023]
Abstract
The aim of this paper is to assess the association between valve morphology and vortical structures quantitatively and to highlight the influence of valve morphology/orientation on aorta's susceptibility to shear stress, both proximal and distal. Four-dimensional phase-contrast magnetic resonance imaging (4D PCMRI) data of 6 subjects, 3 with tricuspid aortic valve (TAV) and 3 with functionally bicuspid aortic values (BAV) with right-left coronary leaflet fusion, were processed and analyzed for vorticity and wall shear stress trends. Computational fluid dynamics (CFD) has been used with moving TAV and BAV valve designs in patient-specific aortae to compare with in vivo shear stress data. Vorticity from 4D PCMRI data about the aortic centerline demonstrated that TAVs had a higher number of vortical flow structures than BAVs at peak systole. Coalescing of flow structures was shown to be possible in the arch region of all subjects. Wall shear stress (WSS) distribution from CFD results at the aortic root is predominantly symmetric for TAVs but highly asymmetric for BAVs with the region opposite the raphe (fusion location of underdeveloped leaflets) being subjected to higher WSS. Asymmetry in the size and number of leaflets in BAVs and TAVs significantly influence vortical structures and WSS in the proximal aorta for all valve types and distal aorta for certain valve orientations of BAV. Analysis of vortical structures using 4D PCMRI data (on the left side) and wall shear stress data using CFD (on the right side).
Collapse
Affiliation(s)
- Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Elias Sundström
- Department of Engineering Mechanics, Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Ephraim Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Shae Anderson
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Amol S Pednekar
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael D Taylor
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Iris Gutmark-Little
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
17
|
Bane O, Stocker D, Kennedy P, Hectors SJ, Bollache E, Schnell S, Schiano T, Thung S, Fischman A, Markl M, Taouli B. 4D flow MRI in abdominal vessels: prospective comparison of k-t accelerated free breathing acquisition to standard respiratory navigator gated acquisition. Sci Rep 2022; 12:19886. [PMID: 36400918 PMCID: PMC9674613 DOI: 10.1038/s41598-022-23864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Volumetric phase-contrast magnetic resonance imaging with three-dimensional velocity encoding (4D flow MRI) has shown utility as a non-invasive tool to examine altered blood flow in chronic liver disease. Novel 4D flow MRI pulse sequences with spatio-temporal acceleration can mitigate the long acquisition times of standard 4D flow MRI, which are an impediment to clinical adoption. The purpose of our study was to demonstrate feasibility of a free-breathing, spatio-temporal (k-t) accelerated 4D flow MRI acquisition for flow quantification in abdominal vessels and to compare its image quality, flow quantification and inter-observer reproducibility with a standard respiratory navigator-gated 4D flow MRI acquisition. Ten prospectively enrolled patients (M/F: 7/3, mean age = 58y) with suspected portal hypertension underwent both 4D flow MRI acquisitions. The k-t accelerated acquisition was approximately three times faster (3:11 min ± 0:12 min/9:17 min ± 1:41 min, p < 0.001) than the standard respiratory-triggered acquisition. Vessel identification agreement was substantial between acquisitions and observers. Average flow had substantial inter-sequence agreement in the portal vein and aorta (CV < 15%) and poorer agreement in hepatic and splenic arteries (CV = 11-38%). The k-t accelerated acquisition recorded reduced velocities in small arteries and reduced splenic vein flow. Respiratory gating combined with increased acceleration and spatial resolution are needed to improve flow measurements in these vessels.
Collapse
Affiliation(s)
- Octavia Bane
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel Stocker
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Paul Kennedy
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Stefanie J. Hectors
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Emilie Bollache
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA ,grid.7429.80000000121866389Laboratoire d’Imagerie Biomédicale, INSERM, Paris, France
| | - Susanne Schnell
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA ,grid.5603.0Department of Medical Physics, Universität Greifswald, Greifswald, Germany
| | - Thomas Schiano
- grid.59734.3c0000 0001 0670 2351Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Swan Thung
- grid.59734.3c0000 0001 0670 2351Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Aaron Fischman
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA
| | - Michael Markl
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA ,grid.16753.360000 0001 2299 3507Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Bachir Taouli
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
18
|
Richards CE, Parker AE, Alfuhied A, McCann GP, Singh A. The role of 4-dimensional flow in the assessment of bicuspid aortic valve and its valvulo-aortopathies. Br J Radiol 2022; 95:20220123. [PMID: 35852109 PMCID: PMC9793489 DOI: 10.1259/bjr.20220123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bicuspid aortic valve is the most common congenital cardiac malformation and the leading cause of aortopathy and aortic stenosis in younger patients. Aortic wall remodelling secondary to altered haemodynamic flow patterns, changes in peak velocity, and wall shear stress may be implicated in the development of aortopathy in the presence of bicuspid aortic valve and dysfunction. Assessment of these parameters as potential predictors of disease severity and progression is thus desirable. The anatomic and functional information acquired from 4D flow MRI can allow simultaneous visualisation and quantification of the pathological geometric and haemodynamic changes of the aorta. We review the current clinical utility of haemodynamic quantities including velocity, wall sheer stress and energy losses, as well as visual descriptors such as vorticity and helicity, and flow direction in assessing the aortic valve and associated aortopathies.
Collapse
Affiliation(s)
- Caryl Elizabeth Richards
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alex E Parker
- Leicester Medical School, University of Leicester, Leicester, UK
| | - Aseel Alfuhied
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Anvesha Singh
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
19
|
van Andel MM, van Ooij P, de Waard V, Gottwald LM, van Kimmenade RR, Scholte AJ, Dickinson MG, Zwinderman AH, Mulder BJ, Nederveen AJ, Groenink M. Abnormal aortic hemodynamics are associated with risk factors for aortic complications in patients with marfan syndrome. IJC HEART & VASCULATURE 2022; 43:101128. [PMID: 36268203 PMCID: PMC9576530 DOI: 10.1016/j.ijcha.2022.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Background It is difficult to assess the risk for aortic dissection beyond the aortic root in patients with Marfan syndrome (MFS). To aid risk assessment in these patients, we investigated aortic flow and wall shear stress (WSS) by 4D flow magnetic resonance imaging (MRI) in patients with MFS and compared the results with healthy volunteers. We hypothesized that MFS patients with a high-risk profile for aortic dissection would show abnormal hemodynamics in aortic regions associated with aortic dissection. Methods MFS patients (n = 55) and healthy subjects (n = 25), matched for age and sex, prospectively underwent 4D flow MRI. 4D flow maps were constructed to detect elevated (defined as higher than the three-dimensional 95 % confidence interval) and deviant directed (defined as vector angle differences higher than 120°) WSS in MFS patients as compared to the controls. Univariate and multivariate associations with risk factors for aortic dissection in MFS patients were assessed. Results The maximum incidence for elevated WSS was 20 % (CI 9 %-31 %) and found in the ascending aorta. The maximum for deviant directed WSS was 39 % (CI 26 %-52 %) and found in the inner descending aorta. Significantly more male patients had deviant directed WSS in the inner proximal descending aorta (63 % vs 24 %, p = 0.014). Multivariate analysis showed that deviant directed WSS was associated with male sex (p = 0.019), and a haplo-insufficient FBN1 mutation type (p = 0.040). In 60 % of MFS patients with a previous aortic root replacement surgery, abnormal hemodynamics were found in the ascending aorta. No significant differences between hemodynamics were found in the descending aorta between operated and non-operated patients. Conclusion Deviant directed WSS in the proximal descending aorta is associated with known risk factors for aortic dissection in MFS patients, namely male sex and a haploinsufficient FBN1 mutation type.
Collapse
Affiliation(s)
- Mitzi M. van Andel
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Pim van Ooij
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Lukas M. Gottwald
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Arthur J. Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael G. Dickinson
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Aeilko H. Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Barbara J.M. Mulder
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Aart J. Nederveen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Maarten Groenink
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands,Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands,Corresponding author at: Amsterdam UMC, University of Amsterdam, Department of Cardiology and Radiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Soulat G, Scott MB, Pathrose A, Jarvis K, Berhane H, Allen B, Avery R, Alsate AR, Rigsby CK, Markl M. 4D flow MRI derived aortic hemodynamics multi-year follow-up in repaired coarctation with bicuspid aortic valve. Diagn Interv Imaging 2022; 103:418-426. [PMID: 35523699 PMCID: PMC11041270 DOI: 10.1016/j.diii.2022.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/02/2023]
Abstract
PURPOSE The purpose of this study was to investigate the relationships between hemodynamic parameters and longitudinal changes in aortic dimensions on four-dimensional (4D) flow magnetic resonance imaging (MRI) in patients with bicuspid aortic valve (BAV) and repaired coarctation. MATERIALS AND METHODS The study retrospectively included patients with BAV and childhood coarctation repair who had at least two cardiothoracic MRI examinations including 4D flow MRI at baseline and follow-up. Analysis included the calculation of aortic peak velocities, wall shear stress (WSS), pulse wave velocity (PWV), aortic dimensions and annual growth rates. Differences between examinations were assessed using paired t-test or Wilcoxon signed rank test. Relationships between growth rate and 4D flow metrics were assessed using Pearson or Spearman correlation tests. RESULTS The cohort included 15 patients (mean age 35 ± 8 [SD] years, 9 men) with a median follow-up time of 3.98 years (Q1: 2.10; Q3: 4.96). There were no significant differences in aortic mean WSS, peak velocities, and PWV between baseline and follow-up values. Greater baseline peak velocities at the site of the coarctation were strongly associated with aortic narrowing (follow-up vs. baseline diameter) at coarctation zone (r = -0.64; P = 0.010) and moderately in descending aorta (r = -0.53; P = 0.042). In addition, increased baseline WSS in the aortic arch was strongly related with narrowing of the coarctation zone at follow-up (r = -0.64, P = 0.011). CONCLUSION Measures of aortic hemodynamics and aortic WSS are stable over time in patients with BAV with coarctation repair. Increased peak velocity was associated with a progressive narrowing at the site of the coarctation repair.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Université Paris Centre, PARCC INSERM, 75015 Paris, France.
| | - Michael B Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston 60208, IL, USA
| | - Ashitha Pathrose
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Kelly Jarvis
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Haben Berhane
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston 60208, IL, USA
| | - Bradley Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Ryan Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Alejandro Roldan Alsate
- Department of Mechanical Engineering, University of Wisconsin Madison, Madison 53706, WI, USA
| | - Cynthia K Rigsby
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago 60611, IL, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston 60208, IL, USA
| |
Collapse
|
21
|
4D Flow MRI in Ascending Aortic Aneurysms: Reproducibility of Hemodynamic Parameters. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
(1) Background: Aorta hemodynamics have been associated with aortic remodeling, but the reproducibility of its assessment has been evaluated marginally in patients with thoracic aortic aneurysm (TAA). The current study evaluated intra- and interobserver reproducibility of 4D flow MRI-derived hemodynamic parameters (normalized flow displacement, flow jet angle, wall shear stress (WSS) magnitude, axial WSS, circumferential WSS, WSS angle, vorticity, helicity, and local normalized helicity (LNH)) in TAA patients; (2) Methods: The thoracic aorta of 20 patients was semi-automatically segmented on 4D flow MRI data in 5 systolic phases by 3 different observers. Each time-dependent segmentation was manually improved and partitioned into six anatomical segments. The hemodynamic parameters were quantified per phase and segment. The coefficient of variation (COV) and intraclass correlation coefficient (ICC) were calculated; (3) Results: A total of 2400 lumen segments were analyzed. The mean aneurysm diameter was 50.8 ± 2.7 mm. The intra- and interobserver analysis demonstrated a good reproducibility (COV = 16–30% and ICC = 0.84–0.94) for normalized flow displacement and jet angle, a very good-to-excellent reproducibility (COV = 3–26% and ICC = 0.87–1.00) for all WSS components, helicity and LNH, and an excellent reproducibility (COV = 3–10% and ICC = 0.96–1.00) for vorticity; (4) Conclusion: 4D flow MRI-derived hemodynamic parameters are reproducible within the thoracic aorta in TAA patients.
Collapse
|
22
|
Isoda H, Fukuyama A. Quality Control for 4D Flow MR Imaging. Magn Reson Med Sci 2022; 21:278-292. [PMID: 35197395 PMCID: PMC9680545 DOI: 10.2463/mrms.rev.2021-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 01/06/2023] Open
Abstract
In recent years, 4D flow MRI has become increasingly important in clinical applications for the blood vessels in the whole body, heart, and cerebrospinal fluid. 4D flow MRI has advantages over 2D cine phase-contrast (PC) MRI in that any targeted area of interest can be analyzed post-hoc, but there are some factors to be considered, such as ensuring measurement accuracy, a long imaging time and post-processing complexity, and interobserver variability.Due to the partial volume phenomenon caused by low spatial and temporal resolutions, the accuracy of flow measurement in 4D flow MRI is reduced. For spatial resolution, it is recommended to include at least four voxels in the vessel of interest, and if possible, six voxels. In large vessels such as the aorta, large voxels can be secured and SNR can be maintained, but in small cerebral vessels, SNR is reduced, resulting in reduced accuracy. A temporal resolution of less than 40 ms is recommended. The velocity-to-noise ratio (VNR) of low-velocity blood flow is low, resulting in poor measurement accuracy. The use of dual velocity encoding (VENC) or multi-VENC is recommended to avoid velocity wrap around and to increase VNR. In order to maintain sufficient spatio-temporal resolution, a longer imaging time is required, leading to potential patient movement during examination and a corresponding decrease in measurement accuracy.For the clinical application of new technologies, including various acceleration techniques, in vitro and in vivo accuracy verification based on existing accuracy-validated 2D cine PC MRI and 4D flow MRI, as well as accuracy verification on the conservation of mass' principle, should be performed, and intraobserver repeatability, interobserver reproducibility, and test-retest reproducibility should be checked.
Collapse
Affiliation(s)
- Haruo Isoda
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
- Biomedical Imaging Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsushi Fukuyama
- Faculty of Health Sciences, Department of Radiological Sciences, Japan Healthcare University, Sapporo, Hokkaido, Japan
| |
Collapse
|
23
|
Soulat G, Scott M, Allen BD, Avery R, Bonow RO, Malaisrie C, McCarthy P, Fedak P, Barker AJ, Markl M. Association of Regional Wall Shear Stress and Progressive Ascending Aorta Dilation in Bicuspid Aortic Valve. JACC. CARDIOVASCULAR IMAGING 2022; 15:33-42. [PMID: 34419402 PMCID: PMC8741630 DOI: 10.1016/j.jcmg.2021.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the role of wall shear stress (WSS) as a predictor of ascending aorta (AAo) growth at 5 years or greater follow-up. BACKGROUND Aortic 4-dimensional flow cardiac magnetic resonance (CMR) can quantify regions exposed to high WSS, a known stimulus for arterial wall dysfunction. However, its association with longitudinal changes in aortic dilation in patients with bicuspid aortic valve (BAV) is unknown. METHODS This retrospective study identified 72 patients with BAV (age 45 ± 12 years) who underwent CMR for surveillance of aortic dilation at baseline and ≥5 years of follow-up. Four-dimensional flow CMR analysis included the calculation of WSS heat maps to compare regional WSS in individual patients with population averages of healthy age- and sex-matched subjects (database of 136 controls). The relative areas of the AAo and aorta (in %) exposed to elevated WSS (outside the 95% CI of healthy population averages) were quantified. RESULTS At a median follow-up duration of 6.0 years, the mean AAo growth rate was 0.24 ± 0.20 mm/y. The fraction of the AAo exposed to elevated WSS at baseline was increased for patients with higher growth rates (>0.24 mm/y, n = 32) compared with those with growth rates <0.24 mm/y (19.9% [IQR: 10.2%-25.5%] vs 5.7% [IQR: 1.5%-21.3%]; P = 0.008). Larger areas of elevated WSS in the AAo and entire aorta were associated with higher rates of AAo dilation >0.24 mm/y (odds ratio: 1.51; 95% CI: 1.05-2.17; P = 0.026 and odds ratio: 1.70; 95% CI: 1.01-3.15; P = 0.046, respectively). CONCLUSIONS The area of elevated AAo WSS as assessed by 4-dimensional flow CMR identified BAV patients with higher rates of aortic dilation and thus might determine which patients require closer follow-up.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Biomedical Engineering, McCormick, School of Engineering, Northwestern University, Evanston, IL, USA
| | - Bradley D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert O. Bonow
- Division of Cardiology, Department of Medicine, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois
| | - Chris Malaisrie
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA
| | - Paul Fedak
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Alex J Barker
- Department of Radiology and Bioengineering, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Biomedical Engineering, McCormick, School of Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
24
|
Vogl BJ, Niemi NR, Griffiths LG, Alkhouli MA, Hatoum H. Impact of calcific aortic valve disease on valve mechanics. Biomech Model Mechanobiol 2021; 21:55-77. [PMID: 34687365 DOI: 10.1007/s10237-021-01527-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The aortic valve is a highly dynamic structure characterized by a transvalvular flow that is unsteady, pulsatile, and characterized by episodes of forward and reverse flow patterns. Calcific aortic valve disease (CAVD) resulting in compromised valve function and increased pressure overload on the ventricle potentially leading to heart failure if untreated, is the most predominant valve disease. CAVD is a multi-factorial disease involving molecular, tissue and mechanical interactions. In this review, we aim at recapitulating the biomechanical loads on the aortic valve, summarizing the current and most recent research in the field in vitro, in-silico, and in vivo, and offering a clinical perspective on current strategies adopted to mitigate or approach CAVD.
Collapse
Affiliation(s)
- Brennan J Vogl
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Nicholas R Niemi
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Hoda Hatoum
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA. .,Health Research Institute, Michigan Technological University, Houghton, MI, USA. .,Center of Biocomputing and Digital Health, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
25
|
Perinajová R, Juffermans JF, Westenberg JJM, van der Palen RLF, van den Boogaard PJ, Lamb HJ, Kenjereš S. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas. Comput Biol Med 2021; 133:104385. [PMID: 33894502 DOI: 10.1016/j.compbiomed.2021.104385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/16/2023]
Abstract
Aortic aneurysm is associated with aberrant blood flow and wall shear stress (WSS). This can be studied by coupling magnetic resonance imaging (MRI) with computational fluid dynamics (CFD). For patient-specific simulations, extra attention should be given to the variation in segmentation of the MRI data-set and its effect on WSS. We performed CFD simulations of blood flow in the aorta for ten different volunteers and provided corresponding WSS distributions. The aorta of each volunteer was segmented four times. The same inlet and outlet boundary conditions were applied for all segmentation variations of each volunteer. Steady-state CFD simulations were performed with inlet flow based on phase-contrast MRI during peak systole. We show that the commonly used comparison of mean and maximal values of WSS, based on CFD in the different segments of the thoracic aorta, yields good to excellent correlation (0.78-0.95) for rescan and moderate to excellent correlation (0.64-1.00) for intra- and interobserver reproducibility. However, the effect of geometrical variations is higher for the voxel-to-voxel comparison of WSS. With this analysis method, the correlation for different segments of the whole aorta is poor to moderate (0.43-0.66) for rescan and poor to good (0.48-0.73) for intra- and interobserver reproducibility. Therefore, we advise being critical about the CFD results based on the MRI segmentations to avoid possible misinterpretation. While the global values of WSS are similar for different modalities, the variation of results is high when considering the local distributions.
Collapse
Affiliation(s)
- Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, the Netherlands.
| | - Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel L F van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, the Netherlands.
| |
Collapse
|
26
|
Shokina N, Teschner G, Bauer A, Tropea C, Egger H, Hennig J, Krafft AJ. Parametric Sequential Method for MRI-Based Wall Shear Stress Quantification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1105-1112. [PMID: 33347405 DOI: 10.1109/tmi.2020.3046331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wall shear stress (WSS) has been suggested as a potential biomarker in various cardiovascular diseases and it can be estimated from phase-contrast Magnetic Resonance Imaging (PC-MRI) velocity measurements. We present a parametric sequential method for MRI-based WSS quantification consisting of a geometry identification and a subsequent approximation of the velocity field. This work focuses on its validation, investigating well controlled high-resolution in vitro measurements of turbulent stationary flows and physiological pulsatile flows in phantoms. Initial tests for in vivo 2D PC-MRI data of the ascending aorta of three volunteers demonstrate basic applicability of the method to in vivo.
Collapse
|
27
|
Nordmeyer S, Lee CB, Goubergrits L, Knosalla C, Berger F, Falk V, Ghorbani N, Hireche-Chikaoui H, Zhu M, Kelle S, Kuehne T, Kelm M. Circulatory efficiency in patients with severe aortic valve stenosis before and after aortic valve replacement. J Cardiovasc Magn Reson 2021; 23:15. [PMID: 33641670 PMCID: PMC7919094 DOI: 10.1186/s12968-020-00686-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Circulatory efficiency reflects the ratio between total left ventricular work and the work required for maintaining cardiovascular circulation. The effect of severe aortic valve stenosis (AS) and aortic valve replacement (AVR) on left ventricular/circulatory mechanical power and efficiency is not yet fully understood. We aimed to quantify left ventricular (LV) efficiency in patients with severe AS before and after surgical AVR. METHODS Circulatory efficiency was computed from cardiovascular magnetic resonance (CMR) imaging derived volumetric data, echocardiographic and clinical data in patients with severe AS (n = 41) before and 4 months after AVR and in age and sex-matched healthy subjects (n = 10). RESULTS In patients with AS circulatory efficiency was significantly decreased compared to healthy subjects (9 ± 3% vs 12 ± 2%; p = 0.004). There were significant negative correlations between circulatory efficiency and LV myocardial mass (r = - 0.591, p < 0.001), myocardial fibrosis volume (r = - 0.427, p = 0.015), end systolic volume (r = - 0.609, p < 0.001) and NT-proBNP (r = - 0.444, p = 0.009) and significant positive correlation between circulatory efficiency and LV ejection fraction (r = 0.704, p < 0.001). After AVR, circulatory efficiency increased significantly in the total cohort (9 ± 3 vs 13 ± 5%; p < 0.001). However, in 10/41 (24%) patients, circulatory efficiency remained below 10% after AVR and, thus, did not restore to normal values. These patients also showed less reduction in myocardial fibrosis volume compared to patients with restored circulatory efficiency after AVR. CONCLUSION In our cohort, circulatory efficiency is reduced in patients with severe AS. In 76% of cases, AVR leads to normalization of circulatory efficiency. However, in 24% of patients, circulatory efficiency remained below normal values even after successful AVR. In these patients also less regression of myocardial fibrosis volume was seen. Trial Registration clinicaltrials.gov NCT03172338, June 1, 2017, retrospectively registered.
Collapse
Affiliation(s)
- S Nordmeyer
- Department of Congenital Heart Disease, German Heart Centre Berlin, Berlin, Germany.
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - C B Lee
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - L Goubergrits
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - C Knosalla
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Centre Berlin, Berlin, Germany
| | - F Berger
- Department of Congenital Heart Disease, German Heart Centre Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - V Falk
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Centre Berlin, Berlin, Germany
| | - N Ghorbani
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - H Hireche-Chikaoui
- Department of Internal Medicine and Cardiology, German Heart Centre Berlin, Berlin, Germany
| | - M Zhu
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - S Kelle
- Department of Internal Medicine and Cardiology, German Heart Centre Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - T Kuehne
- Department of Congenital Heart Disease, German Heart Centre Berlin, Berlin, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - M Kelm
- Department of Congenital Heart Disease, German Heart Centre Berlin, Berlin, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
28
|
van Ooij P, Farag ES, Blanken CPS, Nederveen AJ, Groenink M, Planken RN, Boekholdt SM. Fully quantitative mapping of abnormal aortic velocity and wall shear stress direction in patients with bicuspid aortic valves and repaired coarctation using 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2021; 23:9. [PMID: 33588887 PMCID: PMC7885343 DOI: 10.1186/s12968-020-00703-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helices and vortices in thoracic aortic blood flow measured with 4D flow cardiovascular magnetic resonance (CMR) have been associated with aortic dilation and aneurysms. Current approaches are semi-quantitative or when fully quantitative based on 2D plane placement. In this study, we present a fully quantitative and three-dimensional approach to map and quantify abnormal velocity and wall shear stress (WSS) at peak systole in patients with a bicuspid aortic valve (BAV) of which 52% had a repaired coarctation. METHODS 4D flow CMR was performed in 48 patients with BAV and in 25 healthy subjects at a spatiotemporal resolution of 2.5 × 2.5 × 2.5mm3/ ~ 42 ms and TE/TR/FA of 2.1 ms/3.4 ms/8° with k-t Principal Component Analysis factor R = 8. A 3D average of velocity and WSS direction was created for the normal subjects. Comparing BAV patient data with the 3D average map and selecting voxels deviating between 60° and 120° and > 120° yielded 3D maps and volume (in cm3) and surface (in cm2) quantification of abnormally directed velocity and WSS, respectively. Linear regression with Bonferroni corrected significance of P < 0.0125 was used to compare abnormally directed velocity volume and WSS surface in the ascending aorta with qualitative helicity and vorticity scores, with local normalized helicity (LNH) and quantitative vorticity and with patient characteristics. RESULTS The velocity volumes > 120° correlated moderately with the vorticity scores (R ~ 0.50, P < 0.001 for both observers). For WSS surface these results were similar. The velocity volumes between 60° and 120° correlated moderately with LNH (R = 0.66) but the velocity volumes > 120° did not correlate with quantitative vorticity. For abnormal velocity and WSS deviating between 60° and 120°, moderate correlations were found with aortic diameters (R = 0.50-0.70). For abnormal velocity and WSS deviating > 120°, additional moderate correlations were found with age and with peak velocity (stenosis severity) and a weak correlation with gender. Ensemble maps showed that more than 60% of the patients had abnormally directed velocity and WSS. Additionally, abnormally directed velocity and WSS was higher in the proximal descending aorta in the patients with repaired coarctation than in the patients where coarctation was never present. CONCLUSION The possibility to reveal directional abnormalities of velocity and WSS in 3D provides a new tool for hemodynamic characterization in BAV disease.
Collapse
Affiliation(s)
- Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Emile S. Farag
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Carmen P. S. Blanken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten Groenink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - R. Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - S. Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Secinaro A, Milano EG, Ciancarella P, Trezzi M, Capelli C, Ciliberti P, Cetrano E, Curione D, Santangelo TP, Napolitano C, Albanese SB, Carotti A. Blood flow characteristics after aortic valve neocuspidization in paediatric patients: a comparison with the Ross procedure. Eur Heart J Cardiovasc Imaging 2021; 23:275-282. [PMID: 33550364 PMCID: PMC8787994 DOI: 10.1093/ehjci/jeab009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
Aims The aortic valve (AV) neocuspidization (Ozaki procedure) is a novel surgical technique for AV disease that preserves the natural motion and cardiodynamics of the aortic root. In this study, we sought to evaluate, by 4D-flow magnetic resonance imaging, the aortic blood flow characteristics after AV neocuspidization in paediatric patients. Methods and results Aortic root and ascending aorta haemodynamics were evaluated in a population of patients treated with the Ozaki procedure; results were compared with those of a group of patients operated with the Ross technique. Cardiovascular magnetic resonance studies were performed at 1.5 T using a 4D flow-sensitive sequence acquired with retrospective electrocardiogram-gating and respiratory navigator. Post-processing of 4D-flow analysis was performed to calculate flow eccentricity and wall shear stress. Twenty children were included in this study, 10 after Ozaki and 10 after Ross procedure. Median age at surgery was 10.7 years (range 3.9–16.5 years). No significant differences were observed in wall shear stress values measured at the level of the proximal ascending aorta between the two groups. The analysis of flow patterns showed no clear association between eccentric flow and the procedure performed. The Ozaki group showed just a slightly increased transvalvular maximum velocity. Conclusion Proximal aorta flow dynamics of children treated with the Ozaki and the Ross procedure are comparable. Similarly to the Ross, Ozaki technique restores a physiological laminar flow pattern in the short-term follow-up, with the advantage of not inducing a bivalvular disease, although further studies are warranted to evaluate its long-term results.
Collapse
Affiliation(s)
- Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Elena Giulia Milano
- University College London, Institute of Cardiovascular Science, London, UK.,Great Ormond Street Hospital for Children, Department of Cardiology, London, UK
| | - Paolo Ciancarella
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Matteo Trezzi
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudio Capelli
- University College London, Institute of Cardiovascular Science, London, UK
| | - Paolo Ciliberti
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Cetrano
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Davide Curione
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Teresa Pia Santangelo
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Carmela Napolitano
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Sonia B Albanese
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
30
|
Ziegler M, Alfraeus J, Good E, Engvall J, de Muinck E, Dyverfeldt P. Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries. Front Cardiovasc Med 2021; 7:617755. [PMID: 33614742 PMCID: PMC7886794 DOI: 10.3389/fcvm.2020.617755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Atherosclerosis manifests as a focal disease, often affecting areas with complex hemodynamics such as the carotid bifurcation. The magnitude and regularity of the hemodynamic shear stresses acting on the vessel wall are thought to generate risk patterns unique to each patient and play a role in the pathogenesis of atherosclerosis. The involvement of different expressions of shear stress in the pathogenesis of carotid atherosclerosis highlights the need to characterize and compare the differential impact of the various expressions of shear stress in the atherosclerotic carotid bifurcation. Therefore, the aim of this study is to characterize and compare hemodynamic wall shear stresses (WSS) in the carotid arteries of subjects with asymptomatic atherosclerotic plaques. Shear stresses were also compared against vessel diameter and bifurcation angle to examine the relationships with the geometry of the carotid bifurcation. Methods: 4D Flow MRI and contrast-enhanced MRA data were acquired for 245 subjects with atherosclerotic plaques of at least 2.7 mm in conjunction with the Swedish CArdioPulmonary bioImage Study (SCAPIS). Following automatic segmentation and geometric analysis, time-resolved WSS and near-wall turbulent kinetic energy (nwTKE) were derived from the 4D Flow data. Whole-cycle parameters including time-averaged WSS and nwTKE, and the oscillatory shear index (OSI) were calculated. Pairwise Spearman rank-correlation analyses were used to investigate relationships among the hemodynamic as well as geometric parameters. Results: One hundred and seventy nine subjects were successfully segmented using automated tools and subsequently geometric and hemodynamic analyses were performed. Temporally resolved WSS and nwTKE were strongly correlated, ρ = 0.64. Cycle-averaged WSS and nwTKE were moderately correlated, ρ = 0.57. Cycle-average nwTKE was weakly correlated to OSI (ρ = -0.273), revealing that nwTKE provides information about disturbed flow on the vessel wall that OSI does not. In this cohort, there was large inter-individual variation for both WSS and nwTKE. Both WSS and nwTKE varied most within the external carotid artery. WSS, nwTKE, and OSI were weakly correlated to vessel diameter and bifurcation angle. Conclusion: The turbulent and mean component of WSS were examined together in vivo for the first time, and a strong correlation was found between them. nwTKE presents the opportunity to quantify turbulent wall stresses in vivo and gain insight into the effects of disturbed flow on the vessel wall. Neither vessel diameter nor bifurcation angle were found to be strongly correlated to the turbulent or mean component of WSS in this cohort.
Collapse
Affiliation(s)
- Magnus Ziegler
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Jesper Alfraeus
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Elin Good
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology, Linköping University, Linköping, Sweden
| | - Jan Engvall
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ebo de Muinck
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
31
|
Juffermans JF, Westenberg JJM, van den Boogaard PJ, Roest AAW, van Assen HC, van der Palen RLF, Lamb HJ. Reproducibility of Aorta Segmentation on 4D Flow MRI in Healthy Volunteers. J Magn Reson Imaging 2020; 53:1268-1279. [PMID: 33179389 PMCID: PMC7984392 DOI: 10.1002/jmri.27431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hemodynamic aorta parameters can be derived from 4D flow MRI, but this requires lumen segmentation. In both commercially available and research 4D flow MRI software tools, lumen segmentation is mostly (semi‐)automatically performed and subsequently manually improved by an observer. Since the segmentation variability, together with 4D flow MRI data and image processing algorithms, will contribute to the reproducibility of patient‐specific flow properties, the observer's lumen segmentation reproducibility and repeatability needs to be assessed. Purpose To determine the interexamination, interobserver reproducibility, and intraobserver repeatability of aortic lumen segmentation on 4D flow MRI. Study Type Prospective and retrospective. Population A healthy volunteer cohort of 10 subjects who underwent 4D flow MRI twice. Also, a clinical cohort of six subjects who underwent 4D flow MRI once. Field Strength/Sequence 3T; time‐resolved three‐directional and 3D velocity‐encoded sequence (4D flow MRI). Assessment The thoracic aorta was segmented on the 4D flow MRI in five systolic phases. By positioning six planes perpendicular to a segmentation's centerline, the aorta was divided into five segments. The volume, surface area, centerline length, maximal diameter, and curvature radius were determined for each segment. Statistical Tests To assess the reproducibility, the coefficient of variation (COV), Pearson correlation coefficient (r), and intraclass correlation coefficient (ICC) were calculated. Results The interexamination and interobserver reproducibility and intraobserver repeatability were comparable for each parameter. For both cohorts there was very good reproducibility and repeatability for volume, surface area, and centerline length (COV = 10–32%, r = 0.54–0.95 and ICC = 0.65–0.99), excellent reproducibility and repeatability for maximal diameter (COV = 3–11%, r = 0.94–0.99, ICC = 0.94–0.99), and good reproducibility and repeatability for curvature radius (COV = 25–62%, r = 0.73–0.95, ICC = 0.84–0.97). Data Conclusion This study demonstrated no major reproducibility and repeatability limitations for 4D flow MRI aortic lumen segmentation. Level of Evidence 3 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arno A W Roest
- Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roel L F van der Palen
- Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Kennedy P, Bane O, Hectors SJ, Fischman A, Schiano T, Lewis S, Taouli B. Noninvasive imaging assessment of portal hypertension. Abdom Radiol (NY) 2020; 45:3473-3495. [PMID: 32926209 PMCID: PMC10124623 DOI: 10.1007/s00261-020-02729-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/16/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Portal hypertension (PH) is a spectrum of complications of chronic liver disease (CLD) and cirrhosis, with manifestations including ascites, gastroesophageal varices, splenomegaly, hypersplenism, hepatic hydrothorax, hepatorenal syndrome, hepatopulmonary syndrome and portopulmonary hypertension. PH can vary in severity and is diagnosed via invasive hepatic venous pressure gradient measurement (HVPG), which is considered the reference standard. Accurate diagnosis of PH and assessment of severity are highly relevant as patients with clinically significant portal hypertension (CSPH) are at higher risk for developing acute variceal bleeding and mortality. In this review, we discuss current and upcoming noninvasive imaging methods for diagnosis and assessment of severity of PH.
Collapse
|
33
|
A test-retest multisite reproducibility study of cardiovascular four-dimensional flow MRI without respiratory gating. Clin Radiol 2020; 76:236.e1-236.e8. [PMID: 33077153 DOI: 10.1016/j.crad.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022]
Abstract
AIM To systematically investigate the multisite reproducibility, test-retest reliability, and observer variability of non-respiratory-gated four-dimensional (4D) flow magnetic resonance imaging (MRI) in the thoracic great vessels for the assessment of blood flow and peak velocity. MATERIALS AND METHODS Electrocardiogram (ECG)-gated 4D flow MRI data were acquired without respiratory gating in 10 healthy volunteers. To analyse multisite reproducibility, 4D flow was scanned at three different sites using a 3 T GE MRI machine with identical protocols for the group of participants. In addition, to evaluate test-retest reliability, the same volunteers were scanned in each centre during a second visit. Data analysis included calculation of peak systolic velocity and time-resolved and total flow of both the ascending aorta and pulmonary artery. Two observers conducted the above measurements to assess the interobserver variability. RESULTS Multisite, test-retest, interobserver agreement were good for the calculation of total flow and peak systolic velocity (mean differences <10% of the average flow parameter). CONCLUSION Non-respiratory-gated 4D MRI-based assessment of aortic and pulmonary blood flow can be performed with good reproducibility. It may facilitate the potential clinical application of this technique.
Collapse
|
34
|
Shan Y, Li J, Wang Y, Wu B, Barker AJ, Markl M, Wang C, Wang X, Shu X. Aortic stenosis exacerbates flow aberrations related to the bicuspid aortic valve fusion pattern and the aortopathy phenotype. Eur J Cardiothorac Surg 2020; 55:534-542. [PMID: 30215695 DOI: 10.1093/ejcts/ezy308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES A bicuspid aortic valve (BAV) is characterized by variable phenotypic manifestations, as well as longitudinal evolution of valve dysfunction and ascending aorta dilatation. The present study investigated the impact of severe aortic stenosis (AS) on the flow patterns and wall shear stress (WSS) distribution in BAV patients with right-left (RL) and right-non-coronary (RN) cusp fusion types, and the study aimed to reveal whether aortic dysfunction could further alter intrinsic aortic haemodynamic aberrations generated by abnormal BAV cusp fusion patterns. METHODS Four-dimensional flow magnetic resonance imaging was performed in 120 BAV subjects and 20 tricuspid aortic valve controls. BAV patients were evenly categorized into 4 cohorts, including RL and RN BAV with no more than mild aortic dysfunction as well as RL and RN BAV-AS with isolated severe AS. RESULTS BAV subjects exhibited eccentric outflow jets resulting in regional WSS elevation at the right-anterior position of the ascending aorta in the RL group and the right-posterior location in the RN group (P < 0.005). The presence of severe AS resulted in accelerated outflow jets and more prominent flow and WSS eccentricity (P < 0.005) by marked helical (P = 0.014) and vortical flow formation (P < 0.005), as well as increased prevalence of tubular and transverse arch dilatation. The changes to the flow jet in BAV-AS subjects blurred the differences in peak flow velocity and WSS distribution between RL and RN BAV. Differences in the phenotypes of aortopathy were associated with changes in functional haemodynamic parameters such as flow displacement and WSS eccentricity. CONCLUSIONS Severe AS markedly exacerbated aortic flow aberrations in BAV patients and masked the existing distinct flow features deriving from RL and RN fusion types. Longitudinal studies are needed to investigate the evolution of ascending aortic dilatation relative to the interaction between intrinsic cusp fusion types and acquired severe valve dysfunction.
Collapse
Affiliation(s)
- Yan Shan
- Shanghai Institute of Medical Imaging, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jun Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yongshi Wang
- Shanghai Institute of Medical Imaging, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Boting Wu
- Department of Transfusion, Zhongshan Hospital Fudan University, Shanghai, China
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Chunsheng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xianhong Shu
- Shanghai Institute of Medical Imaging, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
35
|
Levilly S, Castagna M, Idier J, Bonnefoy F, Le Touzé D, Moussaoui S, Paul-Gilloteaux P, Serfaty JM. Towards quantitative evaluation of wall shear stress from 4D flow imaging. Magn Reson Imaging 2020; 74:232-243. [PMID: 32889090 DOI: 10.1016/j.mri.2020.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/12/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Wall shear stress (WSS) is a relevant hemodynamic indicator of the local stress applied on the endothelium surface. More specifically, its spatiotemporal distribution reveals crucial in the evolution of many pathologies such as aneurysm, stenosis, and atherosclerosis. This paper introduces a new solution, called PaLMA, to quantify the WSS from 4D Flow MRI data. It relies on a two-step local parametric model, to accurately describe the vessel wall and the velocity-vector field in the neighborhood of a given point of interest. Extensive validations have been performed on synthetic 4D Flow MRI data, including four datasets generated from patient specific computational fluid dynamics simulations on carotids. The validation tests are focused on the impact of the noise component, of the resolution level, and of the segmentation accuracy concerning the vessel position in the context of complex flow patterns. In simulated cases aimed to reproduce clinical acquisition conditions, the WSS quantification performance reached by PaLMA is significantly higher (with a gain in RMSE of 12 to 27%) than the reference one obtained using the smoothing B-spline method proposed by Potters et al. (2015) method, while the computation time is equivalent for both WSS quantification methods.
Collapse
Affiliation(s)
- Sébastien Levilly
- Laboratoire des Sciences du Numérique de Nantes (ECN and CNRS), 1 rue de la Noë, BP 92101, 44321 Nantes Cedex 3, France.
| | - Marco Castagna
- Ecole Centrale de Nantes, LHEEA Lab (ECN and CNRS), 1 rue de la Noë, 44300 Nantes, France; Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, F-44000 Nantes, France
| | - Jérôme Idier
- Laboratoire des Sciences du Numérique de Nantes (ECN and CNRS), 1 rue de la Noë, BP 92101, 44321 Nantes Cedex 3, France
| | - Félicien Bonnefoy
- Ecole Centrale de Nantes, LHEEA Lab (ECN and CNRS), 1 rue de la Noë, 44300 Nantes, France
| | - David Le Touzé
- Ecole Centrale de Nantes, LHEEA Lab (ECN and CNRS), 1 rue de la Noë, 44300 Nantes, France
| | - Saïd Moussaoui
- Laboratoire des Sciences du Numérique de Nantes (ECN and CNRS), 1 rue de la Noë, BP 92101, 44321 Nantes Cedex 3, France
| | - Perrine Paul-Gilloteaux
- Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, F-44000 Nantes, France; Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Jean-Michel Serfaty
- Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
36
|
Rizk J. 4D flow MRI applications in congenital heart disease. Eur Radiol 2020; 31:1160-1174. [PMID: 32870392 DOI: 10.1007/s00330-020-07210-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Advances in the diagnosis and management of congenital heart disease (CHD) have resulted in a growing population of patients surviving well into adulthood and requiring lifelong follow-up. Flow quantification is a central component in the assessment of patients with CHD. 4D flow magnetic resonance imaging (MRI) has emerged as a tool that enables comprehensive study of flow. It involves the acquisition of a three-dimensional time-resolved volume with velocity encoding in all three spatial directions along the cardiac cycle. This allows flow quantification and visualization of blood flow patterns as well as the study of advanced hemodynamic parameters as kinetic energy and wall shear stress. 4D flow MRI-based study of flow has given insight into the altered hemodynamics in CHD particularly in bicuspid aortic valve disease and Fontan circulation. The aim of this review is to discuss the expanding clinical and research applications of 4D flow MRI in CHD as well its limitations.Key Points• Three-dimensional velocity encoding allows not only flow quantification but also the visualization of multidirectional flow patterns and the study of advanced hemodynamic parameters.• 4D flow MRI has added insight into the abnormal hemodynamics involved in congenital heart disease in particular in bicuspid aortic valve and Fontan circulation.• The main limitation of 4D flow MRI in congenital heart disease is the relatively long scan duration required for the complete coverage of the heart and great vessels with adequate spatiotemporal resolution.
Collapse
Affiliation(s)
- Judy Rizk
- Department of Cardiology, Faculty of Medicine, Alexandria University, El-Khartoum Square, Alexandria, 21521, Egypt.
| |
Collapse
|
37
|
Bane O, Said D, Weiss A, Stocker D, Kennedy P, Hectors SJ, Khaim R, Salem F, Delaney V, Menon MC, Markl M, Lewis S, Taouli B. 4D flow MRI for the assessment of renal transplant dysfunction: initial results. Eur Radiol 2020; 31:909-919. [PMID: 32870395 DOI: 10.1007/s00330-020-07208-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES (1) Determine inter-observer reproducibility and test-retest repeatability of 4D flow parameters in renal allograft vessels; (2) determine if 4D flow measurements in the renal artery (RA) and renal vein (RV) can distinguish between functional and dysfunctional allografts; (3) correlate haemodynamic parameters with estimated glomerular filtration rate (eGFR), perfusion measured with dynamic contrast-enhanced MRI (DCE-MRI) and histopathology. METHODS Twenty-five prospectively recruited renal transplant patients (stable function/chronic renal allograft dysfunction, 12/13) underwent 4D flow MRI at 1.5 T. 4D flow coronal oblique acquisitions were performed in the transplant renal artery (RA) (velocity encoding parameter, VENC = 120 cm/s) and renal vein (RV) (VENC = 45 cm/s). Test-retest repeatability (n = 3) and inter-observer reproducibility (n = 10) were assessed by Cohen's kappa, coefficient of variation (CoV) and Bland-Altman statistics. Haemodynamic parameters were compared between patients and correlated to the estimated glomerular filtration rate, DCE-MRI parameters (n = 10) and histopathology from allograft biopsies (n = 15). RESULTS For inter-observer reproducibility, kappa was > 0.99 and 0.62 and CoV of flow was 12.6% and 7.8% for RA and RV, respectively. For test-retest repeatability, kappa was > 0.99 and 0.5 and CoV of flow was 27.3% and 59.4%, for RA and RV, respectively. RA (p = 0.039) and RV (p = 0.019) flow were both significantly reduced in dysfunctional allografts. Both identified chronic allograft dysfunction with good diagnostic performance (RA: AUC = 0.76, p = 0.036; RV: AUC = 0.8, p = 0.018). RA flow correlated negatively with histopathologic interstitial fibrosis score ci (ρ = - 0.6, p = 0.03). CONCLUSIONS 4D flow parameters had better repeatability in the RA than in the RV. RA and RV flow can identify chronic renal allograft dysfunction, with RA flow correlating with histopathologic interstitial fibrosis score. KEY POINTS • Inter-observer reproducibility of 4D flow measurements was acceptable in both the transplant renal artery and vein, but test-retest repeatability was better in the renal artery than in the renal vein. • Blood flow measurements obtained with 4D flow MRI in the renal artery and renal vein are significantly reduced in dysfunctional renal transplants. • Renal transplant artery flow correlated negatively with histopathologic interstitial fibrosis score.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Daniela Said
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Amanda Weiss
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Daniel Stocker
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Paul Kennedy
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Stefanie J Hectors
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, NY, USA
| | - Rafael Khaim
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Fadi Salem
- Department of Pathology, ISMMS, New York, NY, USA
| | - Veronica Delaney
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Madhav C Menon
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA. .,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA.
| |
Collapse
|
38
|
Abstract
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
39
|
Gottwald LM, Peper ES, Zhang Q, Coolen BF, Strijkers GJ, Nederveen AJ, van Ooij P. Pseudo-spiral sampling and compressed sensing reconstruction provides flexibility of temporal resolution in accelerated aortic 4D flow MRI: A comparison with k-t principal component analysis. NMR IN BIOMEDICINE 2020; 33:e4255. [PMID: 31957927 PMCID: PMC7079056 DOI: 10.1002/nbm.4255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Time-resolved three-dimensional phase contrast MRI (4D flow) of aortic blood flow requires acceleration to reduce scan time. Two established techniques for highly accelerated 4D flow MRI are k-t principal component analysis (k-t PCA) and compressed sensing (CS), which employ either regular or random k-space undersampling. The goal of this study was to gain insights into the quantitative differences between k-t PCA- and CS-derived aortic blood flow, especially for high temporal resolution CS 4D flow MRI. METHODS The scan protocol consisted of both k-t PCA and CS accelerated 4D flow MRI, as well as a 2D flow reference scan through the ascending aorta acquired in 15 subjects. 4D flow scans were accelerated with factor R = 8. For CS accelerated scans, we used a pseudo-spiral Cartesian sampling scheme, which could additionally be reconstructed at higher temporal resolution, resulting in R = 13. 4D flow data were compared with the 2D flow scan in terms of flow, peak flow and stroke volume. A 3D peak systolic voxel-wise velocity and wall shear stress (WSS) comparison between k-t PCA and CS 4D flow was also performed. RESULTS The mean difference in flow/peak flow/stroke volume between the 2D flow scan and the 4D flow CS with R = 8 and R = 13 was 4.2%/9.1%/3.0% and 5.3%/7.1%/1.9%, respectively, whereas for k-t PCA with R = 8 the difference was 9.7%/25.8%/10.4%. In the voxel-by-voxel 4D flow comparison we found 13.6% and 3.5% lower velocity and WSS values of k-t PCA compared with CS with R = 8, and 15.9% and 5.5% lower velocity and WSS values of k-t PCA compared with CS with R = 13. CONCLUSION Pseudo-spiral accelerated 4D flow acquisitions in combination with CS reconstruction provides a flexible choice of temporal resolution. We showed that our proposed strategy achieves better agreement in flow values with 2D reference scans compared with using k-t PCA accelerated acquisitions.
Collapse
Affiliation(s)
- Lukas M. Gottwald
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Eva S. Peper
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Qinwei Zhang
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of Amsterdamthe Netherlands
| |
Collapse
|
40
|
Berhane H, Scott M, Elbaz M, Jarvis K, McCarthy P, Carr J, Malaisrie C, Avery R, Barker AJ, Robinson JD, Rigsby CK, Markl M. Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning. Magn Reson Med 2020; 84:2204-2218. [PMID: 32167203 DOI: 10.1002/mrm.28257] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To generate fully automated and fast 4D-flow MRI-based 3D segmentations of the aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and dimensions. METHODS A total of 1018 subjects with aortic 4D-flow MRI (528 with bicuspid aortic valve, 376 with tricuspid aortic valve and aortic dilation, 114 healthy controls) comprised the data set. A convolutional neural network was trained to generate 3D aortic segmentations from 4D-flow data. Manual segmentations served as the ground truth (N = 499 training, N = 101 validation, N = 418 testing). Dice scores, Hausdorff distance, and average symmetrical surface distance were calculated to assess performance. Aortic flow, peak velocity, and lumen dimensions were quantified at the ascending, arch, and descending aorta and compared using Bland-Altman analysis. Interobserver variability of manual analysis was assessed on a subset of 40. RESULTS Convolutional neural network segmentation required 0.438 ± 0.355 seconds versus 630 ± 254 seconds for manual analysis and demonstrated excellent performance with a median Dice score of 0.951 (0.930-0.966), Hausdorff distance of 2.80 (2.13-4.35), and average symmetrical surface distance of 0.176 (0.119-0.290). Excellent agreement was found for flow, peak velocity, and dimensions with low bias and limits of agreement less than 10% difference versus manual analysis. For aortic volume, limits of agreement were moderate within 16.3%. Interobserver variability (median Dice score: 0.950; Hausdorff distance: 2.45; and average symmetrical surface distance: 0.145) and convolutional neural network-based analysis (median Dice score: 0.953-0.959; Hausdorff distance: 2.24-2.91; and average symmetrical surface distance: 0.145-1.98 to observers) demonstrated similar reproducibility. CONCLUSIONS Deep learning enabled fast and automated 3D aortic segmentation from 4D-flow MRI, demonstrating its potential for efficient clinical workflows. Future studies should investigate its utility for other vasculature and multivendor applications.
Collapse
Affiliation(s)
- Haben Berhane
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Michael Scott
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois.,Department of Radiology, Northwestern University, Chicago, Illinois
| | - Mohammed Elbaz
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois.,Department of Radiology, Northwestern University, Chicago, Illinois
| | - Kelly Jarvis
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Patrick McCarthy
- Divison of Cardiac Surgery, Northwestern University, Chicago, Illinois
| | - James Carr
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Chris Malaisrie
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Ryan Avery
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Alex J Barker
- Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Joshua D Robinson
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Cynthia K Rigsby
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Michael Markl
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois.,Department of Radiology, Northwestern University, Chicago, Illinois
| |
Collapse
|
41
|
Scott MB, Huh H, van Ooij P, Chen V, Herrera B, Elbaz M, McCarthy P, Malaisrie SC, Carr J, Fedak PWM, Markl M, Barker AJ. Impact of age, sex, and global function on normal aortic hemodynamics. Magn Reson Med 2020; 84:2088-2102. [PMID: 32162416 DOI: 10.1002/mrm.28250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 02/01/2023]
Abstract
PURPOSE To examine the effects of age, sex, and left ventricular global function on velocity, helicity, and 3D wall shear stress (3D-WSS) in the aorta of N = 100 healthy controls. METHODS Fifty female and 50 male volunteers with no history of cardiovascular disease, with 10 volunteers per age group (18-30, 31-40, 41-50, 51-60, and 61-80 years) underwent aortic 4D-flow MRI. Quantification of systolic aortic peak velocity, helicity, and 3D-WSS distribution and the calculation of age group-averaged peak systolic velocity and 3D-WSS maps ("atlases") were computed. Age-related and sex-related changes in peak velocity, helicity, and 3D-WSS were computed and correlated with standard metrics of left ventricular function derived from short-axis cine MRI. RESULTS No significant differences were found in peak systolic velocity or 3D-WSS based on sex except for the 18- to 30-year-old group (males 8% higher velocity volume and 3D-WSS surface area). Between successively older groups, systolic velocity decreased (13%, <1%, 7%, and 55% of the aorta volume) and 3D-WSS decreased (21%, 2%, 30%, and 62% of the aorta surface area). Mean velocity, mean 3D-3D-WSS, and median helicity increased with cardiac output (r = 0.27-0.43, all P < .01), and mean velocity and 3D-WSS decreased with increasing diameter (r > 0.35, P < .001). Arch and descending aorta systolic mean velocity, mean 3D-WSS, and median helicity increased with normalized left ventricular volumes: end diastolic volume (r = 0.31-0.37, P < .01), end systolic volume (r = 0.27-0.35, P < .01), and stroke volume (r = 0.28-0.35, P < .01). CONCLUSION Healthy aortic hemodynamics are dependent on subject age, and correlate with vessel diameter and cardiac function.
Collapse
Affiliation(s)
- Michael B Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Hyungkyu Huh
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Vincent Chen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brenda Herrera
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mohammed Elbaz
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick McCarthy
- Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Cardiac Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Chris Malaisrie
- Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Cardiac Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul W M Fedak
- Division of Cardiac Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
42
|
Pruijssen JT, Allen BD, Barker AJ, Bonow RO, Choudhury L, Carr JC, Markl M, van Ooij P. Hypertrophic Cardiomyopathy Is Associated with Altered Left Ventricular 3D Blood Flow Dynamics. Radiol Cardiothorac Imaging 2020; 2:e190038. [PMID: 33778534 DOI: 10.1148/ryct.2020190038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 11/11/2022]
Abstract
Purpose To employ four-dimensional (4D) flow MRI to investigate associations between hemodynamic parameters with systolic anterior motion (SAM), mitral regurgitation (MR), stroke volume, and cardiac mass in patients with hypertrophic cardiomyopathy (HCM). Materials and Methods A total of 13 patients with HCM (51 years ± 16 [standard deviation]; 10 men) and 11 age-matched healthy control subjects (54 years ± 15; eight men) underwent cardiac 4D flow MRI data analysis including calculation of peak systolic and diastolic control-averaged left ventricular (LV) velocity maps to quantify volumes of elevated velocity (EVV) in the left ventricle. Standard-of-care cine imaging was performed in short-axis, LV outflow tract (LVOT), and two-, three-, and four-chamber views on which the presence of SAM, presence of MR, total stroke volume, and cardiac mass were assessed. Results Systolic EVV in patients with HCM was 7 mL ± 5, which was significantly associated with elevated aortic peak velocity (R = 0.87; P < .001), decreased LVOT diameter (R = 0.68; P = .01), and increased cardiac mass (R = 0.62; P = .02). In addition, EVV differed significantly between patients with and those without SAM (10 mL ± 4.7 vs 3 mL ± 2.3; P = .03) and those with and those without MR (9.9 mL ± 4.8 vs 4.0 mL ± 3.2; P < .05). In the atrial systolic phase, peak diastolic velocity in the LV correlated with septal thickness (R = 0.66; P = .01). Conclusion Quantification and visualization of EVV in the LV is feasible and may provide further insight into the clinical manifestations of altered hemodynamics in HCM.© RSNA, 2020.
Collapse
Affiliation(s)
- Judith T Pruijssen
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Bradley D Allen
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Alex J Barker
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Robert O Bonow
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Lubna Choudhury
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - James C Carr
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Michael Markl
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Pim van Ooij
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| |
Collapse
|
43
|
Peper ES, Gottwald LM, Zhang Q, Coolen BF, van Ooij P, Nederveen AJ, Strijkers GJ. Highly accelerated 4D flow cardiovascular magnetic resonance using a pseudo-spiral Cartesian acquisition and compressed sensing reconstruction for carotid flow and wall shear stress. J Cardiovasc Magn Reson 2020; 22:7. [PMID: 31959203 PMCID: PMC6971939 DOI: 10.1186/s12968-019-0582-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/18/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND 4D flow cardiovascular magnetic resonance (CMR) enables visualization of complex blood flow and quantification of biomarkers for vessel wall disease, such as wall shear stress (WSS). Because of the inherently long acquisition times, many efforts have been made to accelerate 4D flow acquisitions, however, no detailed analysis has been made on the effect of Cartesian compressed sensing accelerated 4D flow CMR at different undersampling rates on quantitative flow parameters and WSS. METHODS We implemented a retrospectively triggered 4D flow CMR acquisition with pseudo-spiral Cartesian k-space filling, which results in incoherent undersampling of k-t space. Additionally, this strategy leads to small jumps in k-space thereby minimizing eddy current related artifacts. The pseudo-spirals were rotated in a tiny golden-angle fashion, which provides optimal incoherence and a variable density sampling pattern with a fully sampled center. We evaluated this 4D flow protocol in a carotid flow phantom with accelerations of R = 2-20, as well as in carotids of 7 healthy subjects (27 ± 2 years, 4 male) for R = 10-30. Fully sampled 2D flow CMR served as a flow reference. Arteries were manually segmented and registered to enable voxel-wise comparisons of both velocity and WSS using a Bland-Altman analysis. RESULTS Magnitude images, velocity images, and pathline reconstructions from phantom and in vivo scans were similar for all accelerations. For the phantom data, mean differences at peak systole for the entire vessel volume in comparison to R = 2 ranged from - 2.3 to - 5.3% (WSS) and - 2.4 to - 2.2% (velocity) for acceleration factors R = 4-20. For the in vivo data, mean differences for the entire vessel volume at peak systole in comparison to R = 10 were - 9.9, - 13.4, and - 16.9% (WSS) and - 8.4, - 10.8, and - 14.0% (velocity), for R = 20, 25, and 30, respectively. Compared to single slice 2D flow CMR acquisitions, peak systolic flow rates of the phantom showed no differences, whereas peak systolic flow rates in the carotid artery in vivo became increasingly underestimated with increasing acceleration. CONCLUSION Acquisition of 4D flow CMR of the carotid arteries can be highly accelerated by pseudo-spiral k-space sampling and compressed sensing reconstruction, with consistent data quality facilitating velocity pathline reconstructions, as well as quantitative flow rate and WSS estimations. At an acceleration factor of R = 20 the underestimation of peak velocity and peak WSS was acceptable (< 10%) in comparison to an R = 10 accelerated 4D flow CMR reference scan. Peak flow rates were underestimated in comparison with 2D flow CMR and decreased systematically with higher acceleration factors.
Collapse
Affiliation(s)
- Eva S Peper
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lukas M Gottwald
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Qinwei Zhang
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Warmerdam E, Krings GJ, Leiner T, Grotenhuis HB. Three-dimensional and four-dimensional flow assessment in congenital heart disease. Heart 2019; 106:421-426. [PMID: 31857355 DOI: 10.1136/heartjnl-2019-315797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
Congenital heart disease (CHD) is the most common form of congenital defects, with an incidence of 8 per 1000 births. Due to major advances in diagnostics, perioperative care and surgical techniques, the survival rate of patients with CHD has improved dramatically. Conversely, although 70%-95% of infants with CHD survive into adulthood, the rate of long-term morbidity, which often requires (repeat) intervention, has increased. Recently, the role of altered haemodynamics in cardiac development and CHD has become a subject of interest. Patients with CHD often have abnormal blood flow patterns, either due to the primary cardiac defect or as a consequence of the surgical intervention(s). Research suggests that these abnormal blood flow patterns may contribute to diminished cardiac and vascular function. Serial assessment of haemodynamic parameters in patients with CHD may allow for improved understanding of the often complex haemodynamics in these patients and thereby potentially guide the timing and nature of interventions with the aim of preventing progression of cardiovascular deterioration. In this article we will discuss two novel non-invasive four-dimensional (4D) techniques to evaluate cardiovascular haemodynamics: 4D-flow cardiac magnetic resonance and computational fluid dynamics. This review focuses on the additional value of these two modalities in the evaluation of patients with CHD with abnormal flow patterns, who could benefit from advanced haemodynamic evaluation: patients with coarctation of the aorta, bicuspid aortic valve, tetralogy of Fallot and patients after Fontan palliation.
Collapse
Affiliation(s)
- Evangeline Warmerdam
- Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Pediatric Cardiology, Wilhelmina Children's Hospital University Medical Center, Utrecht, The Netherlands
| | - Gregor J Krings
- Pediatric Cardiology, Wilhelmina Children's Hospital University Medical Center, Utrecht, The Netherlands
| | - Tim Leiner
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heynric B Grotenhuis
- Pediatric Cardiology, Wilhelmina Children's Hospital University Medical Center, Utrecht, The Netherlands .,Pediatric Cardiology, Universitair Medisch Centrum Utrecht - Locatie Wilhelmina Kinderziekenhuis, Utrecht, The Netherlands
| |
Collapse
|
45
|
Ko S, Lee J, Song S, Kim D, Lee SH, Cho JH. Patient-specific Hemodynamics of Severe Carotid Artery Stenosis Before and After Endarterectomy Examined by 4D Flow MRI. Sci Rep 2019; 9:18554. [PMID: 31811162 PMCID: PMC6897954 DOI: 10.1038/s41598-019-54543-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022] Open
Abstract
Carotid endarterectomy (CEA) influences the carotid endoluminal anatomy, which results in hemodynamic changes before and after surgery. We investigated the hemodynamics of severe carotid artery stenosis before and after conventional endarterectomy with/without patch repair. An in vitro experiment utilizing carotid phantoms, which underwent a procedure that emulated CEA with/without the patch repair, was performed with a high-spatiotemporal resolution using 4D flow MRI. We evaluated an abnormal region of carotids, which consists of the normalized time-averaged wall shear stress (NTA|WSS|) and the oscillatory shear index (OSI), to account for continuous high-shear regions (high NTA|WSS| and low OSI) and chaotic low-shear regions, i.e., stenosis-prone regions (low NTA|WSS| and high OSI). The use of normalized hemodynamic parameters (e.g., NTA|WSS|) allowed comparison of diverse cases with different conditions of hemodynamics and vessel geometry. We observed that the stenosis-prone regions of the carotids with patches were noticeably larger than the corresponding regions in no-patch carotids. A large recirculating flow zone found in the stenosis-prone region of the internal carotid artery (ICA) of the postoperative carotids with patches partially blocks the flow path into ICA, and consequently the flow rate was not recovered after surgery unlike an expectation.
Collapse
Affiliation(s)
- Seungbin Ko
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jeesoo Lee
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea. .,Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, South Korea.
| | - Simon Song
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea. .,Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, South Korea.
| | - Doosang Kim
- Department of Thoracic and Cardiovascular Surgery, Veterans Health Service Medical Center, Seoul, 05368, South Korea.
| | - Sang Hyung Lee
- Department of Neurosurgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, 07061, South Korea
| | - Jee-Hyun Cho
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, South Korea
| |
Collapse
|
46
|
Surrogates for myocardial power and power efficiency in patients with aortic valve disease. Sci Rep 2019; 9:16407. [PMID: 31712631 PMCID: PMC6848480 DOI: 10.1038/s41598-019-52909-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/12/2019] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess surrogate markers for left ventricular (LV) myocardial power and efficiency in patients with isolated aortic stenosis (AS) and combined stenosis/regurgitation (AS/AR). In AS (n = 59), AS/AR (n = 21) and controls (n = 14), surrogates for LV myocardial power and circulatory/external myocardial efficiency were obtained from cardiac MRI. Median surrogate LV myocardial power was increased in AS, 7.7 W/m2 (interquartile range 6.0–10.2; p = 0.010) and AS/AR, 10.8 W/m2 (8.9–13.4; p < 0.001) when compared to controls, 5.4 W/m2 (4.2–6.5), and was lower in AS than AS/AR (p < 0.001). Surrogate circulatory efficiency was decreased in AS, 8.6% (6.8–11.1; p < 0.001) and AS/AR, 5.4% (4.1–6.2; p < 0.001) when compared to controls, 11.8% (9.8–16.9). Surrogate external myocardial efficiency was higher in AS, 15.2% (11.9–18.6) than in AS/AR, 12.2% (10.1–14.2; p = 0.031) and was significantly lower compared to controls, 12.2% (10.7–18.1) in patients with reduced ejection fraction (EF), 9.8% (8.1–11.7; p = 0.025). In 16% of all cases, left ventricular mass/volume indices and EF were within normal ranges, wheras surrogate LV myocardial power was elevated and patients were symptomatic. Although influenced by pressure/volume load, the myocardium is additionally affected by remodelling processes. Surrogates for circulatory efficiency and LV myocardial power gradually reflect alterations in patients with AS and AS/AR, even when surrogate external myocardial efficiency, EF, mass and volume indices still remain compensated.
Collapse
|
47
|
Suqin L, Mingli Z, Shiteng S, Honglan M, Lan Z, Qihong N, Qing L. Assessment of the Hemodynamics of Autogenous Arteriovenous Fistulas With 4D Phase Contrast-Based Flow Quantification MRI in Dialysis Patients. J Magn Reson Imaging 2019; 51:1272-1280. [PMID: 31584228 DOI: 10.1002/jmri.26936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Regular monitoring of autogenous arteriovenous fistulas (AVFs) for hemodialysis patients has importance. Hence, 4D flow MRI may be an alternative for assessing the hemodynamics of AVFs. PURPOSE To compare the hemodynamics of AVFs using Doppler ultrasound (DUS) and 4D-MRI in renal dialysis patients. STUDY TYPE Case-control study from October 2017 to April 2018. POPULATION Fifty patients (age [range] = 59.52 [39-71] years) with AVFs were included. FIELD STRENGTH/SEQUENCE Black-blood MRI and 4D flow MRI at 3.0T and AVF ultrasonography were also performed. ASSESSMENT The hemodynamics acquired from 4D flow MRI and ultrasonography by two radiologists were compared. The AVF anatomy was described through an examination of the black-blood MRI. STATISTICAL TESTS The consistency of AVF anatomy and hemodynamics and the consistency of the hemodynamics of AVFs from 4D flow MRI and ultrasound were analyzed by paired t-tests. The morphological parameters of AVFs acquired from black-blood MRI were used for a Pearson correlation analysis with the hemodynamic parameters obtained from 4D flow MRI data. RESULTS The consistency of the morphological and hemodynamic parameters measured from MRI by the two radiologists was good (all P < 0.01). The velocities and flow volumes from the 4D flow MRI and vascular ultrasound of AVFs were in moderate agreement (all P < 0.05, r = 0.292-0.569), except for the peak flow velocity at the anastomosis (P = 0.366, r = -0.078). The flow volume and WSS near the anastomotic site were closely related to the morphology of the AVFs (all P < 0.05). The hemodynamics of the complications group were significantly different from those of patients without any complications (normal patients group) (all P < 0.01). DATA CONCLUSION Compared with ultrasonography, 4D flow MRI is a promising technique to noninvasively estimate the AVF hemodynamics of renal dialysis patients. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:1272-1280.
Collapse
Affiliation(s)
- Li Suqin
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Zhu Mingli
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Suo Shiteng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Mi Honglan
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Zhang Lan
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Ni Qihong
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Lu Qing
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| |
Collapse
|
48
|
Comprehensive MR Analysis of Cardiac Function, Aortic Hemodynamics and Left Ventricular Strain in Pediatric Cohort with Isolated Bicuspid Aortic Valve. Pediatr Cardiol 2019; 40:1450-1459. [PMID: 31342116 PMCID: PMC6786923 DOI: 10.1007/s00246-019-02157-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/13/2019] [Indexed: 02/08/2023]
Abstract
Bicuspid aortic valve (BAV) disease demonstrates a range of clinical presentations and complications. We aim to use cardiac MRI (CMR) to evaluate left ventricular (LV) parameters, myocardial strain and aortic hemodynamics in pediatric BAV patients with and without aortic stenosis (AS) or regurgitation (AR) compared to tricuspid aortic valve (TAV) controls. We identified 58 pediatric BAV patients without additional cardiovascular pathology and 25 healthy TAV controls (15.3 ± 2.2 years) who underwent CMR with 4D flow. BAV cohort included subgroups with no valvulopathy (n = 13, 14.3 ± 4.7 years), isolated AS (n = 19, 14.5 ± 4.0 years), mixed valve disease (AS + AR) (n = 13, 17.1 ± 3.2 years), and prior valvotomy/valvuloplasty (n = 13, 13.9 ± 3.2 years). CMR data included LV volumetric and mass indices, myocardial strain and aortic hemodynamics. BAV patients with no valvulopathy or isolated AS had similar LV parameters to controls excepting cardiac output (p < 0.05). AS + AR and post-surgical patients had abnormal LV volumetric and mass indices (p < 0.01). Post-surgical patients had decreased global longitudinal strain (p = 0.02); other subgroups had comparable strain to controls. Patients with valvulopathy demonstrated elevated velocity and wall shear stress (WSS) in the ascending aorta (AAo) and arch (p < 0.01), while those without valve dysfunction had only elevated AAo velocity (p = 0.03). Across the cohort, elevated AAo velocity and WSS correlated to higher LV mass (p < 0.01), and abnormal hemodynamics correlated to decreased strain rates (p < 0.045). Pediatric BAV patients demonstrate abnormalities in LV parameters as a function of valvular dysfunction, most significantly in children with AS + AR or prior valvotomy/valvuloplasty. Correlations between aortic hemodynamics, LV mass and strain suggest valvular dysfunction could drive LV remodeling. Multiparametric CMR assessment in pediatric BAV may help stratify risk for cardiac remodeling and dysfunction.
Collapse
|
49
|
Rahman O, Markl M, Balte P, Berhane H, Blanken C, Suwa K, Dashnaw S, Wieben O, Bluemke DA, Prince MR, Lima J, Michos E, Ambale-Venkatesh B, Hoffman EA, Gomes AS, Watson K, Sun Y, Carr J, Barr RG. Reproducibility and Changes in Vena Caval Blood Flow by Using 4D Flow MRI in Pulmonary Emphysema and Chronic Obstructive Pulmonary Disease (COPD): The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Substudy. Radiology 2019; 292:585-594. [PMID: 31335282 PMCID: PMC6736177 DOI: 10.1148/radiol.2019182143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 11/11/2022]
Abstract
BackgroundChronic obstructive pulmonary disease (COPD) is associated with hemodynamic changes in the pulmonary vasculature. However, cardiac effects are not fully understood and vary by phenotype of chronic lower respiratory disease.PurposeTo use four-dimensional (4D) flow MRI for comprehensive assessment of the right-sided cardiovascular system, assess its interrater and intraobserver reproducibility, and examine associations with venous return to the right heart in individuals with chronic COPD and emphysema.Materials and MethodsThe Multi-Ethnic Study of Atherosclerosis COPD substudy prospectively recruited participants who smoked and who had COPD and nested control participants from population-based samples. Electrocardiography and respiratory gated 4D flow 1.5-T MRI was performed at three sites with full volumetric coverage of the thoracic vessels in 2014-2017 with postbronchodilator spirometry and inspiratory chest CT to quantify percent emphysema. Net flow, peak velocity, retrograde flow, and retrograde fraction were measured on 14 analysis planes. Interrater reproducibility was assessed by two independent observers, and the principle of conservation of mass was employed to evaluate the internal consistency of flow measures. Partial correlation coefficients were adjusted for age, sex, race/ethnicity, height, weight, and smoking status.ResultsAmong 70 participants (29 participants with COPD [mean age, 73.5 years ± 8.1 {standard deviation}; 20 men] and 41 control participants [mean age, 71.0 years ± 6.1; 22 men]), the interrater reproducibility of the 4D flow MRI measures was good to excellent (intraclass correlation coefficient range, 0.73-0.98), as was the internal consistency. There were no statistically significant differences in venous flow parameters according to COPD severity (P > .05). Greater percent emphysema at CT was associated with greater regurgitant flow in the superior and inferior caval veins and tricuspid valve (adjusted r = 0.28-0.55; all P < .01), particularly in the superior vena cava.ConclusionFour-dimensional flow MRI had good-to-excellent observer variability and flow consistency. Percent emphysema at CT was associated with statistically significant differences in retrograde flow, greatest in the superior vena cava.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by Choe in this issue.
Collapse
Affiliation(s)
| | | | - Pallavi Balte
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Haben Berhane
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Carmen Blanken
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Kenichiro Suwa
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Stephen Dashnaw
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Oliver Wieben
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - David A. Bluemke
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Martin R. Prince
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Joao Lima
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Erin Michos
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Bharath Ambale-Venkatesh
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Eric A. Hoffman
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Antoinette S. Gomes
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Karol Watson
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Yanping Sun
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - James Carr
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - R. Graham Barr
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| |
Collapse
|
50
|
Optimal 4DFlow MR sequence parameters for the assessment of internal carotid artery stenosis: a simulation study. Neuroradiology 2019; 61:1137-1144. [PMID: 31197413 DOI: 10.1007/s00234-019-02237-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE In patients with ICA stenosis, increased peak systolic velocity is a marker of stenosis at risk of ischemic stroke. 4DFlow MRI is a reproducible technique to evaluate velocities in ICA stenosis, although it seems to underestimate velocities as compared with Doppler ultrasonography. The purpose of our study was to confirm that velocities were underestimated on a new set of data acquired with a clinical 4DFlow sequence, and to devise optimal acquisition parameters for ICA stenosis exploration based on a numerical simulation. METHODS After review board approval, 15 healthy controls and 12 patients presenting ICA stenosis were explored with Doppler ultrasonography and 4DFlow MRI. We created a 2-dimensional simulation of ICA stenosis and its corresponding 4DFlow acquisition, and compared its mean peak systolic velocity underestimation to real MRI and Doppler. We then simulated the acquisition for voxel size ranging from 0.5 to 1.25 mm and number of phases per cardiac cycle ranging from 10 to 25. RESULTS On acquired data, 4DFlow MR underestimated peak systolic velocities (mean difference between Doppler and 4DFlow: - 35 cm/s), especially high velocities. With spatial and temporal resolutions equivalent to MR acquisition, our simulation yielded similar underestimation (mean difference: - 31 cm/s, P = 0.30). Simulations showed that 0.7-mm resolution and 20 phases per cardiac cycle would be necessary to record peak systolic velocities up to 250 cm/s. CONCLUSION Higher spatial resolution can provide accurate peak systolic velocities measurement with 4DFlow MRI, thus allowing better ICA stenosis assessment. Further studies are needed to validate the proposed parameters.
Collapse
|