1
|
Song Y, Cho JH, Kim H, Eum YJ, Cheong EN, Choi S, Park JH, Tak S, Park B, Sohn JH, Cho G, Cheong C. Association Between Taurine Level in the Hippocampus and Major Depressive Disorder in Young Women: A Proton Magnetic Resonance Spectroscopy Study at 7T. Biol Psychiatry 2024; 95:465-472. [PMID: 37678539 DOI: 10.1016/j.biopsych.2023.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by depressed mood or loss of interest or pleasure. Generally, women are twice as likely as men to have depression. Taurine, a type of amino acid, plays critical roles in neuronal generation, differentiation, arborization, and formation of synaptic connections. Importantly, it enhances proliferation and synaptogenesis in the hippocampus. When injected into animals, taurine has an antidepressant effect. However, there is no in vivo evidence to show an association between taurine concentration in the human brain and the development of MDD. METHODS Forty-one unmedicated young women with MDD (ages 18-29) and 43 healthy control participants matched for gender and age were recruited in South Korea. Taurine concentration was measured in the hippocampus, anterior cingulate cortex, and occipital cortex of the MDD and healthy control groups using proton magnetic resonance spectroscopy at 7T. Analysis of covariance was used to examine differences in taurine concentration, adjusting for age as a covariate. RESULTS Taurine concentration in the hippocampus was lower (F1,75 = 5.729, p = .019, Δη2 = 0.073) for the MDD group (mean [SEM] = 0.91 [0.06] mM) than for the healthy control group (1.13 [0.06] mM). There was no significant difference in taurine concentration in the anterior cingulate cortex or occipital cortex between the two groups. CONCLUSIONS This study demonstrates that a lower level of taurine concentration in the hippocampus may be a novel characteristic of MDD.
Collapse
Affiliation(s)
- Youngkyu Song
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jee-Hyun Cho
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Hyungjun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Young-Ji Eum
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - E-Nae Cheong
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sunyoung Choi
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jeong-Heon Park
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sungho Tak
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Bumwoo Park
- Big Data Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Hun Sohn
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyunggoo Cho
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea.
| | - Chaejoon Cheong
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Kuribayashi H, Urushibata Y, Imai H, Ahn S, Seethamraju RT, Isa T, Okada T. Quantification of Cerebral Glucose Concentrations via Detection of the H1-α-Glucose Peak in 1 H MRS at 7 T. J Magn Reson Imaging 2024; 59:661-672. [PMID: 37259965 DOI: 10.1002/jmri.28834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Sensitive detection and quantification of cerebral glucose is desired. PURPOSE To quantify cerebral glucose by detecting the H1-α-glucose peak at 5.23 ppm in 1 H magnetic resonance spectroscopy at 7 T. STUDY TYPE Prospective. SUBJECTS Twenty-eight non-fasted healthy subjects (aged 20-28 years). FIELD STRENGTH/SEQUENCE Short echo time stimulated echo acquisition mode (short-TE STEAM) and semi-localized by adiabatic selective refocusing (semi-LASER) at 7 T. ASSESSMENT Single voxel spectra were obtained from the posterior cingulate cortex (27-mL) using a 32-channel head coil. The H1-α-glucose peak in the spectrum with retrospective removal of the residual water peak was fitted using LCModel with a glucose basis set of only the H1-α-glucose peak. Conventional spectral analysis was performed with a glucose basis set of a full spectral pattern of glucose, also. Fitting precision was evaluated with Cramér-Rao lower bounds (CRLBs). The repeatability of glucose quantification via the semi-LASER sequence was tested. STATISTICAL TESTS Paired or Welch's t-test were used for normally distributed values. A P value of <0.05 was considered significant. The repeatability of measures was analyzed using coefficient of variation (CV). RESULTS Removal of the residual water peak improved the flatness and stability of baselines around the H1-α-glucose peak and reduced CRLBs for fitting the H1-α-glucose peak. The semi-LASER sequence was superior to the short-TE STEAM in the higher signal-to-noise ratio of the H1-α-glucose peak (mean ± SD 7.9 ± 2.5, P < 0.001). The conventional analysis overfitted the H1-α-glucose peak. The individual CVs of glucose quantification by detecting the H1-α-glucose peak were smaller than the corresponding CRLBs. DATA CONCLUSION Cerebral glucose concentration is quantitated to be 1.07 mM by detecting the H1-α-glucose peak in the semi-LASER spectra. Despite requiring long scan times, detecting the H1-α-glucose peak allows true glucose quantification free from the influence of overlapping taurine and macromolecule signals. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
| | | | - Hirohiko Imai
- Kyoto University Graduate School of Informatics, Kyoto, Japan
| | - Sinyeob Ahn
- Siemens Medical Solutions, Berkeley, California, USA
| | | | - Tadashi Isa
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Just N, Chevillard PM, Batailler M, Dubois JP, Vaudin P, Pillon D, Migaud M. Multiparametric MR Evaluation of the Photoperiodic Regulation of Hypothalamic Structures in Sheep. Neuroscience 2023; 535:142-157. [PMID: 37913859 DOI: 10.1016/j.neuroscience.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Most organisms on earth, humans included, have developed strategies to cope with environmental day-night and seasonal cycles to survive. For most of them, their physiological and behavioral functions, including the reproductive function, are synchronized with the annual changes of day length, to ensure winter survival and subsequent reproductive success in the following spring. Sheep are sensitive to photoperiod, which also regulates natural adult neurogenesis in their hypothalamus. We postulate that the ovine model represents a good alternative to study the functional and metabolic changes occurring in response to photoperiodic changes in hypothalamic structures of the brain. Here, the impact of the photoperiod on the neurovascular coupling and the metabolism of the hypothalamic structures was investigated at 3T using BOLD fMRI, perfusion-MRI and proton magnetic resonance spectroscopy (1H-MRS). A longitudinal study involving 8 ewes was conducted during long days (LD) and short days (SD) revealing significant BOLD, rCBV and metabolic changes in hypothalamic structures of the ewe brain between LD and SD. More specifically, the transition between LD and SD revealed negative BOLD responses to hypercapnia at the beginning of SD period followed by significant increases in BOLD, rCBV, Glx and tNAA concentrations towards the end of the SD period. These observations suggest longitudinal mechanisms promoting the proliferation and differentiation of neural stem cells within the hypothalamic niche of breeding ewes. We conclude that multiparametric MRI studies including 1H-MRS could be promising non-invasive translational techniques to investigate the existence of natural adult neurogenesis in-vivo in gyrencephalic brains.
Collapse
Affiliation(s)
- Nathalie Just
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France; Danish Research Centre for Magnetic Resonance (DRCMR), Hvidovre, Denmark.
| | - Pierre Marie Chevillard
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Batailler
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Jean-Philippe Dubois
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Pascal Vaudin
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Delphine Pillon
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Migaud
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| |
Collapse
|
4
|
Niess F, Strasser B, Hingerl L, Niess E, Motyka S, Hangel G, Krššák M, Gruber S, Spurny-Dworak B, Trattnig S, Scherer T, Lanzenberger R, Bogner W. Reproducibility of 3D MRSI for imaging human brain glucose metabolism using direct ( 2H) and indirect ( 1H) detection of deuterium labeled compounds at 7T and clinical 3T. Neuroimage 2023; 277:120250. [PMID: 37414233 PMCID: PMC11019874 DOI: 10.1016/j.neuroimage.2023.120250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
INTRODUCTION Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'-2H2]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2H MRSI (DMI) and 1H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. METHODS Five volunteers (4 m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8 g/kg oral [6,6'-2H2]-glucose administration using time-resolved 3D 2H FID-MRSI with elliptical phase encoding at 7T and 3D 1H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. RESULTS One hour after oral tracer administration regionally averaged deuterium labeled Glx4 concentrations and the dynamics were not significantly different over all participants between 7T 2H DMI and 3T 1H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2H and 1H data points a weak to moderate negative correlation was observed for Glx4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc6 data GM (r=-0.61, p<0.001) and WM (r=-0.70, p<0.001). CONCLUSION This study demonstrates that indirect detection of deuterium labeled compounds using 1H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.
Collapse
Affiliation(s)
- Fabian Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria.
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria
| | - Eva Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Institute for Clinical Molecular MRI, Karl Landsteiner Society, Pölten 3100St, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| |
Collapse
|
5
|
Niess F, Strasser B, Hingerl L, Niess E, Motyka S, Hangel G, Krššák M, Gruber S, Spurny-Dworak B, Trattnig S, Scherer T, Lanzenberger R, Bogner W. Reproducibility of 3D MRSI for imaging human brain glucose metabolism using direct ( 2 H) and indirect ( 1 H) detection of deuterium labeled compounds at 7T and clinical 3T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.17.23288672. [PMID: 37131634 PMCID: PMC10153308 DOI: 10.1101/2023.04.17.23288672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Introduction Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'- 2 H 2 ]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2 H MRSI (DMI) and 1 H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. Methods Five volunteers (4m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8g/kg oral [6,6'- 2 H 2 ]-glucose administration using time-resolved 3D 2 H FID-MRSI with elliptical phase encoding at 7T and 3D 1 H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. Results One hour after oral tracer administration regionally averaged deuterium labeled Glx 4 concentrations and the dynamics were not significantly different over all participants between 7T 2 H DMI and 3T 1 H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc 6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2 H and 1 H data points a weak to moderate negative correlation was observed for Glx 4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc 6 data GM (r=- 0.61, p<0.001) and WM (r=-0.70, p<0.001). Conclusion This study demonstrates that indirect detection of deuterium labeled compounds using 1 H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2 H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.
Collapse
Affiliation(s)
- Fabian Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Eva Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Department of Neurosurgery, Medical University of Vienna
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Institute for Clinical Molecular MRI, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| |
Collapse
|
6
|
Weng G, Radojewski P, Slotboom J. α-D-Glucose as a non-radioactive MRS tracer for metabolic studies of the brain. Sci Rep 2023; 13:6159. [PMID: 37061615 PMCID: PMC10105689 DOI: 10.1038/s41598-023-33161-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
Changes in brain glucose metabolism occur in many neurological disorders as well as during aging. Most studies on the uptake of glucose in the brain use positron emission tomography, which requires injection of a radioactive tracer. Our study shows that ultra-high-field 1H-MRS can be used to measure α-D-glucose at 5.22 ppm in vivo, and the α-D-glucose can be used as a radiation-free tracer in the human brain.
Collapse
Affiliation(s)
- Guodong Weng
- Institute for Diagnostic and Interventional Neuroradiology, Support Center for Advanced Neuroimaging (SCAN), Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Sitem-Insel, Bern, Switzerland
| | - Piotr Radojewski
- Institute for Diagnostic and Interventional Neuroradiology, Support Center for Advanced Neuroimaging (SCAN), Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Sitem-Insel, Bern, Switzerland
| | - Johannes Slotboom
- Institute for Diagnostic and Interventional Neuroradiology, Support Center for Advanced Neuroimaging (SCAN), Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.
- Translational Imaging Center, Sitem-Insel, Bern, Switzerland.
| |
Collapse
|
7
|
Spielman DM, Gu M, Hurd RE, Riemer RK, Okamura K, Hanley FL. Proton magnetic resonance spectroscopy assessment of neonatal brain metabolism during cardiopulmonary bypass surgery. NMR IN BIOMEDICINE 2022; 35:e4752. [PMID: 35483967 PMCID: PMC9484292 DOI: 10.1002/nbm.4752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Here, we report on the development and performance of a robust 3-T single-voxel proton magnetic resonance spectroscopy (1 H MRS) experimental protocol and data analysis pipeline for quantifying brain metabolism during cardiopulmonary bypass (CPB) surgery in a neonatal porcine model, with the overall goal of elucidating primary mechanisms of brain injury associated with these procedures. The specific aims were to assess which metabolic processes can be reliably interrogated by 1 H MRS on a 3-T clinical scanner and to provide an initial assessment of brain metabolism during deep hypothermia cardiac arrest (DHCA) surgery and recovery. Fourteen neonatal pigs underwent CPB surgery while placed in a 3-T MRI scanner for 18, 28, and 37°C DHCA studies under hyperglycemic, euglycemic, and hypoglycemic conditions. Total imaging times, including baseline measurements, circulatory arrest (CA), and recovery averaged 3 h/animal, during which 30-40 single-voxel 1 H MRS spectra (sLASER pulse sequence, TR/TE = 2000/30 ms, 64 or 128 averages) were acquired from a 2.2-cc right midbrain voxel. 1 H MRS at 3 T was able to reliably quantify (1) anaerobic metabolism via depletion of brain glucose and the associated build-up of lactate during CA, (2) phosphocreatine (PCr) to creatine (Cr) conversion during CA and subsequent recovery upon reperfusion, (3) a robust increase in the glutamine-to-glutamate (Gln/Glu) ratio during the post-CA recovery period, and (4) a broadening of the water peak during CA. In vivo 1 H MRS at 3 T can reliably quantify subtle metabolic brain changes previously deemed challenging to interrogate, including brain glucose concentrations even under hypoglycemic conditions, ATP usage via the conversion of PCr to Cr, and differential changes in Glu and Gln. Observed metabolic changes during CPB surgery of a neonatal porcine model provide new insights into possible mechanisms for prevention of neuronal injury.
Collapse
Affiliation(s)
- Daniel M. Spielman
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Meng Gu
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Ralph E. Hurd
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - R. Kirk Riemer
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kenichi Okamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Frank L. Hanley
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Kara F, Joers JM, Deelchand DK, Park YW, Przybelski SA, Lesnick TG, Senjem ML, Zeydan B, Knopman DS, Lowe VJ, Vemuri P, Mielke MM, Machulda MM, Jack CR, Petersen RC, Öz G, Kantarci K. 1H MR spectroscopy biomarkers of neuronal and synaptic function are associated with tau deposition in cognitively unimpaired older adults. Neurobiol Aging 2022; 112:16-26. [PMID: 35038671 PMCID: PMC8976711 DOI: 10.1016/j.neurobiolaging.2021.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022]
Abstract
Proton magnetic resonance spectroscopy (1H MRS) may provide information on pathophysiological changes associated with tau deposition in cognitively unimpaired older adults. In this study, the associations of posterior cingulate gyrus tau and amyloid beta (Aβ) deposition on PET with 1H MRS metabolite ratios acquired from bilateral posterior cingulate gyri were investigated in cognitively unimpaired older adults. Participants (n = 40) from the Mayo Clinic Study of Aging underwent single-voxel sLASER 1H MRS from the posterior cingulate gyrus at 3 Tesla, 18F-flortaucipir, and 11C- Pittsburgh Compound B (PiB) PET. An increase in posterior cingulate gyrus tau deposition, but not elevated Aβ, was associated with lower N-acetylaspartate/total creatine (tCr) and glutamate (Glu)/tCr ratios, and sex by tau interaction was observed in association with Glu/tCr. Higher tau levels in cognitively unimpaired older adults are associated with biomarkers of neural and synaptic injury even in the absence of cognitive impairment and these relationships appear to be stronger in women than in men.
Collapse
Affiliation(s)
- Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - James M Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Burcu Zeydan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic-Minnesota, Rochester, MN, USA
| | | | | | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Park YW, Deelchand DK, Joers JM, Kumar A, Alvear AB, Moheet A, Seaquist ER, Öz G. Monitoring the Neurotransmitter Response to Glycemic Changes Using an Advanced Magnetic Resonance Spectroscopy Protocol at 7T. Front Neurol 2021; 12:698675. [PMID: 34484102 PMCID: PMC8416271 DOI: 10.3389/fneur.2021.698675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
The primary excitatory and inhibitory neurotransmitters glutamate (Glu) and gamma-aminobutyric acid (GABA) are thought to be involved in the response of the brain to changes in glycemia. Therefore, their reliable measurement is critical for understanding the dynamics of these responses. The concentrations of Glu and GABA, as well as glucose (Glc) in brain tissue, can be measured in vivo using proton (1H) magnetic resonance spectroscopy (MRS). Advanced MRS methodology at ultrahigh field allows reliable monitoring of these metabolites under changing metabolic states. However, the long acquisition times needed for these experiments while maintaining blood Glc levels at predetermined targets present many challenges. We present an advanced MRS acquisition protocol that combines commercial 7T hardware (Siemens Scanner and Nova Medical head coil), BaTiO3 dielectric padding, optical motion tracking, and dynamic frequency and B0 shim updates to ensure the acquisition of reproducibly high-quality data. Data were acquired with a semi-LASER sequence [repetition time/echo time (TR/TE) = 5,000/26 ms] from volumes of interest (VOIs) in the prefrontal cortex (PFC) and hypothalamus (HTL). Five healthy volunteers were scanned to evaluate the effect of the BaTiO3 pads on B 1 + distribution. Use of BaTiO3 padding resulted in a 60% gain in signal-to-noise ratio in the PFC VOI over the acquisition without the pad. The protocol was tested in six patients with type 1 diabetes during a clamp study where euglycemic (~100 mg/dL) and hypoglycemic (~50 mg/dL) blood Glc levels were maintained in the scanner. The new protocol allowed retention of all HTL data compared with our prior experience of having to exclude approximately half of the HTL data in similar clamp experiments in the 7T scanner due to subject motion. The advanced MRS protocol showed excellent data quality (reliable quantification of 11-12 metabolites) and stability (p > 0.05 for both signal-to-noise ratio and water linewidths) between euglycemia and hypoglycemia. Decreased brain Glc levels under hypoglycemia were reliably detected in both VOIs. In addition, mean Glu level trended lower at hypoglycemia than euglycemia for both VOIs, consistent with prior observations in the occipital cortex. This protocol will allow robust mechanistic investigations of the primary neurotransmitters, Glu and GABA, under changing glycemic conditions.
Collapse
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - James M Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Anjali Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Alison Bunio Alvear
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Florent V, Baroncini M, Jissendi-Tchofo P, Lopes R, Vanhoutte M, Rasika S, Pruvo JP, Vignau J, Verdun S, Johansen JE, Pigeyre M, Bouret SG, Nilsson IAK, Prevot V. Hypothalamic Structural and Functional Imbalances in Anorexia Nervosa. Neuroendocrinology 2020; 110:552-562. [PMID: 31484186 DOI: 10.1159/000503147] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022]
Abstract
The hypothalamus contains integrative systems that support life, including physiological processes such as food intake, energy expenditure, and reproduction. Here, we show that anorexia nervosa (AN) patients, contrary to normal weight and constitutionally lean individuals, respond with a paradoxical reduction in hypothalamic levels of glutamate/glutamine (Glx) upon feeding. This reversal of the Glx response is associated with decreased wiring in the arcuate nucleus and increased connectivity in the lateral hypothalamic area, which are involved in the regulation on a variety of physiological and behavioral functions including the control of food intake and energy balance. The identification of distinct hypothalamic neurochemical dysfunctions and associated structural variations in AN paves the way for the development of new diagnostic and treatment strategies in conditions associated with abnormal body mass index and a maladaptive response to negative energy balance.
Collapse
Affiliation(s)
- Vincent Florent
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, France
- School of Medicine, Université Lille, Lille, France
- Nutrition, Arras General Hospital, Lille, France
| | - Marc Baroncini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, France
- School of Medicine, Université Lille, Lille, France
- Neurosurgery, CHU Lille, Lille, France
- The Saban Research Institute, Developmental Neuroscience Program and Diabetes and Obesity Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | - Jean-Pierre Pruvo
- School of Medicine, Université Lille, Lille, France
- Neuroradiology, CHU Lille, Lille, France
| | | | | | - Jeanette E Johansen
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet/Hospital, Stockholm, Sweden
| | - Marie Pigeyre
- School of Medicine, Université Lille, Lille, France
- Nutrition, CHU Lille, Lille, France
- U1190, European Genomic Institute for Diabetes, Lille, France
| | - Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, France
- School of Medicine, Université Lille, Lille, France
- The Saban Research Institute, Developmental Neuroscience Program and Diabetes and Obesity Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Ida A K Nilsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet/Hospital, Stockholm, Sweden
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, France,
- School of Medicine, Université Lille, Lille, France,
| |
Collapse
|
11
|
Altered hypothalamic metabolism in early multiple sclerosis – MR spectroscopy study. J Neurol Sci 2019; 407:116458. [DOI: 10.1016/j.jns.2019.116458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
|
12
|
Yang J, Zhang LJ, Wang F, Hong T, Liu Z. Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β-cell targeting. Adv Drug Deliv Rev 2019; 139:32-50. [PMID: 30529307 DOI: 10.1016/j.addr.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic non-communicable disease affecting over 400 million people worldwide. Diabetic patients are at a high risk of various complications, such as cardiovascular, renal, and other diseases. The pathogenesis of diabetes (both type 1 and type 2 diabetes) is associated with a functional impairment of pancreatic β-cells. Consequently, most efforts to manage and prevent diabetes have focused on preserving β-cells and their function. Advances in imaging techniques, such as magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, and single-photon-emission computed tomography, have enabled noninvasive and quantitative detection and characterization of the population and function of β-cells in vivo. These advantages aid in defining and monitoring the progress of diabetes and determining the efficacy of anti-diabetic therapies. Beyond β-cell targeting, molecular imaging of biomarkers associated with the development of diabetes, e.g., lymphocyte infiltration, insulitis, and metabolic changes, may also be a promising strategy for early detection of diabetes, monitoring its progression, and occurrence of complications, as well as facilitating exploration of new therapeutic interventions. Moreover, molecular imaging of glucose uptake, production and excretion in specified tissues is critical for understanding the pathogenesis of diabetes. In the current review, we summarize and discuss recent advances in noninvasive imaging technologies for imaging of biomarkers beyond β-cells for early diagnosis of diabetes, investigation of glucose metabolism, and precise diagnosis and monitoring of diabetic complications for better management of diabetic patients.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
13
|
Seaquist ER, Moheet A, Kumar A, Deelchand DK, Terpstra M, Kubisiak K, Eberly LE, Henry PG, Joers JM, Öz G. Hypothalamic Glucose Transport in Humans During Experimentally Induced Hypoglycemia-Associated Autonomic Failure. J Clin Endocrinol Metab 2017; 102:3571-3580. [PMID: 28911152 PMCID: PMC5587056 DOI: 10.1210/jc.2017-00477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/17/2017] [Indexed: 01/15/2023]
Abstract
CONTEXT Upregulated brain glucose transport in response to recurrent hypoglycemia may contribute to the development of hypoglycemia-associated autonomic failure (HAAF) and impaired awareness of hypoglycemia. Whether recurrent hypoglycemia alters glucose transport in the hypothalamus is unknown. OBJECTIVE To test the hypothesis that hypothalamic glucose transport will increase in healthy volunteers preconditioned with recurrent hypoglycemia to induce HAAF. SETTING University medical center. DESIGN AND PARTICIPANTS Thirteen healthy subjects underwent paired euglycemic and hypoglycemic preconditioning studies separated by at least 1 month. Following preconditioning, hypothalamic glucose transport was measured by magnetic resonance spectroscopy (MRS) in the afternoon on day 2 of each preconditioning protocol. OUTCOME MEASURE The ratio of maximal transport rate to cerebral metabolic rate of glucose (Tmax/CMRglc), obtained from MRS-measured glucose in the hypothalamus as a function of plasma glucose. RESULTS HAAF was successfully induced based on lower epinephrine, glucagon, and cortisol during the third vs first hypoglycemic preconditioning clamp (P ≤ 0.01). Hypothalamic glucose transport was not different following recurrent euglycemia vs hypoglycemia (Tmax/CMRglc 1.62 ± 0.09 after euglycemia preconditioning and 1.75 ± 0.14 after hypoglycemia preconditioning; P was not significant). Hypothalamic glucose concentrations measured by MRS were not different following the two preconditioning protocols. CONCLUSIONS Glucose transport kinetics in the hypothalamus of healthy humans with experimentally induced HAAF were not different from those measured without HAAF. Future studies of patients with diabetes and impaired awareness of hypoglycemia will be necessary to determine if the existence of the diabetes state is required for this adaptation to hypoglycemia to occur.
Collapse
Affiliation(s)
- Elizabeth R. Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - Amir Moheet
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anjali Kumar
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Melissa Terpstra
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kristine Kubisiak
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lynn E. Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|