1
|
Awenius M, Abeln H, Müller M, Franke VL, Rincon G, Glowa C, Schmitt M, Bangert R, Ludwig D, Schmidt AB, Kuder TA, Ladd ME, Bachert P, Biegger P, Korzowski A. Three-dimensional radial echo-planar spectroscopic imaging for hyperpolarized 13C MRSI in vivo. Magn Reson Med 2025; 93:31-41. [PMID: 39164797 DOI: 10.1002/mrm.30258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE To demonstrate the feasibility of 3D echo-planar spectroscopic imaging (EPSI) technique with rapid volumetric radial k-space sampling for hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) in vivo. METHODS A radial EPSI (rEPSI) was implemented on a 3 T clinical PET/MR system. To enable volumetric coverage, the sinusoidal shaped readout gradients per k-t-spoke were rotated along the three spatial dimensions in a golden-angle like manner. A distance-weighted, density-compensated gridding reconstruction was used, also in cases with undersampling of spokes in k-space. Measurements without and with HP 13C-labeled substances were performed in phantoms and rats using a double-resonant 13C/1H volume resonator with 72 mm inner diameter. RESULTS Phantom measurements demonstrated the feasibility of the implemented rEPSI sequence, as well as the robustness to undersampling in k-space up to a factor of 5 without advanced reconstruction techniques. Applied to measurements with HP [1-13C]pyruvate in a tumor-bearing rat, we obtained well-resolved MRSI datasets with a large matrix size of 123 voxels covering the whole imaging FOV of (180 mm)3 within 6.3 s, enabling to observe metabolism in dynamic acquisitions. CONCLUSION After further optimization, the proposed rEPSI method may be useful in applications of HP 13C-tracers where unknown or varying metabolite resonances are expected, and the acquisition of dynamic, volumetric MRSI datasets with an adequate temporal resolution is a challenge.
Collapse
Affiliation(s)
- Marcel Awenius
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany
| | - Helen Abeln
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany
- Faculty of Chemistry and Earth Sciences, University of Heidelberg, Heidelberg, Germany
| | - Melanie Müller
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vanessa L Franke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gino Rincon
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), core center Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christin Glowa
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Michaela Schmitt
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Renate Bangert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Ludwig
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tristan A Kuder
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Philipp Biegger
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), core center Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Diaz E, Sriram R, Gordon JW, Sinha A, Liu X, Sahin SI, Crane JC, Olson MP, Chen HY, Bernard JML, Vigneron DB, Wang ZJ, Xu D, Larson PEZ. Data Format Standardization and DICOM Integration for Hyperpolarized 13C MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2627-2634. [PMID: 38710970 PMCID: PMC11522264 DOI: 10.1007/s10278-024-01100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Hyperpolarized (HP) 13C MRI has shown promise as a valuable modality for in vivo measurements of metabolism and is currently in human trials at 15 research sites worldwide. With this growth, it is important to adopt standardized data storage practices as it will allow sites to meaningfully compare data. In this paper, we (1) describe data that we believe should be stored and (2) demonstrate pipelines and methods that utilize the Digital Imaging and Communications in Medicine (DICOM) standard. This includes proposing a set of minimum set of information that is specific to HP 13C MRI studies. We then show where the majority of these can be fit into existing DICOM attributes, primarily via the "Contrast/Bolus" module. We also demonstrate pipelines for utilizing DICOM for HP 13C MRI. DICOM is the most common standard for clinical medical image storage and provides the flexibility to accommodate the unique aspects of HP 13C MRI, including the HP agent information but also spectroscopic and metabolite dimensions. The pipelines shown include creating DICOM objects for studies on human and animal imaging systems with various pulse sequences. We also show a python-based method to efficiently modify DICOM objects to incorporate the unique HP 13C MRI information that is not captured by existing pipelines. Moreover, we propose best practices for HP 13C MRI data storage that will support future multi-site trials, research studies, and technical developments of this imaging technique.
Collapse
Affiliation(s)
- Ernesto Diaz
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Avantika Sinha
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Sule I Sahin
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Jason C Crane
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Jenna M L Bernard
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA.
| |
Collapse
|
3
|
Shinozaki A, Sanchez-Heredia JD, Andersen MP, Redda M, Dang DA, Hansen ESS, Schulte RF, Laustsen C, Tyler DJ, Grist JT. Enabling SENSE accelerated 2D CSI for hyperpolarized carbon-13 imaging. Sci Rep 2024; 14:20591. [PMID: 39231982 PMCID: PMC11375102 DOI: 10.1038/s41598-024-70892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
As hyperpolarized (HP) carbon-13 (13C) metabolic imaging is clinically translated, there is a need for easy-to-implement, fast, and robust imaging techniques. However, achieving high temporal resolution without decreasing spatial and/or spectral resolution, whilst maintaining the usability of the imaging sequence is challenging. Therefore, this study looked to accelerate HP 13C MRI by combining a well-established and robust sequence called two-dimensional Chemical Shift Imaging (2D CSI) with prospective under sampling and SENSitivity Encoding (SENSE) reconstruction. Due to the low natural abundance of 13C, the sensitivity maps cannot be pre-acquired for the reconstruction. As such, the implementation of sodium (23Na) sensitivity maps for SENSE reconstructed 13C CSI was demonstrated in a phantom and in vivo in the pig kidney. Results showed that SENSE reconstruction using 23Na sensitivity maps corrected aliased images with a four-fold acceleration. With high temporal resolution, the kidney spectra produced a detailed metabolic arrival and decay curve, useful for further metabolite kinetic modelling or denoising. Metabolic ratio maps were produced in three pigs demonstrating the technique's ability for repeat metabolic measurements. In cases with unknown metabolite spectra or limited HP MRI specialist knowledge, this robust acceleration method ensures comprehensive capture of metabolic signals, mitigating the risk of missing spectral data.
Collapse
Affiliation(s)
- Ayaka Shinozaki
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | | | | | - Mohsen Redda
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Duy A Dang
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben S S Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Damian J Tyler
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - James T Grist
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Department of Radiology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
4
|
Frijia F, Flori A, Giovannetti G, Barison A, Menichetti L, Santarelli MF, Positano V. MRI Application and Challenges of Hyperpolarized Carbon-13 Pyruvate in Translational and Clinical Cardiovascular Studies: A Literature Review. Diagnostics (Basel) 2024; 14:1035. [PMID: 38786333 PMCID: PMC11120300 DOI: 10.3390/diagnostics14101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular disease shows, or may even be caused by, changes in metabolism. Hyperpolarized magnetic resonance spectroscopy and imaging is a technique that could assess the role of different aspects of metabolism in heart disease, allowing real-time metabolic flux assessment in vivo. In this review, we introduce the main hyperpolarization techniques. Then, we summarize the use of dedicated radiofrequency 13C coils, and report a state of the art of 13C data acquisition. Finally, this review provides an overview of the pre-clinical and clinical studies on cardiac metabolism in the healthy and diseased heart. We furthermore show what advances have been made to translate this technique into the clinic in the near future and what technical challenges still remain, such as exploring other metabolic substrates.
Collapse
Affiliation(s)
- Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| | - Alessandra Flori
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| | - Giulio Giovannetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Andrea Barison
- Cardiology and Cardiovascular Medicine Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy;
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Maria Filomena Santarelli
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| |
Collapse
|
5
|
Diaz E, Sriram R, Gordon JW, Sinha A, Liu X, Sahin S, Crane J, Olson MP, Chen HY, Bernard J, Vigneron DB, Wang ZJ, Xu D, Larson PEZ. Data Format Standardization and DICOM Integration for Hyperpolarized 13C MRI. ARXIV 2024:arXiv:2405.03147v1. [PMID: 38764595 PMCID: PMC11100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Hyperpolarized (HP) 13C MRI has shown promise as a valuable modality for in vivo measurements of metabolism and is currently in human trials at 15 research sites worldwide. With this growth it is important to adopt standardized data storage practices as it will allow sites to meaningfully compare data. In this paper we (1) describe data that we believe should be stored and (2) demonstrate pipelines and methods that utilize the Digital Imaging and Communications in Medicine (DICOM) standard. This includes proposing a set of minimum set of information that is specific to HP 13C MRI studies. We then show where the majority of these can be fit into existing DICOM Attributes, primarily via the "Contrast/Bolus" module. We also demonstrate pipelines for utilizing DICOM for HP 13C MRI. DICOM is the most common standard for clinical medical image storage and provides the flexibility to accommodate the unique aspects of HP 13C MRI, including the HP agent information but also spectroscopic and metabolite dimensions. The pipelines shown include creating DICOM objects for studies on human and animal imaging systems with various pulse sequences. We also show a python-based method to efficiently modify DICOM objects to incorporate the unique HP 13C MRI information that is not captured by existing pipelines. Moreover, we propose best practices for HP 13C MRI data storage that will support future multi-site trials, research studies and technical developments of this imaging technique.
Collapse
Affiliation(s)
- Ernesto Diaz
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Avantika Sinha
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Sule Sahin
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jason Crane
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jenna Bernard
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Nickles TM, Kim Y, Lee PM, Chen HY, Ohliger M, Bok RA, Wang ZJ, Larson PEZ, Vigneron DB, Gordon JW. Hyperpolarized 13 C metabolic imaging of the human abdomen with spatiotemporal denoising. Magn Reson Med 2024; 91:2153-2161. [PMID: 38193310 PMCID: PMC10950515 DOI: 10.1002/mrm.29985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Improving the quality and maintaining the fidelity of large coverage abdominal hyperpolarized (HP) 13 C MRI studies with a patch based global-local higher-order singular value decomposition (GL-HOVSD) spatiotemporal denoising approach. METHODS Denoising performance was first evaluated using the simulated [1-13 C]pyruvate dynamics at different noise levels to determine optimal kglobal and klocal parameters. The GL-HOSVD spatiotemporal denoising method with the optimized parameters was then applied to two HP [1-13 C]pyruvate EPI abdominal human cohorts (n = 7 healthy volunteers and n = 8 pancreatic cancer patients). RESULTS The parameterization of kglobal = 0.2 and klocal = 0.9 denoises abdominal HP data while retaining image fidelity when evaluated by RMSE. The kPX (conversion rate of pyruvate-to-metabolite, X = lactate or alanine) difference was shown to be <20% with respect to ground-truth metabolic conversion rates when there is adequate SNR (SNRAUC > 5) for downstream metabolites. In both human cohorts, there was a greater than nine-fold gain in peak [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine apparent SNRAUC . The improvement in metabolite SNR enabled a more robust quantification of kPL and kPA . After denoising, we observed a 2.1 ± 0.4 and 4.8 ± 2.5-fold increase in the number of voxels reliably fit across abdominal FOVs for kPL and kPA quantification maps. CONCLUSION Spatiotemporal denoising greatly improves visualization of low SNR metabolites particularly [1-13 C]alanine and quantification of [1-13 C]pyruvate metabolism in large FOV HP 13 C MRI studies of the human abdomen.
Collapse
Affiliation(s)
- Tanner M Nickles
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Philip M Lee
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Zhen J Wang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| |
Collapse
|
7
|
Chen HY, Gordon JW, Dwork N, Chung BT, Riselli A, Sivalokanathan S, Bok RA, Slater JB, Vigneron DB, Abraham MR, Larson PEZ. Probing human heart TCA cycle metabolism and response to glucose load using hyperpolarized [2- 13 C]pyruvate MRS. NMR IN BIOMEDICINE 2024; 37:e5074. [PMID: 38054254 DOI: 10.1002/nbm.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION The healthy heart has remarkable metabolic flexibility that permits rapid switching between mitochondrial glucose oxidation and fatty acid oxidation to generate ATP. Loss of metabolic flexibility has been implicated in the genesis of contractile dysfunction seen in cardiomyopathy. Metabolic flexibility has been imaged in experimental models, using hyperpolarized (HP) [2-13 C]pyruvate MRI, which enables interrogation of metabolites that reflect tricarboxylic acid (TCA) cycle flux in cardiac myocytes. This study aimed to develop methods, demonstrate feasibility for [2-13 C]pyruvate MRI in the human heart for the first time, and assess cardiac metabolic flexibility. METHODS Good manufacturing practice [2-13 C]pyruvic acid was polarized in a 5 T polarizer for 2.5-3 h. Following dissolution, quality control parameters of HP pyruvate met all safety and sterility criteria for pharmacy release, prior to administration to study subjects. Three healthy subjects each received two HP injections and MR scans, first under fasting conditions, followed by oral glucose load. A 5 cm axial slab-selective spectroscopy approach was prescribed over the left ventricle and acquired at 3 s intervals on a 3 T clinical MRI scanner. RESULTS The study protocol, which included HP substrate injection, MR scanning, and oral glucose load, was performed safely without adverse events. Key downstream metabolites of [2-13 C]pyruvate metabolism in cardiac myocytes include the glycolytic derivative [2-13 C]lactate, TCA-associated metabolite [5-13 C]glutamate, and [1-13 C]acetylcarnitine, catalyzed by carnitine acetyltransferase (CAT). After glucose load, 13 C-labeling of lactate, glutamate, and acetylcarnitine from 13 C-pyruvate increased by an average of 39.3%, 29.5%, and 114% respectively in the three subjects, which could result from increases in lactate dehydrogenase, pyruvate dehydrogenase, and CAT enzyme activity as well as TCA cycle flux (glucose oxidation). CONCLUSIONS HP [2-13 C]pyruvate imaging is safe and permits noninvasive assessment of TCA cycle intermediates and the acetyl buffer, acetylcarnitine, which is not possible using HP [1-13 C]pyruvate. Cardiac metabolite measurement in the fasting/fed states provides information on cardiac metabolic flexibility and the acetylcarnitine pool.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Brian T Chung
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Andrew Riselli
- School of Pharmacy, University of California, San Francisco, California, USA
| | | | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - M Roselle Abraham
- Division of Cardiology, University of California, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2023:S0939-3889(23)00120-4. [PMID: 38160135 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
9
|
Chen HY, Gordon JW, Dwork N, Chung BT, Riselli A, Sivalokanathan S, Bok RA, Slater JB, Vigneron DB, Abraham MR, Larson PE. Probing Human Heart TCA Cycle Metabolism and Response to Glucose Load using Hyperpolarized [2- 13C]Pyruvate MR Spectroscopy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23297053. [PMID: 37905131 PMCID: PMC10615004 DOI: 10.1101/2023.10.16.23297053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Introduction The normal heart has remarkable metabolic flexibility that permits rapid switching between mitochondrial glucose oxidation and fatty acid (FA) oxidation to generate ATP. Loss of metabolic flexibility has been implicated in the genesis of contractile dysfunction seen in cardiomyopathy. Metabolic flexibility has been imaged in experimental models, using hyperpolarized (HP) [2-13C]pyruvate MRI, which enables interrogation of metabolites that reflect tricarboxylic acid (TCA) cycle flux in cardiac myocytes. This study aimed to develop methods, demonstrate feasibility for [2-13C]pyruvate MRI in the human heart for the first time, and assess cardiac metabolic flexibility. Methods Good Manufacturing Practice [2-13C]pyruvic acid was polarized in a 5T polarizer for 2.5-3 hours. Following dissolution, QC parameters of HP pyruvate met all safety and sterility criteria for pharmacy release, prior to administration to study subjects. Three healthy subjects each received two HP injections and MR scans, first under fasting conditions, followed by oral glucose load. A 5cm axial slab-selective spectroscopy approach was prescribed over the left ventricle and acquired at 3s intervals on a 3T clinical MRI scanner. Results The study protocol which included HP substrate injection, MR scanning and oral glucose load, was performed safely without adverse events. Key downstream metabolites of [2-13C]pyruvate metabolism in cardiac myocytes include the glycolytic derivative [2-13C]lactate, TCA-associated metabolite [5-13C]glutamate, and [1-13C]acetylcarnitine, catalyzed by carnitine acetyltransferase (CAT). After glucose load, 13C-labeling of lactate, glutamate, and acetylcarnitine from 13C-pyruvate increased by 39.3%, 29.5%, and 114%, respectively in the three subjects, that could result from increases in lactate dehydrogenase (LDH), pyruvate dehydrogenase (PDH), and CAT enzyme activity as well as TCA cycle flux (glucose oxidation). Conclusions HP [2-13C]pyruvate imaging is safe and permits non-invasive assessment of TCA cycle intermediates and the acetyl buffer, acetylcarnitine, which is not possible using HP [1-13C]pyruvate. Cardiac metabolite measurement in the fasting/fed states provides information on cardiac metabolic flexibility and the acetylcarnitine pool.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Brian T. Chung
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Andrew Riselli
- School of Pharmacy, University of California, San Francisco, United States
| | | | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - James B. Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - M. Roselle Abraham
- Division of Cardiology, University of California, San Francisco, United States
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| |
Collapse
|
10
|
Vaeggemose M, Schulte RF, Hansen ESS, Miller JJ, Rasmussen CW, Pilgrim-Morris JH, Stewart NJ, Collier GJ, Wild JM, Laustsen C. A Framework for Predicting X-Nuclei Transmitter Gain Using 1H Signal. Tomography 2023; 9:1603-1616. [PMID: 37736981 PMCID: PMC10514872 DOI: 10.3390/tomography9050128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Commercial human MR scanners are optimised for proton imaging, containing sophisticated prescan algorithms with setting parameters such as RF transmit gain and power. These are not optimal for X-nuclear application and are challenging to apply to hyperpolarised experiments, where the non-renewable magnetisation signal changes during the experiment. We hypothesised that, despite the complex and inherently nonlinear electrodynamic physics underlying coil loading and spatial variation, simple linear regression would be sufficient to accurately predict X-nuclear transmit gain based on concomitantly acquired data from the proton body coil. We collected data across 156 scan visits at two sites as part of ongoing studies investigating sodium, hyperpolarised carbon, and hyperpolarised xenon. We demonstrate that simple linear regression is able to accurately predict sodium, carbon, or xenon transmit gain as a function of position and proton gain, with variation that is less than the intrasubject variability. In conclusion, sites running multinuclear studies may be able to remove the time-consuming need to separately acquire X-nuclear reference power calibration, inferring it from the proton instead.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE HealthCare, 2605 Brondby, Denmark;
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| | | | - Esben S. S. Hansen
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| | - Jack J. Miller
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| | - Camilla W. Rasmussen
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| | - Jemima H. Pilgrim-Morris
- POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK; (J.H.P.-M.); (N.J.S.); (G.J.C.); (J.M.W.)
| | - Neil J. Stewart
- POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK; (J.H.P.-M.); (N.J.S.); (G.J.C.); (J.M.W.)
| | - Guilhem J. Collier
- POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK; (J.H.P.-M.); (N.J.S.); (G.J.C.); (J.M.W.)
| | - Jim M. Wild
- POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK; (J.H.P.-M.); (N.J.S.); (G.J.C.); (J.M.W.)
| | - Christoffer Laustsen
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| |
Collapse
|
11
|
Huang K, Lin X, Luo Y, Hu Q, Guo B, Ouyang F, Ouyang Y, Song C, Chen H. Image quality and evaluation ability of magnetic resonance imaging techniques for thyroid-associated ophthalmopathy: Dixon fat-suppression technique vs. spectral attenuated inversion recovery. Front Med (Lausanne) 2023; 10:1154828. [PMID: 37502355 PMCID: PMC10368892 DOI: 10.3389/fmed.2023.1154828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose We aimed to compare two magnetic resonance imaging (MRI) techniques, Dixon and spectral attenuated inversion recovery (SPAIR) fat-suppression, in terms of image quality and suitability for evaluating thyroid-associated ophthalmopathy (TAO) lesion characteristics. Methods This cross-sectional, retrospective study involved 70 patients with TAO (140 eyes) who underwent orbital coronal MRI examinations, including Dixon-transverse relaxation (T2)-weighted imaging (T2WI) and SPAIR-T2WI, between 2020 and 2022. We compared the fat-suppression quality and artifacts, noise (N), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal intensity ratio (SIR) of extraocular muscles (SIR-EOM) and lacrimal glands (SIR-LG), and TAO activity evaluation efficiency. Results Dixon-T2WI showed a higher frequency of better subjective image quality and suitability for evaluating the characteristics of TAO lesions (65.7% vs. 14.3%) than SPAIR-T2WI. Fat-suppression quality and artifact scores were lower for Dixon-T2WI than for SPAIR-T2WI (p < 0.001). The N, SNR, and CNR values, EOM-SIR, and LG-SIR were higher for orbital coronal Dixon-T2WI than for SPAIR-T2WI (all p < 0.001). Clinical activity scores (CASs) showed positive correlations with SIR. The correlation between EOM-SIR and LG-SIR of orbital coronal Dixon-T2WI with CAS was higher than that of SPAIR-T2WI (0.590 vs. 0.493, all p < 0.001; 0.340 vs. 0.295, all p < 0.01). EOM-SIR and LG-SIR of Dixon-T2WI yielded a higher area under the curve than SPAIR-T2WI for evaluating TAO activity (0.865 vs. 0.760, p < 0.001; 0.695 vs. 0.617, p = 0.017). Conclusion Dixon-T2WI yields higher image quality than SPAIR-T2WI. Furthermore, it has a stronger ability to evaluate TAO inflammation than SPAIR, with higher sensitivity and specificity in active TAO staging.
Collapse
Affiliation(s)
- Kai Huang
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xiaoxin Lin
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yaosheng Luo
- Department of Endocrinology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Qiugen Hu
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Baoliang Guo
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Fusheng Ouyang
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yufeng Ouyang
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Cheng Song
- Department of Endocrinology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Haixiong Chen
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
12
|
Chowdhury R, Mueller CA, Smith L, Gong F, Papoutsaki M, Rogers H, Syer T, Singh S, Brembilla G, Retter A, Bullock M, Caselton L, Mathew M, Dineen E, Parry T, Hennig J, von Elverfeldt D, Schmidt AB, Hövener J, Emberton M, Atkinson D, Bainbridge A, Gadian DG, Punwani S. Quantification of Prostate Cancer Metabolism Using 3D Multiecho bSSFP and Hyperpolarized [1- 13 C] Pyruvate: Metabolism Differs Between Tumors of the Same Gleason Grade. J Magn Reson Imaging 2023; 57:1865-1875. [PMID: 36315000 PMCID: PMC10946772 DOI: 10.1002/jmri.28467] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) multiecho balanced steady-state free precession (ME-bSSFP) has previously been demonstrated in preclinical hyperpolarized (HP) 13 C-MRI in vivo experiments, and it may be suitable for clinical metabolic imaging of prostate cancer (PCa). PURPOSE To validate a signal simulation framework for the use of sequence parameter optimization. To demonstrate the feasibility of ME-bSSFP for HP 13 C-MRI in patients. To evaluate the metabolism in PCa measured by ME-bSSFP. STUDY TYPE Retrospective single-center cohort study. PHANTOMS/POPULATION Phantoms containing aqueous solutions of [1-13 C] lactate (2.3 M) and [13 C] urea (8 M). Eight patients (mean age 67 ± 6 years) with biopsy-confirmed Gleason 3 + 4 (n = 7) and 4 + 3 (n = 1) PCa. FIELD STRENGTH/SEQUENCES: 1 H MRI at 3 T with T2 -weighted turbo spin-echo sequence used for spatial localization and spoiled dual gradient-echo sequence used for B0 -field measurement. ME-bSSFP sequence for 13 C MR spectroscopic imaging with retrospective multipoint IDEAL metabolite separation. ASSESSMENT The primary endpoint was the analysis of pyruvate-to-lactate conversion in PCa and healthy prostate regions of interest (ROIs) using model-free area under the curve (AUC) ratios and a one-directional kinetic model (kP ). The secondary objectives were to investigate the correlation between simulated and experimental ME-bSSFP metabolite signals for HP 13 C-MRI parameter optimization. STATISTICAL TESTS Pearson correlation coefficients with 95% confidence intervals and paired t-tests. The level of statistical significance was set at P < 0.05. RESULTS Strong correlations between simulated and empirical ME-bSSFP signals were found (r > 0.96). Therefore, the simulation framework was used for sequence optimization. Whole prostate metabolic HP 13 C-MRI, observing the conversion of pyruvate into lactate, with a temporal resolution of 6 seconds was demonstrated using ME-bSSFP. Both assessed metrics resulted in significant differences between PCa (mean ± SD) (AUC = 0.33 ± 012, kP = 0.038 ± 0.014) and healthy (AUC = 0.15 ± 0.10, kP = 0.011 ± 0.007) ROIs. DATA CONCLUSION Metabolic HP 13 C-MRI in the prostate using ME-bSSFP allows for differentiation between aggressive PCa and healthy tissue. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rafat Chowdhury
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Christoph A. Mueller
- Department of Radiology, Medical Physics, Medical CenterUniversity of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Lorna Smith
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Fiona Gong
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | | | - Harriet Rogers
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Tom Syer
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Saurabh Singh
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Giorgio Brembilla
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Adam Retter
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Max Bullock
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Lucy Caselton
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Manju Mathew
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Eoin Dineen
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
| | - Thomas Parry
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical CenterUniversity of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical CenterUniversity of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Andreas B. Schmidt
- Department of Radiology, Medical Physics, Medical CenterUniversity of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK)partner site Freiburg and German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Radiology, and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig‐HolsteinUniversity of KielKielGermany
| | - Jan‐Bernd Hövener
- Department of Radiology, and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig‐HolsteinUniversity of KielKielGermany
| | - Mark Emberton
- Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
| | - David Atkinson
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
| | - Alan Bainbridge
- Department of Medical Physics and Biomedical EngineeringUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - David G. Gadian
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Shonit Punwani
- Centre for Medical Imaging, Division of MedicineUniversity College LondonLondonUK
- Department of RadiologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| |
Collapse
|
13
|
Sahin SI, Ji X, Agarwal S, Sinha A, Mali I, Gordon JW, Mattingly M, Subramaniam S, Kurhanewicz J, Larson PEZ, Sriram R. Metabolite-Specific Echo Planar Imaging for Preclinical Studies with Hyperpolarized 13C-Pyruvate MRI. Tomography 2023; 9:736-749. [PMID: 37104130 PMCID: PMC10143874 DOI: 10.3390/tomography9020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Metabolite-specific echo-planar imaging (EPI) sequences with spectral–spatial (spsp) excitation are commonly used in clinical hyperpolarized [1-13C]pyruvate studies because of their speed, efficiency, and flexibility. In contrast, preclinical systems typically rely on slower spectroscopic methods, such as chemical shift imaging (CSI). In this study, a 2D spspEPI sequence was developed for use on a preclinical 3T Bruker system and tested on in vivo mice experiments with patient-derived xenograft renal cell carcinoma (RCC) or prostate cancer tissues implanted in the kidney or liver. Compared to spspEPI sequences, CSI were found to have a broader point spread function via simulations and exhibited signal bleeding between vasculature and tumors in vivo. Parameters for the spspEPI sequence were optimized using simulations and verified with in vivo data. The expected lactate SNR and pharmacokinetic modeling accuracy increased with lower pyruvate flip angles (less than 15°), intermediate lactate flip angles (25° to 40°), and temporal resolution of 3 s. Overall SNR was also higher with coarser spatial resolution (4 mm isotropic vs. 2 mm isotropic). Pharmacokinetic modelling used to fit kPL maps showed results consistent with the previous literature and across different sequences and tumor xenografts. This work describes and justifies the pulse design and parameter choices for preclinical spspEPI hyperpolarized 13C-pyruvate studies and shows superior image quality to CSI.
Collapse
Affiliation(s)
- Sule I. Sahin
- UC Berkeley—UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
| | - Xiao Ji
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
| | - Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
| | - Avantika Sinha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
| | - Ivina Mali
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
| | | | - Sukumar Subramaniam
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
| | - Peder E. Z. Larson
- UC Berkeley—UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
- Correspondence: (P.E.Z.L.); (R.S.)
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94016, USA
- Correspondence: (P.E.Z.L.); (R.S.)
| |
Collapse
|
14
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
15
|
Clemmensen A, Loft M, Kjaer A, Andersen TL. Editorial for “Application of
3D Multi‐Echo
Balanced Steady State Free Precession and Hyperpolarized [
1‐
13
C
] Pyruvate to Quantify Prostate Cancer Metabolism”. J Magn Reson Imaging 2022; 57:1876-1877. [PMID: 36326566 DOI: 10.1002/jmri.28483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andreas Clemmensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
- Department of Clinical Physiology and Nuclear Medicine Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Mathias Loft
- Cluster for Molecular Imaging, Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
- Department of Clinical Physiology and Nuclear Medicine Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Andreas Kjaer
- Cluster for Molecular Imaging, Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
- Department of Clinical Physiology and Nuclear Medicine Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology and Nuclear Medicine Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| |
Collapse
|
16
|
Vaziri S, Autry AW, Lafontaine M, Kim Y, Gordon JW, Chen HY, Hu JY, Lupo JM, Chang SM, Clarke JL, Villanueva-Meyer JE, Bush NAO, Xu D, Larson PEZ, Vigneron DB, Li Y. Assessment of higher-order singular value decomposition denoising methods on dynamic hyperpolarized [1- 13C]pyruvate MRI data from patients with glioma. Neuroimage Clin 2022; 36:103155. [PMID: 36007439 PMCID: PMC9421383 DOI: 10.1016/j.nicl.2022.103155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Real-time metabolic conversion of intravenously-injected hyperpolarized [1-13C]pyruvate to [1-13C]lactate and [13C]bicarbonate in the brain can be measured using dynamic hyperpolarized carbon-13 (HP-13C) MRI. However, voxel-wise evaluation of metabolism in patients with glioma is challenged by the limited signal-to-noise ratio (SNR) of downstream 13C metabolites, especially within lesions. The purpose of this study was to evaluate the ability of higher-order singular value decomposition (HOSVD) denoising methods to enhance dynamic HP [1-13C]pyruvate MRI data acquired from patients with glioma. METHODS Dynamic HP-13C MRI were acquired from 14 patients with glioma. The effects of two HOSVD denoising techniques, tensor rank truncation-image enhancement (TRI) and global-local HOSVD (GL-HOSVD), on the SNR and kinetic modeling were analyzed in [1-13C]lactate data with simulated noise that matched the levels of [13C]bicarbonate signals. Both methods were then evaluated in patient data based on their ability to improve [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate SNR. The effects of denoising on voxel-wise kinetic modeling of kPL and kPB was also evaluated. The number of voxels with reliable kinetic modeling of pyruvate-to-lactate (kPL) and pyruvate-to-bicarbonate (kPB) conversion rates within regions of interest (ROIs) before and after denoising was then compared. RESULTS Both denoising methods improved metabolite SNR and regional signal coverage. In patient data, the average increase in peak dynamic metabolite SNR was 2-fold using TRI and 4-5 folds using GL-HOSVD denoising compared to acquired data. Denoising reduced kPL modeling errors from a native average of 23% to 16% (TRI) and 15% (GL-HOSVD); and kPB error from 42% to 34% (TRI) and 37% (GL-HOSVD) (values were averaged voxelwise over all datasets). In contrast-enhancing lesions, the average number of voxels demonstrating within-tolerance kPL modeling error relative to the total voxels increased from 48% in the original data to 84% (TRI) and 90% (GL-HOSVD), while the number of voxels showing within-tolerance kPB modeling error increased from 0% to 15% (TRI) and 8% (GL-HOSVD). CONCLUSION Post-processing denoising methods significantly improved the SNR of dynamic HP-13C imaging data, resulting in a greater number of voxels satisfying minimum SNR criteria and maximum kinetic modeling errors in tumor lesions. This enhancement can aid in the voxel-wise analysis of HP-13C data and thereby improve monitoring of metabolic changes in patients with glioma following treatment.
Collapse
Affiliation(s)
- Sana Vaziri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
17
|
Ye Z, Song B, Lee PM, Ohliger MA, Laustsen C. Hyperpolarized carbon 13 MRI in liver diseases: Recent advances and future opportunities. Liver Int 2022; 42:973-983. [PMID: 35230742 PMCID: PMC9313895 DOI: 10.1111/liv.15222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Hyperpolarized carbon-13 magnetic resonance imaging (HP 13 C MRI) is a recently translated metabolic imaging technique. With dissolution dynamic nuclear polarization (d-DNP), more than 10 000-fold signal enhancement can be readily reached, making it possible to visualize real-time metabolism and specific substrate-to-metabolite conversions in the liver after injecting carbon-13 labelled probes. Increasing evidence suggests that HP 13 C MRI is a potential tool in detecting liver abnormalities, predicting disease progression and monitoring response treatment. In this review, we will introduce the recent progresses of HP 13 C MRI in diffuse liver diseases and liver malignancies and discuss its future opportunities from a clinical perspective, hoping to provide a comprehensive overview of this novel technique in liver diseases and highlight its scientific and clinical potential in the field of hepatology.
Collapse
Affiliation(s)
- Zheng Ye
- Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Bin Song
- Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Philip M. Lee
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
18
|
Li Y, Vigneron DB, Xu D. Current human brain applications and challenges of dynamic hyperpolarized carbon-13 labeled pyruvate MR metabolic imaging. Eur J Nucl Med Mol Imaging 2021; 48:4225-4235. [PMID: 34432118 PMCID: PMC8566394 DOI: 10.1007/s00259-021-05508-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The ability of hyperpolarized carbon-13 MR metabolic imaging to acquire dynamic metabolic information in real time is crucial to gain mechanistic insights into metabolic pathways, which are complementary to anatomic and other functional imaging methods. This review presents the advantages of this emerging functional imaging technology, describes considerations in clinical translations, and summarizes current human brain applications. Despite rapid development in methodologies, significant technological and physiological related challenges continue to impede broader clinical translation.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| |
Collapse
|
19
|
Hong D, Batsios G, Viswanath P, Gillespie AM, Vaidya M, Larson PEZ, Ronen SM. Acquisition and quantification pipeline for in vivo hyperpolarized 13 C MR spectroscopy. Magn Reson Med 2021; 87:1673-1687. [PMID: 34775639 DOI: 10.1002/mrm.29081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE The goal of this study was to combine a specialized acquisition method with a new quantification pipeline to accurately and efficiently probe the metabolism of hyperpolarized 13 C-labeled compounds in vivo. In this study, we tested our approach on [2-13 C]pyruvate and [1-13 C]α-ketoglutarate data in rat orthotopic brain tumor models at 3T. METHODS We used a multiband metabolite-specific radiofrequency (RF) excitation in combination with a variable flip angle scheme to minimize substrate polarization loss and measure fast metabolic processes. We then applied spectral-temporal denoising using singular value decomposition to enhance spectral quality. This was combined with LCModel-based automatic 13 C spectral fitting and flip angle correction to separate overlapping signals and rapidly quantify the different metabolites. RESULTS Denoising improved the metabolite signal-to-noise ratio (SNR) by approximately 5. It also improved the accuracy of metabolite quantification as evidenced by a significant reduction of the Cramer Rao lower bounds. Furthermore, the use of the automated and user-independent LCModel-based quantification approach could be performed rapidly, with the kinetic quantification of eight metabolite peaks in a 12-spectrum array achieved in less than 1 minute. CONCLUSION The specialized acquisition method combined with denoising and a new quantification pipeline using LCModel for the first time for hyperpolarized 13 C data enhanced our ability to monitor the metabolism of [2-13 C]pyruvate and [1-13 C]α-ketoglutarate in rat orthotopic brain tumor models in vivo. This approach could be broadly applicable to other hyperpolarized agents both preclinically and in the clinical setting.
Collapse
Affiliation(s)
- Donghyun Hong
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Georgios Batsios
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Pavithra Viswanath
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Anne Marie Gillespie
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Manushka Vaidya
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Jørgensen SH, Bøgh N, Hansen E, Væggemose M, Wiggers H, Laustsen C. Hyperpolarized MRI - An update and future perspectives. Semin Nucl Med 2021; 52:374-381. [PMID: 34785033 DOI: 10.1053/j.semnuclmed.2021.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022]
Abstract
In recent years, hyperpolarized 13C magnetic resonance spectroscopic (MRS) imaging has emerged as a complementary metabolic imaging approach. Hyperpolarization via dissolution dynamic nuclear polarization is a technique that enhances the MR signal of 13C-enriched molecules by a factor of > 104, enabling detection downstream metabolites in a variety of intracellular metabolic pathways. The aim of the present review is to provide the reader with an update on hyperpolarized 13C MRS imaging and to assess the future clinical potential of the technology. Several carbon-based probes have been used in hyperpolarized studies. However, the first and most widely used 13C-probe in clinical studies is [1-13C]pyruvate. In this probe, the enrichment of 13C is performed at the first carbon position as the only modification. Hyperpolarized [1-13C]pyruvate MRS imaging can detect intracellular production of [1-13C]lactate and 13C-bicarbonate non-invasively and in real time without the use of ionizing radiation. Thus, by probing the balance between oxidative and glycolytic metabolism, hyperpolarized [1-13C]pyruvate MRS imaging can image the Warburg effect in malignant tumors and detect the hallmarks of ischemia or viability in the myocardium. An increasing number of clinical studies have demonstrated that clinical hyperpolarized 13C MRS imaging is not only possible, but also it provides metabolic information that was previously inaccessible by non-invasive techniques. Although the technology is still in its infancy and several technical improvements are warranted, it is of paramount importance that nuclear medicine physicians gain knowledge of the possibilities and pitfalls of the technique. Hyperpolarized 13C MRS imaging may become an integrated feature in combined metabolic imaging of the future.
Collapse
Affiliation(s)
- S H Jørgensen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; The Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark; The Department of Cardiology, North Denmark Regional Hospital, Hjørring, Denmark
| | - N Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ess Hansen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M Væggemose
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; GE Healthcare, Brøndby, Denmark
| | - H Wiggers
- The Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - C Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
Bøgh N, Olin RB, Hansen ESS, Gordon JW, Bech SK, Bertelsen LB, Sánchez-Heredia JD, Blicher JU, Østergaard L, Ardenkjær-Larsen JH, Bok RA, Vigneron DB, Laustsen C. Metabolic MRI with hyperpolarized [1- 13C]pyruvate separates benign oligemia from infarcting penumbra in porcine stroke. J Cereb Blood Flow Metab 2021; 41:2916-2927. [PMID: 34013807 PMCID: PMC8756460 DOI: 10.1177/0271678x211018317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/17/2023]
Abstract
Acute ischemic stroke patients benefit from reperfusion in a short time-window after debut. Later treatment may be indicated if viable brain tissue is demonstrated and this outweighs the inherent risks of late reperfusion. Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate is an emerging technology that directly images metabolism. Here, we investigated its potential to detect viable tissue in ischemic stroke. Stroke was induced in pigs by intracerebral injection of endothelin 1. During ischemia, the rate constant of pyruvate-to-lactate conversion, kPL, was 52% larger in penumbra and 85% larger in the infarct compared to the contralateral hemisphere (P = 0.0001). Within the penumbra, the kPL was 50% higher in the regions that later infarcted compared to non-progressing regions (P = 0.026). After reperfusion, measures of pyruvate-to-lactate conversion were slightly decreased in the infarct compared to contralateral. In addition to metabolic imaging, we used hyperpolarized pyruvate for perfusion-weighted imaging. This was consistent with conventional imaging for assessment of infarct size and blood flow. Lastly, we confirmed the translatability of simultaneous assessment of metabolism and perfusion with hyperpolarized MRI in healthy volunteers. In conclusion, hyperpolarized [1-13C]pyruvate may aid penumbral characterization and increase access to reperfusion therapy for late presenting patients.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rie B Olin
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Esben SS Hansen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Sabrina K Bech
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte B Bertelsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Juan D Sánchez-Heredia
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob U Blicher
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jan H Ardenkjær-Larsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- GE Healthcare, Brøndby, Denmark
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, CA, USA
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
23
|
Topping GJ, Heid I, Trajkovic-Arsic M, Kritzner L, Grashei M, Hundshammer C, Aigner M, Skinner JG, Braren R, Schilling F. Hyperpolarized 13C Spectroscopy with Simple Slice-and-Frequency-Selective Excitation. Biomedicines 2021; 9:biomedicines9020121. [PMID: 33513763 PMCID: PMC7911979 DOI: 10.3390/biomedicines9020121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 01/01/2023] Open
Abstract
Hyperpolarized 13C nuclear magnetic resonance spectroscopy can characterize in vivo tissue metabolism, including preclinical models of cancer and inflammatory disease. Broad bandwidth radiofrequency excitation is often paired with free induction decay readout for spectral separation, but quantification of low-signal downstream metabolites using this method can be impeded by spectral peak overlap or when frequency separation of the detected peaks exceeds the excitation bandwidth. In this work, alternating frequency narrow bandwidth (250 Hz) slice-selective excitation was used for 13C spectroscopy at 7 T in a subcutaneous xenograft rat model of human pancreatic cancer (PSN1) to improve quantification while measuring the dynamics of injected hyperpolarized [1-13C]lactate and its metabolite [1-13C]pyruvate. This method does not require sophisticated pulse sequences or specialized radiofrequency and gradient pulses, but rather uses nominally spatially offset slices to produce alternating frequency excitation with simpler slice-selective radiofrequency pulses. Additionally, point-resolved spectroscopy was used to calibrate the 13C frequency from the thermal proton signal in the target region. This excitation scheme isolates the small [1-13C]pyruvate peak from the similar-magnitude tail of the much larger injected [1-13C]lactate peak, facilitates quantification of the [1-13C]pyruvate signal, simplifies data processing, and could be employed for other substrates and preclinical models.
Collapse
Affiliation(s)
- Geoffrey J. Topping
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (G.J.T.); (M.G.); (C.H.); (M.A.); (J.G.S.)
| | - Irina Heid
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (I.H.); (L.K.); (R.B.)
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen), 45147 Essen, Germany;
- German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Lukas Kritzner
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (I.H.); (L.K.); (R.B.)
| | - Martin Grashei
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (G.J.T.); (M.G.); (C.H.); (M.A.); (J.G.S.)
| | - Christian Hundshammer
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (G.J.T.); (M.G.); (C.H.); (M.A.); (J.G.S.)
| | - Maximilian Aigner
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (G.J.T.); (M.G.); (C.H.); (M.A.); (J.G.S.)
| | - Jason G. Skinner
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (G.J.T.); (M.G.); (C.H.); (M.A.); (J.G.S.)
| | - Rickmer Braren
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (I.H.); (L.K.); (R.B.)
- German Cancer Consortium (DKTK, Partner Site Munich), 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (G.J.T.); (M.G.); (C.H.); (M.A.); (J.G.S.)
- Correspondence:
| |
Collapse
|