1
|
Liu XQ, Xin HY, Lyu YN, Ma ZW, Peng XC, Xiang Y, Wang YY, Wu ZJ, Cheng JT, Ji JF, Zhong JX, Ren BX, Wang XW, Xin HW. Oncolytic herpes simplex virus tumor targeting and neutralization escape by engineering viral envelope glycoproteins. Drug Deliv 2019; 25:1950-1962. [PMID: 30799657 PMCID: PMC6282442 DOI: 10.1080/10717544.2018.1534895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) have been approved for clinical usage and become more and more popular for tumor virotherapy. However, there are still many issues for the oHSVs used in clinics and clinical trials. The main issues are the limited anti-tumor effects, intratumor injection, and some side effects. To overcome such challenges, here we review the genetic engineering of the envelope glycoproteins for oHSVs to target tumors specifically, and at the same time we summarize the many neutralization antibodies against the envelope glycoproteins and align the neutralization epitopes with functional domains of the respective glycoproteins for future identification of new functions of the glycoproteins and future engineering of the epitopes to escape from host neutralization.
Collapse
Affiliation(s)
- Xiao-Qin Liu
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Hong-Yi Xin
- e Star Array Pte Ltd , JTC Medtech Hub , Singapore , Singapore
| | - Yan-Ning Lyu
- f Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Diseases Prevention and Control , Beijing , China
| | - Zhao-Wu Ma
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Xiao-Chun Peng
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,g Faculty of Medicine, Department of Pathophysiology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Ying Xiang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Ying-Ying Wang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Zi-Jun Wu
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Jun-Ting Cheng
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Jia-Fu Ji
- h Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery , Peking University Cancer Hospital and Institute , Haidian , Beijing , China
| | - Ji-Xin Zhong
- i Cardiovascular Research Institute , Case Western Reserve University , Cleveland , OH , USA
| | - Bo-Xu Ren
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Xian-Wang Wang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,j Faculty of Medicine, Department of Laboratory Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Hong-Wu Xin
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| |
Collapse
|
3
|
Patient-Specific Neutralizing Antibody Responses to Herpes Simplex Virus Are Attributed to Epitopes on gD, gB, or Both and Can Be Type Specific. J Virol 2015; 89:9213-31. [PMID: 26109729 DOI: 10.1128/jvi.01213-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/18/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) and HSV-2 infect many humans and establish a latent infection in sensory ganglia. Although some infected people suffer periodic recurrences, others do not. Infected people mount both cell-mediated and humoral responses, including the production of virus-neutralizing antibodies (Abs) directed at viral entry glycoproteins. Previously, we examined IgGs from 10 HSV-seropositive individuals; all neutralized virus and were directed primarily against gD or gD+gB. Here, we expand our studies and examine 32 additional sera from HSV-infected individuals, 23 of whom had no recurrent disease. Using an Octet RED96 system, we screened all 32 serum samples directly for both glycoprotein binding and competition with known neutralizing anti-gD and -gB monoclonal Abs (MAbs). On average, the recurrent cohort exhibited higher binding to gD and gB and had higher neutralization titers. There were similar trends in the blocking of MAbs to critical gD and gB epitopes. When we depleted six sera of Abs to specific glycoproteins, we found different types of responses, but always directed primarily at gD and/or gB. Interestingly, in one dual-infected person, the neutralizing response to HSV-2 was due to gD2 and gB2, whereas HSV-1 neutralization was due to gD1 and gB1. In another case, virus neutralization was HSV-1 specific, with the Ab response directed entirely at gB1, despite this serum blocking type-common anti-gD and -gB neutralizing MAbs. These data are pertinent in the design of future HSV vaccines since they demonstrate the importance of both serotypes of gD and gB as immunogens. IMPORTANCE We previously showed that people infected with HSV produce neutralizing Abs directed against gD or a combination of gD+gB (and in one case, gD+gB+gC, which was HSV-1 specific). In this more extensive study, we again found that gD or gD+gB can account for the virus neutralizing response and critical epitopes of one or both of these proteins are represented in sera of naturally infected humans. However, we also found that some individuals produced a strong response against gB alone. In addition, we identified type-specific contributions to HSV neutralization from both gD and gB. Contributions from the other entry glycoproteins, gC and gH/gL, were minimal and limited to HSV-1 neutralization. Knowing the variations in how humans see and mount a response to HSV will be important to vaccine development.
Collapse
|