1
|
Vieux N, Perrier Q, Bedouch P, Epaulard O. Much ado about nothing? Discrepancy between the available data on the antiviral effect of hydroxychloroquine in March 2020 and its inclusion in COVID-19 clinical trials and outpatient prescriptions. Public Health 2023; 225:35-44. [PMID: 37918175 DOI: 10.1016/j.puhe.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Many of the 2020 COVID-19 clinical trials included an (hydroxy)chloroquine ((H)CQ) arm. We aimed to juxtapose the state of science before April 2020 regarding the benefits of (H)CQ for viral infections with the number and size of the clinical trials studying (H)CQ and the volume of (H)CQ dispensed in France. STUDY DESIGN We identified and analysed published scientific material regarding the antiviral activity of (H)CQ and publicly available data regarding clinical trials and drug dispensation in France. METHODS We conducted a review of scientific publications available before April 2020 and a systematic analysis of COVID-19 clinical trials featuring (H)CQ registered on clinicaltrials.gov. RESULTS Before April 2020, 894 scientific publications mentioning (H)CQ for viruses other than coronaviruses were available, including 35 in vitro studies (reporting an inconstant inhibition of viral replication), 11 preclinical studies (reporting no or disputable positive effects), and 32 clinical trials (reporting no or disputable positive effects). Moreover, 67 publications on (H)CQ and coronavirus infections were available, including 12 in vitro studies (reporting an inconstant inhibition of viral replication), two preclinical studies (reporting contradictory results), and no clinical trials. Meanwhile, 253 therapeutic clinical trials featuring an HCQ arm were registered in 2020, intending to enrol 246,623 patients. CONCLUSIONS The number and size of (H)CQ clinical trials for COVID-19 launched in 2020 were not supported by the literature published before April 2020.
Collapse
Affiliation(s)
- N Vieux
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Q Perrier
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetic (LBFA), INSERM U1055, Grenoble, France
| | - P Bedouch
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - O Epaulard
- Infectious Disease Department, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France; Groupe de Recherche en Infectiologie Clinique, CIC-1406, INSERM-UGA-CHUGA, France.
| |
Collapse
|
2
|
Abstract
CD46 is a receptor for human herpesvirus 6A (HHV-6A) and is in some cells also important for infection with HHV-6B. CD46 has several isoforms of which the most commonly expressed can be distinguished by expression of a BC domain or a C domain in a serine-threonine-proline rich (STP) extracellular region. Using a SupT1 CD46 CRISPR-Cas9 knockout model system reconstituted with specific CD46 isoforms, we demonstrated that HHV-6A infection was more efficient when BC-isoforms were expressed as opposed to C-isoforms, measured by higher levels of intracellular viral transcripts and recovery of more progeny virus. Although the B domain contains several O-glycosylations, mutations of Ser and Thr residues did not prevent infection with HHV-6A. The HHV-6A infection was blocked by inhibitors of clathrin-mediated endocytosis. In contrast, infection with HHV-6B was preferentially promoted by C-isoforms mediating fusion-from-without, and this infection was less affected by inhibitors of clathrin-mediated endocytosis. Taken together, HHV-6A preferred BC isoforms, mediating endocytosis, whereas HHV-6B preferred C isoforms, mediating fusion-from-without. This demonstrates that the STP region of CD46 is important for regulating the mode of infection in SupT1 cells and suggests an epigenetic regulation of the host susceptibility to HHV-6A and HHV-6B infection. Importance CD46 is the receptor used by human herpesvirus 6A (HHV-6A) during infection of T cells, but it is also involved in infection of certain T cells by HHV-6B. The gene for CD46 allows expression of several variants of CD46, known as isoforms, but whether the isoforms matter for infection of T cells is unknown. We used a genetic approach to delete CD46 from T cells and reconstituted them with separate isoforms to study these individually. We expressed the isoforms known as BC and C, which are distinguished by the potential inclusion of a B domain in the CD46 molecule. We demonstrate that HHV-6A prefers the BC isoform to infect T cells, and this occurs predominantly by clathrin-mediated endocytosis. In contrast, HHV-6B prefers the C isoform and infects predominantly by fusion-from-without. Thus, CD46 isoforms may affect susceptibility of T cells to infection with HHV-6A and HHV-6B.
Collapse
|
3
|
Monsalve-Escudero LM, Loaiza-Cano V, Pájaro-González Y, Oliveros-Díaz AF, Diaz-Castillo F, Quiñones W, Robledo S, Martinez-Gutierrez M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement Med Ther 2021; 21:216. [PMID: 34454481 PMCID: PMC8397866 DOI: 10.1186/s12906-021-03386-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In recent years, an increase in the occurrence of illnesses caused by two clinically- important arboviruses has been reported: Zika virus (ZIKV) and Chikungunya virus (CHIKV). There is no licensed antiviral treatment for either of the two abovementioned viruses. Bearing in mind that the antiviral effect of indole alkaloids has been reported for other arboviral models, the present study proposed to evaluate the antiviral in vitro and in silico effects of four indole alkaloids on infections by these two viruses in different cell lines. METHODS The antiviral effects of voacangine (VOAC), voacangine-7-hydroxyindolenine (VOAC-OH), rupicoline and 3-oxo voacangine (OXO-VOAC) were evaluated in Vero, U937 and A549 cells using different experimental strategies (Pre, Trans, Post and combined treatment). Viral infection was quantified by different methodologies, including infectious viral particles by plating, viral genome by RT-qPCR, and viral protein by cell ELISA. Moreover, molecular docking was used to evaluate the possible interactions between structural and nonstructural viral proteins and the compounds. The results obtained from the antiviral strategies for each experimental condition were compared in all cases with the untreated controls. Statistically significant differences were identified using a parametric Student's t-test. In all cases, p values below 0.05 (p < 0.05) were considered statistically significant. RESULTS In the pre-treatment strategy in Vero cells, VOAC and VOAC-OH inhibited both viral models and OXO-VOAC inhibited only ZIKV; in U937 cells infected with CHIKV/Col, only VOAC-OH inhibited infection, but none of the compounds had activity in A549 cells; in U937 cells and A549 cells infected with ZIKV/Col, the three compounds that were effective in Vero cells also had antiviral activity. In the trans-treatment strategy, only VOAC-OH was virucidal against ZIKV/Col. In the post-treatment strategy, only rupicoline was effective in the CHIKV/Col model in Vero and A549 cells, whereas VOAC and VOAC-OH inhibited ZIKV infection in all three cell lines. In the combined strategy, VOAC, VOAC-OH and rupicoline inhibited CHIKV/Col and ZIKV/Col, but only rupicoline improved the antiviral effect of ZIKV/Col-infected cultures with respect to the individual strategies. Molecular docking showed that all the compounds had favorable binding energies with the structural proteins E2 and NSP2 (CHIKV) and E and NS5 (ZIKV). CONCLUSIONS The present study demonstrates that indole alkaloids are promising antiviral drugs in the process of ZIKV and CHIKV infection; however, the mechanisms of action evaluated in this study would indicate that the effect is different in each viral model and, in turn, dependent on the cell line.
Collapse
Affiliation(s)
- Laura Milena Monsalve-Escudero
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Yina Pájaro-González
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia.,Grupo de Investigación en Farmacia Asistencial y Farmacología, Universidad del Atlántico, Barranquilla, Colombia
| | - Andrés Felipe Oliveros-Díaz
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Fredyc Diaz-Castillo
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales. Universidad de Antioquia, Medellín, Colombia
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.
| |
Collapse
|
4
|
Calabrese EJ, Hanekamp JC, Hanekamp YN, Kapoor R, Dhawan G, Agathokleous E. Chloroquine commonly induces hormetic dose responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142436. [PMID: 33017762 PMCID: PMC7518853 DOI: 10.1016/j.scitotenv.2020.142436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 05/02/2023]
Abstract
The use of chloroquine in the treatment of COVID-19 has received considerable attention. The recent intense focus on this application of chloroquine stimulated an investigation into the effects of chloroquine at low doses on highly biologically-diverse models and whether it may induce hormetic-biphasic dose response effects. The assessment revealed that hormetic effects have been commonly induced by chloroquine, affecting numerous cell types, including tumor cell lines (e.g. human breast and colon) and non-tumor cell lines, enhancing viral replication, sperm motility, various behavioral endpoints as well as decreasing risks of convulsions, and enhancing a spectrum of neuroprotective responses within a preconditioning experimental framework. These diverse and complex findings indicate that hormetic dose responses commonly occur with chloroquine treatment with a range of biological models and endpoints. These findings have implications concerning study design features including the number and spacing of doses, and suggest a range of possible clinical concerns and opportunities depending on the endpoint considered.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Sciences, University of Massachusetts, Amherst, MA 01003, United States of America.
| | - Jaap C Hanekamp
- University College Roosevelt, Lange Noordstraat 1, NL-4331 CB Middelburg, the Netherlands.
| | - Yannic N Hanekamp
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, United States of America
| | - Gaurav Dhawan
- University of Massachusetts, Human Research Protection Office, Research Compliance, University of Massachusetts, Mass Venture Center, Hadley, MA 01035, United States of America
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
5
|
Udupa A, Leverenz D, Balevic SJ, Sadun RE, Tarrant TK, Rogers JL. Hydroxychloroquine and COVID-19: a Rheumatologist's Take on the Lessons Learned. Curr Allergy Asthma Rep 2021; 21:5. [PMID: 33475900 PMCID: PMC7818062 DOI: 10.1007/s11882-020-00983-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Told from the viewpoint of rheumatologists, this review tells the story of hydroxychloroquine and its swift ascent to become a household name as a therapeutic strategy against the novel SARS-CoV-2 virus. This review describes the history, mechanisms, pharmacokinetics, therapeutic applications, and safety profile of hydroxychloroquine as an immunomodulatory and antiviral agent. It also summarizes the major studies that launched and assessed the use of hydroxychloroquine against COVID-19 infection. RECENT FINDINGS More recent literature calls into question the long-held dogma that endolysosomal alkalinization is the primary mode of action of hydroxychloroquine. Ongoing uncertainty about the multiple potential mechanisms contributing to the therapeutic effect of hydroxychloroquine in rheumatic and viral disease led to a natural avenue for exploration in the treatment of COVID-19. Taken as a whole, the literature does not support utilizing hydroxychloroquine to treat or prevent infection from the SARS-CoV-2 virus. This is, at least in part, due to the wide variability in hydroxychloroquine pharmacokinetics between patients and difficulty achieving adequate target tissue concentrations of hydroxychloroquine without encountering unacceptable toxicities. Hydroxychloroquine continues to be a routinely prescribed, well-tolerated, effective, and low-cost treatment for rheumatic disease. Its therapeutic versatility has led to frequent repurposing for other conditions, most recently as an investigative treatment against the SARS-CoV-2 virus. Despite overall negative findings, the intense study of hydroxychloroquine against COVID-19 infection has enhanced our overall understanding of how hydroxychloroquine operates in autoimmune disease and beyond.
Collapse
Affiliation(s)
- Akrithi Udupa
- Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.
| | - David Leverenz
- Duke University Medical Center, Box 2978, Durham, NC, 27710, USA
| | | | - Rebecca E Sadun
- Duke University Medical Center, Box 2978, Durham, NC, 27710, USA
| | - Teresa K Tarrant
- Duke University Medical Center, Box 2978, Durham, NC, 27710, USA
| | | |
Collapse
|
6
|
Reproductive Tract Infection Among Women Suffering From Rheumatoid Arthritis in India: A Clinical-Based, Cross-Sectional Study. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.97176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Much research has been done on reproductive tract infections (RTIs), but no study exists about RTIs among rheumatoid arthritis women. Objectives: This study investigated the prevalence and risk factors of RTIs among reproductive-aged women with rheumatoid arthritis in Pune, India. Methods: This clinical-based, cross-sectional study enrolled a sample of 400 consenting Indian women aged 15 -49 years with a history of at least three months’ rheumatoid arthritis referring to a popular community center. Patients were interviewed comprehensively using previously validated relevant questionnaires. Women underwent gynecological examinations and vaginal smears (wet mount) by a microbiologist to diagnose candidiasis, bacterial vaginosis, and trichomoniasis. Syphilis serological testing was performed for the study population. Results: The prevalence obtained was 39.3%. Infection with bacterial vaginosis was 32.0%, Candidiasis 6.5%, and trichomoniasis 0.8%. Syphilis seroconversion was not observed. Adjusting for confounding factors in logistic regression showed that four factors remained significant, including age under 30 years [AOR: 2.4, 95% CI: 1.2 - 4.9], living in a crowded and small one-room house [AOR: 2.5, 95% CI: 1.2 - 5.1] , improper linen for menstruation bleeding [AOR: 1.9, 95% CI: 1.1 - 3.3], and oral disease-modifying anti-rheumatic drugs [AOR: 3.96, 95% CI: 1.9 - 7.9]. Conclusions: This study demonstrated a large burden of RTIs in women suffering from rheumatoid arthritis. Regular screening algorithms for RTIs are urgently required to prevent neglect and improve overall standard care in rheumatology practice. The presence of an oral disease-modifying anti-rheumatic drug as a risk factor shows that more investigation is necessary in this case.
Collapse
|
7
|
Guloyan V, Oganesian B, Baghdasaryan N, Yeh C, Singh M, Guilford F, Ting YS, Venketaraman V. Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants (Basel) 2020; 9:antiox9100914. [PMID: 32992775 PMCID: PMC7601802 DOI: 10.3390/antiox9100914] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 01/08/2023] Open
Abstract
Morbidity and mortality of coronavirus disease 2019 (COVID-19) are due in large part to severe cytokine storm and hypercoagulable state brought on by dysregulated host-inflammatory immune response, ultimately leading to multi-organ failure. Exacerbated oxidative stress caused by increased levels of interleukin (IL)-6 and tumor necrosis factor α (TNF-α) along with decreased levels of interferon α and interferon β (IFN-α, IFN-β) are mainly believed to drive the disease process. Based on the evidence attesting to the ability of glutathione (GSH) to inhibit viral replication and decrease levels of IL-6 in human immunodeficiency virus (HIV) and tuberculosis (TB) patients, as well as beneficial effects of GSH on other pulmonary diseases processes, we believe the use of liposomal GSH could be beneficial in COVID-19 patients. This review discusses the epidemiology, transmission, and clinical presentation of COVID-19 with a focus on its pathogenesis and the possible use of liposomal GSH as an adjunctive treatment to the current treatment modalities in COVID-19 patients.
Collapse
Affiliation(s)
- Vika Guloyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Buzand Oganesian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Nicole Baghdasaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Christopher Yeh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Manpreet Singh
- Department of Emergency Medicine, St Barnabas Hospital, Bronx, NY 10457, USA;
| | | | - Yu-Sam Ting
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
- Correspondence: ; Tel.: +1-909-706-3736; Fax: +1-909-469-5698
| |
Collapse
|
8
|
|
9
|
Flamenbaum M, Roman J. Endemic and Emerging Coronavirus Pulmonary Infections. Am J Med Sci 2020; 360:728-732. [PMID: 32631575 PMCID: PMC7831808 DOI: 10.1016/j.amjms.2020.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/19/2022]
Abstract
Coronaviruses are a well-known cause of upper and lower respiratory disease, and since 2002 have been a recognized source of potential pandemic spread. Over the past two decades, since the Severe Acute Respiratory Syndrome (SARS) outbreak, a large body of research has accumulated on the virology, clinical symptoms and signs, and experimental treatments of Coronaviruses. In 2020, a new form of Coronaviruses (SARS-CoV-2) emerged and spread rapidly throughout the globe. Given the wide-ranging clinical presentations of those infected with SARS-CoV-2, other viruses might be overlooked when evaluating at-risk patients. Furthermore, due to suboptimal testing capabilities, an early clinical diagnosis is not always possible. Here, we present a case of a patient with pneumonia thought to be caused by SARS-CoV-2 only to be found to have another Coronavirus. This emphasizes the need to be vigilant when evaluating patients with viral-like respiratory infections.
Collapse
Affiliation(s)
- Matthew Flamenbaum
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and Jane and Leonard Korman Respiratory Institute, 834 Walnut Street, Suite 650, Philadelphia, PA 19107, United States
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and Jane and Leonard Korman Respiratory Institute, 834 Walnut Street, Suite 650, Philadelphia, PA 19107, United States.
| |
Collapse
|
10
|
Salata C, Calistri A, Parolin C, Baritussio A, Palù G. Antiviral activity of cationic amphiphilic drugs. Expert Rev Anti Infect Ther 2017; 15:483-492. [PMID: 28286997 PMCID: PMC7103695 DOI: 10.1080/14787210.2017.1305888] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Emerging and reemerging viral infections represent a major concern for human and veterinary public health and there is an urgent need for the development of broad-spectrum antivirals. Areas covered: A recent strategy in antiviral research is based on the identification of molecules targeting host functions required for infection of multiple viruses. A number of FDA-approved drugs used to treat several human diseases are cationic amphiphilic drugs (CADs) that have the ability to accumulate inside cells affecting several structures/functions hijacked by viruses during infection. In this review we summarized the CADs’ chemical properties and effects on the cells and reported the main FDA-approved CADs that have been identified so far as potential antivirals in drug repurposing studies. Expert commentary: Although there have been concerns regarding the efficacy and the possible side effects of the off-label use of CADs as antivirals, they seem to represent a promising starting point for the development of broad-spectrum antiviral strategies. Further knowledge about their mechanism of action is required to improve their antiviral activity and to reduce the risk of side effects.
Collapse
Affiliation(s)
- Cristiano Salata
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Arianna Calistri
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Cristina Parolin
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Aldo Baritussio
- b Clinica Medica 1, Department of Medicine , University of Padova , Padova , Italy
| | - Giorgio Palù
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
11
|
Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017; 5:e00293. [PMID: 28596841 PMCID: PMC5461643 DOI: 10.1002/prp2.293] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Emerging viruses such as HIV, dengue, influenza A, SARS coronavirus, Ebola, and other viruses pose a significant threat to human health. Majority of these viruses are responsible for the outbreaks of pathogenic lethal infections. To date, there are no effective therapeutic strategies available for the prophylaxis and treatment of these infections. Chloroquine analogs have been used for decades as the primary and most successful drugs against malaria. Concomitant with the emergence of chloroquine‐resistant Plasmodium strains and a subsequent decrease in the use as antimalarial drugs, other applications of the analogs have been investigated. Since the analogs have interesting biochemical properties, these drugs are found to be effective against a wide variety of viral infections. As antiviral action, the analogs have been shown to inhibit acidification of endosome during the events of replication and infection. Moreover, immunomodulatory effects of analogs have been beneficial to patients with severe inflammatory complications of several viral diseases. Interestingly, one of the successful targeting strategies is the inhibition of HIV replication by the analogs in vitro which are being tested in several clinical trials. This review focuses on the potentialities of chloroquine analogs for the treatment of endosomal low pH dependent emerging viral diseases.
Collapse
|
12
|
Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE. Multi-Omics Studies towards Novel Modulators of Influenza A Virus-Host Interaction. Viruses 2016; 8:v8100269. [PMID: 27690086 PMCID: PMC5086605 DOI: 10.3390/v8100269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV–host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV–host interactions, which might be more effective than the currently available anti-influenza therapeutics.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Sergey Belanov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Laxman Yetukuri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Mikhail Berlinkov
- Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg 620083, Russia.
| | - Anton V Cheltsov
- Q-Mol L.L.C. in Silico Pharmaceuticals, San Diego, CA 92037, USA.
| | - Simon Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
- Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland.
| | | | - Sampsa Matikainen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
- Department of Rheumatology, Helsinki University Hospital, University of Helsinki, Helsinki 00015, Finland.
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|