1
|
Zhang RR, He MJ, Zhou C, Xu YP, Tang W, Cao TS, Wang ZJ, Wu M, Ming T, Huang YJ, Sun MX, Zhao H, Deng YQ, Li XF, Wang B, Ye Q, Qin CF. Rational design of a DNA-launched live attenuated vaccine against human enterovirus 71. Virol Sin 2024; 39:812-820. [PMID: 39306193 DOI: 10.1016/j.virs.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
Human Enterovirus 71 (EV71) has emerged as one of the predominant causative agents of hand, foot and mouth disease (HFMD) with global impact. Despite the inactivated vaccine being licensed, other vaccine candidates based on advanced technology platforms are under development. In this report, we rationally designed and constructed two DNA-launched live attenuated vaccine candidates (pDL-EV71) under the control of specific promoters. In vitro and in vivo transfection with pDL-EV71 driven by the CMV promoter successfully yielded fully infectious EV71. More importantly, the administration of pDL-EV71 did not cause clinical symptoms following intracranial or intramuscular inoculation in neonatal and IFNα/βR-/- mice, demonstrating its safety profile. Moreover, a single-dose or two-dose immunization with pDL-EV71 elicited robust neutralizing antibodies against EV71 as well as an antigen-specific cellular response in mice. A single-dose immunization with 10 μg of pDL-EV71 conferred complete protection against lethal EV71 infection in neonates born to immunized maternal mice. Overall, our present results demonstrate that pDL-EV71 is a safe and effective vaccine candidate against EV71 for further development.
Collapse
MESH Headings
- Animals
- Enterovirus A, Human/immunology
- Enterovirus A, Human/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Antibodies, Viral/blood
- Humans
- Female
- Enterovirus Infections/prevention & control
- Enterovirus Infections/immunology
- Enterovirus Infections/virology
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/virology
- Disease Models, Animal
Collapse
Affiliation(s)
- Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Meng-Jiao He
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Yan-Peng Xu
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Wei Tang
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Tian-Shu Cao
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Zheng-Jian Wang
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Mei Wu
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Tao Ming
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Yi-Jiao Huang
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College (SHMC), Fudan University, Shanghai, 200032, China; Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, 100071, China.
| |
Collapse
|
2
|
Akçay N, Topal N, Semerci SY. A rare case of acute cerebellitis due to enterovirus treated with therapeutic plasma exchange: Case report and review of the literature. J Clin Apher 2024; 39:e22142. [PMID: 39092798 DOI: 10.1002/jca.22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Acute cerebellitis is a rare complication of pediatric infections. There are many reports that viral infections lead to neurological manifestations, including acute cerebellitis. METHODS A retrospective chart review was conducted for pediatric patients diagnosed with enterovirus cerebellitis between 2000 and 2024. The methods involved reviewing clinical and radiological records and assessing the treatment methods. RESULTS Case Report We present the case of a 4-year-old immunocompetent child who initially presented with acute encephalopathy followed by truncal ataxia, and eventually received a diagnosis of postinfectious cerebellitis. Enterovirus real-time polymerase chain reaction were positive in the nasopharyngeal swab. Therapeutic plasma exchange (TPE) was started due to neurological deterioration despite IVIG treatment. She improved significantly with TPE, and methylprednisolone treatment and was discharged in good health status. The patient is being followed up as neurologically normal. CONCLUSION Acute cerebellitis associated with enterovirus is a rare pediatric disorder. Early diagnosis and treatment with TPE in this severe case is thought to be preventive for the potentially fatal complications.
Collapse
Affiliation(s)
- Nihal Akçay
- Department of Pediatrics, Division of Pediatric Intensive Care, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| | - Neval Topal
- Department of Pediatrics, Division of Pediatric Intensive Care, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| | - Seda Yılmaz Semerci
- Istanbul Kanuni Sultan Suleyman Research and Training Hospital, Department of Pediatrics, Division of Neonatology Istanbul, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
3
|
Wei J, Lv L, Wang T, Gu W, Luo Y, Feng H. Recent Progress in Innate Immune Responses to Enterovirus A71 and Viral Evasion Strategies. Int J Mol Sci 2024; 25:5688. [PMID: 38891876 PMCID: PMC11172324 DOI: 10.3390/ijms25115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen causing hand, foot, and mouth disease (HFMD) in children worldwide. It can lead to severe gastrointestinal, pulmonary, and neurological complications. The innate immune system, which rapidly detects pathogens via pathogen-associated molecular patterns or pathogen-encoded effectors, serves as the first defensive line against EV-A71 infection. Concurrently, the virus has developed various sophisticated strategies to evade host antiviral responses and establish productive infection. Thus, the virus-host interactions and conflicts, as well as the ability to govern biological events at this first line of defense, contribute significantly to the pathogenesis and outcomes of EV-A71 infection. In this review, we update recent progress on host innate immune responses to EV-A71 infection. In addition, we discuss the underlying strategies employed by EV-A71 to escape host innate immune responses. A better understanding of the interplay between EV-A71 and host innate immunity may unravel potential antiviral targets, as well as strategies that can improve patient outcomes.
Collapse
Affiliation(s)
- Jialong Wei
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Linxi Lv
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Tian Wang
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Yang Luo
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
- Institute of Precision Medicine, Chongqing University, Chongqing 400044, China
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| |
Collapse
|
4
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Wangquan Ji
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Dong Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Zijie Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yu Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Bowen Dai
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shujie Han
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shuaiyin Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China. .,Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Molecular Epidemiology of Enterovirus A71 in Surveillance of Acute Flaccid Paralysis Cases in Senegal, 2013-2020. Vaccines (Basel) 2022; 10:vaccines10060843. [PMID: 35746451 PMCID: PMC9230434 DOI: 10.3390/vaccines10060843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a non-polio enterovirus that currently represents a major public health concern worldwide. In Africa, only sporadic cases have been reported. Acute flaccid paralysis and environmental surveillance programs have been widely used as strategies for documenting the circulation of polio and non-polio enteroviruses. To date, little is known about the molecular epidemiology of enterovirus A71 in Africa where resources and diagnostic capacities are limited. To fill this gap in Senegal, a total of 521 non-polio enterovirus isolates collected from both acute flaccid paralysis (AFP) and environmental surveillance (ES) programs between 2013 and 2020 were screened for enterovirus A71 using real-time RT-PCR. Positive isolates were sequenced, and genomic data were analyzed using phylogeny. An overall rate of 1.72% (9/521) of the analyzed isolates tested positive for enterovirus A71. All positive isolates originated from the acute flaccid paralysis cases, and 44.4% (4/9) of them were isolated in 2016. The nine newly characterized sequences obtained in our study included eight complete polyprotein sequences and one partial sequence of the VP1 gene, all belonging to the C genogroup. Seven out of the eight complete polyprotein sequences belonged to the C2 subgenotype, while one of them grouped with previous sequences from the C1 subgenotype. The partial VP1 sequence belonged to the C1 subgenotype. Our data provide not only new insights into the recent molecular epidemiology of enterovirus A71 in Senegal but also point to the crucial need to set up specific surveillance programs targeting non-polio enteroviruses at country or regional levels in Africa for rapid identification emerging or re-emerging enteroviruses and better characterization of public health concerns causing acute flaccid paralysis in children such as enterovirus A71. To estimate the real distribution of EV-A71 in Africa, more sero-epidemiological studies should be promoted, particularly in countries where the virus has already been reported.
Collapse
|
6
|
Kinobe R, Wiyatno A, Artika IM, Safari D. Insight into the Enterovirus A71: A review. Rev Med Virol 2022; 32:e2361. [PMID: 35510476 DOI: 10.1002/rmv.2361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Enterovirus A71 is a major causative pathogen of hand, foot and mouth disease. It has become a global public health threat, and is especially important for infants and young children in the Asian-Pacific countries. The enterovirus A71 is a non-enveloped virus of the Picornaviridae family having a single-stranded positive-sense RNA genome of about 7.4 kb which encodes the structural and nonstructural proteins. Currently there are no US FDA-approved vaccines or antiviral therapy available against enterovirus A71 infection. Although enterovirus A71 vaccines have been licenced in China, clinically approved vaccines for widespread vaccination programs are lacking. Substantial progress has recently been achieved on understanding the structure and function of enterovirus A71 proteins together with information on the viral genetic diversity and geographic distribution. The present review is intended to provide an overview on our current understanding of the molecular biology and epidemiology of enterovirus A71 which will aid the development of vaccines, therapeutics and other control strategies so as to bolster the preparedness for future enterovirus A71 outbreaks.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
7
|
Zeng H, Yi L, Chen X, Zhou H, Zheng H, Lu J, Yang F, Li C, Fang L, Zhang X, Jing X, Wu J, Li H. Emergence of a non vaccine-cognate enterovirus A71 genotype C1 in mainland China. J Infect 2020; 82:407-413. [PMID: 33373653 DOI: 10.1016/j.jinf.2020.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND EV-A71 is a common causative agent of hand foot and mouth disease. In mainland China, EV-A71 subgenotype C4 has been the sole circulating genotype since 2008, and was used in the production of multiple licensed vaccines. Here, we report the first detection EV-A71 C1 strains in China. METHODS Full genomic sequence were obtained. The origin of the EV-A71 C1 strains were tracked down by Bayesian inferences. Recombination was analyzed using Simplot program. And the antigenicity were tested using the microneutralization test. RESULTS The C1-GD2019 shared high identity with the C1-like lineage recently identified in Europe and was introduced into Guangdong in 2018-2019. Close genetic relatedness between the C1-GD2019 and Europe C1-like strains were observed except for the 3D-3'UTR region. The late showed high similarity with CVA genomes. Antigenic variance was found. The C1-GD2019 could not be effectively neutralized by EV-A71 C4a neutralizing antibody positive samples. CONCLUSION This is the first report of EV-A71 subgenotype C1 isolated in China. It is a recombinant strain originating from C1-like strains recently identified in Europe and CVA strains. The different antigenicity between the C1 strains and C4a vaccine strains highlighted the importance on closely monitoring the EV-A71 C1 strains in China.
Collapse
Affiliation(s)
- Hanri Zeng
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Lina Yi
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Centre for Disease Control and Prevention, China
| | - Xiaoli Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, China
| | - Huiqiong Zhou
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Huanying Zheng
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Jing Lu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Centre for Disease Control and Prevention, China
| | - Fen Yang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Caixia Li
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Ling Fang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Xin Zhang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Xu Jing
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Jie Wu
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Hui Li
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Huang KYA, Huang PN, Huang YC, Yang SL, Tsao KC, Chiu CH, Shih SR, Lin TY. Emergence of genotype C1 Enterovirus A71 and its link with antigenic variation of virus in Taiwan. PLoS Pathog 2020; 16:e1008857. [PMID: 32936838 PMCID: PMC7521691 DOI: 10.1371/journal.ppat.1008857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/28/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
An outbreak of the hand-foot-mouth disease with severe neurological cases, mainly caused by the genotype C1 enterovirus A71 (EV-A71), occurred in Taiwan between 2018 and early 2019. In the recent decade, the most dominant EV-A71 genotypes in Taiwan were B5 and C4 but changed to C1 in 2018. Antibody-mediated immunity plays a key role in limiting the EV-A71 illness in humans. However, the level of neutralizing activities against genotype C1 virus by human polyclonal and monoclonal antibodies (MAbs) remains largely unclear. In the study, we demonstrated that that 39% (9 in 23) of post-infection sera from the genotype B5- or C4-infected patients in 2014–2017 exhibit reduced titers with the 2018–2019 genotype C1 viruses than with the earlier B5 and C4 viruses tested. This finding with polyclonal sera is confirmed with human MAbs derived from genotype B5 virus-infected individuals. The 2018–2019 genotype C1 virus is resistant to the majority of canyon-targeting human MAbs, which may be associated with the residue change near or at the bottom of the canyon region on the viral capsid. The remaining three antibodies (16-2-11B, 16-3-4D, and 17-1-12A), which target VP1 S241 on the 5-fold vertex, VP3 E81 on the 3-fold plateau and VP2 D84 on the 2-fold plateau of genotype C1 viral capsid, respectively, retained neutralizing activities with variable potencies. These neutralizing antibodies were also found to be protective against a lethal challenge of the 2018–2019 genotype C1 virus in an hSCARB2-transgenic mice model. These results indicate that the EV-A71-specific antibody response may consist of a fraction of poorly neutralizing antibodies against 2018–2019 genotype C1 viruses among a subset of previously infected individuals. Epitope mapping of protective antibodies that recognize the emerging genotype C1 virus has implications for anti-EV-A71 MAbs and the vaccine field. EV-A71 is a cause of hand-foot-mouth disease, epidemics of which still regularly occur around the globe. Given that EV-A71 immune protection from the disease correlates with neutralizing antibody responses, but the responses in humans prior to an outbreak are still poorly understood. An outbreak of hand-foot-mouth disease among children emerged in Taiwan from 2018 to 2019, and genotype C1 EV-A71 caused most of the cases. Here, we characterized EV-A71-neutralizing antibody profiles in details at both the serological and monoclonal levels and showed that antibodies generated by humans prior to the emergence of genotype C1 EV-A71 less effectively neutralize C1 compared to the prior circulating genotypes, which implies the presence of antigenic variation in the EV-A71 genotypes. We further identified and mapped critical neutralizing epitopes of 2018–2019 genotype C1 EV-A71 on the top and margin of the viral capsid pentamer and demonstrated the in vivo protective effect of human monoclonal antibodies, which highlight the properties of human antibody-neutralizing sites on EV-A71 and the potential of human antibodies as antiviral agents.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Child
- Child, Preschool
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus A, Human/isolation & purification
- Female
- Genetic Variation
- Genome, Viral
- Genotype
- Hand, Foot and Mouth Disease/epidemiology
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/immunology
- Humans
- Male
- Mice
- Mice, Transgenic
- Taiwan
Collapse
Affiliation(s)
- Kuan-Ying A. Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (KYAH); (TYL)
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (KYAH); (TYL)
| |
Collapse
|
9
|
Abstract
We report on the increased circulation of enterovirus A71 in Germany in 2019. Strains were mainly identified in hospitalised patients with suspected aseptic meningitis/encephalitis. Molecular analysis showed co-circulation of EV-A71 sub-genogroups C1 and C4, a signal for physicians and public health authorities to include/intensify EV diagnostic in patients showing signs of aseptic meningitis, encephalitis or acute flaccid paralysis/myelitis.
Collapse
Affiliation(s)
- Sindy Böttcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Sabine Diedrich
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Kathrin Keeren
- Secretary of the National Commission for Polio Eradication in Germany, Robert Koch Institute, Berlin, Germany
| | -
- The members of the network are listed at the end of the article
| |
Collapse
|
10
|
Toczylowski K, Wieczorek M, Bojkiewicz E, Wietlicka-Piszcz M, Gad B, Sulik A. Pediatric Enteroviral Central Nervous System Infections in Bialystok, Poland: Epidemiology, Viral Types, and Drivers of Seasonal Variation. Viruses 2020; 12:v12080893. [PMID: 32824117 PMCID: PMC7472221 DOI: 10.3390/v12080893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses are common causes of infections of the central nervous system (CNS) that in temperate climates tend to peak in the summer. The aim of the study was to describe epidemiology, drivers of seasonality, and types of enteroviruses causing infections of the CNS in children in Northeastern Poland. We prospectively collected data on children hospitalized with infection of the CNS attributed to enteroviruses in Bialystok, Poland, from January 2015 to December 2019. In total, 224 children were included. Nineteen different enterovirus types were identified in isolates collected from 188 children. Coxsackie B5 (32%), echovirus 30 (20%), and echovirus 6 (14%) were the three most common types. Enteroviruses were more prevalent during the summer–fall season. Infections caused by echovirus 30 peaked early in June and coxsackievirus B5 in July, whereas echovirus 6 peaked late in October. Phylogenetic analyses of these three enterovirus types showed multiple lineages co-circulating in this region. Mean air temperatures and precipitation rates were independently associated with monthly number of cases. Considering lack of effective treatment or vaccine, easy transmission of enteroviruses between susceptible individuals, their high mutation rate and prolonged time of viral shedding, continued monitoring and surveillance are imperative to recognize enteroviral infections of the CNS and the changes in circulation of enteroviruses in Poland.
Collapse
Affiliation(s)
- Kacper Toczylowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (E.B.); (A.S.)
- Correspondence: ; Tel.: +48-857-450-680
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; (M.W.); (B.G.)
| | - Ewa Bojkiewicz
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (E.B.); (A.S.)
| | - Magdalena Wietlicka-Piszcz
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Nicolaus Copernicus University in Torun, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland;
| | - Beata Gad
- Department of Virology, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; (M.W.); (B.G.)
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (E.B.); (A.S.)
| |
Collapse
|
11
|
González-Sanz R, Casas-Alba D, Launes C, Muñoz-Almagro C, Ruiz-García MM, Alonso M, González-Abad MJ, Megías G, Rabella N, Del Cuerpo M, Gozalo-Margüello M, González-Praetorius A, Martínez-Sapiña A, Goyanes-Galán MJ, Romero MP, Calvo C, Antón A, Imaz M, Aranzamendi M, Hernández-Rodríguez Á, Moreno-Docón A, Rey-Cao S, Navascués A, Otero A, Cabrerizo M. Molecular epidemiology of an enterovirus A71 outbreak associated with severe neurological disease, Spain, 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30782267 PMCID: PMC6381658 DOI: 10.2807/1560-7917.es.2019.24.7.1800089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction Enterovirus A71 (EV-A71) is an emerging pathogen that causes a wide range of disorders including severe neurological manifestations. In the past 20 years, this virus has been associated with large outbreaks of hand, foot and mouth disease with neurological complications in the Asia-Pacific region, while in Europe mainly sporadic cases have been reported. In spring 2016, however, an EV-A71 outbreak associated with severe neurological cases was reported in Catalonia and spread further to other Spanish regions. Aim Our objective was to investigate the epidemiology and clinical characteristics of the outbreak. Methods We carried out a retrospective study which included 233 EV-A71-positive samples collected during 2016 from hospitalised patients. We analysed the clinical manifestations associated with EV-A71 infections and performed phylogenetic analyses of the 3’-VP1 and 3Dpol regions from all Spanish strains and a set of EV-A71 from other countries. Results Most EV-A71 infections were reported in children (mean age: 2.6 years) and the highest incidence was between May and July 2016 (83%). Most isolates (218/233) were classified as subgenogroup C1 and 217 of them were grouped in one cluster phylogenetically related to a new recombinant variant strain associated with severe neurological diseases in Germany and France in 2015 and 2016. Moreover, we found a clear association of EV-A71-C1 infection with severe neurological disorders, brainstem encephalitis being the most commonly reported. Conclusion An emerging recombinant variant of EV-A71-C1 was responsible for the large outbreak in 2016 in Spain that was associated with many severe neurological cases.
Collapse
Affiliation(s)
- Rubén González-Sanz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Cristian Launes
- CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Universitat Internacional de Catalunya, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | - María Pilar Romero
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Hospital Universitario La Paz, Fundación IdiPaz, Madrid, Spain
| | - Cristina Calvo
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Hospital Universitario La Paz, Fundación IdiPaz, Madrid, Spain
| | - Andrés Antón
- Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | | | - Águeda Hernández-Rodríguez
- Microbiology Service, University Hospital "Germans Trias i Pujol", Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | - Almudena Otero
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Cabrerizo
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Ngangas ST, Lukashev A, Jugie G, Ivanova O, Mansuy JM, Mengelle C, Izopet J, L'honneur AS, Rozenberg F, Leyssene D, Hecquet D, Marque-Juillet S, Boutolleau D, Burrel S, Peigue-Lafeuille H, Archimbaud C, Benschop K, Henquell C, Mirand A, Bailly JL. Multirecombinant Enterovirus A71 Subgenogroup C1 Isolates Associated with Neurologic Disease, France, 2016-2017. Emerg Infect Dis 2019; 25:1204-1208. [PMID: 31107209 PMCID: PMC6537711 DOI: 10.3201/eid2506.181460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In 2016, an upsurge of neurologic disease associated with infection with multirecombinant enterovirus A71 subgenogroup C1 lineage viruses was reported in France. These viruses emerged in the 2000s; 1 recombinant is widespread. This virus lineage has the potential to be associated with a long-term risk for severe disease among children.
Collapse
|
13
|
Cobbin JCA, Britton PN, Burrell R, Thosar D, Selvakumar K, Eden JS, Jones CA, Holmes EC. A complex mosaic of enteroviruses shapes community-acquired hand, foot and mouth disease transmission and evolution within a single hospital. Virus Evol 2018; 4:vey020. [PMID: 30026965 PMCID: PMC6047454 DOI: 10.1093/ve/vey020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human enteroviruses (EV) pose a major risk to public health. This is especially so in the Asia-Pacific region where increasing numbers of hand, foot and mouth disease (HFMD) cases and large outbreaks of severe neurological disease associated with EV-A71 have occurred. Despite their importance, key aspects of the emergence, epidemiology and evolution of EVs remain unclear, and most studies of EV evolution have focused on a limited number of genes. Here, we describe the genomic-scale evolution of EV-A viruses sampled from pediatric patients with mild disease attending a single hospital in western Sydney, Australia, over an 18-month period. This analysis revealed the presence of eight viral serotypes-Coxsackievirus (CV) A2, A4, A5, A6, A8, A10, A16 and EV-A71-with up to four different serotypes circulating in any 1 month. Despite an absence of large-scale outbreaks, high levels of geographical and temporal mixing of serotypes were identified. Phylogenetic analysis revealed that multiple strains of the same serotype were present in the community, and that this diversity was shaped by multiple introductions into the Sydney population, with only a single lineage of CV-A6 exhibiting in situ transmission over the entire study period. Genomic-scale analyses also revealed the presence of novel and historical EV recombinants. Notably, our analysis revealed no association between viral phylogeny, including serotype, and patient age, sex, nor disease severity (for uncomplicated disease). This study emphasizes the contribution of EV-A viruses other than EV-A71 to mild EV disease including HFMD in Australia and highlights the need for greater surveillance of these viruses to improve strategies for outbreak preparedness and vaccine design.
Collapse
Affiliation(s)
- Joanna C A Cobbin
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Philip N Britton
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,The Children's Hospital at Westmead, Westmead, NSW, Australia.,Kids Research, Sydney Children's Hospitals Network (Westmead), Westmead, NSW, Australia
| | - Rebecca Burrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Kids Research, Sydney Children's Hospitals Network (Westmead), Westmead, NSW, Australia
| | - Deepali Thosar
- Kids Research, Sydney Children's Hospitals Network (Westmead), Westmead, NSW, Australia
| | - Kierrtana Selvakumar
- Kids Research, Sydney Children's Hospitals Network (Westmead), Westmead, NSW, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Cheryl A Jones
- The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Murdoch Children's Research Institute and University of Melbourne, Melbourne, VIC, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|