1
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
2
|
Sarb OF, Sarb AD, Iacobescu M, Vlad IM, Milaciu MV, Ciurmarnean L, Vacaras V, Tantau AI. From Gut to Brain: Uncovering Potential Serum Biomarkers Connecting Inflammatory Bowel Diseases to Neurodegenerative Diseases. Int J Mol Sci 2024; 25:5676. [PMID: 38891863 PMCID: PMC11171869 DOI: 10.3390/ijms25115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic gastrointestinal inflammation due to abnormal immune responses to gut microflora. The gut-brain axis is disrupted in IBDs, leading to neurobiological imbalances and affective symptoms. Systemic inflammation in IBDs affects the brain's inflammatory response system, hormonal axis, and blood-brain barrier integrity, influencing the gut microbiota. This review aims to explore the association between dysregulations in the gut-brain axis, serum biomarkers, and the development of cognitive disorders. Studies suggest a potential association between IBDs and the development of neurodegeneration. The mechanisms include systemic inflammation, nutritional deficiency, GBA dysfunction, and the effect of genetics and comorbidities. The objective is to identify potential correlations and propose future research directions to understand the impact of altered microbiomes and intestinal barrier functions on neurodegeneration. Serum levels of vitamins, inflammatory and neuronal damage biomarkers, and neuronal growth factors have been investigated for their potential to predict the development of neurodegenerative diseases, but current results are inconclusive and require more studies.
Collapse
Affiliation(s)
- Oliviu-Florentiu Sarb
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Adriana-Daniela Sarb
- Department of Internal Medicine, Heart Institute, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Irina-Maria Vlad
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Lorena Ciurmarnean
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Vitalie Vacaras
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Alina-Ioana Tantau
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| |
Collapse
|
3
|
Ling Z, Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Protective role of madecassoside from Centella asiatica against protein L-isoaspartyl methyltransferase deficiency-induced neurodegeneration. Neuropharmacology 2024; 246:109834. [PMID: 38181970 DOI: 10.1016/j.neuropharm.2023.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Protein L-isoaspartyl methyltransferase (PIMT/PCMT1) could repair l-isoaspartate (L-isoAsp) residues formed by deamidation of asparaginyl (Asn) residues or isomerization of aspartyl (Asp) residues in peptides and proteins during aging. Aside from abnormal accumulation of L-isoAsp, PIMT knockout (KO) mice mirrors some neuropathological hallmarks such as anxiety-like behaviors, impaired spatial memory and aberrant synaptic plasticity in the hippocampus of neurodegenerative diseases (NDs), including Alzheimer's disease (AD) and related dementias, and Parkinson's disease (PD). While some reports indicate the neuroprotective effect of madecassoside (MA) as a triterpenoid saponin component of Centella asiatica, its role against NDs-related anxiety and cognitive impairment remains unclear. Therefore, we investigated the effect of MA against anxiety-related behaviors in PIMT deficiency-induced mouse model of NDs. Results obtained from the elevated plus maze (EPM) test revealed that MA treatment alleviated anxiety-like behaviors in PIMT knockout mice. Furthermore, Real-time PCR, electroencephalogram (EEG) recordings, transmission electron microscopy analysis and ELISA were carried out to evaluate the expression of clock genes, sleep and synaptic function, respectively. The PIMT knockout mice were characterized by abnormal clock patterns, sleep disturbance and synaptic dysfunction, which could be improved by MA administration. Collectively, these findings suggest that MA exhibits neuroprotective effects associated with improved circadian rhythms sleep-wake cycle and synaptic plasticity in PIMT deficient mice, which could be translated to ameliorate anxiety-related symptoms and cognitive impairments in NDs.
Collapse
Affiliation(s)
- Zicheng Ling
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Heath SL, Guseman AJ, Gronenborn AM, Horne WS. Probing effects of site-specific aspartic acid isomerization on structure and stability of GB1 through chemical protein synthesis. Protein Sci 2024; 33:e4883. [PMID: 38143426 PMCID: PMC10868458 DOI: 10.1002/pro.4883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Chemical modifications of long-lived proteins, such as isomerization and epimerization, have been evoked as prime triggers for protein-damage related diseases. Deamidation of Asn residues, which results in formation of a mixture of l- and d-Asp and isoAsp via an intermediate aspartyl succinimide, can result in the disruption of cellular proteostasis and toxic protein depositions. In contrast to extensive data on the biological prevalence and functional implications of aspartyl succinimide formation, much less is known about the impact of the resulting altered backbone composition on properties of individual proteins at a molecular level. Here, we report the total chemical synthesis, biophysical characterization, and NMR structural analysis of a series of variants of the B1 domain of protein G from Streptococcal bacteria (GB1) in which all possible Asp isomers as well as an aspartyl succinimide were individually incorporated at a defined position in a solvent-exposed loop. Subtle local structural effects were observed; however, these were accompanied by notable differences in thermodynamic folded stability. Surprisingly, the noncanonical backbone connectivity of d-isoAsp led to a variant that exhibited enhanced stability relative to the natural protein.
Collapse
Affiliation(s)
- Shelby L. Heath
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alex J. Guseman
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Angela M. Gronenborn
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - W. Seth Horne
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Chen YC, Wu HY, Lin LC, Chang CW, Liao PC. Characterizing the D-Amino Acid Position in Peptide Epimers by Using Higher-Energy Collisional Dissociation Tandem Mass Spectrometry: A Case Study of Liraglutide. Int J Mol Sci 2024; 25:1379. [PMID: 38338662 PMCID: PMC10855602 DOI: 10.3390/ijms25031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
D-amino acid-containing peptides (DAACPs) occur in biological and artificial environments. Since the importance of DAACPs has been recognized, various mass spectrometry-based analytical approaches have been developed. However, the capability of higher-energy collisional dissociation (HCD) fragmentation to characterize DAACP sites has not been evaluated. In this study, we compared the normalized spectra intensity under different conditions of HCD and used liraglutide along with its DAACPs as examples. Our results indicated that the difference in the intensity of y ions between DAACPs and all-L liraglutide could not only distinguish them but also localize the sites of D-amino acids in the DAACPs. Our data demonstrate the potential of using HCD for the site characterization of DAACPs, which may have great impact in biological studies and peptide drug development.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | | | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
6
|
D'Alessandro A, Lukens JR, Zimring JC. The role of PIMT in Alzheimer's disease pathogenesis: A novel hypothesis. Alzheimers Dement 2023; 19:5296-5302. [PMID: 37157118 DOI: 10.1002/alz.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
There are multiple theories of Alzheimer's disease pathogenesis. One major theory is that oxidation of amyloid beta (Aβ) promotes plaque deposition that directly contributes to pathology. A competing theory is that hypomethylation of DNA (due to altered one carbon metabolism) results in pathology through altered gene regulation. Herein, we propose a novel hypothesis involving L-isoaspartyl methyltransferase (PIMT) that unifies the Aβ and DNA hypomethylation hypotheses into a single model. Importantly, the proposed model allows bidirectional regulation of Aβ oxidation and DNA hypomethylation. The proposed hypothesis does not exclude simultaneous contributions by other mechanisms (e.g., neurofibrillary tangles). The new hypothesis is formulated to encompass oxidative stress, fibrillation, DNA hypomethylation, and metabolic perturbations in one carbon metabolism (i.e., methionine and folate cycles). In addition, deductive predictions of the hypothesis are presented both to guide empirical testing of the hypothesis and to provide candidate strategies for therapeutic intervention and/or nutritional modification. HIGHLIGHTS: PIMT repairs L-isoaspartyl groups on amyloid beta and decreases fibrillation. SAM is a common methyl donor for PIMT and DNA methyltransferases. Increased PIMT activity competes with DNA methylation and vice versa. The PIMT hypothesis bridges a gap between plaque and DNA methylation hypotheses.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - John R Lukens
- Carter Immunology Center and Center for Brain Immunology and Glia, University of Virginia Departments of Pathology and Neuroscience, Charlottesville, Virginia, USA
| | - James C Zimring
- Carter Immunology Center and Center for Brain Immunology and Glia, University of Virginia Departments of Pathology and Neuroscience, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Du S, Wey M, Armstrong DW. d-Amino acids in biological systems. Chirality 2023; 35:508-534. [PMID: 37074214 DOI: 10.1002/chir.23562] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
8
|
Readel ER, Patel A, Putman JI, Du S, Armstrong DW. Antibody binding of amyloid beta peptide epimers/isomers and ramifications for immunotherapies and drug development. Sci Rep 2023; 13:12387. [PMID: 37524807 PMCID: PMC10390520 DOI: 10.1038/s41598-023-38788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023] Open
Abstract
Extracellular deposition of amyloid beta (Aβ) peptide is a contributing factor of Alzheimer's disease (AD). Considerable effort has been expended to create effective antibodies, or immunotherapies, targeting Aβ peptides. A few immunotherapies are thought to provide some benefit. It is possible that a contributing factor to the responses of such therapies may be the presence of modified, or aberrant, Aβ peptides found in AD patients. These aberrations include the isomerization and epimerization of L-Asp and L-Ser residues to form D-Asp, L/D-isoAsp, and D-Ser residues, respectively. An effective methodology is essential to isolate all Aβ peptides and then to quantify and locate the aberrant amino acids. Modifications to Aβ peptides may elevate the deposition of Aβ plaques and/or contribute to the neurodegeneration in AD patients, and may alter the binding affinity to antibodies. Herein, we used immunoprecipitation to examine the binding affinity of four antibodies against 18 epimeric and/or isomeric Aβ peptides compared to wild type (all L) Aβ peptide. Tandem mass spectrometry was used as a detection method, which also was found to produce highly variable results for epimeric and/or isomeric Aβ.
Collapse
Affiliation(s)
- Elizabeth R Readel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Arzoo Patel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Joshua I Putman
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Siqi Du
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
9
|
Zhang S, Dong H, Bian J, Li D, Liu C. Targeting amyloid proteins for clinical diagnosis of neurodegenerative diseases. FUNDAMENTAL RESEARCH 2023; 3:505-519. [PMID: 38933553 PMCID: PMC11197785 DOI: 10.1016/j.fmre.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Abnormal aggregation and accumulation of pathological amyloid proteins such as amyloid-β, Tau, and α-synuclein play key pathological roles and serve as histological hallmarks in different neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, various post-translational modifications (PTMs) have been identified on pathological amyloid proteins and are subjected to change during disease progression. Given the central role of amyloid proteins in NDs, tremendous efforts have been made to develop amyloid-targeting strategies for clinical diagnosis and molecular classification of NDs. In this review, we summarize two major strategies for targeting amyloid aggregates, with a focus on the trials in AD diagnosis. The first strategy is a positron emission tomography (PET) scan of protein aggregation in the brain. We mainly focus on introducing the development of small-molecule PET tracers for specifically recognizing pathological amyloid fibrils. The second strategy is the detection of PTM biomarkers on amyloid proteins in cerebrospinal fluid and plasma. We discuss the pathological roles of different PTMs in diseases and how we can use the PTM profile of amyloid proteins for clinical diagnosis. Finally, we point out the potential technical challenges of these two strategies, and outline other potential strategies, as well as a combination of multiple strategies, for molecular diagnosis of NDs.
Collapse
Affiliation(s)
- Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Bian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Akbarian M, Chen SH. Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins. Pharmaceutics 2022; 14:2533. [PMID: 36432723 PMCID: PMC9699111 DOI: 10.3390/pharmaceutics14112533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Maintaining the structure of protein and peptide drugs has become one of the most important goals of scientists in recent decades. Cold and thermal denaturation conditions, lyophilization and freeze drying, different pH conditions, concentrations, ionic strength, environmental agitation, the interaction between the surface of liquid and air as well as liquid and solid, and even the architectural structure of storage containers are among the factors that affect the stability of these therapeutic biomacromolecules. The use of genetic engineering, side-directed mutagenesis, fusion strategies, solvent engineering, the addition of various preservatives, surfactants, and additives are some of the solutions to overcome these problems. This article will discuss the types of stress that lead to instabilities of different proteins used in pharmaceutics including regulatory proteins, antibodies, and antibody-drug conjugates, and then all the methods for fighting these stresses will be reviewed. New and existing analytical methods that are used to detect the instabilities, mainly changes in their primary and higher order structures, are briefly summarized.
Collapse
Affiliation(s)
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
11
|
Ozaki M, Kuwayama T, Hirose T, Shimotsuma M, Hashimoto A, Kuranaga T, Kakeya H. Separation and identification of the DL-forms of short-chain peptides using a new chiral resolution labeling reagent. Anal Bioanal Chem 2022; 414:4039-4046. [PMID: 35384472 DOI: 10.1007/s00216-022-04048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
There are several reports of D-amino acids being the causative molecules of serious diseases, resulting in the formation of, for example, prion protein and amyloid β. D-Amino acids in peptides and proteins are typically identified by sequencing each residue by Edman degradation or by hydrolysis with hydrochloric acid for amino acid analysis. However, these approaches can result in racemization of the L-form to the D-form by hydrolysis and long pre-treatment for hydrolysis. To address these problems, we aimed to identify the DL-forms of amino acids in peptides without hydrolysis. Here, we showed that the DL-forms in peptides which are difficult to separate on a chiral column can be precisely separated by labeling with 1-fluoro-2,4-dinitrophenyl-5-D-leucine-N,N-dimethylethylenediamine-amide (D-FDLDA). Additionally, the peptides could be quantitatively analyzed using the same labeling method as for amino acids. Furthermore, the detection sensitivity of a sample labeled with D-FDLDA was higher than that of the conventional reagents Nα-(5-fluoro-2,4-dinitrophenyl)-L-alaninamide (L-FDAA) and Nα-(5-fluoro-2,4-dinitrophenyl)-L-leucinamide (L-FDLA) used in Marfey's method. The proposed method for identifying DL-forms of amino acids in peptides is a powerful tool for use in organic chemistry, biochemistry, and medical science.
Collapse
Affiliation(s)
- Makoto Ozaki
- Nacalai Tesque, Inc., Ishibashi Kaide-Cho, Muko-shi, Kyoto, 617-0004, Japan
| | - Tomomi Kuwayama
- Nacalai Tesque, Inc., Ishibashi Kaide-Cho, Muko-shi, Kyoto, 617-0004, Japan
| | - Tsunehisa Hirose
- Nacalai Tesque, Inc., Ishibashi Kaide-Cho, Muko-shi, Kyoto, 617-0004, Japan.
| | - Motoshi Shimotsuma
- Nacalai Tesque, Inc., Ishibashi Kaide-Cho, Muko-shi, Kyoto, 617-0004, Japan
| | - Akira Hashimoto
- Nacalai Tesque, Inc., Ishibashi Kaide-Cho, Muko-shi, Kyoto, 617-0004, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
12
|
Zakharova NV, Kononikhin AS, Indeykina MI, Bugrova AE, Strelnikova P, Pekov S, Kozin SA, Popov IA, Mitkevich V, Makarov AA, Nikolaev EN. Mass spectrometric studies of the variety of beta-amyloid proteoforms in Alzheimer's disease. MASS SPECTROMETRY REVIEWS 2022:e21775. [PMID: 35347731 DOI: 10.1002/mas.21775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aβ) peptides in human samples. Since Aβ is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aβ proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aβ studies. However, Aβ forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aβ species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aβ studies; and considers the potential of MS techniques for further studies of Aβ-peptides.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria I Indeykina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Polina Strelnikova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stanislav Pekov
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Popov
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- N.N. Semenov Federal Center of Chemical Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
13
|
Su Z, Ren N, Ling Z, Sheng L, Zhou S, Guo C, Ke Z, Xu T, Qin Z. Differential expression of microRNAs associated with neurodegenerative diseases and diabetic nephropathy in protein l-isoaspartyl methyltransferase-deficient mice. Cell Biol Int 2021; 45:2316-2330. [PMID: 34314072 DOI: 10.1002/cbin.11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 11/05/2022]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), an enzyme repairing isoaspartate residues in peptides and proteins that result from the spontaneous decomposition of normal l-aspartyl and l-asparaginyl residues during aging, has been revealed to be involved in neurodegenerative diseases (NDDs) and diabetes. However, the molecular mechanisms for a putative association of PIMT dysfunction with these diseases have not been clarified. Our study aimed to identify differentially expressed microRNAs (miRNAs) in the brain and kidneys of PIMT-deficient mice and uncover the epigenetic mechanism of PIMT-involved NDDs and diabetic nephropathy (DN). Differentially expressed miRNAs by sequencing underwent target prediction and enrichment analysis in the brain and kidney of PIMT knockout (KO) mice and age-matched wild-type (WT) littermates. Sequence analysis revealed 40 differentially expressed miRNAs in the PIMT KO mouse brain including 25 upregulated miRNAs and 15 downregulated miRNAs. In the PIMT KO mouse kidney, there were 80 differentially expressed miRNAs including 40 upregulated miRNAs and 40 downregulated miRNAs. Enrichment analysis and a systematic literature review of differentially expressed miRNAs indicated the involvement of PIMT deficiency in the pathogenesis in NDDs and DN. Some overlapped differentially expressed miRNAs between the brain and kidney were quantitatively assessed in the brain, kidney, and serum-derived exosomes, respectively. Despite being preliminary, these results may aid in investigating the pathological hallmarks and identify the potential therapeutic targets and biomarkers for PIMT dysfunction-related NDDs and DN.
Collapse
Affiliation(s)
- Zhonghao Su
- Department of Febrile Disease, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Ren
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zicheng Ling
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lanyue Sheng
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sirui Zhou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiefeng Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenxia Qin
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Morel B, Carrasco-Jiménez MP, Jurado S, Conejero-Lara F. Rapid Conversion of Amyloid-Beta 1-40 Oligomers to Mature Fibrils through a Self-Catalytic Bimolecular Process. Int J Mol Sci 2021; 22:6370. [PMID: 34198692 PMCID: PMC8232289 DOI: 10.3390/ijms22126370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
The formation of fibrillar aggregates of the amyloid beta peptide (Aβ) in the brain is one of the hallmarks of Alzheimer's disease (AD). A clear understanding of the different aggregation steps leading to fibrils formation is a keystone in therapeutics discovery. In a recent study, we showed that Aβ40 and Aβ42 form dynamic micellar aggregates above certain critical concentrations, which mediate a fast formation of more stable oligomers, which in the case of Aβ40 are able to evolve towards amyloid fibrils. Here, using different biophysical techniques we investigated the role of different fractions of the Aβ aggregation mixture in the nucleation and fibrillation steps. We show that both processes occur through bimolecular interplay between low molecular weight species (monomer and/or dimer) and larger oligomers. Moreover, we report here a novel self-catalytic mechanism of fibrillation of Aβ40, in which early oligomers generate and deliver low molecular weight amyloid nuclei, which then catalyze the rapid conversion of the oligomers to mature amyloid fibrils. This fibrillation catalytic activity is not present in freshly disaggregated low-molecular weight Aβ40 and is, therefore, a property acquired during the aggregation process. In contrast to Aβ40, we did not observe the same self-catalytic fibrillation in Aβ42 spheroidal oligomers, which could neither be induced to fibrillate by the Aβ40 nuclei. Our results reveal clearly that amyloid fibrillation is a multi-component process, in which dynamic collisions between different interacting species favor the kinetics of amyloid nucleation and growth.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - María P Carrasco-Jiménez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Samuel Jurado
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
15
|
Mukherjee S, Perez KA, Lago LC, Klatt S, McLean CA, Birchall IE, Barnham KJ, Masters CL, Roberts BR. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain Commun 2021; 3:fcab028. [PMID: 33928245 PMCID: PMC8062259 DOI: 10.1093/braincomms/fcab028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Plaques that characterize Alzheimer's disease accumulate over 20 years as a result of decreased clearance of amyloid-β peptides. Such long-lived peptides are subjected to multiple post-translational modifications, in particular isomerization. Using liquid chromatography ion mobility separations mass spectrometry, we characterized the most common isomerized amyloid-β peptides present in the temporal cortex of sporadic Alzheimer's disease brains. Quantitative assessment of amyloid-β N-terminus revealed that > 80% of aspartates (Asp-1 and Asp-7) in the N-terminus was isomerized, making isomerization the most dominant post-translational modification of amyloid-β in Alzheimer's disease brain. Total amyloid-β1-15 was ∼85% isomerized at Asp-1 and/or Asp-7 residues, with only 15% unmodified amyloid-β1-15 left in Alzheimer's disease. While amyloid-β4-15 the next most abundant N-terminus found in Alzheimer's disease brain, was only ∼50% isomerized at Asp-7 in Alzheimer's disease. Further investigations into different biochemically defined amyloid-β-pools indicated a distinct pattern of accumulation of extensively isomerized amyloid-β in the insoluble fibrillar plaque and membrane-associated pools, while the extent of isomerization was lower in peripheral membrane/vesicular and soluble pools. This pattern correlated with the accumulation of aggregation-prone amyloid-β42 in Alzheimer's disease brains. Isomerization significantly alters the structure of the amyloid-β peptide, which not only has implications for its degradation, but also for oligomer assembly, and the binding of therapeutic antibodies that directly target the N-terminus, where these modifications are located.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keyla A Perez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Larissa C Lago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephan Klatt
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Catriona A McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3004, Australia
| | - Ian E Birchall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Blaine R Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
17
|
Nakayoshi T, Kato K, Fukuyoshi S, Takahashi O, Kurimoto E, Oda A. Molecular Mechanisms of Succinimide Formation from Aspartic Acid Residues Catalyzed by Two Water Molecules in the Aqueous Phase. Int J Mol Sci 2021; 22:ijms22020509. [PMID: 33419172 PMCID: PMC7825500 DOI: 10.3390/ijms22020509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
Aspartic acid (Asp) residues are prone to nonenzymatic isomerization via a succinimide (Suc) intermediate. The formation of isomerized Asp residues is considered to be associated with various age-related diseases, such as cataracts and Alzheimer’s disease. In the present paper, we describe the reaction pathway of Suc residue formation from Asp residues catalyzed by two water molecules using the B3LYP/6-31+G(d,p) level of theory. Single-point energies were calculated using the MP2/6-311+G(d,p) level of theory. For these calculations, we used a model compound in which an Asp residue was capped with acetyl and methylamino groups on the N- and C-termini, respectively. In the aqueous phase, Suc residue formation from an Asp residue was roughly divided into three steps, namely, iminolization, cyclization, and dehydration, with the activation energy estimated to be 109 kJ mol−1. Some optimized geometries and reaction modes in the aqueous phase were observed that differed from those in the gas phase.
Collapse
Affiliation(s)
- Tomoki Nakayoshi
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Aichi, Japan; (T.N.); (K.K.); (E.K.)
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Koichi Kato
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Aichi, Japan; (T.N.); (K.K.); (E.K.)
- Department of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Aichi, Japan
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan;
| | - Eiji Kurimoto
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Aichi, Japan; (T.N.); (K.K.); (E.K.)
| | - Akifumi Oda
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Aichi, Japan; (T.N.); (K.K.); (E.K.)
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Osaka, Japan
- Correspondence: ; Tel.: +81-52-832-1151
| |
Collapse
|
18
|
Zhu HJ, Liu D, Tran VP, Wu Z, Jiang K, Zhu H, Zhang J, Gibbons C, Xue B, Shi H, Wang PG. N-Linked Glycosylation Prevents Deamidation of Glycopeptide and Glycoprotein. ACS Chem Biol 2020; 15:3197-3205. [PMID: 33270417 DOI: 10.1021/acschembio.0c00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deamidation has been recognized as a common spontaneous pathway of protein degradation and a prevalent concern in the pharmaceutical industry; deamidation caused the reduction of protein/peptide drug efficacy and shelf life in several cases. More importantly, deamidation of physiological proteins is related to several human diseases and considered a "timer" for the diseases. N-linked glycosylation has a variety of significant biological functions, and it interestingly occurs right on the deamidation site-asparagine. It has been perceived that N-glycosylation could prevent deamidation, but experimental support is still lacking for clearly understanding the role of N-glycosylation on deamidation. Our results presented that deamidation is prevented by naturally occurring N-linked glycosylation. Glycopeptides and corresponding nonglycosylated peptides were used to compare their deamidation rates. All the nonglycosylated peptides have different half-lives ranging from one to 20 days, for the corresponding glycosylated peptides; all the results showed that the deamidation reaction was significantly reduced by the introduction of N-linked glycosylation. A glycoprotein, RNase B, also showed a significantly elongated deamidation half-life compared to nonglycosylated protein RNase A. At last, N-linked glycosylation on INGAP-P, a therapeutic peptide, increased the deamidation half-life of INGAP-P as well as its therapeutic potency.
Collapse
Affiliation(s)
- Hailiang Joshua Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Vy P. Tran
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhigang Wu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kuan Jiang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
19
|
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J 2020; 477:4453-4471. [PMID: 33245750 DOI: 10.1042/bcj20200794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Proteins are essential molecules that carry out key functions in a cell. However, as a result of aging or stressful environments, the protein undergoes a range of spontaneous covalent modifications, including the formation of abnormal l-isoaspartyl residues from aspartyl or asparaginyl residues, which can disrupt the protein's inherent structure and function. PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT: EC 2.1.1.77), an evolutionarily conserved ancient protein repairing enzyme (PRE), converts such abnormal l-isoaspartyl residues to normal l-aspartyl residues and re-establishes the protein's native structure and function. Although originally discovered in animals as a PRE, PIMT emerged as a key PRE in plants, particularly in seeds, in which PIMT plays a predominant role in preserving seed vigor and viability for prolonged periods of time. Interestingly, higher plants encode a second PIMT (PIMT2) protein which possesses a unique N-terminal extension, and exhibits several distinct features and far more complexity than non-plant PIMTs. Recent studies indicate that the role of PIMT is not restricted to preserving seed vigor and longevity but is also implicated in enhancing the growth and survivability of plants under stressful environments. Furthermore, expression studies indicate the tantalizing possibility that PIMT is involved in various physiological processes apart from its role in seed vigor, longevity and plant's survivability under abiotic stress. This review article particularly describes new insights and emerging interest in all facets of this enzyme in plants along with a concise comparative overview on isoAsp formation, and the role and regulation of PIMTs across evolutionary diverse species. Additionally, recent methods and their challenges in identifying isoaspartyl containing proteins (PIMT substrates) are highlighted.
Collapse
|
20
|
Gnoth K, Piechotta A, Kleinschmidt M, Konrath S, Schenk M, Taudte N, Ramsbeck D, Rieckmann V, Geissler S, Eichentopf R, Barendrecht S, Hartlage-Rübsamen M, Demuth HU, Roßner S, Cynis H, Rahfeld JU, Schilling S. Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer's disease-like pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:149. [PMID: 33189132 PMCID: PMC7666770 DOI: 10.1186/s13195-020-00719-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/29/2020] [Indexed: 11/12/2022]
Abstract
Background Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer’s disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aβ variants have been initiated. Modified Aβ represents a small fraction of deposited material in plaques compared to pan-Aβ epitopes, opening up pathways for tailored approaches of immunotherapy. Here, we generated the first monoclonal antibodies that recognize l-isoaspartate-modified Aβ (isoD7-Aβ) and tested a lead antibody molecule in 5xFAD mice. Methods This work comprises a combination of chemical and biochemical techniques as well as behavioral analyses. Aβ peptides, containing l-isoaspartate at position 7, were chemically synthesized and used for immunization of mice and antibody screening methods. Biochemical methods included anti-isoD7-Aβ monoclonal antibody characterization by surface plasmon resonance, immunohistochemical staining of human and transgenic mouse brain, and the development and application of isoD7-Aβ ELISA as well as different non-modified Aβ ELISA. For antibody treatment studies, 12 mg/kg anti-isoD7-Aβ antibody K11_IgG2a was applied intraperitoneally to 5xFAD mice for 38 weeks. Treatment controls implemented were IgG2a isotype as negative and 3D6_IgG2a, the parent molecule of bapineuzumab, as positive control antibodies. Behavioral studies included elevated plus maze, pole test, and Morris water maze. Results Our advanced antibody K11 showed a KD in the low nM range and > 400fold selectivity for isoD7-Aβ compared to other Aβ variants. By using this antibody, we demonstrated that formation of isoD7-Aβ may occur after formation of aggregates; hence, the presence of the isoD7-modification differentiates aged Aβ from newly formed peptides. Importantly, we also show that the Tottori mutation responsible for early-onset AD in a Japanese pedigree is characterized by massively accelerated formation of isoD7-Aβ in cell culture. The presence of isoD7-Aβ was verified by K11 in post mortem human cortex and 5xFAD mouse brain tissue. Passive immunization of 5xFAD mice resulted in a significant reduction of isoD7-Aβ and total Aβ in brain. Amelioration of cognitive impairment was demonstrated by Morris water maze, elevated plus maze, pole, and contextual fear conditioning tests. Interestingly, despite the lower abundance of the isoD7-Aβ epitope, the application of anti-isoD7-Aβ antibodies showed comparable treatment efficacy in terms of reduction of brain amyloid and spatial learning but did not result in an increase of plasma Aβ concentration as observed with 3D6 treatment. Conclusions The present study demonstrates, for the first time, that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to attenuation of AD-like amyloid pathology. In conjunction with previously published data on antibodies directed against pGlu-modified Aβ, the results highlight the crucial role of modified Aβ peptides in AD pathophysiology. Hence, the results also underscore the therapeutic potential of targeting modified amyloid species for defining tailored approaches in AD therapy. Supplementary information The online version contains supplementary material available at 10.1186/s13195-020-00719-x.
Collapse
Affiliation(s)
- Kathrin Gnoth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Anke Piechotta
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Sandra Konrath
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Schenk
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Nadine Taudte
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: PerioTrap Pharmaceuticals GmbH, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Vera Rieckmann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Stefanie Geissler
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Rico Eichentopf
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.,Present address: Fraunhofer Center for Chemical-Biotechnological Processes CBP, Leuna, Germany
| | - Susan Barendrecht
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | | | - Hans-Ulrich Demuth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Steffen Roßner
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.
| | - Stephan Schilling
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| |
Collapse
|
21
|
Lam YPY, Chiu CKC, Wootton CA, Hands-Portman I, Li M, Barrow MP, O'Connor PB. Does deamidation affect inhibitory mechanisms towards amyloid protein aggregation? Chem Commun (Camb) 2020; 56:9787-9790. [PMID: 32748913 DOI: 10.1039/d0cc03548c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deamidated amyloid proteins have been shown to accelerate fibril formation. Herein, the results show the inhibition performance and the interaction site between site-specific inhibitor and amyloid protein are significantly influenced by deamidation; while the inhibition mechanism of non-site specific inhibitor shows no significant disruption caused by amyloid protein deamidation.
Collapse
Affiliation(s)
- Yuko P Y Lam
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | | | | | | - Meng Li
- Department of Chemistry, University of Warwick, Coventry, UK.
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | |
Collapse
|
22
|
Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci 2020; 10:brainsci10040232. [PMID: 32290481 PMCID: PMC7226274 DOI: 10.3390/brainsci10040232] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The accumulation of abnormal protein aggregates represents a universal hallmark of neurodegenerative diseases (NDDs). Post-translational modifications (PTMs) regulate protein structure and function. Dysregulated PTMs may influence the propensity for protein aggregation in NDD-proteinopathies. To investigate this, we systematically reviewed the literature to evaluate effects of PTMs on aggregation propensity for major proteins linked to the pathogenesis and/or progression of NDDs. A search of PubMed, MEDLINE, EMBASE, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between PTMs and protein aggregation in seven NDDs: Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias, transmissible spongiform encephalopathy, and multiple sclerosis. Together, 1222 studies were identified, of which 69 met eligibility criteria. We identified that the following PTMs, in isolation or combination, potentially act as modulators of proteinopathy in NDDs: isoaspartate formation in Aβ, phosphorylation of Aβ or tau in AD; acetylation, 4-hydroxy-2-neonal modification, O-GlcNAcylation or phosphorylation of α-synuclein in PD; acetylation or phosphorylation of TAR DNA-binding protein-43 in ALS, and SUMOylation of superoxide dismutase-1 in ALS; and phosphorylation of huntingtin in HD. The potential pharmacological manipulation of these aggregation-modulating PTMs represents an as-yet untapped source of therapy to treat NDDs.
Collapse
|
23
|
Dyakin VV, Wisniewski TM, Lajtha A. Chiral Interface of Amyloid Beta (Aβ): Relevance to Protein Aging, Aggregation and Neurodegeneration. Symmetry (Basel) 2020; 12:585. [PMID: 34327009 PMCID: PMC8317441 DOI: 10.3390/sym12040585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biochirality is the subject of distinct branches of science, including biophysics, biochemistry, the stereochemistry of protein folding, neuroscience, brain functional laterality and bioinformatics. At the protein level, biochirality is closely associated with various post-translational modifications (PTMs) accompanied by the non-equilibrium phase transitions (PhTs NE). PTMs NE support the dynamic balance of the prevalent chirality of enzymes and their substrates. The stereoselective nature of most biochemical reactions is evident in the enzymatic (Enz) and spontaneous (Sp) PTMs (PTMs Enz and PTMs Sp) of proteins. Protein chirality, which embraces biophysics and biochemistry, is a subject of this review. In this broad field, we focus attention to the amyloid-beta (Aβ) peptide, known for its essential cellular functions and associations with neuropathology. The widely discussed amyloid cascade hypothesis (ACH) of Alzheimer's disease (AD) states that disease pathogenesis is initiated by the oligomerization and subsequent aggregation of the Aβ peptide into plaques. The racemization-induced aggregation of protein and RNA have been extensively studied in the search for the contribution of spontaneous stochastic stereo-specific mechanisms that are common for both kinds of biomolecules. The failure of numerous Aβ drug-targeting therapies requires the reconsolidation of the ACH with the concept of PTMs Sp. The progress in methods of chiral discrimination can help overcome previous limitations in the understanding of AD pathogenesis. The primary target of attention becomes the network of stereospecific PTMs that affect the aggregation of many pathogenic agents, including Aβ. Extensive recent experimental results describe the truncated, isomerized and racemized forms of Aβ and the interplay between enzymatic and PTMs Sp. Currently, accumulated data suggest that non-enzymatic PTMs Sp occur in parallel to an existing metabolic network of enzymatic pathways, meaning that the presence and activity of enzymes does not prevent non-enzymatic reactions from occurring. PTMs Sp impact the functions of many proteins and peptides, including Aβ. This is in logical agreement with the silently accepted racemization hypothesis of protein aggregation (RHPA). Therefore, the ACH of AD should be complemented by the concept of PTMs Sp and RHPA.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Departmemts: Virtual Reality Perception Lab. (VV. Dyakin) and Center for Neurochemistry (A. Lajtha), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Departmemts: Virtual Reality Perception Lab. (VV. Dyakin) and Center for Neurochemistry (A. Lajtha), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
24
|
Du S, Readel ER, Wey M, Armstrong DW. Complete identification of all 20 relevant epimeric peptides in β-amyloid: a new HPLC-MS based analytical strategy for Alzheimer's research. Chem Commun (Camb) 2020; 56:1537-1540. [PMID: 31922154 DOI: 10.1039/c9cc09080k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the underlying cause of Alzheimer's disease (AD) is not known, the extracellular deposition of β-amyloid (Aβ) is considered as a hallmark of AD brains. Evidence has shown the occurrence of d-Asp, isoAsp, and d-Ser residues in Aβ, which may be indicative of and/or contribute to the neurodegeneration in AD patients. Herein, we have developed the first high-throughput profiling technique for all 20 isobaric Aβ peptide epimers containing Asp, isoAsp, and Ser isomers using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). This new analytical strategy allows the direct detection and identification of all possible Asp, isoAsp, and Ser stereoisomers in Aβ, and may contribute to a better understanding of the pathogenesis of AD.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | | | | | | |
Collapse
|
25
|
Chatterjee T, Das G, Chatterjee BK, Dhar J, Ghosh S, Chakrabarti P. The role of isoaspartate in fibrillation and its prevention by Protein-L-isoaspartyl methyltransferase. Biochim Biophys Acta Gen Subj 2019; 1864:129500. [PMID: 31785325 DOI: 10.1016/j.bbagen.2019.129500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Isomerization of aspartate to isoaspartate (isoAsp) on aging causes protein damage and malfunction. Protein-L-isoaspartyl methyltransferase (PIMT) performs a neuroprotective role by repairing such residues. A hexapeptide, Val-Tyr-Pro-(isoAsp)-His-Ala (VA6), a substrate of PIMT, is shown to form fibrils, while the normal Asp-containing peptide does not. Considering the role of PIMT against epileptic seizure, the combined effect of PIMT and two antiepileptic drugs (AEDs) (valproic acid and stiripentol) was investigated for anti-fibrillation activity. METHODS Structural/functional modulations due to the binding of AEDs to PIMT were investigated using biophysical techniques. Thioflavin T (ThT) fluorescence assay and microscopic methods were employed to study fibril formation by VA6. In vitro experiments with PC12 cells were carried out with PIMT/AEDs. RESULTS ThT assay indicated reduction of fibrillation of VA6 by PIMT. AEDs stabilize PIMT, bind close to the cofactor binding site, possibly exerting allosteric effect, increase the enzymatic activity, and anti-fibrillation efficacy. Furthermore, Aβ42, implicated in Alzheimer's disease, undergoes β-sheet to α-helix transition in presence of PIMT. Studies with PC12 derived neurons showed that PIMT and PIMT/AEDs exerted neuroprotective effect against anti-NGF induced neurotoxicity. This was further validated against neurotoxicity induced by Aβ42 in primary rat cortical neurons. CONCLUSIONS The study provides a new perspective to the role isoAsp in protein fibrillation, PIMT in its prevention and AEDs in enhancing the activity of the enzyme. GENERAL SIGNIFICANCE IsoAsp, with an additional C atom in the main-chain of polypeptide chain, may make it more susceptible to fibrillation. PIMT alone, or in association with AEDs prevents this.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | - Gaurav Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Jesmita Dhar
- Bioinformatics Center, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India; Bioinformatics Center, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
26
|
Warmack RA, Boyer DR, Zee CT, Richards LS, Sawaya MR, Cascio D, Gonen T, Eisenberg DS, Clarke SG. Structure of amyloid-β (20-34) with Alzheimer's-associated isomerization at Asp23 reveals a distinct protofilament interface. Nat Commun 2019; 10:3357. [PMID: 31350392 PMCID: PMC6659688 DOI: 10.1038/s41467-019-11183-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Amyloid-β (Aβ) harbors numerous posttranslational modifications (PTMs) that may affect Alzheimer's disease (AD) pathogenesis. Here we present the 1.1 Å resolution MicroED structure of an Aβ 20-34 fibril with and without the disease-associated PTM, L-isoaspartate, at position 23 (L-isoAsp23). Both wild-type and L-isoAsp23 protofilaments adopt β-helix-like folds with tightly packed cores, resembling the cores of full-length fibrillar Aβ structures, and both self-associate through two distinct interfaces. One of these is a unique Aβ interface strengthened by the isoaspartyl modification. Powder diffraction patterns suggest a similar structure may be adopted by protofilaments of an analogous segment containing the heritable Iowa mutation, Asp23Asn. Consistent with its early onset phenotype in patients, Asp23Asn accelerates aggregation of Aβ 20-34, as does the L-isoAsp23 modification. These structures suggest that the enhanced amyloidogenicity of the modified Aβ segments may also reduce the concentration required to achieve nucleation and therefore help spur the pathogenesis of AD.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - David R Boyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Chih-Te Zee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Logan S Richards
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Tamir Gonen
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1737, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095-1751, USA
| | - David S Eisenberg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1737, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1570, USA.
| |
Collapse
|
27
|
Kehoe PG. The Coming of Age of the Angiotensin Hypothesis in Alzheimer's Disease: Progress Toward Disease Prevention and Treatment? J Alzheimers Dis 2019; 62:1443-1466. [PMID: 29562545 PMCID: PMC5870007 DOI: 10.3233/jad-171119] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide recognition of a complex association between midlife hypertension and cardiovascular disease and later development of Alzheimer’s disease (AD) and cognitive impairment. While significant progress has been made in reducing rates of mortality and morbidity due to cardiovascular disease over the last thirty years, progress towards effective treatments for AD has been slower. Despite the known association between hypertension and dementia, research into each disease has largely been undertaken in parallel and independently. Yet over the last decade and a half, the emergence of converging findings from pre-clinical and clinical research has shown how the renin angiotensin system (RAS), which is very important in blood pressure regulation and cardiovascular disease, warrants careful consideration in the pathogenesis of AD. Numerous components of the RAS have now been found to be altered in AD such that the multifunctional and potent vasoconstrictor angiotensin II, and similarly acting angiotensin III, are greatly altered at the expense of other RAS signaling peptides considered to contribute to neuronal and cognitive function. Collectively these changes may contribute to many of the neuropathological hallmarks of AD, as well as observed progressive deficiencies in cognitive function, while also linking elements of a number of the proposed hypotheses for the cause of AD. This review discusses the emergence of the RAS and its likely importance in AD, not only because of the multiple facets of its involvement, but also perhaps fortuitously because of the ready availability of numerous RAS-acting drugs, that could be repurposed as interventions in AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
28
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
29
|
Lam YPY, Wootton CA, Hands-Portman I, Wei J, Chiu CKC, Romero-Canelon I, Lermyte F, Barrow MP, O'Connor PB. Does deamidation of islet amyloid polypeptide accelerate amyloid fibril formation? Chem Commun (Camb) 2019; 54:13853-13856. [PMID: 30474090 DOI: 10.1039/c8cc06675b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry has been applied to determine the deamidation sites and the aggregation region of the deamidated human islet amyloid polypeptide (hIAPP). Mutant hIAPP with iso-aspartic residue mutations at possible deamidation sites showed very different fibril formation behaviour, which correlates with the observed deamidation-induced acceleration of hIAPP aggregation.
Collapse
Affiliation(s)
- Yuko P Y Lam
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rezvykh AP, Yurinskaya MM, Vinokurov MG, Krasnov GS, Mitkevich VA, Makarov AA, Evgen’ev MB, Zatsepina OG. The Effect of Beta-Amyloid Peptides and Main Stress Protein HSP70 on Human SH-SY5Y Neuroblastoma Proteome. Mol Biol 2018. [DOI: 10.1134/s0026893318060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci 2018; 19:ijms19082449. [PMID: 30126231 PMCID: PMC6121660 DOI: 10.3390/ijms19082449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
32
|
Ilie IM, Caflisch A. Disorder at the Tips of a Disease-Relevant Aβ42 Amyloid Fibril: A Molecular Dynamics Study. J Phys Chem B 2018; 122:11072-11082. [PMID: 29965774 DOI: 10.1021/acs.jpcb.8b05236] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present a simulation study of the early events of peptide dissociation from a fibril of the Alzheimer's Aβ42 peptide. The fibril consists of layers of two adjacent Aβ42 peptides each folded in an S-shaped structure which has been determined by solid state NMR spectroscopy of a monomorphic disease-relevant species. Multiple molecular dynamics runs (16 at 310 K and 15 at 370 K) were carried out starting from an 18-peptide protofibril for a cumulative sampling of about 15 μs. The simulations show structural stability of the fibrillar core and an overall increase in the twist to about 3 degrees. The N-terminal segment 1-14 is disordered in all peptides. At both ends of the fibril, the central segment 21-29, which includes part of the β2 strand, dissociates in some of the simulations. The β1 and β3 strands, residues 15-20 and 35-41, respectively, are structurally stable. The transient binding of the N-terminal stretch to the β3 strand of the adjacent peptide at the tip is likely to contribute to the arrest phase of the stop-and-go mechanism.
Collapse
Affiliation(s)
- Ioana M Ilie
- Department of Biochemistry , University of Zürich , 8057 Zürich , Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry , University of Zürich , 8057 Zürich , Switzerland
| |
Collapse
|
33
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
34
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Nielsen NS, Juhl DW, Poulsen ET, Lukassen MV, Poulsen EC, Risør MW, Scavenius C, Enghild JJ. Mutation-Induced Deamidation of Corneal Dystrophy-Related Transforming Growth Factor β-Induced Protein. Biochemistry 2017; 56:6470-6480. [PMID: 29140698 DOI: 10.1021/acs.biochem.7b00668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mutations in the transforming growth factor β-induced protein (TGFBIp) cause phenotypically diverse corneal dystrophies, where protein aggregation in the cornea leads to severe visual impairment. Previous studies have shown a relationship between mutant-specific corneal dystrophy phenotypes and the thermodynamic stability of TGFBIp. Using liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance (NMR), we investigated correlations between the structural integrity of disease-related mutants of the fourth FAS1 domain (FAS1-4) and deamidation of TGFBIp residue Asn622. We observed a high rate of Asn622 deamidation in the A546D and A546D/P551Q FAS1-4 mutants that were both largely unstructured as determined by NMR. Conversely, the more structurally organized A546T and V624M FAS1-4 mutants had reduced deamidation rates, suggesting that a folded and stable FAS1-4 domain precludes Asn622 deamidation. Wild-type, R555Q, and R555W FAS1-4 mutants displayed very slow deamidation, which agrees with their similar and ordered NMR structures, where Asn622 is in a locked conformation. We confirmed the FAS1-4 mutational effect on deamidation rates in full-length TGFBIp mutants and found a similar ranking compared to that of the FAS1-4 domain alone. Consequently, the deamidation rate of Asn622 can be used to predict the structural effect of the many destabilizing and/or stabilizing mutations reported for TGFBIp. In addition, the deamidation of Asn622 may influence the pathophysiology of TGFBIp-induced corneal dystrophies.
Collapse
Affiliation(s)
- Nadia Sukusu Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Dennis Wilkens Juhl
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Ebbe Toftgaard Poulsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Marie V Lukassen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Emil Christian Poulsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Michael W Risør
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| |
Collapse
|
36
|
Identification of post-translational modifications of Aβ peptide in platelet membranes from patients with cerebral amyloid angiopathy. J Neurol Sci 2017; 383:11-17. [DOI: 10.1016/j.jns.2017.08.3269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/13/2023]
|
37
|
Müller MM. Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges. Biochemistry 2017; 57:177-185. [PMID: 29064683 PMCID: PMC5770884 DOI: 10.1021/acs.biochem.7b00861] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Post-translational
modifications (PTMs) dramatically enhance the
capabilities of proteins. They introduce new functionalities and dynamically
control protein activity by modulating intra- and intermolecular interactions.
Traditionally, PTMs have been considered as reversible attachments
to nucleophilic functional groups on amino acid side chains, whereas
the polypeptide backbone is often thought to be inert. This paradigm
is shifting as chemically and functionally diverse alterations of
the protein backbone are discovered. Importantly, backbone PTMs can
control protein structure and function just as side chain modifications
do and operate through unique mechanisms to achieve these features.
In this Perspective, I outline the various types of protein backbone
modifications discovered so far and highlight their contributions
to biology as well as the challenges in studying this versatile yet
poorly characterized class of PTMs.
Collapse
Affiliation(s)
- Manuel M Müller
- Department of Chemistry, King's College London , 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
38
|
Nguyen PT, Zottig X, Sebastiao M, Bourgault S. Role of Site-Specific Asparagine Deamidation in Islet Amyloid Polypeptide Amyloidogenesis: Key Contributions of Residues 14 and 21. Biochemistry 2017; 56:3808-3817. [PMID: 28665109 DOI: 10.1021/acs.biochem.7b00209] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deamidation of an asparagine residue is a spontaneous non-enzymatic post-translational modification that results in the conversion of asparagine into a mixture of aspartic acid and isoaspartic acid. This chemical conversion modulates protein conformation and physicochemical properties, which could lead to protein misfolding and aggregation. In this study, we investigated the effects of site-specific Asn deamidation on the amyloidogenicity of the aggregation-prone peptide islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptidic hormone whose deposition as insoluble amyloid fibrils is closely associated with type 2 diabetes. Asn residues were successively substituted with an Asp or isoAsp, and amyloid formation was evaluated by a thioflavin T fluorescence assay, circular dichroism spectroscopy, atomic force microscopy, and transmission electron microscopy. Whereas deamidation at position 21 inhibited IAPP conformational conversion and amyloid formation, the N14D mutation accelerated self-assembly and led to the formation of long and thick amyloid fibrils. In contrast, IAPP was somewhat tolerant to the successive deamidation of Asn residues 22, 31, and 35. Interestingly, a small molar ratio of IAPP deamidated at position 14 promoted the formation of nucleating species and the elongation from unmodified IAPP. Besides, using the rat pancreatic β cell line INS-1E, we observed that site-specific deamidation did not significantly alter IAPP-induced toxicity. These data indicate that Asn deamidation can modulate IAPP amyloid formation and fibril morphology and that the site of modification plays a critical role. Above all, this study reinforces the notion that IAPP amyloidogenesis is governed by precise intermolecular interactions involving specific Asn side chains.
Collapse
Affiliation(s)
- Phuong Trang Nguyen
- Department of Chemistry, University of Québec in Montreal , C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO
| | - Ximena Zottig
- Department of Chemistry, University of Québec in Montreal , C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO
| | - Mathew Sebastiao
- Department of Chemistry, University of Québec in Montreal , C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO
| | - Steve Bourgault
- Department of Chemistry, University of Québec in Montreal , C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO
| |
Collapse
|
39
|
Schmitt ND, Agar JN. Parsing disease-relevant protein modifications from epiphenomena: perspective on the structural basis of SOD1-mediated ALS. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:480-491. [PMID: 28558143 PMCID: PMC6002871 DOI: 10.1002/jms.3953] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 05/08/2023]
Abstract
Conformational change and modification of proteins are involved in many cellular functions. However, they can also have adverse effects that are implicated in numerous diseases. How structural change promotes disease is generally not well-understood. This perspective illustrates how mass spectrometry (MS), followed by toxicological and epidemiological validation, can discover disease-relevant structural changes and therapeutic strategies. We (with our collaborators) set out to characterize the structural and toxic consequences of disease-associated mutations and post-translational modifications (PTMs) of the cytosolic antioxidant protein Cu/Zn-superoxide dismutase (SOD1). Previous genetic studies discovered >180 different mutations in the SOD1 gene that caused familial (inherited) amyotrophic lateral sclerosis (fALS). Using hydrogen-deuterium exchange with mass spectrometry, we determined that diverse disease-associated SOD1 mutations cause a common structural defect - perturbation of the SOD1 electrostatic loop. X-ray crystallographic studies had demonstrated that this leads to protein aggregation through a specific interaction between the electrostatic loop and an exposed beta-barrel edge strand. Using epidemiology methods, we then determined that decreased SOD1 stability and increased protein aggregation are powerful risk factors for fALS progression, with a combined hazard ratio > 300 (for comparison, a lifetime of smoking is associated with a hazard ratio of ~15 for lung cancer). The resulting structural model of fALS etiology supported the hypothesis that some sporadic ALS (sALS, ~80% of ALS is not associated with a gene defect) could be caused by post-translational protein modification of wild-type SOD1. We developed immunocapture antibodies and high sensitivity top-down MS methods and characterized PTMs of wild-type SOD1 using human tissue samples. Using global hydrogen-deuterium exchange, X-ray crystallography and neurotoxicology, we then characterized toxic and protective subsets of SOD1 PTMs. To cap this perspective, we present proof-of-concept that post-translational modification can cause disease. We show that numerous mutations (N➔D; Q➔E), which result in the same chemical structure as the PTM deamidation, cause multiple diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Correspondence Northeastern University, 360 Huntington Avenue, 140 The Fenway, Room 417, Boston, MA 02115
| |
Collapse
|
40
|
Barykin EP, Mitkevich VA, Kozin SA, Makarov AA. Amyloid β Modification: A Key to the Sporadic Alzheimer's Disease? Front Genet 2017; 8:58. [PMID: 28555154 PMCID: PMC5430028 DOI: 10.3389/fgene.2017.00058] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Evgeny P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
41
|
ISHII C, MIYAMOTO T, ISHIGO S, MIYOSHI Y, MITA M, HOMMA H, UEDA T, HAMASE K. Two-Dimensional HPLC-MS/MS Determination of Multiple D-Amino Acid Residues in the Proteins Stored Under Various pH Conditions. CHROMATOGRAPHY 2017. [DOI: 10.15583/jpchrom.2017.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Shoto ISHIGO
- Graduate School of Pharmaceutical Sciences, Kyushu University
- Shiseido Co., Ltd
| | - Yurika MIYOSHI
- Graduate School of Pharmaceutical Sciences, Kyushu University
- Shiseido Co., Ltd
| | | | - Hiroshi HOMMA
- Department of Pharmaceutical Life Sciences, Kitasato University
| | - Tadashi UEDA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
42
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
43
|
Barykin EP, Petrushanko IY, Burnysheva KM, Makarov AA, Mitkevich VA. Isomerization of Asp7 increases the toxic effects of amyloid β and its phosphorylated form in SH-SY5Y neuroblastoma cells. Mol Biol 2016. [DOI: 10.1134/s0026893316050034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Kori Y, Patel R, Neill A, Liu H. A conventional procedure to reduce Asn deamidation artifacts during trypsin peptide mapping. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010:107-13. [DOI: 10.1016/j.jchromb.2015.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
|
45
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
46
|
Differential contribution of isoaspartate post-translational modifications to the fibrillization and toxic properties of amyloid β and the Asn23 Iowa mutation. Biochem J 2015; 456:347-60. [PMID: 24028142 DOI: 10.1042/bj20130652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations within the Aβ (amyloid β) peptide, especially those clustered at residues 21-23, are linked to early-onset AD (Alzheimer's disease) and primarily associated with cerebral amyloid angiopathy. The Iowa variant, a substitution of an aspartic acid residue for asparagine at position 23 (D23N), associates with widespread vascular amyloid and abundant diffuse pre-amyloid lesions significantly exceeding the incidence of mature plaques. Brain Iowa deposits consist primarily of a mixture of mutated and non-mutated Aβ species exhibiting partial aspartate isomerization at positions 1, 7 and 23. The present study analysed the contribution of the post-translational modification and the D23N mutation to the aggregation/fibrillization and cell toxicity properties of Aβ providing insight into the elicited cell death mechanisms. The induction of apoptosis by the different Aβ species correlated with their oligomerization/fibrillization propensity and β-sheet content. Although cell toxicity was primarily driven by the D23N mutation, all Aβ isoforms tested were capable, albeit at different time frames, of eliciting comparable apoptotic pathways with mitochondrial engagement and cytochrome c release to the cytoplasm in both neuronal and microvascular endothelial cells. Methazolamide, a cytochrome c release inhibitor, exerted a protective effect in both cell types, suggesting that pharmacological targeting of mitochondria may constitute a viable therapeutic avenue.
Collapse
|
47
|
Thal DR, Walter J, Saido TC, Fändrich M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer's disease. Acta Neuropathol 2015; 129:167-82. [PMID: 25534025 DOI: 10.1007/s00401-014-1375-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by β-amyloid plaques and intraneuronal τ aggregation usually associated with cerebral amyloid angiopathy (CAA). Both β-amyloid plaques and CAA deposits contain fibrillar aggregates of the amyloid β-peptide (Aβ). Aβ plaques and CAA develop first in neocortical areas of preclinical AD patients and, then, expand in a characteristic sequence into further brain regions with end-stage pathology in symptomatic AD patients. Aβ aggregates are not restricted to amyloid plaques and CAA. Soluble and several types of insoluble non-plaque- and non-CAA-associated Aβ aggregates have been described. Amyloid fibrils are products of a complex self-assembly process that involves different types of transient intermediates. Amongst these intermediate species are protofibrils and oligomers. Different variants of Aβ peptides may result from alternative processing or from mutations that lead to rare forms of familial AD. These variants can exhibit different self-assembly and aggregation properties. In addition, several post-translational modifications of Aβ have been described that result, for example, in the production of N-terminal truncated Aβ with pyroglutamate modification at position 3 (AβN3pE) or of Aβ phosphorylated at serine 8 (pSer8Aβ). Both AβN3pE and pSer8Aβ show enhanced aggregation into oligomers and fibrils. However, the earliest detectable soluble and insoluble Aβ aggregates in the human brain exhibit non-modified Aβ, whereas AβN3pE and pSer8Aβ are detected in later stages. This finding indicates the existence of different biochemical stages of Aβ aggregate maturation with pSer8Aβ being related mainly to cases with symptomatic AD. The conversion from preclinical to symptomatic AD could thereby be related to combined effects of increased Aβ concentration, maturation of aggregates and spread of deposits into additional brain regions. Thus, the inhibition of Aβ aggregation and maturation before entering the symptomatic stage of the disease as indicated by the accumulation of pSer8Aβ may represent an attractive treatment strategy for preventing disease progression.
Collapse
|
48
|
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore
| |
Collapse
|
49
|
Kummer MP, Heneka MT. Truncated and modified amyloid-beta species. ALZHEIMERS RESEARCH & THERAPY 2014; 6:28. [PMID: 25031638 PMCID: PMC4055046 DOI: 10.1186/alzrt258] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease pathology is closely connected to the processing of the amyloid precursor protein (APP) resulting in the formation of a variety of amyloid-beta (Aβ) peptides. They are found as insoluble aggregates in senile plaques, the histopathological hallmark of the disease. These peptides are also found in soluble, mostly monomeric and dimeric, forms in the interstitial and cerebrospinal fluid. Due to the combination of several enzymatic activities during APP processing, Aβ peptides exist in multiple isoforms possessing different N-termini and C-termini. These peptides include, to a certain extent, part of the juxtamembrane and transmembrane domain of APP. Besides differences in size, post-translational modifications of Aβ – including oxidation, phosphorylation, nitration, racemization, isomerization, pyroglutamylation, and glycosylation – generate a plethora of peptides with different physiological and pathological properties that may modulate disease progression.
Collapse
Affiliation(s)
- Markus P Kummer
- Department of Neurology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Michael T Heneka
- Department of Neurology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Holbeinstrasse 15, 53117 Bonn, Germany
| |
Collapse
|
50
|
Peripherally Applied Synthetic Peptide isoAsp7-Aβ(1-42) Triggers Cerebral β-Amyloidosis. Neurotox Res 2013; 24:370-6. [DOI: 10.1007/s12640-013-9399-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/25/2022]
|