1
|
Sokolowski DJ, Ahn J, Erdman L, Hou H, Ellis K, Wang L, Goldenberg A, Wilson M. Differential Expression Enrichment Tool (DEET): an interactive atlas of human differential gene expression. NAR Genom Bioinform 2023; 5:lqad003. [PMID: 36694664 PMCID: PMC9869326 DOI: 10.1093/nargab/lqad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Differential gene expression analysis using RNA sequencing (RNA-seq) data is a standard approach for making biological discoveries. Ongoing large-scale efforts to process and normalize publicly available gene expression data enable rapid and systematic reanalysis. While several powerful tools systematically process RNA-seq data, enabling their reanalysis, few resources systematically recompute differentially expressed genes (DEGs) generated from individual studies. We developed a robust differential expression analysis pipeline to recompute 3162 human DEG lists from The Cancer Genome Atlas, Genotype-Tissue Expression Consortium, and 142 studies within the Sequence Read Archive. After measuring the accuracy of the recomputed DEG lists, we built the Differential Expression Enrichment Tool (DEET), which enables users to interact with the recomputed DEG lists. DEET, available through CRAN and RShiny, systematically queries which of the recomputed DEG lists share similar genes, pathways, and TF targets to their own gene lists. DEET identifies relevant studies based on shared results with the user's gene lists, aiding in hypothesis generation and data-driven literature review.
Collapse
Affiliation(s)
| | - Jedid Ahn
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Lauren Erdman
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Huayun Hou
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Kai Ellis
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liangxi Wang
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anna Goldenberg
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada,Vector Institute, Toronto, ON, Canada,CIFAR, Toronto, ON, Canada
| | - Michael D Wilson
- To whom correspondence should be addressed. Tel: +1 416 813 7654 (Ext 328699); Fax: +1 416 813 4931;
| |
Collapse
|
2
|
Hjortebjerg R, Thomsen KL, Agnholt J, Frystyk J. The IGF system in patients with inflammatory bowel disease treated with prednisolone or infliximab: potential role of the stanniocalcin-2 / PAPP-A / IGFBP-4 axis. BMC Gastroenterol 2019; 19:83. [PMID: 31159802 PMCID: PMC6547608 DOI: 10.1186/s12876-019-1000-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/23/2019] [Indexed: 01/09/2023] Open
Abstract
Background Patients with inflammatory bowel disease (IBD) present with reduced serum insulin-like growth factor I (IGF-I). Anti-inflammatory treatment with prednisolone or infliximab ameliorates symptoms and increases circulating IGF-I, but prednisolone induces catabolism, whereas infliximab may promote protein synthesis. Recently, stanniocalcin-2 (STC2) was discovered as a novel inhibitor of the enzyme pregnancy-associated plasma protein-A (PAPP-A), which modulates IGF-I activity. PAPP-A can cleave IGF binding protein-4 (IGFBP-4), upon which IGF-I is liberated. We hypothesized that prednisolone and infliximab exert different effects on levels of STC2, PAPP-A, and IGFBP-4, thereby explaining the distinct metabolic effects of prednisolone and infliximab. Methods Thirty-eight patients with active IBD treated with either prednisolone (n = 17) or infliximab (n = 21) were examined before and after 7 days of treatment. Circulating levels of IGF-I, IGF-II, IGFBP-3, PAPP-A, and STC2 were measured by immunoassays. Intact IGFBP-4 and two IGFBP-4 fragments were determined by a novel immunoassay. Bioactive IGF was assessed by cell-based IGF receptor activation assay. Concentrations of IGFBP-4, PAPP-A, and STC2 on day 0 and 7 were compared to healthy control subjects. Results Following seven days of prednisolone treatment, total and bioactive IGF-I were increased (p < 0.001 and p < 0.05, respectively). Upon infliximab treatment, total IGF-I levels were augmented (p < 0.05), yet IGF bioactivity remained unaltered. Intact IGFBP-4 and the two IGFBP-4 fragments generated upon cleavage by PAPP-A were all decreased following treatment with either prednisolone or infliximab (all p < 0.05). PAPP-A levels were only increased by infliximab (p = 0.005), whereas the inhibitor STC2 did not respond to any of the treatments. Conclusion IGF-I and IGFBP-4 concentrations were markedly altered in patients with IBD and near-normalized with disease remission following treatment with prednisolone or infliximab. Thus, IGFBP-4 may modulate IGF bioavailability in IBD. The effect of immunosuppression did not appear to extend beyond the regulation of IGF and IGFBP-4, as neither PAPP-A nor STC2 were discernibly affected. Trial registration ClinicalTrials.gov: NCT00955123. Date of registration: August 7, 2009 (retrospectively registered).
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark. .,The Danish Diabetes Academy, Odense, Denmark.
| | - Karen L Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Agnholt
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
4
|
Szczesny E, Basta-Kaim A, Slusarczyk J, Trojan E, Glombik K, Regulska M, Leskiewicz M, Budziszewska B, Kubera M, Lason W. The impact of prenatal stress on insulin-like growth factor-1 and pro-inflammatory cytokine expression in the brains of adult male rats: the possible role of suppressors of cytokine signaling proteins. J Neuroimmunol 2014; 276:37-46. [PMID: 25151093 DOI: 10.1016/j.jneuroim.2014.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022]
Abstract
Stress, inflammation and the reduced expression of neurotrophic factors are risk factors for depression. The objective of this study was to determine if prenatal stress affects IGF-1 - cytokine interactions by influencing suppressors of cytokine signaling (SOCS) in the brains of adult rats, in basal conditions and after acute lipopolysaccharide (LPS) treatment. We demonstrated that prenatal stress leads to depression-like behavior, decreased IGF-1, increased IL-1β, TNF-α and IFN-γ release and disturbed SOCS-1, SOCS-2 and SOCS-3 expression in the hippocampus and frontal cortex of adult offspring. Furthermore, prenatal stress enhances the brain response to LPS-evoked inflammatory challenges.
Collapse
Affiliation(s)
- Ewa Szczesny
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland.
| | - Joanna Slusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Katarzyna Glombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Magdalena Regulska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Monika Leskiewicz
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Boguslawa Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Wladyslaw Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| |
Collapse
|
5
|
Zhang Q, Jiang Y, Miller MJ, Peng B, Liu L, Soderland C, Tang J, Kern TS, Pintar J, Steinle JJ. IGFBP-3 and TNF-α regulate retinal endothelial cell apoptosis. Invest Ophthalmol Vis Sci 2013; 54:5376-84. [PMID: 23868984 DOI: 10.1167/iovs.13-12497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We hypothesized that loss of insulin-like growth factor binding protein 3 (IGFBP-3) signaling would produce neuronal changes in the retina similar to early diabetes. METHODS To understand better the role of IGFBP-3 in the retina, IGFBP-3 knockout (KO) mice were evaluated for neuronal, vascular, and functional changes compared to wild-type littermates. We also cultured retinal endothelial cells (REC) in normoglycemia or hyperglycemia to determine the interaction between IGFBP-3 and TNF-α, as data indicate that both proteins are regulated by β-adrenergic receptors and respond antagonistically. We also treated some cells with Compound 49b, a novel β-adrenergic receptor agonist we have reported previously to regulate IGFBP-3 and TNF-α. RESULTS Electroretinogram analyses showed decreased B-wave and oscillatory potential amplitudes in the IGFBP-3 KO mice, corresponding to increased apoptosis. Retinal thickness and cell numbers in the ganglion cell layer were reduced in the IGFBP-3 KO mice. As expected, loss of IGFBP-3 was associated with increased TNF-α levels. When TNF-α and IGFBP-3 were applied to REC, they worked antagonistically, with IGFBP-3 inhibiting apoptosis and TNF-α promoting apoptosis. Due to their antagonistic nature, results suggest that apoptosis of REC may depend upon which protein (IGFBP-3 versus TNF-α) is active. CONCLUSIONS Taken together, loss of IGFBP-3 signaling results in a phenotype similar to neuronal changes observed in diabetic retinopathy in the early phases, including increased TNF-α levels.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gestational nicotine treatment modulates cell death/survival-related pathways in the brains of adolescent female rats. Int J Neuropsychopharmacol 2011; 14:91-106. [PMID: 20426880 DOI: 10.1017/s1461145710000416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Gestational exposure to nicotine affects brain development, leading to numerous behavioural and physiological deficits in the offspring during adolescence. To analyse the molecular mechanisms underlying these effects, a pathway-focused oligonucleotide microarray was used to determine gene expression profiles in five brain regions (i.e. amygdala, prefrontal cortex, nucleus accumbens, periventricular nucleus of the hypothalamus, and caudate putamen CPu) of adolescent rats that received nicotine or saline during gestation. Following appropriate statistical and Gene Set Enrichment Analyses, 24 cell death/survival-related pathways were found to be significantly modulated by gestational nicotine. On the basis of their biological functions, these pathways can be classified into three categories: growth factor, death receptor, and kinase cascade. We employed a quantitative real-time PCR array to verify the findings by measuring the expression of 29 genes involved in cell death/survival-related pathways. Together, our findings indicate that gestational nicotine exposure has significant effects on gene expression in cell death/survival-related pathways in the brains of adolescent offspring. Such effects appear to be brain region-specific and are realized through regulation of the expression of growth factors and receptors, caspases, kinases, and transcription factors. On the basis of these findings, we offer a hypothetical model to explain how gestational nicotine exposure may affect cell death and survival in the brains of adolescent offspring by regulating the balance between growth-factor and death-receptor pathways.
Collapse
|
7
|
Helmich I, Latini A, Sigwalt A, Carta MG, Machado S, Velasques B, Ribeiro P, Budde H. Neurobiological alterations induced by exercise and their impact on depressive disorders [corrected]. Clin Pract Epidemiol Ment Health 2010; 6:115-25. [PMID: 21283646 PMCID: PMC3026330 DOI: 10.2174/1745017901006010115] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND The impact of physical activity on brain metabolic functions has been investigated in different studies and there is growing evidence that exercise can be used as a preventive and rehabilitative intervention in the treatment of depressive disorders. However, the exact neuronal mechanisms underlying the latter phenomenon have not been clearly elucidated. The present article summarises key results derived from studies that focussed on the neurobiological impact of exercise on brain metabolic functions associated with depressive disorders. Since major depressive disorder (MDD) is a life threatening disease it is of great significance to find reliable strategies to prevent or to cure this illness. Therefore, the aim of this paper is to review (1) the physiological relationship between physical activity and depressive disorders and (2) the potential neurobiological alterations induced by exercise that might lead to the relief of mental disorders like depression. METHODS We searched electronic databases for literature concerning the relationship between exercise and depression from 1963 until 2009. RESULTS The data suggests an association between physical inactivity and higher levels of depressive symptoms. Properly designed studies could show that exercise training can be as effective as antidepressive medications. CONCLUSION The exact mechanisms how exercise affects the brain are not fully understood and the literature lacks of well designed studies concerning the effects of exercise training on depressive disorders. But the observed antidepressant actions of exercise are strong enough that it already can be used as an alternative to current medications in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Ingo Helmich
- Department of Neurology, Psychosomatic Medicine, and Psychiatry, Institute of Health Promotion and Clinical Movement Science, German Sports University Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jiang Y, Steinle JJ. Regulation of IRS-2 signaling by IGF-1 receptor in the diabetic rat heart. Can J Physiol Pharmacol 2010; 88:553-61. [DOI: 10.1139/y10-006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease involves changes in inflammatory markers. Since insulin/insulin-like growth factor 1 receptor (IGF-1R) can activate vascular endothelial growth factor to promote vascular growth, reduced IGF-1R signaling in the type I diabetic heart could be detrimental, leading to reduced, collateral blood vessel growth. This study assessed whether diabetes can induce an inflammatory phenotype to regulate molecules in the IGF-1 signaling cascade, thus mediating apoptosis. Rats were made diabetic using streptozotocin (to render them type I diabetic) for 2 months with no insulin treatment. At 2 months, rats were sacrificed under anesthesia, and the left ventricle was immediately removed and placed into cold lysis buffer for protein analyses. Western blotting, immunoprecipitation, and enzyme-linked immunosorbent assay analyses were completed to evaluate protein levels. Diabetes increased TNF-α, interleukin-6 (IL-6), and IL-1α levels in the heart. JNK and p42/p44 activity was significantly increased in the diabetic heart, while IGF-1R phosphorylation, IRS-2 tyrosine phosphorylation, and Akt activities were reduced. A significant increase in Bad protein levels and the cleavage of caspase 3 was observed in the diabetic heart. These results suggest that diabetes activates multiple inflammatory markers in the heart, which then signal a decrease in the activities of key players in the insulin-signaling cascade, namely IGF-1R, IRS-2, and Akt, to regulate apoptosis.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology and Department of Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jena J. Steinle
- Department of Ophthalmology and Department of Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
9
|
AF4 is a critical regulator of the IGF-1 signaling pathway during Purkinje cell development. J Neurosci 2010; 29:15366-74. [PMID: 20007461 DOI: 10.1523/jneurosci.5188-09.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Deregulation of the insulin-like growth factor 1 (IGF-1) signaling pathway is a recurrent finding in mouse models and human patients with cerebellar ataxia and thus represents a common pathological cascade in neuronal cell death that may be targeted for therapy. We have previously identified a point mutation in AF4, a transcription cofactor of RNA polymerase II elongation and chromatin remodeling, that causes progressive and highly specific Purkinje cell (PC) death in the ataxic mouse mutant robotic, leading to the accumulation of AF4 in PCs. Here we confirm that the spatiotemporal pattern of PC degeneration in the robotic cerebellum correlates with the specific profile of AF4 upregulation. To identify the underlying molecular pathways, we performed microarray gene expression analysis of PCs obtained by laser capture microdissection (LCM) at the onset of degeneration. Igf-1 was significantly downregulated in robotic PCs compared with wild-type controls before and throughout the degenerative process. Consistently, we observed a decrease in the activation of downstream signaling molecules including type 1 IGF receptor (IGF-1R) and the extracellular signal-regulated kinase (ERK) 1 and ERK2. Chromatin immunoprecipitation confirmed that Igf-1 is a direct and the first validated target of the AF4 transcriptional regulatory complex, and treatment of presymptomatic robotic mice with IGF-1 indeed markedly delayed the progression of PC death. This study demonstrates that small changes in the levels of a single transcriptional cofactor can deleteriously affect normal cerebellum function and opens new avenues of research for the manipulation of the IGF-1 pathway in the treatment of cerebellar ataxia in humans.
Collapse
|
10
|
Palin K, Moreau M, Orcel H, Duvoid-Guillou A, Rabié A, Kelley K, Moos F. Age-impaired fluid homeostasis depends on the balance of IL-6/IGF-I in the rat supraoptic nuclei. Neurobiol Aging 2009; 30:1677-92. [DOI: 10.1016/j.neurobiolaging.2007.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 12/05/2007] [Accepted: 12/10/2007] [Indexed: 11/30/2022]
|
11
|
Benton RL, Maddie MA, Dincman TA, Hagg T, Whittemore SR. Transcriptional activation of endothelial cells by TGFβ coincides with acute microvascular plasticity following focal spinal cord ischaemia/reperfusion injury. ASN Neuro 2009; 1:e00015. [PMID: 19663807 PMCID: PMC2810814 DOI: 10.1042/an20090008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/17/2022] Open
Abstract
Microvascular dysfunction, loss of vascular support, ischaemia and sub-acute vascular instability in surviving blood vessels contribute to secondary injury following SCI (spinal cord injury). Neither the precise temporal profile of the cellular dynamics of spinal microvasculature nor the potential molecular effectors regulating this plasticity are well understood. TGFβ (transforming growth factor β) isoforms have been shown to be rapidly increased in response to SCI and CNS (central nervous system) ischaemia, but no data exist regarding their contribution to microvascular dysfunction following SCI. To examine these issues, in the present study we used a model of focal spinal cord ischaemia/reperfusion SCI to examine the cellular response(s) of affected microvessels from 30 min to 14 days post-ischaemia. Spinal endothelial cells were isolated from affected tissue and subjected to focused microarray analysis of TGFβ-responsive/related mRNAs 6 and 24 h post-SCI. Immunohistochemical analyses of histopathology show neuronal disruption/loss and astroglial regression from spinal microvessels by 3 h post-ischaemia, with complete dissolution of functional endfeet (loss of aquaporin-4) by 12 h post-ischaemia. Coincident with this microvascular plasticity, results from microarray analyses show 9 out of 22 TGFβ-responsive mRNAs significantly up-regulated by 6 h post-ischaemia. Of these, serpine 1/PAI-1 (plasminogen-activator inhibitor 1) demonstrated the greatest increase (>40-fold). Furthermore, uPA (urokinase-type plasminogen activator), another member of the PAS (plasminogen activator system), was also significantly increased (>7.5-fold). These results, along with other select up-regulated mRNAs, were confirmed biochemically or immunohistochemically. Taken together, these results implicate TGFβ as a potential molecular effector of the anatomical and functional plasticity of microvessels following SCI.
Collapse
Key Words
- endothelin
- insulin-like growth factor binding protein 3 (igfbp-3)
- interleukin-6 (il-6)
- matrix metalloproteinase 9 (mmp-9)
- plasminogen-activator inhibitor 1 (pai-1)
- urokinase-type plasminogen activator (upa)
- aqp-4, aquaporin-4
- bmp, bone morphogenetic protein
- bscb, blood-spinal cord-barrier
- cns, central nervous system
- ec, endothelial cell
- et, endothelin
- gfap, glial fibrillary acidic protein
- huvec, human umbilical vein endothelial cell
- igf, insulin-like growth factor
- igfbp-3, igf-binding protein 3
- il, interleukin
- lea, lycopersicon esculentum agglutinin
- llc, large latent complex
- map2, microtubule-associated protein 2
- mcao, middle cerebral artery occlusion
- mmp, matrix metalloproteinase
- nvu, neurovascular unit
- pa, plasminogen activator
- pai, pa inhibitor
- pas, pa system
- sci, spinal cord injury
- smvec, spinal microvascular ec
- tbs, tris-buffered saline
- tgfβ, transforming growth factor β
- tpa, tissue-type pa
- tsp-1, thrombospondin-1
- upa, urokinase-type pa
- upar, upa receptor
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Richard L Benton
- daggerKentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
12
|
Gomes RJ, Leme JACDA, de Moura LP, de Araújo MB, Rogatto GP, de Moura RF, Luciano E, de Mello MAR. Growth factors and glucose homeostasis in diabetic rats: effects of exercise training. Cell Biochem Funct 2009; 27:199-204. [DOI: 10.1002/cbf.1556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Interactions of PACAP and ceramides in the control of granule cell apoptosis during cerebellar development. J Mol Neurosci 2008; 36:8-15. [PMID: 18574733 DOI: 10.1007/s12031-008-9111-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/28/2008] [Indexed: 12/27/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that belongs to the secretin/glucagon/vasoactive intestinal polypeptide superfamily. The PACAPergic system is actively expressed in the developing cerebellum of mammals. In particular, PACAP receptors are expressed by granule cell precursors suggesting a role of the peptide in neurogenesis of this cell type. Consistent with this hypothesis, several studies reported antiapoptotic effects of PACAP in the developing cerebellum. On the other hand, the sphingomyelin metabolites ceramides are recognized as important signaling molecules that play pivotal roles during neuronal development. Ceramides, which production can be induced by death factors such as FasL or TNFalpha, are involved in the control of cell survival during brain development through activation of caspase-dependent mechanisms. The present review focuses on the interactions between PACAP and ceramides in the control of granule cell survival and on the transduction mechanisms associated with the anti- and proapoptotic effects of PACAP and ceramides, respectively.
Collapse
|
14
|
Nadjar A, Berton O, Guo S, Leneuve P, Dovero S, Diguet E, Tison F, Zhao B, Holzenberger M, Bezard E. IGF-1 signaling reduces neuro-inflammatory response and sensitivity of neurons to MPTP. Neurobiol Aging 2008; 30:2021-30. [PMID: 18394756 DOI: 10.1016/j.neurobiolaging.2008.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/09/2008] [Accepted: 02/20/2008] [Indexed: 11/28/2022]
Abstract
Reduced expression of IGF-1R increases lifespan and resistance to oxidative stress in the mouse, raising the possibility that this also confers relative protection against the pro-parkinsonian neurotoxin MPTP, known to involve an oxidative stress component. We used heterozygous IGF-1R(+/-) mice and challenged them with MPTP. Interestingly, MPTP induced more severe lesions of dopaminergic neurons of the substantia nigra, in IGF-1R(+/-) mice than in wild-type animals. Using electron spin resonance, we found that free radicals were decreased in IGF-1R(+/-) mice in comparison with controls, both before and after MPTP exposure, suggesting that the increased vulnerability of dopamine neurons is not caused by oxidative stress. Importantly, we showed that IGF-1R(+/-) mice display a dramatically increased neuro-inflammatory response to MPTP that may ground the observed increase in neuronal death. Microarray analysis revealed that oxidative stress-associated genes, but also several anti-inflammatory signaling pathways were downregulated under control conditions in IGF-1R(+/-) mice compared to WT. Collectively, these data indicate that IGF signaling can reduce neuro-inflammation dependent sensitivity of neurons to MPTP.
Collapse
Affiliation(s)
- Agnès Nadjar
- Université Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, UMR 5227, Bordeaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Koontz T, Bralic M, Tomac J, Pernjak-Pugel E, Bantug G, Jonjic S, Britt WJ. Altered development of the brain after focal herpesvirus infection of the central nervous system. ACTA ACUST UNITED AC 2008; 205:423-35. [PMID: 18268036 PMCID: PMC2271002 DOI: 10.1084/jem.20071489] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis.
Collapse
Affiliation(s)
- Thad Koontz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Elsasser TH, Caperna TJ, Ward PJ, Sartin JL, Steele BP, Li C, Kahl S. Modeling growth factor activity during proinflammatory stress: methodological considerations in assessing cytokine modulation of IGF binding proteins released by cultured bovine kidney epithelial cells. Domest Anim Endocrinol 2007; 33:390-9. [PMID: 17029675 DOI: 10.1016/j.domaniend.2006.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 11/22/2022]
Abstract
The present research was conducted to model potential mechanisms through which IGFBPs might be affected by a key proinflammatory response initiating cytokine tumor necrosis factor (TNF-)-alpha. Madin-Darby bovine kidney epithelial (MDBK) cells, known to release IGFBPs in response to several stimuli, were grown under several conditions and challenged with forskolin (F) or recombinant TNF-alpha for 24h. Forskolin increased IGFBP-3 gene expression and media content of BP-3 protein. TNF-alpha increased basal and augmented F-mediated IGFBP-3 gene expression. However, TNF-alpha effects on the measurable media content of IGFBPs were influenced by culture conditions; in the absence of added protease inhibitors (PIs) or sufficient media albumin concentration (high BSA, 1mg/ml), the effect of TNF-alpha was to decrease (P<0.02) measurable IGFBPs. In the presence of PI and high BSA, media IGFBP-3 levels were shown to be increased by TNF-alpha consistent with the gene expression data. Changes in media IGFBP-3 protease activity were examined further to explain the observed effects of TNF-alpha on production and destruction of IGFBPs in media. When recombinant human IGFBP-3 (500 ng/ml) was added to PI-free, low BSA 100 microg/ml) media from TNF-treated MDBK cells, less than 10% of the BP-3 was recognizable by Western blot in 30 min; conversely, inclusion of High BSA and PI in media resulted in attenuation of the protease effect on the IGFBPs. The data suggest that the MDBK model of cellular response to proinflammatory stimulus is affected by culture conditions and that TNF-alpha affects media content of IGFBPs through effects on IGFBP gene expression coupled with degradation of IGFBPs via enhanced proteolytic enzyme release.
Collapse
Affiliation(s)
- T H Elsasser
- US Department of Agriculture, Agricultural Research Service, Growth Biology Laboratory, Beltsville, MD 20705, United States.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hansen-Pupp I, Hellström-Westas L, Cilio CM, Andersson S, Fellman V, Ley D. Inflammation at birth and the insulin-like growth factor system in very preterm infants. Acta Paediatr 2007; 96:830-6. [PMID: 17465986 DOI: 10.1111/j.1651-2227.2007.00276.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Foetal inflammation is associated with an increased risk of brain damage in preterm infants whereas IGF-I is essential for cerebral development and exhibits anti-apoptotic properties. AIM To assess levels of IGF-I and IGF binding proteins at very preterm birth and to evaluate their relationship with foetal pro-inflammation and cerebral damage. METHODS Levels of IGF-I, IGF binding protein 3 (IGFBP-3), high- (hp) and low-phosphorylated (lp) IGFBP-1 in cord blood and neonatal blood at 72 h after delivery were analysed in relation to levels of cytokines and cerebral damage as detected by ultrasound in 74 inborn infants [mean gestational age (GA) 27.1 weeks]. Evaluation was performed separately according to birth weight for GA. RESULTS In cord blood of infants appropriate for gestational age (AGA) higher levels of IL-6 and IL-8 were associated with lower IGF-I (r =-0.38, p = 0.008 and r =-0.36, p = 0.014). Higher levels of IL-6, IL-8 and TNF-alpha were associated with both higher levels of lpIGFBP-1 (r = 0.54, p < 0.001, r = 0.50, p < 0.001 and r = 0.13, p = 0.012, respectively) and hpIGFBP-1 (r = 0.55, p < 0.001, r = 0.45, p = 0.002 and r = 0.32, p = 0.026, respectively). Infants with intraventricular haemorrhage grade III (n = 5) had higher levels of lp/hpIGFBP-1 in cord blood (p = 0.001 and 0.002, respectively). CONCLUSION Pro-inflammation at birth is associated with changes in the IGF-system. This may be of importance for development of brain damage in preterm infants.
Collapse
Affiliation(s)
- I Hansen-Pupp
- Institution of Clinical Sciences and Department of Pediatrics, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
18
|
Ye P, Kollias G, D'Ercole AJ. Insulin-like growth factor-I ameliorates demyelination induced by tumor necrosis factor-alpha in transgenic mice. J Neurosci Res 2007; 85:712-22. [PMID: 17279553 PMCID: PMC1832145 DOI: 10.1002/jnr.21181] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our groups have reported that tumor necrosis factor-alpha (TNF-alpha) causes myelin damage and apoptosis of oligodendrocytes and their precursors in vitro and in vivo. We also have reported that insulin-like growth factor-I (IGF-I) can protect cultured oligodendrocytes and their precursors from TNF-alpha-induced damage. In this study, we investigated whether IGF-I can protect oligodendrocytes and myelination from TNF-alpha-induced damage in vivo by cross-breeding TNF-alpha transgenic (Tg) mice with IGF-I Tg mice that overexpress IGF-I exclusively in brain. At 8 weeks of age, compared with those of wild-type (WT) mice, the brain weights of TNF-alpha Tg mice were decreased by approximately 20%, and those of IGF-I Tg mice were increased by approximately 20%. The brain weights of mice that carry both TNF-alpha and IGF-I transgenes (TNF-alpha/IGF-I Tg mice) did not differ from those of WT mice. As judged by histochemical staining and immunostaining, myelin content in the cerebellum of TNF-alpha/IGF-I Tg mice was similar to that in WT mice and much more than that in TNF-alpha Tg mice. Consistently, Western immunoblot analysis showed that myelin basic protein (MBP) abundance in the cerebellum of TNF-alpha/IGF-I Tg mice was double that in TNF-alpha Tg mice. In comparison with WT mice, the number of oligodendrocytes was decreased by approximately 36% in TNF-alpha Tg mice, whereas it was increased in IGF-I Tg mice by approximately 40%. Oligodendrocyte number in TNF-alpha/IGF-I Tg mice was almost twice that in TNF-alpha Tg mice. Furthermore, IGF-I overexpression significantly reduced TNF-alpha-induced increases in apoptotic cell number, active caspase-3 abundance, and degradaion of MBP. Our results indicate that IGF-I is capable of protecting myelin and oligodendrocytes from TNF-alpha-induced damage in vivo.
Collapse
Affiliation(s)
- Ping Ye
- Division of Endocrinology, Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7039, USA.
| | | | | |
Collapse
|
19
|
Palin K, Bluthé RM, McCusker RH, Moos F, Dantzer R, Kelley KW. TNFalpha-induced sickness behavior in mice with functional 55 kD TNF receptors is blocked by central IGF-I. J Neuroimmunol 2007; 187:55-60. [PMID: 17512609 PMCID: PMC2915825 DOI: 10.1016/j.jneuroim.2007.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 02/23/2007] [Accepted: 04/10/2007] [Indexed: 02/06/2023]
Abstract
A variety of pathogenic insults cause synthesis of tumor necrosis factor (TNF)alpha in the brain, resulting in sickness behavior. Here we used TNF-receptor (TNF-R)2-deficient and wild-type mice to demonstrate that the reduction in social exploration of a novel juvenile, the increase in immobility and the loss of body weight caused by central TNFalpha (i.c.v., 50 ng/mouse) are blocked by central pre-treatment with the multifunctional peptide, insulin-like growth factor (IGF-I; i.c.v., 300 ng/mouse). These results establish that sickness behavior induced by central TNFalpha via the TNF-R1 (p55) is directly opposed by IGF-I in the brain.
Collapse
Affiliation(s)
- Karine Palin
- Department of Animal Sciences, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Rose-Marie Bluthé
- Integrative Neurobiology, FRE 2723 CNRS, University Bordeaux, UMR 1244 INRA, 146 rue Léo Saignat, Bordeaux, F-33077, France
| | - Robert H. McCusker
- Department of Animal Sciences, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Françoise Moos
- Integrative Neurobiology, FRE 2723 CNRS, University Bordeaux, UMR 1244 INRA, 146 rue Léo Saignat, Bordeaux, F-33077, France
| | - Robert Dantzer
- Department of Animal Sciences, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Medical Pathology, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Keith W. Kelley
- Department of Animal Sciences, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Medical Pathology, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
- Correspondence: Keith W. Kelley, Phone (217) 333-5141; Fax (217) 244-5617;
| |
Collapse
|
20
|
Falluel-Morel A, Chafai M, Vaudry D, Basille M, Cazillis M, Aubert N, Louiset E, de Jouffrey S, Le Bigot JF, Fournier A, Gressens P, Rostène W, Vaudry H, Gonzalez BJ. The neuropeptide pituitary adenylate cyclase-activating polypeptide exerts anti-apoptotic and differentiating effects during neurogenesis: focus on cerebellar granule neurones and embryonic stem cells. J Neuroendocrinol 2007; 19:321-7. [PMID: 17425606 DOI: 10.1111/j.1365-2826.2007.01537.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was originally isolated from ovine hypothalamus on the basis of its hypophysiotrophic activity. It has subsequently been shown that PACAP and its receptors are widely distributed in the central nervous system of adult mammals, indicating that PACAP may act as a neurotransmitter and/or neuromodulator. It has also been found that PACAP and its receptors are expressed in germinative neuroepithelia, suggesting that PACAP could be involved in neurogenesis. There is now compelling evidence that PACAP exerts neurotrophic activities in the developing cerebellum and in embryonic stem (ES) cells. In particular, the presence of PACAP receptors has been demonstrated in the granule layer of the immature cerebellar cortex, and PACAP has been shown to promote survival, inhibit migration and activate neurite outgrowth of granule cell precursors. In cerebellar neuroblasts, PACAP is a potent inhibitor of the mitochondrial apoptotic pathway through activation of the MAPkinase extracellular regulated kinase. ES cells and embryoid bodies (EB) also express PACAP receptors and PACAP facilitates neuronal orientation and induces the appearance of an electrophysiological activity. Taken together, the anti-apoptotic and pro-differentiating effects of PACAP characterised in cerebellar neuroblasts as well as ES and EB cells indicate that PACAP acts not only as a neurohormone and a neurotransmitter, but also as a growth factor.
Collapse
Affiliation(s)
- A Falluel-Morel
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chae H, Hong SH, Hong SH, Kim SH, Kim CH, Kang BM, Lee JY. Influence of tumor necrosis factor-α on estradiol, progesterone, insulin-like growth factor-II, and insulin-like growth factor binding protein-1, 2, and 3 in cultured human luteinized granulosa cells. Eur J Obstet Gynecol Reprod Biol 2007; 131:176-81. [PMID: 16891052 DOI: 10.1016/j.ejogrb.2006.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/29/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The objective was to investigate the influence of tumor necrosis factor (TNF)-alpha on estradiol, progesterone, insulin-like growth factor (IGF)-II, and insulin-like growth factor binding protein (IGFBP)-1, 2, and 3 in cultured human luteinized granulosa cells. STUDY DESIGN Human luteinized granulosa cells were obtained from follicular fluid by transvaginal oocyte aspiration from infertile patients undergoing controlled ovarian hyperstimulation (COH) for in vitro fertilization (IVF). The cells were cultured for 72 h with TNF-alpha at concentrations of 1.0, 10.0, and 100.0 ng/ml. The cells not treated with TNF-alpha served as controls. Radioimmunoassay (RIA) and reverse transcription-polymerase chain reaction (RT-PCR) were used to examine the influence of TNF-alpha on estradiol, progesterone, IGF-II, and IGFBP-1, 2, and 3. Results were analyzed using the Kolmogorov-Smirnov test and analysis of variance (ANOVA). Statistical significance was defined as p<0.05. RESULTS The concentrations of progesterone seemed to decrease as the concentrations of TNF-alpha increased and the concentration of progesterone in the 100.0 ng/ml TNF-alpha group was significantly lower than that in the control and other TNF-alpha groups. The expressions of IGF-II mRNA in the 10.0 and 100.0 ng/ml TNF-alpha groups were significantly lower than that in the control group. The expressions of IGFBP-2 mRNA seemed to be decreased in the 10.0 and 100.0 ng/ml TNF-alpha groups compared with that in the control group, but there were no statistical significances. CONCLUSION TNF-alpha may play a role as a regulator of human ovarian physiology by modulating the IGF systems in luteinized granulosa cells.
Collapse
Affiliation(s)
- Heedong Chae
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
22
|
Basille M, Falluel-Morel A, Vaudry D, Aubert N, Fournier A, Fréger P, Gallo-Payet N, Vaudry H, Gonzalez B. Ontogeny of PACAP receptors in the human cerebellum: Perspectives of therapeutic applications. ACTA ACUST UNITED AC 2006; 137:27-33. [PMID: 16963135 DOI: 10.1016/j.regpep.2006.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/15/2006] [Accepted: 03/26/2006] [Indexed: 11/16/2022]
Abstract
It is now well established that pituitary adenylate cyclase-activating polypeptide (PACAP) exerts anti-apoptotic and pro-differentiating actions during development of the rodent cerebellum. Cell signaling involved in the neurotrophic effects of PACAP has been precisely investigated. In particular, PACAP is a potent inhibitor of the mitochondrial apoptotic pathway through an ERK- and PKA-dependent mechanism. However, transposition of the neurodevelopmental activities of PACAP to the human cerebellum remains speculative, essentially because of the lack of data concerning the PACAP-ergic system. The present review is based on recent results that provide the first molecular, pharmacological and anatomical characterizations of PACAP receptors in the developing human cerebellum. It is now clearly established that the distribution pattern of PAC1-R and VPAC1-R mRNA in the human cerebellum is very similar to that already described in rodents. [(125)I]PACAP27 binding sites are closely associated with germinative neuroepithelia in fetal stages and with mature granule cells in infants and adults. Pharmacological characterization revealed that, in fetuses, PACAP binding sites exhibit a PAC1-R profile while, in adult patients, they correspond to a heterogeneous population of PAC1-R and VPAC(1/2)-R. Altogether, these data provide the first evidence that PACAP may exert neurodevelopmental functions in the human cerebellum.
Collapse
Affiliation(s)
- Magali Basille
- INSERM U413, IFRMP 23, University of Rouen, 76821 Mont Saint Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Aubert N, Falluel-Morel A, Vaudry D, Xifro X, Rodriguez-Alvarez J, Fisch C, de Jouffrey S, Lebigot JF, Fournier A, Vaudry H, Gonzalez BJ. PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase-dependent pathway: involvement of c-Fos in PACAP-induced Bcl-2 expression. J Neurochem 2006; 99:1237-50. [PMID: 17026529 DOI: 10.1111/j.1471-4159.2006.04148.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits C2-ceramide-induced cell death through blockade of the mitochondrial apoptotic pathway in rat cerebellar granule neurones. However, the gene induction processes and transcription factors involved in the anti-apoptotic effect of PACAP remain unknown. Here, we show that PACAP and C2-ceramide activate activator protein-1 (AP-1) DNA binding in a dose- and time-dependent manner, but generate different AP-1 dimers. Thus, PACAP increased the proportion of c-Fos and Jun D while C2-ceramide increased c-Jun and reduced c-Fos in AP-1 complexes. In addition, PACAP strongly activated c-Fos gene expression while C2-ceramide markedly increased c-Jun phosphorylation. The effect of PACAP on c-Fos expression was blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitor, U0126, while phosphorylation of c-Jun induced by C2-ceramide was abrogated by the protein phosphatase 2A (PP2A) inhibitor, okadaic acid. Transfection of immature granule cells with c-Fos siRNA, which strongly reduced basal and PACAP-stimulated levels of the protein, totally prevented the stimulatory effect of PACAP on Bcl-2 expression. The present study demonstrates that AP-1 complexes containing c-Fos mediate the effect of PACAP on Bcl-2 gene expression in cerebellar granule neurones. Our data also indicate that different AP-1 dimers are associated with the pro-apoptotic effect of C2-ceramide and the anti-apoptotic effect of PACAP.
Collapse
Affiliation(s)
- Nicolas Aubert
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bluthé RM, Kelley KW, Dantzer R. Effects of insulin-like growth factor-I on cytokine-induced sickness behavior in mice. Brain Behav Immun 2006; 20:57-63. [PMID: 16364817 PMCID: PMC2907139 DOI: 10.1016/j.bbi.2005.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022] Open
Abstract
Central administration of insulin-like growth factor-I (IGF-I) attenuates sickness behavior in response to the cytokine inducer lipopolysaccharide. The present study was designed to determine the respective roles of the two main proinflammatory cytokines, tumor necrosis factor alpha (TNFalpha) and interleukin-1beta (IL-1beta), in these effects. Male CD1 mice were injected into the lateral ventricle (i.c.v.) of the brain with optimal amounts of either TNFalpha (50 ng) or IL-1beta (2 ng) that induce sickness behavior. Behavioral responses to IGF-I (0, .1, and 1 microg) also given i.c.v. were measured at various time intervals before and after treatment with the two proinflammatory cytokines. Mice treated with TNFalpha and IL-1beta lost body weight and displayed equivalent reductions in social exploration and instances of immobility. At the dose of .1 microg, IGF-I attenuated these signs of sickness in TNFalpha-but not in IL-1beta-treated mice. At the dose of 1 microg, IGF-I attenuated IL-1beta-induced immobility and the reduction in social exploration but had no effect on loss of body weight. These findings indicate that IGF-I is more potent in attenuating sickness behavior induced by TNFalpha than that caused by IL-1beta, which is consistent with the relative specificity of the TNFalpha/IGF-I interactions in the brain.
Collapse
Affiliation(s)
- Rose-Marie Bluthé
- Integrative Neurobiology, CNRS-INRA-University Victor Segalen, Bordeaux, France.
| | | | | |
Collapse
|
25
|
Falluel-Morel A, Vaudry D, Aubert N, Galas L, Benard M, Basille M, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ. Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proc Natl Acad Sci U S A 2005; 102:2637-42. [PMID: 15695581 PMCID: PMC549011 DOI: 10.1073/pnas.0409681102] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Indexed: 01/29/2023] Open
Abstract
During neuronal migration, cells that do not reach their normal destination or fail to establish proper connections are eliminated through an apoptotic process. Recent studies have shown that the proinflammatory cytokine tumor necrosis factor alpha (and its second messengers ceramides) and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) play a pivotal role in the histogenesis of the cerebellar cortex. However, the effects of ceramides and PACAP on migration of cerebellar granule cells have never been investigated. Time-lapse videomicroscopy recording showed that C2-ceramide, a cell-permeable ceramide analog, and PACAP induced opposite effects on cell motility and neurite outgrowth. C2-ceramide markedly stimulated cell movements during the first hours of treatment and inhibited neuritogenesis, whereas PACAP reduced cell migration and promoted neurite outgrowth. These actions of C2-ceramide on cell motility and neurite outgrowth were accompanied by a disorganization of the actin filament network, depolarization of tubulin, and alteration of the microtubule-associated protein Tau. In contrast, PACAP strengthened the polarization of actin at the emergence cone, increased Tau phosphorylation, and abolished C2-ceramide-evoked alterations of the cytoskeletal architecture. The caspase-inhibitor Z-VAD-FMK, like PACAP, suppressed the "dance of the death" provoked by C2-ceramide. Finally, Z-VAD-FMK and the PP2A inhibitor okadaic acid both prevented the impairment of Tau phosphorylation induced by C2-ceramide. Taken together, these data indicate that the reverse actions of C2-ceramide and PACAP on cerebellar granule cell motility and neurite outgrowth are attributable to their opposite effects on actin distribution, tubulin polymerization, and Tau phosphorylation.
Collapse
Affiliation(s)
- Anthony Falluel-Morel
- European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinares sur les Peptides 23), Institut National de la Santé et de la Recherche Médicale U413, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Falluel-Morel A, Aubert N, Vaudry D, Basille M, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ. Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J Neurochem 2005; 91:1231-43. [PMID: 15569266 DOI: 10.1111/j.1471-4159.2004.02810.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The sphingomyelin-derived messenger ceramides provoke neuronal apoptosis through caspase-3 activation, while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuronal survival and inhibits caspase-3 activity. However, the mechanisms leading to the opposite regulation of caspase-3 by C2-ceramide and PACAP are currently unknown. Here, we show that PACAP prevents C2-ceramide-induced inhibition of mitochondrial potential and C2-ceramide-evoked cytochrome c release. C2-ceramide stimulated Bax expression, but had no effect on Bcl-2, while PACAP abrogated the action of C2-ceramide on Bax and stimulated Bcl-2 expression. The effects of C2-ceramide and PACAP on Bax and Bcl-2 were blocked, respectively, by the JNK inhibitor L-JNKI1 and the MEK inhibitor U0126. L-JNKI1 prevented the alteration of mitochondria induced by C2-ceramide while U0126 suppressed the protective effect of PACAP against the deleterious action of C2-ceramide on mitochondrial potential. Moreover, L-JNKI1 inhibited the stimulatory effect of C2-ceramide on caspase-9 and -3 and prevented C2-ceramide-induced cell death. U0126 blocked PACAP-induced Bcl-2 expression, abrogated the inhibitory effect of PACAP on ceramide-induced caspase-9 activity, and promoted granule cell death. The present study reveals that C2-ceramide and PACAP exert opposite effects on Bax and Bcl-2 through, respectively, JNK- and ERK-dependent mechanisms. These data indicate that the mitochondrial pathway plays a pivotal role in the pro- and anti-apoptotic effects of C2-ceramide and PACAP.
Collapse
Affiliation(s)
- Anthony Falluel-Morel
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Popken GJ, Hodge RD, Ye P, Zhang J, Ng W, O'Kusky JR, D'Ercole AJ. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur J Neurosci 2004; 19:2056-68. [PMID: 15090033 DOI: 10.1111/j.0953-816x.2004.03320.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vivo actions of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal brain development were investigated in transgenic (Tg) mice that overexpress IGF-I prenatally under the control of regulatory sequences from the nestin gene. Tg mice demonstrated increases in brain weight of 6% by embryonic day (E) 18 and 27% by postnatal day (P) 12. In Tg embryos at E16, the volume of the cortical plate was significantly increased by 52% and total cell number was increased by 54%. S-phase labeling with 5-bromo-2'-deoxyuridine revealed a 13-15% increase in the proportion of labeled neuroepithelial cells in Tg embryos at E14. In Tg mice at P12, significant increases in regional tissue volumes were detected in the cerebral cortex (29%), subcortical white matter (52%), caudate-putamen (37%), hippocampus (49%), dentate gyrus (71%) and habenular complex (48%). Tg mice exhibited significant increases in the total number of neurons in the cerebral cortex (27%), caudate-putamen (27%), dentate gyrus (69%), medial habenular nucleus (61%) and lateral habenular nucleus (36%). In the cerebral cortex and subcortical white matter of Tg mice, the total numbers of glial cells were significantly increased by 37% and 42%, respectively. The numerical density of apoptotic cells in the cerebral cortex, labeled by antibodies against active caspase-3, was reduced by 26% in Tg mice at P7. Our results demonstrate that IGF-I can both promote proliferation of neural cells in the embryonic central nervous system in vivo and inhibit their apoptosis during postnatal life.
Collapse
Affiliation(s)
- Gregory J Popken
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Trejo JL, Carro E, Lopez-Lopez C, Torres-Aleman I. Role of serum insulin-like growth factor I in mammalian brain aging. Growth Horm IGF Res 2004; 14 Suppl A:S39-S43. [PMID: 15135775 DOI: 10.1016/j.ghir.2004.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modern societies face new public health challenges associated with an increasingly aging population. Among these, pathological conditions linked to brain aging are paramount. Old age is a risk factor for important neurological impairments such as Alzheimer's disease or stroke. Even healthy elderly people usually present with milder forms of cognitive decline. This is possibly related to less-pronounced brain deficits seen in normal aging, including the shrinkage of neurons and the dense network of neurons and glia in the central nervous system known as the neuropil, a lower neurogenetic rate, impaired angiogenesis or brain accumulation of deleterious compounds. At least in mammals, age is also associated with a decline in insulin-like growth factor-I (IGF-I) levels, a well-known neuroprotective agent. Recently, a relationship between serum IGF-I and "house-keeping" mechanisms in the brain has been evidenced in laboratory rodents. Serum IGF-I increases adult neurogenesis, sustains neuronal health through a variety of fundamental homeostatic mechanisms, participates in brain angiogenesis, contributes to brain beta-amyloid clearance and affects learning and memory. Overall, diminished trophic input resulting from decreasing serum IGF-I levels during aging likely contributes to brain senescence in mammals.
Collapse
Affiliation(s)
- Jose Luis Trejo
- Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Avda Dr. Arce 37, ES-28002 Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Chesik D, Glazenburg K, Wilczak N, Geeraedts F, De Keyser J. Insulin-like growth factor binding protein-1-6 expression in activated microglia. Neuroreport 2004; 15:1033-7. [PMID: 15076729 DOI: 10.1097/00001756-200404290-00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the CNS insulin-like growth factor-1 (IGF-1) enhances survival of neurons, promotes myelin synthesis and acts as a mitogen for microglia. The effects of IGF-1 are regulated by a family of 6 IGF binding proteins (IGFBPs). We investigated mRNA expression patterns of IGFBPs in primary rat microglia under basal conditions and after activation with lipopolysaccharide (LPS). Under basal conditions, microglia expressed IGFBP-2 to -6, whereas, IGFBP-1 could not be detected. Following 2 h treatment with LPS mRNA levels for IGFBP-4 and -6 displayed a down regulation, and IGFBP-5 became undetectable. Levels of IGFBP-2 and -3 remained unaltered. Expression patterns of IGFBPs might play an important role in regulating the autocrine/paracrine IGF-1 actions on microglia under inflammatory conditions.
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Hospital Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|