1
|
Miola EC, Ricardo-da-Silva FY, Freitas PLZD, Vidal-Dos-Santos M, Moreira LFP, Breithaupt-Faloppa AC, Correia CDJ. The role of sex hormones in the intestinal injury after brain death using a surgical menopause model in rats. Mol Cell Endocrinol 2025; 600:112488. [PMID: 39956312 DOI: 10.1016/j.mce.2025.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
Among transplantable organs, the intestine is one of the most challenging organs to transplant. While there is considerable research on the effects of brain death (BD), little is known about the specific intestinal changes that occur, particularly in females. Here we investigated the role of female sex hormones in the BD-induced intestinal inflammation, using an ovariectomy (OVx) model for sex hormones depletion. Wistar rats (female) were divided into four experimental groups: Control non-OVx - non-manipulated; Control-OVx -ovariectomized; BD non-OVx - animals submitted to BD (6h); BD-OVx -ovariectomized animals submitted to BD. OVx was performed 10 days before BD induction. non-OVx groups were chosen during proestrus phase (heat period). Inflammatory mediators and white blood cell count were quantified in the blood. Intestine tissue was sampled for histopathological analysis, myeloperoxidase (MPO) activity, Evans blue dye extravasation assay and immunohistochemistry. Results show higher intestinal injury in BD-OVx than BD non-OVx animals, presenting reduced crypt depth and increased serum inflammatory mediators. Independently from the previous hormonal status, BD increased intestinal inflammation, with higher leukocyte infiltration, MPO activity, ICAM-1 expression, and higher serum MIP-1α. In summary, BD modulates intestinal inflammation by increasing leukocyte mobilization. Whereas OVx, and its consequences on the female hormonal profile, influences homeostasis and BD-induced inflammation, increasing inflammatory mediators and altering intestinal morphology.
Collapse
Affiliation(s)
- Elizabeth Cristina Miola
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina USP, São Paulo, Brazil
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina USP, São Paulo, Brazil
| | - Pedro Luiz Zonta de Freitas
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina USP, São Paulo, Brazil
| | - Marina Vidal-Dos-Santos
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina USP, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina USP, São Paulo, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina USP, São Paulo, Brazil.
| | - Cristiano de Jesus Correia
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina USP, São Paulo, Brazil
| |
Collapse
|
2
|
Traiffort E, Kassoussi A, Zahaf A. Revisiting the role of sexual hormones in the demyelinated central nervous system. Front Neuroendocrinol 2025; 76:101172. [PMID: 39694337 DOI: 10.1016/j.yfrne.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Sex-related differences characterize multiple sclerosis, an autoimmune, inflammatory and neurodegenerative disease displaying higher incidence in females as well as discrepancies in susceptibility and progression. Besides clinical specificities, molecular and cellular differences related to sex hormones were progressively uncovered improving our understanding of the mechanisms involved in this disabling disease. The most recent findings may give rise to the identification of novel therapeutic perspectives that could meet the urgent need for a treatment preventing the transition from the recurrent- to the progressive form of the disease. The present review is an update of our current knowledge about progestagens, androgens and estrogens in the context of CNS demyelination including their synthesis, the impact of their dysregulation, the preclinical and clinical data presently available, the main molecular dimorphisms related to these hormones and their age-related changes and relationship with failure of spontaneous remyelination, likely impacting the inexorable progression of multiple sclerosis towards irreversible disabilities.
Collapse
Affiliation(s)
| | | | - Amina Zahaf
- U1195 Inserm, Paris-Saclay University, Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Haghmorad D, Soltanmohammadi A, Jadid Tavaf M, Zargarani S, Yazdanpanah E, Shadab A, Yousefi B. The protective role of interaction between vitamin D, sex hormones and calcium in multiple sclerosis. Int J Neurosci 2024; 134:735-753. [PMID: 36369838 DOI: 10.1080/00207454.2022.2147431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder that causes disability and paralysis, especially among young adults. Although interactions of several factors, such as viral infections, autoimmunity, genetic and environmental factors, performance a role in the beginning and progression of the disease, the exact cause of MS is unknown to date. Different immune cells such as Th1 and Th17 play an impressive role in the immunopathogenesis of MS, while, regulatory cells such as Th2 and Treg diminish the severity of the illness. Sex hormones have a vital role in many autoimmune disorders, including multiple sclerosis. Testosterone, estrogen and progesterone have various roles in the progress of MS, which higher prevalence of disease in women and more severe in men reveals the importance of sex hormones' role in this disease. Vitamin D after chemical changes in the body, as an active hormone called calcitriol, plays an important role in regulating immune responses and improves MS by modulating the immune system. The optimum level of calcium in the body with vitamin D modulates immune responses and calcium as an essential ion in the body plays a key role in the treatment of autoimmune diseases. The interaction between vitamin D and sex hormones has protective and therapeutic effects against MS and functional synergy between estrogen and calcitriol occurs in disease recovery. Moreover, vitamin D and calcium interact with each other to regulate the immune system and shift them to anti-inflammatory responses.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Azita Soltanmohammadi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Jadid Tavaf
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Simin Zargarani
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Department of Immunology and Allergy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Tateiwa H, Evers AS. Neurosteroids and their potential as a safer class of general anesthetics. J Anesth 2024; 38:261-274. [PMID: 38252143 PMCID: PMC10954990 DOI: 10.1007/s00540-023-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Neurosteroids (NS) are a class of steroids that are synthesized within the central nervous system (CNS). Various NS can either enhance or inhibit CNS excitability and they play important biological roles in brain development, brain function and as mediators of mood. One class of NS, 3α-hydroxy-pregnane steroids such as allopregnanolone (AlloP) or pregnanolone (Preg), inhibits neuronal excitability; these endogenous NS and their analogues have been therapeutically applied as anti-depressants, anti-epileptics and general anesthetics. While NS have many favorable properties as anesthetics (e.g. rapid onset, rapid recovery, minimal cardiorespiratory depression, neuroprotection), they are not currently in clinical use, largely due to problems with formulation. Recent advances in understanding NS mechanisms of action and improved formulations have rekindled interest in development of NS as sedatives and anesthetics. In this review, the synthesis of NS, and their mechanism of action will be reviewed with specific emphasis on their binding sites and actions on γ-aminobutyric acid type A (GABAA) receptors. The potential advantages of NS analogues as sedative and anesthetic agents will be discussed.
Collapse
Affiliation(s)
- Hiroki Tateiwa
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Mishra P, Davies DA, Albensi BC. The Interaction Between NF-κB and Estrogen in Alzheimer's Disease. Mol Neurobiol 2023; 60:1515-1526. [PMID: 36512265 DOI: 10.1007/s12035-022-03152-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Post-menopausal women are at a higher risk of developing Alzheimer's disease (AD) than males. The higher rates of AD in women are associated with the sharp decline in the estrogen levels after menopause. Estrogen has been shown to downregulate inflammatory cytokines in the central nervous system (CNS), which has a neuroprotective role against neurodegenerative diseases including AD. Sustained neuroinflammation is associated with neurodegeneration and contributes to AD. Nuclear factor kappa-B (NF-κB) is a transcription factor involved with the modulation of inflammation and interacts with estrogen to influence the progression of AD. Application of 17β-estradiol (E2) has been shown to inhibit NF-κB, thereby reducing transcription of NF-κB target genes. Despite accumulating evidence showing that estrogens have beneficial effects in pre-clinical AD studies, there are mixed results with hormone replacement therapy in clinical trials. Furthering our understanding of how NF-κB interacts with estrogen and alters the progression of neurodegenerative disorders including AD, should be beneficial and result in the development of novel therapeutics.
Collapse
Affiliation(s)
- Pranav Mishra
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Don A Davies
- Department of Biology, York University, Toronto, ON, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada. .,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
6
|
Hazlett J, Niemi V, Aiderus A, Powell K, Wise L, Kemp R, Dunbier AK. Oestrogen deprivation induces chemokine production and immune cell recruitment in in vitro and in vivo models of oestrogen receptor-positive breast cancer. Breast Cancer Res 2021; 23:95. [PMID: 34602068 PMCID: PMC8489094 DOI: 10.1186/s13058-021-01472-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/20/2021] [Indexed: 12/09/2022] Open
Abstract
Background Oestrogen receptor-positive (ER+) breast cancer is commonly treated using endocrine therapies such as aromatase inhibitors which block synthesis of oestradiol, but the influence of this therapy on the immune composition of breast tumours has not been fully explored. Previous findings suggest that tumour infiltrating lymphocytes and immune-related gene expression may be altered by treatment with aromatase inhibitors. However, whether these changes are a direct result of impacts on the host immune system or mediated through tumour cells is not known. We aimed to investigate the effect of oestrogen deprivation on the expression of chemokines and immune infiltration in vitro and in an ER+ immunocompetent mouse model. Methods RT-qPCR and a bead-based Bioplex system were used to investigate the expression of chemokines in MCF-7 breast cancer cells deprived of oestrogen. A migration assay and flow cytometry were used to measure the migration of human peripheral blood mononuclear cells (PBMCs) to MCF-7 cells grown without the main biologically active oestrogen, oestradiol. Using flow cytometry and immunohistochemistry, we examined the immune cell infiltrate into tumours created by injecting SSM3 ER+ breast cancer cells into wild-type, immunocompetent 129/SvEv mice. Results This study demonstrates that oestrogen deprivation increases breast cancer secretion of TNF, CCL5, IL-6, IL-8, and CCL22 and alters total human peripheral blood mononuclear cell migration in an in vitro assay. Oestrogen deprivation of breast cancer cells increases migration of CD4+ T cells and decreases migration of CD11c+ and CD14+ PBMC towards cancer cells. PBMC migration towards breast cancer cells can be reduced by treatment with the non-steroidal anti-inflammatory drugs, aspirin and celecoxib. Treatment with endocrine therapy using the aromatase inhibitor letrozole increases CD4+ T cell infiltration into ER+ breast cancer tumours in immune competent mice. Conclusions These results suggest that anti-oestrogen treatment of ER+ breast cancer cells can alter cytokine production and immune cells in the area surrounding the cancer cells. These findings may have implications for the combination and timing of anti-oestrogen therapies with other therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01472-1.
Collapse
Affiliation(s)
- Jody Hazlett
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Virginia Niemi
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aziz Aiderus
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Katelyn Powell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Roslyn Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Anita K Dunbier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Koetzier SC, Neuteboom RF, Wierenga-Wolf AF, Melief MJ, de Mol CL, van Rijswijk A, Dik WA, Broux B, van der Wal R, van den Berg SAA, Smolders J, van Luijn MM. Effector T Helper Cells Are Selectively Controlled During Pregnancy and Related to a Postpartum Relapse in Multiple Sclerosis. Front Immunol 2021; 12:642038. [PMID: 33790911 PMCID: PMC8005718 DOI: 10.3389/fimmu.2021.642038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Multiple sclerosis (MS) patients are protected from relapses during pregnancy and have an increased relapse risk after delivery. It is unknown how pregnancy controls disease-contributing CD4+ T helper (Th) cells and whether this differs in MS patients who experience a postpartum relapse. Here, we studied the effector phenotype of Th cells in relation to pregnancy and postpartum relapse occurrence in MS. Methods: Memory skewing and activation of effector Th subsets were analyzed in paired third trimester and postpartum blood of 19 MS patients with and without a postpartum relapse and 12 healthy controls. Ex vivo results were associated with circulating levels of pregnancy-induced hormones and mirrored in vitro by exposing proliferating Th cells to corresponding serum samples. Results: Based on HSNE-guided analyses, we found that effector memory proportions of Th cells were increased in postpartum vs. third trimester samples from MS patients without a postpartum relapse. This was not seen for relapsing patients or healthy controls. CXCR3 was upregulated on postpartum memory Th cells, except for relapsing patients. These changes were verified by adding sera from the same individuals to proliferating Th cells, but did not associate with third trimester cortisol, estradiol or progesterone levels. For relapsing patients, activated memory Th cells of both third trimester and postpartum samples produced higher levels of pro-inflammatory cytokines. Conclusion: Effector Th cells are differentially regulated during pregnancy in MS patients, likely via serum-related factors beyond the studied hormones. The pro-inflammatory state of memory Th cells during pregnancy may predict a postpartum relapse.
Collapse
Affiliation(s)
- Steven C Koetzier
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rinze F Neuteboom
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marie-José Melief
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - C Louk de Mol
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Angelique van Rijswijk
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, University MS Center, Hasselt University, Hasselt, Belgium
| | - Ronald van der Wal
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sjoerd A A van den Berg
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost Smolders
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Neuroimmunology Researchgroup, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Marvin M van Luijn
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
8
|
Sekyi MT, Lauderdale K, Atkinson KC, Golestany B, Karim H, Feri M, Soto JS, Diaz C, Kim SH, Cilluffo M, Nusinowitz S, Katzenellenbogen JA, Tiwari‐Woodruff SK. Alleviation of extensive visual pathway dysfunction by a remyelinating drug in a chronic mouse model of multiple sclerosis. Brain Pathol 2021; 31:312-332. [PMID: 33368801 PMCID: PMC8018057 DOI: 10.1111/bpa.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022] Open
Abstract
Visual deficits are among the most prevalent symptoms in patients with multiple sclerosis (MS). To understand deficits in the visual pathway during MS and potential treatment effects, we used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The afferent visual pathway was assessed in vivo using optical coherence tomography (OCT), electroretinography (ERG), and visually evoked cortical potentials (VEPs). Inflammation, demyelination, and neurodegeneration were examined by immunohistochemistry ex vivo. In addition, an immunomodulatory, remyelinating agent, the estrogen receptor β ligand chloroindazole (IndCl), was tested for its therapeutic potential in the visual pathway. EAE produced functional deficits in visual system electrophysiology, including suppression of ERG and VEP waveform amplitudes and increased signal latencies. Therapeutic IndCl rescued overall visual system latency by VEP but had little impact on amplitude or ERG findings relative to vehicle. Faster VEP conduction in IndCl-treated mice was associated with enhanced myelin basic protein signal in all visual system structures examined. IndCl preserved retinal ganglion cells (RGCs) and oligodendrocyte density in the prechiasmatic white matter, but similar retinal nerve fiber layer thinning by OCT was noted in vehicle and IndCl-treated mice. Although IndCl differentially attenuated leukocyte and astrocyte staining signal throughout the structures analyzed, axolemmal varicosities were observed in all visual fiber tracts of mice with EAE irrespective of treatment, suggesting impaired axonal energy homeostasis. These data support incomplete functional recovery of VEP amplitude with IndCl, as fiber tracts displayed persistent axon pathology despite remyelination-induced decreases in latencies, evidenced by reduced optic nerve g-ratio in IndCl-treated mice. Although additional studies are required, these findings demonstrate the dynamics of visual pathway dysfunction and disability during EAE, along with the importance of early treatment to mitigate EAE-induced axon damage.
Collapse
Affiliation(s)
- Maria T. Sekyi
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
- Department of BioengineeringRiverside Bourns School of EngineeringUniversity of CaliforniaRiversideCAUSA
| | - Kelli Lauderdale
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Kelley C. Atkinson
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Batis Golestany
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Hawra Karim
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Micah Feri
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Joselyn S. Soto
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Cobi Diaz
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Sung Hoon Kim
- Department of Chemistry and Cancer CenterUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Marianne Cilluffo
- BRI Electron Microscopy LaboratoryLos Angeles School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Steven Nusinowitz
- Stein Eye InstituteLos Angeles School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | | | - Seema K. Tiwari‐Woodruff
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
9
|
Faubion L, White TA, Peterson BJ, Geske JR, LeBrasseur NK, Schafer MJ, Mielke MM, Miller VM. Effect of menopausal hormone therapy on proteins associated with senescence and inflammation. Physiol Rep 2020; 8:e14535. [PMID: 32857481 PMCID: PMC7453781 DOI: 10.14814/phy2.14535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Estrogen may inhibit cell senescence that contributes to age-related disorders. This study determined the effects of menopausal hormone treatments on circulating levels of markers of cell senescence. METHODS Growth differentiation factor 15 (GDF15), tumor necrosis factor receptor 1 (TNFR1), FAS, and macrophage inflammatory protein 1α (MIP1α) were measured in serum using multiplexed bead-based assays and compared among menopausal women participating in the Kronos Early Estrogen Prevention Study randomized to either placebo (n = 38), oral conjugated equine estrogen (oCEE, n = 37), or transdermal 17β-estradiol (tE2, n = 34). Serum levels of the senescent markers for each treatment were compared to placebo 36 months after randomization using the Wilcoxon rank sum test. RESULTS Serum levels of GDF15, TNFR1, and FAS, but not MIP1α, were lower in both the oCEE and tE2 groups compared to placebo. The difference in levels between treatment and placebo for GDF15, TNFR1, and FAS were greater for oCEE [-108 pg/mL (p = .008), -234 pg/mL (p = .0006), and -1374 pg/mL (p < .0001), respectively] than for tE2 [-76 pg/mL (p = .072), -105 pg/mL (p = .076), and -695 pg/mL (p = .036), respectively]. Additionally, TNFR1 showed a positive association with time past menopause (correlation = 0.255, p = .019). CONCLUSIONS Circulating levels of some markers of cell senescence were lower in menopausal women treated with oCEE and tE2 compared to placebo. Differences in the magnitude of effect of the two active treatments may reflect the differences in circulating levels of estrogen metabolites due to formulation and mode of delivery. These data generate new hypotheses with regard to the effects of menopause on the biology of aging.
Collapse
Affiliation(s)
| | - Thomas A. White
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | | | | | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
- Specialized Center of Research Excellence on Sex DifferencesMayo ClinicRochesterMNUSA
| | - Marissa J. Schafer
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
- Specialized Center of Research Excellence on Sex DifferencesMayo ClinicRochesterMNUSA
| | - Michelle M. Mielke
- Department of Health Sciences ResearchMayo ClinicRochesterMNUSA
- Specialized Center of Research Excellence on Sex DifferencesMayo ClinicRochesterMNUSA
- Department of NeurologyMayo ClinicRochesterMNUSA
| | - Virginia M. Miller
- Department of SurgeryMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
- Specialized Center of Research Excellence on Sex DifferencesMayo ClinicRochesterMNUSA
| |
Collapse
|
10
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
11
|
Qian L, Shi H, Ding M. Comparative analysis of gene expression profiles in children with type 1 diabetes mellitus. Mol Med Rep 2019; 19:3989-4000. [PMID: 30942443 PMCID: PMC6472094 DOI: 10.3892/mmr.2019.10099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/22/2018] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is typically diagnosed in children. The aim of the present study was to identify potential genes involved in the pathogenesis of childhood T1D. Two datasets of mRNA expression in children with T1D were obtained from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) in children with T1D were identified. Functional analysis was performed and a protein‑protein interaction (PPI) network was constructed, as was a transcription factor (TF)‑target network. The expression of selected DEGs was further assessed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. Electronic validation and diagnostic value analysis of the identified DEGs [cytokine inducible SH2 containing protein (CISH), SR‑related CTD associated factor 11 (SCAF11), estrogen receptor 1 (ESR1), Rho GTPase activating protein 25 (ARHGAP25), major histocompatibility complex, class II, DR β4 (HLA‑DRB4) and interleukin 23 subunit α (IL23A)] was performed in the GEO dataset. Compared with the normal control group, a total of 1,467 DEGs with P<0.05 were identified in children with T1D. CISH and SCAF11 were determined to be the most up‑ and downregulated genes, respectively. Heterogeneous nuclear ribonucleoprotein D (HNRNPD; degree=33), protein kinase AMP‑activated catalytic subunit α1 (PRKAA1; degree=11), integrin subunit α4 (ITGA4; degree=8) and ESR1 (degree=8) were identified in the PPI network as high‑degree genes. ARHGAP25 (degree=12), HNRNPD (degree=10), HLA‑DRB4 (degree=10) and IL23A (degree=9) were high‑degree genes identified in the TF‑target network. RT‑qPCR revealed that the expression of HNRNPD, PRKAA1, ITGA4 and transporter 2, ATP binding cassette subfamily B member was consistent with the results of the integrated analysis. Furthermore, the results of the electronic validation were consistent with the bioinformatics analysis. SCAF11, CISH and ARHGAP25 were identified to possess value as potential diagnostic markers for children with T1D. In conclusion, identifying DEGs in children with T1D may contribute to our understanding of its pathogenesis, and such DEGs may be used as diagnostic biomarkers for children with T1D.
Collapse
Affiliation(s)
- Liwei Qian
- Department of Pediatrics, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252000, P.R. China
| | - Honglei Shi
- Department of Pediatrics, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252000, P.R. China
| | - Meili Ding
- Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
12
|
Alavi MS, Karimi G, Roohbakhsh A. The role of orphan G protein-coupled receptors in the pathophysiology of multiple sclerosis: A review. Life Sci 2019; 224:33-40. [PMID: 30904492 DOI: 10.1016/j.lfs.2019.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are expressed in many organs and serve as important drug targets. A new subgroup, namely orphan GPCRs, comprising many of these receptors has been discovered. These receptors exhibit diverse physiological functions and have been considered in many neurological disorders including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). GPR17, GPR30, GPR37, GPR40, GPR50, GPR54, GPR56, GPR65, GPR68, GPR75, GPR84, GPR97, GPR109, GPR124, and GPR126 are orphan GPCRs that have been reported with considerable effects in the prevention and/or treatment of MS in preclinical studies. In the present article, we reviewed the most recent findings regarding the role of orphan GPCRs in the treatment of MS.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Vermillion MS, Ursin RL, Attreed SE, Klein SL. Estriol Reduces Pulmonary Immune Cell Recruitment and Inflammation to Protect Female Mice From Severe Influenza. Endocrinology 2018; 159:3306-3320. [PMID: 30032246 PMCID: PMC6109301 DOI: 10.1210/en.2018-00486] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023]
Abstract
Estriol (E3) is an endogenous estrogen in females with broad biological activity within diverse tissue types. In the context of certain T-cell-mediated autoimmune inflammatory diseases, E3 can ameliorate disease severity through immunomodulatory mechanisms that decrease tissue inflammation. Severe disease caused by influenza A virus (IAV) infection is also characterized by aberrant inflammation and immunopathology. How E3 might affect the pathogenesis of IAV infection, however, has not been explored. Gonadally intact female C57BL/6 mice that were treated with exogenous E3 during infection with mouse-adapted 2009 H1N1 had reduced total pulmonary inflammation and improved disease outcomes compared with females that received no hormone. Furthermore, compared with no hormone treatment, E3 treatment reduced the induction of genes associated with proinflammatory cytokine and chemokine responses in the lungs, which preceded clinical disease, reductions in innate immune cell recruitment, altered pulmonary T-cell skewing, and reduced antibody titers during IAV infection. Although E3 treatment was associated with reduced local and systemic anti-influenza adaptive immune responses, there was no effect of E3 on viral replication or clearance. Together, these data suggest that exogenous E3 confers protection during IAV infection through immunomodulatory mechanisms and that E3 may have broad therapeutic potential in the context of both infectious and noninfectious inflammatory diseases.
Collapse
Affiliation(s)
- Meghan S Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rebecca L Ursin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sarah E Attreed
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
14
|
Rafiee Zadeh A, Ghadimi K, Mohammadi B, Hatamian H, Naghibi SN, Danaeiniya A. Effects of Estrogen and Progesterone on Different Immune Cells Related to Multiple Sclerosis. CASPIAN JOURNAL OF NEUROLOGICAL SCIENCES 2018. [DOI: 10.29252/cjns.4.13.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Navarro FC, Watkins SK. Estrogen Stimulation Differentially Impacts Human Male and Female Antigen-Specific T Cell Anti-Tumor Function and Polyfunctionality. GENDER AND THE GENOME 2017. [DOI: 10.1089/gg.2017.0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex-specific differences exist in innate and adaptive immune responses and are mediated by hormone signaling. Estrogen is able to differentially modulate the development and differentiation of immune cells, including T cells. However, the effect of estrogen on T cell function, especially at concentrations other than physiological, remains controversial and incompletely understood. Immunotherapy is one of the most promising cancer treatments to date with a high probability of future enhancements. The adoptive transfer of genetically modified T cells can mediate tumor regression but there are still many hurdles to enhancing the proficiency of this treatment. This study demonstrates for the first time that one major aspect to consider for designing potent immunotherapies for cancer is the impact of the patient's sex. Herein, using two different Ag-specific T cell groups, we investigated the effect of sex and estrogen in antitumor effector responses, T helper cytokine secretion, and, importantly, on T cell whole polyfunctionality important for memory T cell development and survival. Major differences were observed in T cell function and polyfunctionality between sexes and on E2 treatment. The findings of this study may be critical to understand the results of immunotherapy on different patients and for the enhancement of immunotherapy for cancer.
Collapse
Affiliation(s)
- Flor C. Navarro
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois
| | - Stephanie K. Watkins
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
16
|
Golden LC, Voskuhl R. The importance of studying sex differences in disease: The example of multiple sclerosis. J Neurosci Res 2017; 95:633-643. [PMID: 27870415 DOI: 10.1002/jnr.23955] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
To date, scientific research has often focused on one sex, with assumptions that study of the other sex would yield similar results. However, many diseases affect males and females differently. The sex of a patient can affect the risk for both disease susceptibility and progression. Such differences can be brought to the laboratory bench to be investigated, potentially bringing new treatments back to the clinic. This method of research, known as a "bedside to bench to bedside" approach, has been applied to studying sex differences in multiple sclerosis (MS). Females have greater susceptibly to MS, while males have worse disease progression. These two characteristics of the disease are influenced by the immune system and the nervous system, respectively. Thus, sex differences in each system must be studied. Personalized medicine has been at the forefront of research recently, and studying sex differences in disease fits with this initiative. This review will discuss the known sex differences in MS and highlight how investigating them can lead to new insights and potential treatments for both men and women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa C Golden
- Department of Neurology, University of California Los Angeles, Los Angeles, California.,Molecular Biology IDP, University of California Los Angeles, Los Angeles, California
| | - Rhonda Voskuhl
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Kue CS, Kamkaew A, Voon SH, Kiew LV, Chung LY, Burgess K, Lee HB. Tropomyosin Receptor Kinase C Targeted Delivery of a Peptidomimetic Ligand-Photosensitizer Conjugate Induces Antitumor Immune Responses Following Photodynamic Therapy. Sci Rep 2016; 6:37209. [PMID: 27853305 PMCID: PMC5112560 DOI: 10.1038/srep37209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
Tropomyosin receptor kinase C (TrkC) targeted ligand-photosensitizer construct, IYIY-diiodo-boron-dipyrromethene (IYIY-I2-BODIPY) and its scrambled counterpart YIYI-I2-BODIPY have been prepared. IYIY-I2-BODIPY binds TrkC similar to neurotrophin-3 (NT-3), and NT-3 has been reported to modulate immune responses. Moreover, it could be shown that photodynamic therapy (PDT) elevates antitumor immune responses. This prompted us to investigate the immunological impacts mediated by IYIY-I2-BODIPY in pre- and post-PDT conditions. We demonstrated that IYIY-I2-BODIPY (strong response) and YIYI-I2-BODIPY (weak response) at 10 mg/kg, but not I2-BODIPY control, increased the levels of IL-2, IL-4, IL-6 and IL-17, but decreased the levels of systemic immunoregulatory mediators TGF-β, myeloid-derived suppressor cells and regulatory T-cells. Only IYIY-I2-BODIPY enhanced the IFN-γ+ and IL-17+ T-lymphocytes, and delayed tumor growth (~20% smaller size) in mice when administrated daily for 5 days. All those effects were observed without irradiation; when irradiated (520 nm, 100 J/cm2, 160 mW/cm2) to produce PDT effects (drug-light interval 1 h), IYIY-I2-BODIPY induced stronger responses. Moreover, photoirradiated IYIY-I2-BODIPY treated mice had high levels of effector T-cells compared to controls. Adoptive transfer of immune cells from IYIY-I2-BODIPY-treated survivor mice that were photoirradiated gave significantly delayed tumor growth (~40–50% smaller size) in recipient mice. IYIY-I2-BODIPY alone and in combination with PDT modulates the immune response in such a way that tumor growth is suppressed. Unlike immunosuppressive conventional chemotherapy, IYIY-I2-BODIPY can act as an immune-stimulatory chemotherapeutic agent with potential applications in clinical cancer treatment.
Collapse
Affiliation(s)
- Chin Siang Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A &M University, Box 30012, College Station, Texas 77842, United States
| | - Siew Hui Voon
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A &M University, Box 30012, College Station, Texas 77842, United States
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Brito HO, Radulski DR, Wilhelms DB, Stojakovic A, Brito LMO, Engblom D, Franco CRC, Zampronio AR. Female Sex Hormones Influence the Febrile Response Induced by Lipopolysaccharide, Cytokines and Prostaglandins but not by Interleukin-1β in Rats. J Neuroendocrinol 2016; 28. [PMID: 27483048 DOI: 10.1111/jne.12414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/05/2016] [Accepted: 07/29/2016] [Indexed: 11/26/2022]
Abstract
There are differences in the immune response, and particularly fever, between males and females. In the present study, we investigated how the febrile responses induced by lipopolysaccharide (LPS) and different endogenous pyrogens were affected by female gonadal hormones. The febrile response to i.p. injection of LPS (50 μg/kg) was 40% lower in female rats compared to male or ovariectomised (OVX) female rats. Accordingly, oestrogen replacement in OVX animals reduced LPS-induced fever. Treatment with the prostaglandin synthesis inhibitor indomethacin (2 mg/kg, i.p. 30 min before) reduced the febrile response induced by LPS in both OVX (88%) and sham-operated (71%) rats. In line with the enhanced fever in OVX rats, there was increased expression of cyclooxygenase-2 (COX-2) in the hypothalamus and elevated levels of prostaglandin E2 (PGE2 ). In addition, OVX rats were hyper-responsive to PGE2 injected i.c.v. By contrast to the enhanced fever in response to LPS and PGE2 , the febrile response induced by i.c.v. injection of interleukin (IL)-1β was unaffected by ovariectomy, whereas the responses induced by tumour necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-1α were completely abrogated. These results suggest that the mediators involved in the febrile response in females are similar to males, although the reduction of female hormones may decrease the responsiveness of some mediators such as TNF-α and MIP-1α. Compensatory mechanisms may be activated in females after ovariectomy such as an augmented synthesis of COX-2 and PGE2 .
Collapse
Affiliation(s)
- H O Brito
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - D R Radulski
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - D B Wilhelms
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A Stojakovic
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - L M O Brito
- Department of Medicine III, Federal University of Maranhão, São Luís, Brazil
| | - D Engblom
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - C R C Franco
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | - A R Zampronio
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
19
|
Zhu WH, Lu CZ, Huang YM, Link H, Xiao BG. A putative mechanism on remission of multiple sclerosis during pregnancy: estrogen-induced indoleamine 2,3-dioxygenase by dendritic cells. Mult Scler 2016; 13:33-40. [PMID: 17294609 DOI: 10.1177/1352458506071171] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The basis for the reduced relapse rate of multiple sclerosis (MS) during pregnancy remains unexplained but, if defined, could create novel treatment options. Estrogen constitutes one candidate molecule, but the mechanism by which estrogen may affect MS during pregnancy is unclear. In this study, we used monocyte-derived dendritic cells (DCs) from MS patients to explore the estrogen (17-b-estradiol)-related pathway of immune modulation. Estrogen induced the expression of indoleamine 2,3-dioxygenase (IDO) on DCs, limiting T-cell proliferation and both Th1 and Th2 cytokine production. The suppression of T-cell proliferation mediated by estrogenexposed DCs was partly abolished by the IDO-inhibitor, 1-methyl-dl-tryptophan, indicating that estrogen-exposed DCs induced IDO-dependent T-cell suppression. Our data support the hypothesis that the change in the clinical course of MS observed in pregnancy may be related to the estrogen DC-IDO axis, which could represent a novel target for MS therapy.
Collapse
Affiliation(s)
- W H Zhu
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
20
|
Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med Res Rev 2016; 36:494-575. [PMID: 26992114 DOI: 10.1002/med.21387] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
Collapse
Affiliation(s)
- Chin S Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Lik V Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Y Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hong B Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Khan D, Ansar Ahmed S. The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases. Front Immunol 2016; 6:635. [PMID: 26779182 PMCID: PMC4701921 DOI: 10.3389/fimmu.2015.00635] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Analogous to other physiological systems, the immune system also demonstrates remarkable sex differences. Although the reasons for sex differences in immune responses are not precisely understood, it potentially involves differences in sex hormones (estrogens, androgens, and differential sex hormone receptor-mediated events), X-chromosomes, microbiome, epigenetics among others. Overall, females tend to have more responsive and robust immune system compared to their male counterparts. It is therefore not surprising that females respond more aggressively to self-antigens and are more susceptible to autoimmune diseases. Female hormone (estrogen or 17β-estradiol) can potentially act on all cellular subsets of the immune system through estrogen receptor-dependent and -independent mechanisms. This minireview highlights differential expression of estrogen receptors on immune cells, major estrogen-mediated signaling pathways, and their effect on immune cells. Since estrogen has varied effects in female-predominant autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus, we will mechanistically postulate the potential differential role of estrogen in these chronic debilitating diseases.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA , USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
22
|
Pelekanou V, Kampa M, Kiagiadaki F, Deli A, Theodoropoulos P, Agrogiannis G, Patsouris E, Tsapis A, Castanas E, Notas G. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERα36 and GPR30/GPER1. J Leukoc Biol 2015; 99:333-47. [PMID: 26394816 DOI: 10.1189/jlb.3a0914-430rr] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/02/2015] [Indexed: 12/22/2022] Open
Abstract
Estrogens are known modulators of monocyte/macrophage functions; however, the underlying mechanism has not been clearly defined. Recently, a number of estrogen receptor molecules and splice variants were identified that exert different and sometimes opposing actions. We assessed the expression of estrogen receptors and explored their role in mediating estrogenic anti-inflammatory effects on human primary monocytes. We report that the only estrogen receptors expressed are estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30/G-protein estrogen receptor 1, in a sex-independent manner. 17-β-Estradiol inhibits the LPS-induced IL-6 inflammatory response, resulting in inhibition of NF-κB transcriptional activity. This is achieved via a direct physical interaction of ligand-activated estrogen receptor-α 36-kDa splice variant with the p65 component of NF-κB in the nucleus. G-protein coupled receptor 30/G-protein estrogen receptor 1, which also physically interacts with estrogen receptor-α 36-kDa splice variant, acts a coregulator in this process, because its inhibition blocks the effect of estrogens on IL-6 expression. However, its activation does not mimic the effect of estrogens, on neither IL-6 nor NF-κB activity. Finally, we show that the estrogen receptor profile observed in monocytes is not modified during their differentiation to macrophages or dendritic cells in vitro and is shared in vivo by macrophages present in atherosclerotic plaques. These results position estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30 as important players and potential therapeutic targets in monocyte/macrophage-dependent inflammatory processes.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Marilena Kampa
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Foteini Kiagiadaki
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Alexandra Deli
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Panayiotis Theodoropoulos
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - George Agrogiannis
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Efstratios Patsouris
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Andreas Tsapis
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - George Notas
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| |
Collapse
|
23
|
Türkyılmaz E, Yıldırım M, Avşar AFY. Multiple sclerosis; a disease of reproductive-aged women and the dilemma involving contraceptive methods. J Turk Ger Gynecol Assoc 2015; 16:49-53. [PMID: 25788851 DOI: 10.5152/jtgga.2015.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterized by chronic inflammation in the central nerves system. Because the disease predominantly affects women of reproductive ages, having knowledge about contraception options for MS patients can make clinicians provide better counseling. Although most contraceptive methods are generally accepted as safe and effective in MS patients, recent studies have raised questions about their potential adverse effects on the disease. The use of contraceptive methods to avoid unintended pregnancies is crucial in MS patients, particularly during the relapse phase of the disease or the time when the disease is not completely under control. This review investigates the contraception options and their effects on female MS patients. Providing appropriate contraception options to multiple sclerosis patients will be one of the most challenging issues for clinicians to deal with. Recent studies have raised questions that the use of hormonal contraceptives may at least partly contribute to the rise in incidence of MS in women. This review investigates the contraception options and their effects on female MS patients.
Collapse
Affiliation(s)
- Esengül Türkyılmaz
- Department of Obstetrics and Gynecology, Atatürk Training and Research Hospital, Bilkent, Ankara, Turkey
| | - Melahat Yıldırım
- Department of Obstetrics and Gynecology, Atatürk Training and Research Hospital, Bilkent, Ankara, Turkey
| | - Ayşe Filiz Yavuz Avşar
- Department of Obstetrics and Gynecology, Yıldırım Beyazıt University, Bilkent, Ankara, Turkey
| |
Collapse
|
24
|
Schwinge D, Carambia A, Quaas A, Krech T, Wegscheid C, Tiegs G, Prinz I, Lohse AW, Herkel J, Schramm C. Testosterone Suppresses Hepatic Inflammation by the Downregulation of IL-17, CXCL-9, and CXCL-10 in a Mouse Model of Experimental Acute Cholangitis. THE JOURNAL OF IMMUNOLOGY 2015; 194:2522-2530. [DOI: 10.4049/jimmunol.1400076] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Autoimmune liver diseases predominantly affect women. In this study, we aimed to elucidate how sex affects autoimmune hepatic inflammation. Acute experimental cholangitis was induced by adoptive transfer of OVA-specific CD8+ T cells into mice, which express the cognate Ag on cholangiocytes. In contrast to previous mouse models of cholangitis, this model displayed a strong sexual dimorphism: female mice developed marked cholangitis, whereas male mice were resistant to cholangitis induction. The recruitment of endogenous CD4+ T cells, but not transferred CD8+ T cells into female livers was strongly increased. These cells expressed higher amounts of the proinflammatory cytokine IL-17, which was at least in part responsible for the liver inflammation observed. The recruitment of endogenous CD4+ T cells was associated with increased expression of the chemokines CXCL-9 and CXCL-10 in female livers. The sex-specific factor responsible for the observed differences was found to be testosterone: male mice could be rendered susceptible to liver inflammation by castration, and testosterone treatment was sufficient to completely suppress liver inflammation in female mice. Accordingly, testosterone treatment of female mice significantly reduced the expression of IL-17A, CXCL-9, and CXCL-10 within the liver. Serum testosterone levels of untreated mice negatively correlated with the IL-17, CXCL-9, and CXCL-10 expression in the liver, further supporting a role for testosterone in hepatic immune homeostasis. In conclusion, testosterone was found to be the major determinant of the observed sexual dimorphism. Further study into the role of testosterone for liver inflammation could lead to novel treatment targets in human autoimmune liver diseases.
Collapse
Affiliation(s)
- Dorothee Schwinge
- *First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Antonella Carambia
- *First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexander Quaas
- †Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Krech
- †Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Wegscheid
- ‡Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; and
| | - Gisa Tiegs
- ‡Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; and
| | - Immo Prinz
- §Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Ansgar W. Lohse
- *First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Herkel
- *First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Schramm
- *First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
26
|
Sex-Based Differences in Multiple Sclerosis (Part I): Biology of Disease Incidence. Curr Top Behav Neurosci 2015; 26:29-56. [PMID: 25690593 DOI: 10.1007/7854_2015_371] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease that leads to neuron damage and progressive disability. One major feature of multiple sclerosis (MS) is that it affects women three times more often than men. In this chapter, we overview the evidence that the autoimmune component of MS, which predominates in the early stages of this disease, is more robust in women than in men and undergoes a sharp increase with the onset of puberty. In addition, we discuss the common rodent models of MS that have been used to study the sex-based differences in the development of central nervous system (CNS) autoimmunity. We then address the biological underpinnings of this enhanced MS risk in women by first reviewing the autoimmune mechanisms that are thought to lead to the initiation of this disease and then honing in on how these mechanisms differ between the sexes. Finally, we review what is known about the hormonal and genetic basis of these sex differences in CNS autoimmunity.
Collapse
|
27
|
Multiple sclerosis at menopause: Potential neuroprotective effects of estrogen. Maturitas 2014; 80:133-9. [PMID: 25544310 DOI: 10.1016/j.maturitas.2014.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating and neurodegenerative condition of the central nervous system that preferentially afflicts women more than men. Low estrogen states such as menopause and the postpartum period favor exacerbations of multiple sclerosis in women with the disease. Existing and emerging evidence suggests a role for estrogen in the alleviation of symptoms and reversal of pathology associated with MS. While clinical evidence is sparse regarding the benefit of estrogen therapy for women at risk for MS exacerbations, scientific data demonstrates that estrogen potentiates numerous neuroprotective effects on the central nervous system (CNS). Estrogens play a wide range of roles involved in MS disease pathophysiology, including increasing antiinflammatory cytokines, decreasing demyelination, and enhancing oxidative and energy producing processes in CNS cells.
Collapse
|
28
|
XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2014; 111:2806-11. [PMID: 24550311 DOI: 10.1073/pnas.1307091111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.
Collapse
|
29
|
Javadian A, Salehi E, Bidad K, Sahraian MA, Izad M. Effect of estrogen on Th1, Th2 and Th17 cytokines production by proteolipid protein and PHA activated peripheral blood mononuclear cells isolated from multiple sclerosis patients. Arch Med Res 2014; 45:177-82. [PMID: 24486244 DOI: 10.1016/j.arcmed.2014.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 01/15/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS A large body of studies has shown that 17-β estradiol (E2) has a protective effect on susceptibility to experimental autoimmune encephalomyelitis (EAE). Clinical improvement in multiple sclerosis and its animal model, EAE, during pregnancy, when estrogen levels are high, suggests an immunomodulatory role for estrogens. The immune basis for this protection is poorly understood. In this study we evaluated the effect of E2 on the synthesis of inflammatory, antiinflammatory and regulatory cytokines. METHODS We analyzed the effect of E2 on IL-4, IL-10, IL-17, TNF-α and IFN-γ cytokines produced by proteolipid protein (PLP) or mitogen phytohemagglutinin (PHA)-activated peripheral blood mononuclear cells isolated from multiple sclerosis patients in comparison to healthy control group. We used RT-PCR and ELISA to detect the level of cytokines. RESULTS We found that E2 significantly increased IL-10 expression and secretion and decreased expression of TNF-α in both groups and IL-4 in patients in cells stimulated with PLP or PHA (p <0.0001). CONCLUSION These data indicated that E2 could affect expression and secretion of inflammatory and anti-inflammatory cytokines and could regulate immune responses especially in the differentiation towards regulatory responses, and this finding might have therapeutic value in multiple sclerosis.
Collapse
Affiliation(s)
- Ani Javadian
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Eisa Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Katayon Bidad
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Iran
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
30
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Peroxisome proliferator-activated receptor (PPAR)α and -γ regulate IFNγ and IL-17A production by human T cells in a sex-specific way. Proc Natl Acad Sci U S A 2012; 109:9505-10. [PMID: 22647601 DOI: 10.1073/pnas.1118458109] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Women develop certain autoimmune diseases more often than men. It has been hypothesized that this may relate to the development of more robust T-helper (Th)1 responses in women. To test whether women exhibit a Th1 bias, we isolated naïve cluster of differentiation (CD)4(+) T cells from peripheral blood of healthy women and men and measured the proliferation and cytokine production by these cells in response to submaximal amounts of anti-CD3 and anti-CD28. We observed that CD4(+) T cells from women produced higher levels of IFNγ as well as tended to proliferate more than male CD4(+) T cells. Intriguingly, male CD4(+) T cells instead had a predilection toward IL-17A production. This sex dichotomy in Th cytokine production was found to be even more striking in the Swiss/Jackson Laboratory (SJL) mouse. Studies in mice and humans indicated that the sexual dimorphism in Th1 and Th17 cytokine production was dependent on the androgen status and the T-cell expression of peroxisome proliferator activated receptor (PPAR)α and PPARγ. Androgens increased PPARα and decreased PPARγ expression by human CD4(+) T cells. PPARα siRNA-mediated knockdown had the effect of increasing IFNγ by male CD4(+) T cells, while transfection of CD4(+) T cells with PPARγ siRNAs increased IL-17A production uniquely by female T cells. Together, our observations indicate that human T cells exhibit a sex difference in the production of IFNγ and IL-17A that may be driven by expressions of PPARα and PPARγ.
Collapse
|
32
|
Liu MH, Tsuang FY, Sheu SY, Sun JS, Shih CM. The protective effects of coumestrol against amyloid-β peptide- and lipopolysaccharide-induced toxicity on mice astrocytes. Neurol Res 2012; 33:663-72. [PMID: 21708076 DOI: 10.1179/1743132810y.0000000029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Estrogen replacement therapy can decrease the risk of developing Alzheimer's disease. Phytoestrogens have been proposed as potential alternatives to estrogen replacement therapy. The purpose of this study was to evaluate the in vitro protective effects of coumestrol on mice astrocytes. METHODS Different concentrations of coumestrol were tested for their protective efficacy against two toxic insults, lipopolysaccharide (LPS) and amyloid-beta peptide, on astrocytes. The mitochondrial activity of astrocytes was determined, and the protective efficacy and pathway were examined by their specific gene expression and protein change. RESULTS The results showed that coumestrol induced a modest but significant increase in viability of astrocytes, while the viability of astrocytes was reduced following exposure to LPS and amyloid-beta peptide. The addition of coumestrol could reverse the toxic effect induced by LPS and amyloid-beta peptide. Both the LPS and amyloid-beta peptide enhanced interleukin 1, interleukin 6, and tumor necrosis factor-alpha synthesis and these effects were inhibited by 10(-9)M coumestrol. This effect was more obvious on the LPS-induced inflammation. The estrogen receptor expression was upregulated by coumestrol, while the effect was more obvious on estrogen receptor-beta (ER-beta). These effects can be inhibited by extracellular signal-regulated kinase and c-Jun N-terminal kinase inhibitors but not p38 inhibitor. DISCUSSION The current data support a possible role for astrocytes in the mediation of neuroprotection by coumestrol. An indirect extracellular signal-regulated kinase/c-Jun N-terminal kinase signaling pathway to downregulate the expression of interleukin 1, interleukin 6, and the tumor necrosis factor-alpha cytotoxic effect may act in concert with the proposed direct ER-beta biosynethsis pathway to achieve a widespread, global protection of ER-beta positive neurons.
Collapse
Affiliation(s)
- Man-Hai Liu
- School of Pharmacy, Taipei Medical University, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Voskuhl RR, Gold SM. Sex-related factors in multiple sclerosis susceptibility and progression. Nat Rev Neurol 2012; 8:255-63. [PMID: 22450508 DOI: 10.1038/nrneurol.2012.43] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pathogenesis of multiple sclerosis (MS) involves complex interactions between genetic susceptibility and environmental triggers. Clinical observations suggest that the study of sex differences might provide important insight into mechanisms of pathogenesis and progression of the disease in patients. MS occurs more frequently in women than in men, indicating that sex-related factors have an effect on an individual's susceptibility to developing the condition. These factors include hormonal, genetic and environmental influences, as well as gene-environment interactions and epigenetic mechanisms. Interestingly, women do not have a poorer prognosis than men with MS despite a higher incidence of the disease and more-robust immune responses, which suggests a mechanism of resilience. Furthermore, the state of pregnancy has a substantial effect on disease activity, characterized by a reduction in relapse rates during the third trimester but an increased relapse rate in the postpartum period. However, pregnancy has little effect on long-term disability in women with MS. The unravelling of the mechanisms underlying these clinical observations in the laboratory and application of the results to the clinical setting is a unique and potentially fruitful strategy to develop novel therapeutic approaches for MS.
Collapse
Affiliation(s)
- Rhonda R Voskuhl
- Department of Neurology, University of California Los Angeles, Neuroscience Research Building 1, Room 475D, 635 Charles Young Drive South, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
34
|
Central nervous system inflammation in disease related conditions: Mechanistic prospects. Brain Res 2012; 1446:144-55. [DOI: 10.1016/j.brainres.2012.01.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/24/2022]
|
35
|
Spence RD, Voskuhl RR. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol 2012; 33:105-15. [PMID: 22209870 PMCID: PMC3616506 DOI: 10.1016/j.yfrne.2011.12.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a disease characterized by inflammation and demyelination. Currently, the cause of MS is unknown. Experimental autoimmune encephalomyelitis (EAE) is the most common mouse model of MS. Treatments with the sex hormones, estrogens and androgens, are capable of offering disease protection during EAE and are currently being used in clinical trials of MS. Beyond endogenous estrogens and androgens, treatments with selective estrogen receptor modulators (SERMs) for estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) are also capable of providing disease protection. This protection includes, but is not limited to, prevention of clinical disease, reduction of CNS inflammation, protection against demyelination, and protection against axonal loss. In EAE, current efforts are focused on using conditional cell specific knockouts of sex hormone receptors to identify the in vivo targets of these estrogens and androgens as well as downstream molecules responsible for disease protection.
Collapse
Affiliation(s)
- Rory D Spence
- University of California, Los Angeles, Department of Neurology, UCLA Multiple Sclerosis Program, 635 Charles E Young Drive South, Neuroscience Research Building 1, Room 479, Los Angeles, CA 90095, United States.
| | | |
Collapse
|
36
|
Bodhankar S, Offner H. GPR30 FORMS AN INTEGRAL PART OF E2-PROTECTIVE PATHWAY IN EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS. ACTA ACUST UNITED AC 2011; 11:262-274. [PMID: 22247749 DOI: 10.2174/1871522211108040262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major focus of our laboratory has been an in-depth evaluation as to how estrogens exert a pronounced protective effect on clinical and histological disease in the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). An important issue regarding their therapeutic application has been the undesirable estrogenic side effects thought to be mediated primarily through 17β-estradiol (E2) binding to intracellular estrogen receptor alpha (ERα). With the discovery and characterization of GPR30 as the putative membrane estrogen receptor, we sought to study whether signaling through GPR30 was sufficient to mediate protection against EAE without engagement of ERα. Treatment of EAE in WT mice with G-1, a selective GPR30 agonist, retained estradiol's ability to protect against clinical and histological EAE without estrogenic side effects. G-1 treatment deviated cytokine profiles and enhanced suppressive activity of CD4(+)Foxp3(+) Treg cells through a GPR30- and programmed death 1 (PD-1)-dependent mechanism. This novel finding was indicative of the protective effect of GPR30 activation in EAE and provides a strong foundation for the clinical application of GPR30 agonists such as G-1 in MS. However, future studies are needed to elucidate cross-signaling and evaluate possible additive effects of combined signaling through both GPR30 and ER-α. Deciphering the possible mechanism of involvement of GPR30 in estrogen-mediated protection against EAE may result in lowering treatment doses of E2 and GPR30 agonists that could minimize risks and maximize immunoregulation and therapeutic effects in MS. Alternatively, one might envision using E2 derivatives with reduced estrogenic activity alone or in combination with GPR30 agonists as therapies for both male and female MS patients.
Collapse
Affiliation(s)
- Sheetal Bodhankar
- Neuroimmunology Research, Portland VA Medical Center, Portland, OR, USA
| | | |
Collapse
|
37
|
Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K. Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 2011; 286:43855-43870. [PMID: 22030398 DOI: 10.1074/jbc.m111.299248] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secreted protein lipocalin-2 (LCN2) has been implicated in diverse cellular processes, including cell morphology and migration. Little is known, however, about the role of LCN2 in the CNS. Here, we show that LCN2 promotes cell migration through up-regulation of chemokines in brain. Studies using cultured glial cells, microvascular endothelial cells, and neuronal cells suggest that LCN2 may act as a chemokine inducer on the multiple cell types in the CNS. In particular, up-regulation of CXCL10 by JAK2/STAT3 and IKK/NF-κB pathways in astrocytes played a pivotal role in LCN2-induced cell migration. The cell migration-promoting activity of LCN2 in the CNS was verified in vivo using mouse models. The expression of LCN2 was notably increased in brain following LPS injection or focal injury. Mice lacking LCN2 showed the impaired migration of astrocytes to injury sites with a reduced CXCL10 expression in the neuroinflammation or injury models. Thus, the LCN2 proteins, secreted under inflammatory conditions, may amplify neuroinflammation by inducing CNS cells to secrete chemokines such as CXCL10, which recruit additional inflammatory cells.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jae-Hong Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jung-Wan Seo
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Hyung-Soo Han
- Department of Physiology, Brain Science & Engineering Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Won-Ha Lee
- Departments of School of Life Sciences and Biotechnology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Kiyoshi Mori
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Jonathan Barasch
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10027
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea.
| |
Collapse
|
38
|
Abstract
Women are more susceptible to a variety of autoimmune diseases including systemic lupus erythematosus (SLE), multiple sclerosis (MS), primary biliary cirrhosis, rheumatoid arthritis and Hashimoto's thyroiditis. This increased susceptibility in females compared to males is also present in animal models of autoimmune diseases such as spontaneous SLE in (NZBxNZW)F1 and NZM.2328 mice, experimental autoimmune encephalomyelitis (EAE) in SJL mice, thyroiditis, Sjogren's syndrome in MRL/Mp-lpr/lpr mice and diabetes in non-obese diabetic mice. Indeed, being female confers a greater risk of developing these diseases than any single genetic or environmental risk factor discovered to date. Understanding how the state of being female so profoundly affects autoimmune disease susceptibility would accomplish two major goals. First, it would lead to an insight into the major pathways of disease pathogenesis and, secondly, it would likely lead to novel treatments which would disrupt such pathways.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Professor, UCLA Dept, of Neurology, Jack H Skirball Chair for Multiple Sclerosis Research, Director, UCLA Multiple Sclerosis Program, Neuroscience Research Building 1, Room 475D, 635 Charles Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Huang CH, Kuo PL, Hsu YL, Chang TT, Tseng HI, Chu YT, Kuo CH, Chen HN, Hung CH. The natural flavonoid apigenin suppresses Th1- and Th2-related chemokine production by human monocyte THP-1 cells through mitogen-activated protein kinase pathways. J Med Food 2010; 13:391-8. [PMID: 20170340 DOI: 10.1089/jmf.2009.1229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dietary flavonoids have various biological functions, and there is increasing evidence that reduced prevalence and severity of allergic reactions are associated with the intake of flavonoids. Among natural flavonoids, apigenin is a potent anti-inflammatory agent. However, the mechanisms of apigenin's effect remain uncertain. Monocyte-derived chemokine (MDC) plays a pivotal role in recruiting T-helper (Th) 2 cells in the allergic inflammation process. In the late phase of allergic inflammation, the Th1 chemokine interferon-inducible protein 10 (IP-10) has also been found in elevated levels in the bronchial alveolar fluid of asthmatic children. We used human THP-1 monocyte cells, pretreated with or without apigenin, prior to lipopolysaccharide stimulation. By means of enzyme-linked immunosorbent assay, we found that apigenin inhibited production of both MDC and IP-10 by THP-1 cells and that the suppressive effect of apigenin was not reversed by the estrogen receptor antagonist ICI182780. The p65 phosphorylation of nuclear factor kappaB remained unaffected, but the phosphorylation of p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase mitogen-activated protein kinase pathways were all blocked. We found that inhibition of c-raf phosphorylation might be the target of apigenin's anti-inflammation property.
Collapse
Affiliation(s)
- Ching-Hua Huang
- Department of Pediatrics, Yuan's General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Premarin improves outcomes of spinal cord injury in male rats through stimulating both angiogenesis and neurogenesis. Crit Care Med 2010; 38:2043-51. [PMID: 20657272 DOI: 10.1097/ccm.0b013e3181ef44dc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To ascertain whether Premarin improves spinal cord injury outcomes in male rats by stimulating both angiogenesis and neurogenesis. DESIGN Chi Mei Medical Center research laboratory. SUBJECTS Male Sprague-Dawley rats 240-258 g. INTERVENTIONS Anesthetized rats, after the onset of spinal cord injury, were divided into two groups and given the vehicle solution (1 mL/kg of body weight) or Premarin (1 mg/kg of body weight). Saline or Premarin solutions were administered intravenously and immediately after spinal cord injury. MEASUREMENTS AND MAIN RESULTS Premarin (an estrogen sulfate) causes attenuation of spinal cord injury-induced spinal cord infarction and hind limb locomotor dysfunction. Spinal cord injury-induced apoptosis as well as activated inflammation was also significantly Premarin-reduced. In injured spinal cord, angiogenesis, neurogenesis, and production of an antiinflammatory cytokine were all Premarin therapy-promoted. CONCLUSIONS Our results indicate that Premarin therapy may protect against spinal cord apoptosis after spinal cord injury through mechanisms stimulating both angiogenesis and neurogenesis in male rats.
Collapse
|
41
|
Brown CM, Mulcahey TA, Filipek NC, Wise PM. Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors alpha and beta. Endocrinology 2010; 151:4916-25. [PMID: 20685874 PMCID: PMC2946152 DOI: 10.1210/en.2010-0371] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroinflammation is a common feature of many neurological disorders, and it is often accompanied by the release of proinflammatory cytokines and chemokines. Estradiol-17β (E2) exhibits antiinflammatory properties, including the suppression of proinflammatory cytokines, in the central nervous system. However, the mechanisms employed by E2 and the role(s) of estrogen receptors (ERs) ERα and ERβ are unclear. To investigate these mechanisms, we employed an in vivo lipopolysaccharide (LPS) model of systemic inflammation in ovariectomized (OVX) and OVX and E2-treated (OVX+E2) mice. Brain levels of proinflammatory cytokines (IL-1β, IL-6, and IL-12p40) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, and CXCL1/KC) were quantified in mice at 0 (sham), 3, 6, 12, and 24 h after infection using multiplex protein analysis. E2 treatment inhibited LPS-induced increases in all cytokines. In contrast, E2 treatment only suppressed CCL/RANTES chemokine concentrations. To determine whether ERα and ERβ regulate brain cytokine and chemokine levels, parallel experiments were conducted using ERα knockout and ERβ knockout mice. Our results revealed that both ERα and ERβ regulated proinflammatory cytokine and chemokine production through E2-dependent and E2-independent mechanisms. To assess whether breakdown of the blood-brain barrier is an additional target of E2 against LPS-induced neuroinflammation, we measured Evan's blue extravasation and identified distinct roles for ERα and ERβ. Taken together, these studies identify a dramatic cytokine- and chemokine-mediated neuroinflammatory response that is regulated through ERα- and ERβ-mediated ligand-dependent and ligand-independent mechanisms.
Collapse
Affiliation(s)
- Candice M Brown
- Department of Physiology and Biophysics, University of Washington, Box 356460, Seattle, Washington 98195-4640, USA.
| | | | | | | |
Collapse
|
42
|
Correale J, Ysrraelit MC, Gaitán MI. Gender differences in 1,25 dihydroxyvitamin D3 immunomodulatory effects in multiple sclerosis patients and healthy subjects. THE JOURNAL OF IMMUNOLOGY 2010; 185:4948-58. [PMID: 20855882 DOI: 10.4049/jimmunol.1000588] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin D(3) is best known as a calcium homeostasis modulator; however, it also has immune-modulating potential. In this study, we demonstrated that immunomodulatory effects of vitamin D(3) are significantly stronger in females than in males in multiple sclerosis patients, as well as in healthy subjects. Inhibition of self-reactive T cell proliferation and reduction in IFN-γ- and IL-17-secreting cell numbers were considerably greater in females. Furthermore, the increase in IL-10-secreting and CD4(+)CD25(+)FoxP3(+) regulatory T cell numbers were also greater in females. In parallel with these findings, female subjects had fewer CYP24A1 transcripts encoding the 1,25-dihydroxyvitamin D(3)-inactivating enzyme, as well as greater binding and internalization of vitamin D(3)-binding protein, a transporter for vitamin D(3) and its metabolites. These gender-based disparities lead to the accumulation of vitamin D(3) and its metabolites in target cells from female subjects and result in a more potent anti-inflammatory effect. Interestingly, 17-β estradiol reproduced these effects on self-reactive T cells and macrophages from male subjects, suggesting a functional synergy between 1,25-dihydroxyvitamin D(3) and 17-β estradiol, mediated through estrogen receptor α. Collectively, these results demonstrate estrogen-promoted differences in vitamin D(3) metabolism, suggesting a greater protective effect of vitamin D(3)-based therapeutic strategies in women.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Raúl Carrea Institute for Neurological Research, Buenos Aires, Argentina.
| | | | | |
Collapse
|
43
|
Taylor LC, Puranam K, Gilmore W, Ting JPY, Matsushima G. 17beta-estradiol protects male mice from cuprizone-induced demyelination and oligodendrocyte loss. Neurobiol Dis 2010; 39:127-37. [PMID: 20347981 PMCID: PMC2891426 DOI: 10.1016/j.nbd.2010.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 02/25/2010] [Accepted: 03/19/2010] [Indexed: 12/15/2022] Open
Abstract
In addition to regulating reproductive functions in the brain and periphery, estrogen has tropic and neuroprotective functions in the central nervous system (CNS). Estrogen administration has been demonstrated to provide protection in several animal models of CNS disorders, including stroke, brain injury, epilepsy, Parkinson's disease, Alzheimer's disease, age-related cognitive decline and multiple sclerosis. Here, we use a model of toxin-induced oligodendrocyte death which results in demyelination, reactive gliosis, recruitment of oligodendrocyte precursor cells and subsequent remyelination to study the potential benefit of 17beta-estradiol (E2) administration in male mice. The results indicate that E2 partially ameliorates loss of oligodendrocytes and demyelination in the corpus callosum. This protection is accompanied by a delay in microglia accumulation as well as reduced mRNA expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFalpha), and insulin-like growth factor-1 (IGF-1). E2 did not significantly alter the accumulation of astrocytes or oligodendrocyte precursor cells, or remyelination. These data obtained from a toxin-induced, T cell-independent model using male mice provide an expanded view of the beneficial effects of estrogen on oligodendrocyte and myelin preservation.
Collapse
Affiliation(s)
- Lorelei C Taylor
- Curriculum in Neurobiology, University of North Carolina-CH, Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
| | - Kasturi Puranam
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
| | - Wendy Gilmore
- Department of Neurology, University of Southern California, Los Angeles, CA 90033
| | - Jenny P-Y. Ting
- Curriculum in Neurobiology, University of North Carolina-CH, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina-CH, Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
| | - G.K. Matsushima
- Curriculum in Neurobiology, University of North Carolina-CH, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina-CH, Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
- Program for Molecular Biology and Biotechnology, University of North Carolina-CH, Chapel Hill, NC 27599
| |
Collapse
|
44
|
Jones RE, Kaler L, Murphy S, Offner H. Tissue-Dependent Expression of Estrogen Receptor β in 17β-Estradiol-Mediated Attenuation of Autoimmune CNS Inflammation. ACTA ACUST UNITED AC 2010; 2:197-204. [PMID: 22242109 PMCID: PMC3254147 DOI: 10.2174/1876894601002010197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment strategies using therapeutic estrogen are being developed and tested for multiple sclerosis (MS). MS is an autoimmune inflammatory disease that attacks the central nervous system, damages myelin and produces neurode-generative changes associated with periodic and chronic progression of functional neurological deficit. Experimental studies in chimeric bone marrow transplant mice treated with 17β-estradiol (E2) have revealed that the estrogen receptor-1 (Esr-1, or -alpha) expressed exclusively within the non-hematopoietic tissue compartment is sufficient for mediating a beneficial neuroprotective therapeutic response in mice lacking Esr-1 expression on T lymphocytes or other bone marrow-derived cells. Less is known regarding requirements for estrogen receptor-2 (Esr-2, or -beta) expression in E2-mediated therapy. Here, we tested and compared requirements for Esr-2 expression within distinct tissue compartments in bone marrow transplant mice. Our studies support a crucial role for Esr-1 in E2 treatment and demonstrate that Esr-2 expressed by non-bone marrow-derived cells plays a role in sustaining the neuroprotective response mediated through Esr-1.
Collapse
Affiliation(s)
- Richard E Jones
- Department of Neurology, Oregon Health & Science University, Portland VA Medical Center, Oregon USA
| | | | | | | |
Collapse
|
45
|
Yates MA, Li Y, Chlebeck PJ, Offner H. GPR30, but not estrogen receptor-alpha, is crucial in the treatment of experimental autoimmune encephalomyelitis by oral ethinyl estradiol. BMC Immunol 2010; 11:20. [PMID: 20403194 PMCID: PMC2864220 DOI: 10.1186/1471-2172-11-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/19/2010] [Indexed: 01/21/2023] Open
Abstract
Background Remission of multiple sclerosis during periods of high ovarian hormone secretion (such as pregnancy) has led to a great deal of interest in the potential for estrogens to treat autoimmune disease. Previous work has established that 17β-estradiol can inhibit onset of experimental autoimmune encephalomyelitis (EAE), while ethinyl estradiol (EE) can reduce the severity of established disease. In the current study, the influence of estrogen receptor-α (ERα) and the G-protein coupled estrogen receptor (GPR30 or GPER) on EE's ability to treat EAE was explored. Results EE reduced disease severity in wild-type and ERα knockout (ERKO) mice, but did not alter disease in the GPR30KO group. Production of anti-inflammatory IL-10 increased in EE-ERKO mice (which showed reduced disease) but not in EE-GPR30KO mice (who did not have improved disease). Conclusions Differential production of IL-10 following EE treatment in ERKO and GPR30KO animals may be responsible for the distinctly different effects on disease severity. Increased IL-10 in ERKO-EE compared to ERKO-Controls is likely to be an important factor in reducing established disease. The inability of EE to reduce disease in GPR30KO mice indicates an important but still undefined role for GPR30 in regulating immune reactivity.
Collapse
Affiliation(s)
- Melissa A Yates
- Neuroimmunology Research, Portland VA Medical Center, Portland, OR, USA
| | | | | | | |
Collapse
|
46
|
Zhang B, Subramanian S, Dziennis S, Jia J, Uchida M, Akiyoshi K, Migliati E, Lewis AD, Vandenbark AA, Offner H, Hurn PD. Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. THE JOURNAL OF IMMUNOLOGY 2010; 184:4087-94. [PMID: 20304826 DOI: 10.4049/jimmunol.0902339] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced risk and severity of stroke in adult females is thought to depend on normal endogenous levels of estrogen, a well-known neuroprotectant and immunomodulator. In male mice, experimental stroke induces immunosuppression of the peripheral immune system, characterized by a reduction in spleen size and cell numbers and decreased cytokine and chemokine expression. However, stroke-induced immunosuppression has not been evaluated in female mice. To test the hypothesis that estradiol (E2) deficiency exacerbates immunosuppression after focal stroke in females, we evaluated the effect of middle cerebral artery occlusion on infarct size and peripheral and CNS immune responses in ovariectomized mice with or without sustained, controlled levels of 17-beta-E2 administered by s.c. implant or the putative membrane estrogen receptor agonist, G1. Both E2- and G1-replacement decreased infarct volume and partially restored splenocyte numbers. Moreover, E2-replacement increased splenocyte proliferation in response to stimulation with anti-CD3/CD28 Abs and normalized aberrant mRNA expression for cytokines, chemokines, and chemokine receptors and percentage of CD4(+)CD25(+)FoxP3(+) T regulatory cells observed in E2-deficient animals. These beneficial changes in peripheral immunity after E2 replacement were accompanied by a profound reduction in expression of the chemokine, MIP-2, and a 40-fold increased expression of CCR7 in the lesioned brain hemisphere. These results demonstrate for the first time that E2 replacement in ovariectomized female mice improves stroke-induced peripheral immunosuppression.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yates MA, Li Y, Chlebeck P, Proctor T, Vandenbark AA, Offner H. Progesterone treatment reduces disease severity and increases IL-10 in experimental autoimmune encephalomyelitis. J Neuroimmunol 2010; 220:136-9. [PMID: 20153059 DOI: 10.1016/j.jneuroim.2010.01.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 01/12/2023]
Abstract
Ovarian hormones, including progesterone, are known to have immunomodulatory and neuroprotective effects which may alter the disease course of experimental autoimmune encephalomyelitis (EAE). In the current study, we examined the treatment potential of progesterone beginning at the onset of EAE symptoms. Progesterone treated animals showed reduced peak disease scores and cumulative disease indices, and decreased inflammatory cytokine secretion (IL-2 and IL-17). In addition, increased production of IL-10 was accompanied by increased numbers of CD19+ cells and an increase in CD8+ cells. Decreased chemokine and chemokine receptor expression in the spinal cord also contributed to decreased lesions in the spinal cord.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Biomarkers/analysis
- Biomarkers/blood
- CD8 Antigens/immunology
- Cell Proliferation/drug effects
- Chemokines/drug effects
- Chemokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Interleukin-10/blood
- Interleukin-10/metabolism
- Interleukin-17/blood
- Interleukin-17/metabolism
- Interleukin-2/blood
- Interleukin-2/metabolism
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/blood
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Progesterone/pharmacology
- Progesterone/therapeutic use
- Progestins/pharmacology
- Progestins/therapeutic use
- Receptors, Chemokine/drug effects
- Receptors, Chemokine/metabolism
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Treatment Outcome
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- M A Yates
- Neuroimmunology Research, Portland VA Medical Center, Portland, OR, United States
| | | | | | | | | | | |
Collapse
|
48
|
Ansar Ahmed S, Karpuzoglu E, Khan D. Effects of Sex Steroids on Innate and Adaptive Immunity. SEX HORMONES AND IMMUNITY TO INFECTION 2010:19-51. [DOI: 10.1007/978-3-642-02155-8_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Premarin stimulates estrogen receptor-α to protect against traumatic brain injury in male rats*. Crit Care Med 2009; 37:3097-106. [DOI: 10.1097/ccm.0b013e3181bc7986] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Blasko E, Haskell CA, Leung S, Gualtieri G, Halks-Miller M, Mahmoudi M, Dennis MK, Prossnitz ER, Karpus WJ, Horuk R. Beneficial role of the GPR30 agonist G-1 in an animal model of multiple sclerosis. J Neuroimmunol 2009; 214:67-77. [PMID: 19664827 PMCID: PMC2873862 DOI: 10.1016/j.jneuroim.2009.06.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/27/2009] [Accepted: 06/29/2009] [Indexed: 12/20/2022]
Abstract
The beneficial effects of estrogens in multiple sclerosis are thought to be mediated exclusively by the classical nuclear estrogen receptors ERalpha and ERbeta. However, recently many reports revealed that estrogens are able to mediate rapid signals through a G protein-coupled receptor (GPCR), known as GPR30. In the present study, we set out to explore whether effects mediated through this receptor were anti-inflammatory and could account for some of the beneficial effects of estrogen. We demonstrate that GPR30 is expressed in both human and mouse immune cells. Furthermore a GPR30-selective agonist, G-1, previously described by us, inhibits the production of lipopolysaccharide (LPS)-induced cytokines such as TNF-alpha and IL-6 in a dose-dependent manner in human primary macrophages and in a murine macrophage cell line. These effects are likely mediated solely through the estrogen-specific receptor GPR30 since the agonist G-1 displayed an IC(50) far greater than 10 microM on the classical nuclear estrogen receptors as well as a panel of 25 other GPCRs. Finally, we show that the agonist G-1 is able to reduce the severity of disease in both active and passive EAE models of multiple sclerosis in SJL mice and that this effect is concomitant with a G-1-mediated decrease in proinflammatory cytokines, including IFN-gamma and IL-17, in immune cells harvested from these mice. The effect of G-1 appears indirect, as the GPR30 agonist did not directly influence IFN-gamma or IL-17 production by purified T cells. These data indicate that G-1 may represent a novel therapeutic agent for the treatment of chronic autoimmune, inflammatory diseases.
Collapse
Affiliation(s)
- Eric Blasko
- Departments of Chemistry, Molecular Pharmacology and Immunology, Berlex Biosciences, Richmond, CA 94806
| | - Christopher A. Haskell
- Departments of Chemistry, Molecular Pharmacology and Immunology, Berlex Biosciences, Richmond, CA 94806
| | - Stewart Leung
- Departments of Chemistry, Molecular Pharmacology and Immunology, Berlex Biosciences, Richmond, CA 94806
| | - Giovanna Gualtieri
- Departments of Chemistry, Molecular Pharmacology and Immunology, Berlex Biosciences, Richmond, CA 94806
| | - Meredith Halks-Miller
- Departments of Chemistry, Molecular Pharmacology and Immunology, Berlex Biosciences, Richmond, CA 94806
| | - Mithra Mahmoudi
- Departments of Chemistry, Molecular Pharmacology and Immunology, Berlex Biosciences, Richmond, CA 94806
| | - Megan K. Dennis
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Eric R. Prossnitz
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico 87131
| | - William J. Karpus
- Department of Pathology, Feinberg School of Medicine, NorthWestern University, Chicago, IL, 60611
| | - Richard Horuk
- Departments of Chemistry, Molecular Pharmacology and Immunology, Berlex Biosciences, Richmond, CA 94806
| |
Collapse
|