1
|
Baldacchino K, Peveler WJ, Lemgruber L, Smith RS, Scharler C, Hayden L, Komarek L, Lindsay SL, Barnett SC, Edgar JM, Linington C, Thümmler K. Myelinated axons are the primary target of hemin-mediated oxidative damage in a model of the central nervous system. Exp Neurol 2022; 354:114113. [PMID: 35569511 DOI: 10.1016/j.expneurol.2022.114113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 12/01/2022]
Abstract
Iron released from oligodendrocytes during demyelination or derived from haemoglobin breakdown products is believed to amplify oxidative tissue injury in multiple sclerosis (MS). However, the pathophysiological significance of iron-containing haemoglobin breakdown products themselves is rarely considered in the context of MS and their cellular specificity and mode of action remain unclear. Using myelinating cell cultures, we now report the cytotoxic potential of hemin (ferriprotoporphyrin IX chloride), a major degradation product of haemoglobin, is 25-fold greater than equimolar concentrations of free iron in myelinating cultures; a model that reproduces the complex multicellular environment of the CNS. At low micro molar concentrations (3.3 - 10 μM) we observed hemin preferentially binds to myelin and axons to initiate a complex detrimental response that results in targeted demyelination and axonal loss but spares neuronal cell bodies, astrocytes and the majority of oligodendroglia. Demyelination and axonal loss in this context are executed by a combination of mechanisms that include iron-dependent peroxidation by reactive oxygen species (ROS) and ferroptosis. These effects are microglial-independent, do not require any initiating inflammatory insult and represent a direct effect that compromises the structural integrity of myelinated axons in the CNS. Our data identify hemin-mediated demyelination and axonal loss as a novel mechanism by which intracerebral degradation of haemoglobin may contribute to lesion development in MS.
Collapse
Affiliation(s)
- Karl Baldacchino
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - William J Peveler
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ Glasgow, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Rebecca Sherrard Smith
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Cornelia Scharler
- Institute of Experimental and Clinical Cell Therapy, Paracelsus Medical University, Salzburg, Austria
| | - Lorna Hayden
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Lina Komarek
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Katja Thümmler
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom.
| |
Collapse
|
2
|
Ai G, Wu X, Dou Y, Huang R, Zhong L, Liu Y, Xian Y, Lin Z, Li Y, Su Z, Chen J, Qu C. Oxyberberine, a novel HO-1 agonist, effectively ameliorates oxidative stress and inflammatory response in LPS/D-GalN induced acute liver injury mice via coactivating erythrocyte metabolism and Nrf2 signaling pathway. Food Chem Toxicol 2022; 166:113215. [PMID: 35691465 DOI: 10.1016/j.fct.2022.113215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 01/22/2023]
Abstract
Oxyberberine (OBB), a main gut-mediated metabolite of Phellodendron chinense Cortex (PC), exhibits prominent protective property against acute liver injury (ALI). Heme oxygenase-1 (HO-1) is a vital molecule in attenuating acute and chronic liver injury for its prominent anti-oxidative injury and anti-inflammation properties. The present study was performed to investigate the hepatoprotective role of OBB through HO-1 signaling pathway in lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced ALI. Our results indicated that PC treatment improved survival rate and its metabolite OBB evidently improved histopathological deteriorations and liver function. Additionally, OBB dramatically ameliorated hepatic oxidative stress and inflammation. Besides, OBB exerted remarkable HO-1 agonistic activity, even be comparable to hemin (a HO-1 inducer), as evidenced by increased HO-1 level, carbon monoxide and bilirubin activities, which are the markers of erythrocyte metabolism. Moreover, OBB modulated the parameters of inflammation and oxidative stress through HO-1 dependent pathway. Beyond this, OBB also notably suppressed the translocation of p65, enhanced antioxidation defense genes expressions, promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2). In conclusion, OBB could be the principle active metabolite substance of PC and exert excellent hepatoprotective effects via inducing HO-1 through coactivation of erythrocyte metabolism and Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yaoxing Dou
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, 510006, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Linjiang Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yanfang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Zhixiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Chang Qu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510630, PR China.
| |
Collapse
|
3
|
Zhang Z, Yang K, Mao R, Zhong D, Xu Z, Xu J, Xiong M. Ginsenoside Rg1 inhibits oxidative stress and inflammation in rats with spinal cord injury via Nrf2/HO-1 signaling pathway. Neuroreport 2022; 33:81-89. [PMID: 34954769 DOI: 10.1097/wnr.0000000000001757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In this study, our objective was to investigate the underlying mechanism of the neuroprotective role of ginsenoside Rg1 in attenuating spinal cord injury (SCI). METHODS A rat SCI model was established and treated with ginsenoside Rg1 and nuclear factor erythroid 2-related factor2(Nrf2) inhibitor all-trans retinoic acid (ATRA). The protective effects of ginsenoside Rg1 were evaluated by Basso, Beattie and Bresnahan (BBB) scale, hematoxylin/eosin staining, ELISA assay, western blotting and quantitative reverse transcription PCR (RT-qPCR). RESULTS Ginsenoside Rg1 alleviated neuronal edema and bleeding in the injured spinal cord, reduced inflammatory cell infiltration and cell necrosis, further repaired the injured spinal cord structure, improved BBB motor score in the SCI rat model and improved hind limb motor function. Meanwhile, ginsenoside Rg1 significantly increased the content of antioxidant enzymes superoxide dismutase and glutathione, and inhibited the production of oxidative marker malondialdehyde. In addition, ginsenoside Rg1also significantly inhibits the activities of the inflammatory factors tumor necrosis factor-α, interleukin-1β (IL-1β) and interleukin-6 (IL-6) to reduce the inflammatory response after trauma. Furthermore, western blot and RT-qPCR also suggested that ginsenoside Rg1 could activate the protein expression of Nrf2 and heme oxygenase-1 (HO-1) after SCI, and the inhibition of ATRA on these improvements further verified the neuroprotective effect of Nrf2 and HO-1 in ginsenoside Rg1 on SCI. CONCLUSION Ginsenoside Rg1 has a neuroprotective effect on SCI and can improve motor dysfunction caused by injury. The underlying mechanism may play antioxidative stress and anti-inflammatory effect by regulating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Rui Mao
- Neurology, Sinopharm Dongfeng General Hospital
| | | | | | - Jie Xu
- Department of Institute of Clinical Medcine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | |
Collapse
|
4
|
Upadhayay S, Mehan S. Targeting Nrf2/HO-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
5
|
Park J, Lee M, Kim M, Moon S, Kim S, Kim S, Koh SH, Kim YM, Choi YK. Prophylactic role of Korean red ginseng in astrocytic mitochondrial biogenesis through HIF-1α. J Ginseng Res 2021; 46:408-417. [PMID: 35600778 PMCID: PMC9120627 DOI: 10.1016/j.jgr.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Methods Results Conclusion
Collapse
|
6
|
Tocmo R, Parkin K. S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Free Radic Biol Med 2019; 143:164-175. [PMID: 31349040 DOI: 10.1016/j.freeradbiomed.2019.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The onion-derived metabolite, S-1-propenylmercaptocysteine (CySSPe), protects against oxidative stress and exhibits anti-inflammatory effects by modulating cellular redox homeostasis. We sought to establish whether CySSPe activates nuclear factor erythroid 2-related factor 2 (Nrf2) and whether activation of Nrf2 by CySSPe involves modification of the Kelch-like ECH-associated protein-1 (Keap1) to manifest these effects. We found that CySSPe stabilized Nrf2 protein and facilitated nuclear translocation to induce expression of antioxidant enzymes, including NQO1, HO-1, and GCL. Moreover, CySSPe attenuated tert-butyl hydroperoxide-induced cytotoxicity and dose-dependently inhibited reactive oxygen species production. Silencing experiments using Nrf2-siRNA confirmed that CySSPe conferred protection against oxidative stress by activating Nrf2. CySSPe enhanced cellular pool of reduced glutathione (GSH) and improved GSH:GSSG ratio. Pretreatment of cells with l-buthionine-S,R-sulfoximine (BSO) confirmed that CySSPe increases de novo synthesis of GSH by upregulating expression of the GSH-synthesizing enzyme GCL. Treatment of cells with CySSPe elevated hydrogen sulfide (H2S) production. Inhibition of H2S-synthesizing enzymes, cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS), by pretreating cells with propargylglycine (PAG) and oxyaminoacetic acid (AOAA) revealed that H2S production was partially dependent on a CSE/CBS-catalyzed β-elimination reaction with CySSPe that likely produced 1-propenyl persulfide (RSSH). Depleting cells of their GSH pool by exposure to BSO and diethylmaleate attenuated H2S production, suggesting a GSH-dependent formation of H2S, likely via the reduction of RSSH by GSH. Finally, treatment of cells with CySSPe persulfidated Keap1, which may be the mechanism involved for the stabilization of Nrf2 by CySSPe. Taken together, our results showed that attenuation of oxidative stress by CySSPe is associated with its ability to produce H2S or RSSH, which persulfidates Keap1 and activates Nrf2 signaling. This study provides insights on the potential of CySSPe as an onion-derived dietary agent that modulates redox homeostasis and combats oxidative stress.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA.
| | - Kirk Parkin
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Kim Y, Park J, Choi YK. The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants (Basel) 2019; 8:antiox8050121. [PMID: 31060341 PMCID: PMC6562853 DOI: 10.3390/antiox8050121] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca2+, K+) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K+ (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes’ functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer’s disease, Parkinson’s disease, and stroke.
Collapse
Affiliation(s)
- Yonghee Kim
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jinhong Park
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
8
|
The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 2019; 172:40-70. [DOI: 10.1016/j.pneurobio.2018.06.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022]
|
9
|
Xing Y, Liu X, Pu Q, Wu M, Zhao JX. Biocompatible G-Quadruplex/Hemin for Enhancing Antibacterial Activity of H2O2. ACS APPLIED BIO MATERIALS 2018; 1:1019-1027. [DOI: 10.1021/acsabm.8b00211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuqian Xing
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiao Liu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
10
|
Chen-Roetling J, Regan RF. Targeting the Nrf2-Heme Oxygenase-1 Axis after Intracerebral Hemorrhage. Curr Pharm Des 2018; 23:2226-2237. [PMID: 27799046 DOI: 10.2174/1381612822666161027150616] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/16/2016] [Accepted: 10/22/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Injury to cells adjacent to an intracerebral hemorrhage (ICH) is likely mediated at least in part by toxins released from the hematoma that initiate complex and interacting injury cascades. Pharmacotherapies targeting a single toxin or pathway, even if consistently effective in controlled experimental models, have a high likelihood of failure in a variable clinical setting. Nuclear factor erythroid-2 related factor 2 (Nrf2) regulates the expression of heme oxygenase-1 (HO-1) and multiple other proteins with antioxidant and antiinflammatory effects, and may be a target of interest after ICH. METHODS Studies that tested the effect of HO and Nrf2 in models relevant to ICH are summarized, with an effort to reconcile conflicting data by consideration of methodological limitations. RESULTS In vitro studies demonstrated that Nrf2 activators rapidly increased HO-1 expression in astrocytes, and reduced their vulnerability to hemoglobin or hemin. Modulating HO-1 expression via genetic approaches yielded similar results. Systemic treatment with small molecule Nrf2 activators increased HO-1 expression in perivascular cells, particularly astrocytes. When tested in mouse or rat ICH models, Nrf2 activators were consistently protective, improving barrier function and attenuating edema, inflammation, neuronal loss and neurological deficits. These effects were mimicked by selective astrocyte HO-1 overexpression in transgenic mice. CONCLUSION Systemic treatment with Nrf2 activators after ICH is protective in rodents. Two compounds, dimethyl fumarate and hemin, are currently approved for treatment of multiple sclerosis and acute porphyria, respectively, and have acceptable safety profiles over years of clinical use. Further development of these drugs as ICH therapeutics seems warranted.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States
| |
Collapse
|
11
|
Gill AJ, Garza R, Ambegaokar SS, Gelman BB, Kolson DL. Heme oxygenase-1 promoter region (GT)n polymorphism associates with increased neuroimmune activation and risk for encephalitis in HIV infection. J Neuroinflammation 2018; 15:70. [PMID: 29510721 PMCID: PMC5838989 DOI: 10.1186/s12974-018-1102-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) is a critical cytoprotective enzyme that limits oxidative stress, inflammation, and cellular injury within the central nervous system (CNS) and other tissues. We previously demonstrated that HO-1 protein expression is decreased within the brains of HIV+ subjects and that this HO-1 reduction correlates with CNS immune activation and neurocognitive dysfunction. To define a potential CNS protective role for HO-1 against HIV, we analyzed a well-characterized HIV autopsy cohort for two common HO-1 promoter region polymorphisms that are implicated in regulating HO-1 promoter transcriptional activity, a (GT)n dinucleotide repeat polymorphism and a single nucleotide polymorphism (A(-413)T). Shorter HO-1 (GT)n repeats and the 'A' SNP allele associate with higher HO-1 promoter activity. METHODS Brain dorsolateral prefrontal cortex tissue samples from an autopsy cohort of HIV-, HIV+, and HIV encephalitis (HIVE) subjects (n = 554) were analyzed as follows: HO-1 (GT)n polymorphism allele lengths were determined by PCR and capillary electrophoresis, A(-413)T SNP alleles were determined by PCR with allele specific probes, and RNA expression of selected neuroimmune markers was analyzed by quantitative PCR. RESULTS HIV+ subjects with shorter HO-1 (GT)n alleles had a significantly lower risk of HIVE; however, shorter HO-1 (GT)n alleles did not correlate with CNS or peripheral viral loads. In HIV+ subjects without HIVE, shorter HO-1 (GT)n alleles associated significantly with lower expression of brain type I interferon response markers (MX1, ISG15, and IRF1) and T-lymphocyte activation markers (CD38 and GZMB). No significant correlations were found between the HO-1 (GT)n repeat length and brain expression of macrophage markers (CD163, CD68), endothelial markers (PECAM1, VWF), the T-lymphocyte marker CD8A, or the B-lymphocyte maker CD19. Finally, we found no significant associations between the A(-413)T SNP and HIVE diagnosis, HIV viral loads, or any neuroimmune markers. CONCLUSION Our data suggest that an individual's HO-1 promoter region (GT)n polymorphism allele repeat length exerts unique modifying risk effects on HIV-induced CNS neuroinflammation and associated neuropathogenesis. Shorter HO-1 (GT)n alleles increase HO-1 promoter activity, which could provide neuroprotection through decreased neuroimmune activation. Therapeutic strategies that induce HO-1 expression could decrease HIV-associated CNS neuroinflammation and decrease the risk for development of HIV neurological disease.
Collapse
Affiliation(s)
- Alexander J. Gill
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 280C Clinical Research Building, Philadelphia, PA 19104 USA
| | - Rolando Garza
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 280C Clinical Research Building, Philadelphia, PA 19104 USA
| | - Surendra S. Ambegaokar
- Department of Botany & Microbiology, Robbins Program in Neuroscience, Ohio Wesleyan University, Delaware, OH 43016 USA
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Dennis L. Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 280C Clinical Research Building, Philadelphia, PA 19104 USA
| |
Collapse
|
12
|
Choi YK. Role of Carbon Monoxide in Neurovascular Repair Processing. Biomol Ther (Seoul) 2018; 26:93-100. [PMID: 29223144 PMCID: PMC5839486 DOI: 10.4062/biomolther.2017.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). Endogenous CO production occurring at low concentrations is thought to have several useful biological roles. In mammals, especially humans, a proper neurovascular unit comprising endothelial cells, pericytes, astrocytes, microglia, and neurons is essential for the homeostasis and survival of the central nervous system (CNS). In addition, the regeneration of neurovascular systems from neural stem cells and endothelial precursor cells after CNS diseases is responsible for functional repair. This review focused on the possible role of CO/HO in the neurovascular unit in terms of neurogenesis, angiogenesis, and synaptic plasticity, ultimately leading to behavioral changes in CNS diseases. CO/HO may also enhance cellular networks among endothelial cells, pericytes, astrocytes, and neural stem cells. This review highlights the therapeutic effects of CO/HO on CNS diseases involved in neurogenesis, synaptic plasticity, and angiogenesis. Moreover, the cellular mechanisms and interactions by which CO/HO are exploited for disease prevention and their therapeutic applications in traumatic brain injury, Alzheimer's disease, and stroke are also discussed.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
13
|
Abstract
Spinal cord injury (SCI) is a complex disease process that involves both primary and secondary mechanisms of injury and can leave patients with devastating functional impairment as well as psychological debilitation. While no curative treatment is available for spinal cord injury, current therapeutic approaches focus on reducing the secondary injury that follows SCI. Hyperbaric oxygen (HBO) therapy has shown promising neuroprotective effects in several experimental studies, but the limited number of clinical reports have shown mixed findings. This review will provide an overview of the potential mechanisms by which HBO therapy may exert neuroprotection, provide a summary of the clinical application of HBO therapy in patients with SCI, and discuss avenues for future studies.
Collapse
Affiliation(s)
| | - Jason H Huang
- Texas A&M College of Medicine, Temple, Texas, USA.,Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, Texas, USA
| |
Collapse
|
14
|
Trostchansky A, Rubbo H. Anti-inflammatory signaling actions of electrophilic nitro-arachidonic acid in vascular cells and astrocytes. Arch Biochem Biophys 2016; 617:155-161. [PMID: 27720684 DOI: 10.1016/j.abb.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Nitrated derivatives of unsaturated fatty acids (nitro-fatty acids) are being formed and detected in human plasma, cell membranes and tissue, triggering signaling cascades via covalent and reversible post-translational modifications of nucleophilic amino acids in transcriptional regulatory proteins. Arachidonic acid (AA) represents a precursor of potent signaling molecules, i.e., prostaglandins and thromboxanes through enzymatic and non-enzymatic oxidative pathways. Arachidonic acid can be nitrated by reactive nitrogen species leading to the formation of nitro-arachidonic acid (NO2-AA). A critical issue is the influence of NO2-AA on prostaglandin endoperoxide H synthases, modulating inflammatory processes through redirection of AA metabolism and signaling. In this prospective article, we describe the key chemical and biochemical actions of NO2-AA in vascular and astrocytes. This includes the ability of NO2-AA to mediate unique redox signaling anti-inflammatory actions along with its therapeutic potential.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Avda. General Flores 2125, Universidad de la República, Montevideo 11800, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Avda. General Flores 2125, Universidad de la República, Montevideo 11800, Uruguay.
| |
Collapse
|
15
|
Righy C, Bozza MT, Oliveira MF, Bozza FA. Molecular, Cellular and Clinical Aspects of Intracerebral Hemorrhage: Are the Enemies Within? Curr Neuropharmacol 2016; 14:392-402. [PMID: 26714583 PMCID: PMC4876594 DOI: 10.2174/1570159x14666151230110058] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 11/28/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a disease with high incidence and mortality rates. In addition to the mass lesions that result from hemorrhagic stroke, substances such as the blood-derived products (BDP) (hemoglobin (Hb), heme and iron) induce a potent inflammatory response and exert direct toxic effects on neurons, astrocytes, and microglia. In the present review, we discuss the mechanisms of brain injury secondary to hemorrhagic stroke, focusing on the involvement of BDP as major players of cellular redox imbalance, inflammation, and glutamate excitotoxicity. Potential natural mechanisms of protection against free Hb and heme such as haptoglobin and hemopexin, respectively, are highlighted. We finally discuss the experimental and clinical trials targeting free iron and heme scavenging as well as inflammation, as potential new therapies to minimize the devastating effects of hemorrhagic stroke on brain structure and function.
Collapse
Affiliation(s)
- Cássia Righy
- Avenida Brasil 4.365, Manguinhos, Rio de Janeiro-RJ, CEP 21.040-900, Pavilhão Gaspar Viana.
| | | | | | | |
Collapse
|
16
|
Youn JK, Kim DW, Kim ST, Park SY, Yeo EJ, Choi YJ, Lee HR, Kim DS, Cho SW, Han KH, Park J, Eum WS, Hwang HS, Choi SY. PEP-1-HO-1 prevents MPTP-induced degeneration of dopaminergic neurons in a Parkinson's disease mouse model. BMB Rep 2015; 47:569-74. [PMID: 24499676 PMCID: PMC4261515 DOI: 10.5483/bmbrep.2014.47.10.286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 11/20/2022] Open
Abstract
Heme oxygenase-1 (HO-1) degrades heme to carbon dioxide, biliverdin, and Fe2+, which play important roles in various biochemical processes. In this study, we examined the protective function of HO-1 against oxidative stress in SH-SY5Y cells and in a Parkinson's disease mouse model. Western blot and fluorescence microscopy analysis demonstrated that PEP-1-HO-1, fused with a PEP-1 peptide can cross the cellular membranes of human neuroblastoma SH-SY5Y cells. In addition, the transduced PEP-1-HO-1 inhibited generation of reactive oxygen species (ROS) and cell death caused by 1-methyl-4-phenylpyridinium ion (MPP+). In contrast, HO-1, which has no ability to transduce into SH-SY5Y cells, failed to reduce MPP+-induced cellular toxicity and ROS production. Furthermore, intraperitoneal injected PEP-1-HO-1 crossed the blood-brain barrier in mouse brains. In a PD mouse model, PEP-1-HO-1 significantly protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity and dopaminergic neuronal death. Therefore, PEP-1-HO-1 could be a useful agent in treating oxidative stress induced ailments including PD.
Collapse
Affiliation(s)
- Jong Kyu Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 210-702, Korea
| | - Seung Tae Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Sung Yeon Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Hae-Ran Lee
- Department of Pediatrics, Hallym University Medical Center, Pyungchon 431-796, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 330-090, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Hyun Sook Hwang
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| |
Collapse
|
17
|
Chen-Roetling J, Song W, Schipper HM, Regan CS, Regan RF. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke 2015; 46:1093-8. [PMID: 25690543 DOI: 10.1161/strokeaha.115.008686] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Heme oxygenase-1 (HO-1) catalyzes the rate-limiting reaction of heme breakdown and may have both antioxidant and pro-oxidant effects. In previous studies, HO-1 overexpression protected astrocytes from heme-mediated injury in vitro. In the present study, we tested the hypothesis that selective astrocyte overexpression of HO-1 improves outcome after intracerebral hemorrhage. METHODS Male and female transgenic mice overexpressing human HO-1 driven by the GFAP promoter (GFAP.HMOX1) and wild-type controls received striatal injections of autologous blood (25 μL). Blood-brain barrier disruption was assessed by Evans blue assay and striatal cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay. Neurological deficits were quantified by digital analysis of spontaneous cage activity, adhesive removal, and elevated body swing tests. RESULTS Mortality rate for wild-type mice was 34.8% and was similar for males and females; all GFAP.HMOX1 mice survived. Striatal Evans blue leakage at 24 hours was 23.4±3.2 ng in surviving wild-type mice, compared with 10.9±1.8 ng in transgenics. Perihematomal cell viability was reduced to 61±4% of contralateral at 3 days in wild-type mice, versus 80±4% in transgenics. Focal neurological deficits were significantly reduced and spontaneous cage activity was increased in GFAP.HMOX1 mice. CONCLUSIONS Selective HO-1 overexpression in astrocytes reduces mortality, blood-brain barrier disruption, perihematomal cell injury, and neurological deficits in an autologous blood injection intracerebral hemorrhage model. Genetic or pharmacological therapies that acutely increase astrocyte HO-1 may be beneficial after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.)
| | - Wei Song
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.)
| | - Hyman M Schipper
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.)
| | - Christopher S Regan
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.)
| | - Raymond F Regan
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.).
| |
Collapse
|
18
|
Huang XP, Qiu YY, Wang B, Ding H, Tang YH, Zeng R, Deng CQ. Effects of Astragaloside IV combined with the active components of Panax notoginseng on oxidative stress injury and nuclear factor-erythroid 2-related factor 2/heme oxygenase-1 signaling pathway after cerebral ischemia-reperfusion in mice. Pharmacogn Mag 2014; 10:402-9. [PMID: 25422538 PMCID: PMC4239715 DOI: 10.4103/0973-1296.141765] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/15/2013] [Accepted: 09/26/2014] [Indexed: 12/15/2022] Open
Abstract
Background: Astragalus and Panax notoginseng are traditional Chinese Medicines used for the treatments of ischemic cerebrovascular disease, being often combined together in China and achieving a good effect. Objective: The objective of this study is to investigate the effects of astragaloside-IV (AST-IV) (the effective component of Astragalus) combined with ginsenoside Rg1, ginsenoside Rb1, notoginsenoside R1 (the effective components of P. notoginseng) on oxidative stress injury after cerebral ischemia-reperfusion in mice, and to explore the mechanisms through nuclear factor-erythroid 2-related factor-2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway. Materials and Methods: C57BL/6 mice were randomly grouped after treated for 3 days, the model of cerebral ischemia-reperfusion injury was established, and the brain tissues were detected. Results: AST-IV combined with ginsenoside Rg1, ginsenoside Rb1, notoginsenoside R1 could increase significantly the survival rate of nerve cell; decrease the contents of malondialdehyde, nitric oxide, increase the activity of superoxide dismutase and the level of glutathione; Nrf2 was down-regulated in the cytoplasm while up-regulated in nucleus, nuclear translocation rate raised as well as HO-1 messenger ribonucleic acid and protein expressions increased. The effects of four active components combination were better than those of the active components alone. Conclusion: Active components of Astragalus and P. notoginseng had the effects against cerebral ischemia-reperfusion injury, which were related to the antioxidative stress after cerebral ischemia-reperfusion. AST-IV combined with ginsenoside Rg1, ginsenoside Rb1, notoginsenoside R1 could strengthen the antagonism effects on ischemia-reperfusion and oxidative stress injury, the mechanism underlying might be associated with jointly activating Nrf2/HO-1 signaling pathway after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Xiao-Ping Huang
- Molecular Pathology Laboratory, Hunan University of Chinese Medicine, Hunan, China ; Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardiocerebral Diseases, Hunan, China
| | - Yong-Yuan Qiu
- Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques Changsha 410208, Hunan, China
| | - Bei Wang
- Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques Changsha 410208, Hunan, China
| | - Huang Ding
- Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques Changsha 410208, Hunan, China
| | - Ying-Hong Tang
- Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques Changsha 410208, Hunan, China
| | - Rong Zeng
- Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques Changsha 410208, Hunan, China
| | - Chang-Qing Deng
- Molecular Pathology Laboratory, Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|
19
|
Lee JE, Park JH, Jang SJ, Koh HC. Rosiglitazone inhibits chlorpyrifos-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. Toxicol Appl Pharmacol 2014; 278:159-71. [PMID: 24793810 DOI: 10.1016/j.taap.2014.04.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 01/21/2023]
Abstract
Oxidative stress can lead to expression of inflammatory transcription factors, which are important regulatory elements in the induction of inflammatory responses. One of the transcription factors, nuclear transcription factor kappa-B (NF-κB) plays a significant role in the inflammation regulatory process. Inflammatory cell death has been implicated in neuronal cell death in some neurodegenerative disorders such as Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying apoptosis initiated by chlorpyrifos (CPF)-mediated oxidative stress. Based on the cytotoxic mechanism of CPF, we examined the neuroprotective effects of rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, against CPF-induced neuronal cell death. The treatment of SH-SY5Y cells with CPF induced oxidative stress. In addition, CPF activated the p38, JNK and ERK mitogen-activated protein kinases (MAPKs), and induced increases in the inflammatory genes such as COX-2 and TNF-α. CPF also induced nuclear translocation of NF-κB and inhibitors of NF-κB abolished the CPF-induced COX-2 expression. Pretreatment with RGZ significantly reduced ROS generation and enhanced HO-1 expression in CPF-exposed cells. RGZ blocked the activation of both p38 and JNK signaling, while ERK activation was strengthened. RGZ also attenuated CPF-induced cell death through the reduction of NF-κB-mediated proinflammatory factors. Results from this study suggest that RGZ may exert an anti-apoptotic effect against CPF-induced cytotoxicity by attenuation of oxidative stress as well as inhibition of the inflammatory cascade via inactivation of signaling by p38 and JNK, and NF-κB.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, Seoul, Republic of Korea
| | - Jae Hyeon Park
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sea Jeong Jang
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Chen-Roetling J, Sinanan J, Regan RF. Effect of iron chelators on methemoglobin and thrombin preconditioning. Transl Stroke Res 2014; 3:452-9. [PMID: 23585819 DOI: 10.1007/s12975-012-0195-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell loss immediately adjacent to an intracerebral hemorrhage may be mediated in part by the toxicities of extracellular hemoglobin (Hb) and thrombin. However, at low concentrations, these proteins induce tolerance to hemin and iron that may limit further peri-hematomal injury as erythrocyte lysis progresses. The mechanisms mediating these preconditioning effects have not been completely defined, but increased expression of both heme oxygenase (HO)-1 and iron binding proteins likely contributes. In the present study, we hypothesized that iron chelator therapy would attenuate this protective response. Pretreatment of cortical glial cultures (> 90 % GFAP+) with 3 μM methemoglobin (metHb) or 5 units/ml thrombin for 24 h was nontoxic per se, and increased HO-1 and ferritin expression. When challenged with a toxic concentration of hemin, the increase in cellular redox-active iron was attenuated in preconditioned cultures and cell survival was increased. However, if cultures were pretreated with metHb or thrombin plus deferoxamine or 2,2'-bipyridyl, ferritin induction was prevented and cellular redox-active iron increased with hemin treatment. Preconditioning-mediated cytoprotection was consistently reduced by deferoxamine, while 2,2'-bipyridyl had a variable effect. Neither chelator altered HO-1 expression. A cytoprotective response was preserved when chelator therapy was limited to 11 hours of the 24 h preconditioning interval. These results suggest a potentially deleterious effect of continuous iron chelator therapy after ICH. Intermittent therapy may remove peri-hematomal iron without negating the benefits of exposure to low concentrations of Hb or thrombin.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
21
|
Shang H, Yang D, Zhang W, Li T, Ren X, Wang X, Zhao W. Time course of Keap1-Nrf2 pathway expression after experimental intracerebral haemorrhage: correlation with brain oedema and neurological deficit. Free Radic Res 2013; 47:368-75. [DOI: 10.3109/10715762.2013.778403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Regulation of ROS production and vascular function by carbon monoxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:794237. [PMID: 22928087 PMCID: PMC3425856 DOI: 10.1155/2012/794237] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/04/2012] [Indexed: 01/06/2023]
Abstract
Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). CO interacts with reduced iron of heme-containing proteins, leading to its involvement in various cellular events via its production of mitochondrial reactive oxygen species (ROS). CO-mediated ROS production initiates intracellular signal events, which regulate the expression of adaptive genes implicated in oxidative stress and functions as signaling molecule for promoting vascular functions, including angiogenesis and mitochondrial biogenesis. Therefore, CO generated either by exogenous delivery or by HO activity can be fundamentally involved in regulating mitochondria-mediated redox cascades for adaptive gene expression and improving blood circulation (i.e., O2 delivery) via neovascularization, leading to the regulation of mitochondrial energy metabolism. This paper will highlight the biological effects of CO on ROS generation and cellular redox changes involved in mitochondrial metabolism and angiogenesis. Moreover, cellular mechanisms by which CO is exploited for disease prevention and therapeutic applications will also be discussed.
Collapse
|
23
|
Shin JH, Kim SW, Jin Y, Kim ID, Lee JK. Ethyl pyruvate-mediated Nrf2 activation and hemeoxygenase 1 induction in astrocytes confer protective effects via autocrine and paracrine mechanisms. Neurochem Int 2012; 61:89-99. [DOI: 10.1016/j.neuint.2012.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 12/30/2022]
|
24
|
Lee JE, Park JH, Shin IC, Koh HC. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol Appl Pharmacol 2012; 263:148-62. [PMID: 22714038 DOI: 10.1016/j.taap.2012.06.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 01/20/2023]
Abstract
Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Yao C, Wei G, Lu XCM, Yang W, Tortella FC, Dave JR. Selective brain cooling in rats ameliorates intracerebral hemorrhage and edema caused by penetrating brain injury: possible involvement of heme oxygenase-1 expression. J Neurotrauma 2012; 28:1237-45. [PMID: 21463155 DOI: 10.1089/neu.2010.1678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain edema formation associated with trauma-induced intracerebral hemorrhage (ICH) is a clinical complication with high mortality. Studies have shown that heme oxygenase-1 (HO-1) plays an important role in ICH-induced brain edema. In order to understand the role of HO-1 in the protective effect of selective brain cooling (SBC), we investigated the time course of HO-1 changes following penetrating ballistic-like brain injury (PBBI) in rats. Samples were collected from injured and control animals at 6, 24, 48, and 72 h, and 7 days post-injury to evaluate HO-1 expression, heme concentration, brain water content, and immunohistochemistry (IHC). Following a 10% frontal PBBI, HO-1 mRNA and protein was increased at all time points studied, reaching maximum expression levels at 24-48 h post-injury. An increase in the heme concentration and the development of brain edema coincided with the upregulation of HO-1 mRNA and protein during the 7-day post-injury period. SBC significantly decreased PBBI-induced heme concentration, attenuated HO-1 upregulation, and concomitantly reduced brain water content. These results suggest that the neuroprotective effects of SBC may be partially mediated by reducing the heme accumulation, which reduced injury-mediated upregulation of HO-1, and in turn ameliorated edema formation. Collectively, these results suggest a potential value of HO-1 as a diagnostic and/or therapeutic biomarker in hemorrhagic brain injury.
Collapse
Affiliation(s)
- Changping Yao
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant AvenueSilver Spring, MD 20910, USA
| | | | | | | | | | | |
Collapse
|
26
|
Serghides L. The Case for the Use of PPARγ Agonists as an Adjunctive Therapy for Cerebral Malaria. PPAR Res 2011; 2012:513865. [PMID: 21772838 PMCID: PMC3135089 DOI: 10.1155/2012/513865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/28/2011] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection associated with high mortality even when highly effective antiparasitic therapy is used. Adjunctive therapies that modify the pathophysiological processes caused by malaria are a possible way to improve outcome. This review focuses on the utility of PPARγ agonists as an adjunctive therapy for the treatment of cerebral malaria. The current knowledge of PPARγ agonist use in malaria is summarized. Findings from experimental CNS injury and disease models that demonstrate the potential for PPARγ agonists as an adjunctive therapy for cerebral malaria are also discussed.
Collapse
Affiliation(s)
- Lena Serghides
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, University Health Network, 101 College Street, Suite 10-359, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
27
|
Butt OI, Buehler PW, D'Agnillo F. Blood-brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1316-28. [PMID: 21356382 DOI: 10.1016/j.ajpath.2010.12.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/03/2010] [Accepted: 12/07/2010] [Indexed: 01/03/2023]
Abstract
Systemic exposure to cell-free hemoglobin (Hb) or its breakdown products after hemolysis or with the use of Hb-based oxygen therapeutics may alter the function and integrity of the blood-brain barrier. Using a guinea pig exchange transfusion model, we investigated the effect of a polymerized cell-free Hb (HbG) on the expression of endothelial tight junction proteins (zonula occludens 1, claudin-5, and occludin), astrocyte activation, IgG extravasation, heme oxygenase (HO), iron deposition, oxidative end products (4-hydroxynonenal adducts and 8-hydroxydeoxyguanosine), and apoptosis (cleaved caspase 3). Reduced zonula occludens 1 expression was observed after HbG transfusion as evidenced by Western blot and confocal microscopy. Claudin-5 distribution was altered in small- to medium-sized vessels. However, total expression of claudin-5 and occludin remained unchanged except for a notable increase in occludin 72 hours after HbG transfusion. HbG-transfused animals also showed increased astrocytic glial fibrillary acidic protein expression and IgG extravasation after 72 hours. Increased HO activity and HO-1 expression with prominent enhancement of HO-1 immunoreactivity in CD163-expressing perivascular cells and infiltrating monocytes/macrophages were also observed. Consistent with oxidative stress, HbG increased iron deposition, 4-hydroxynonenal and 8-hydroxydeoxyguanosine immunoreactivity, and cleaved caspase-3 expression. Systemic exposure to an extracellular Hb triggers blood-brain barrier disruption and oxidative stress, which may have important implications for the use of Hb-based therapeutics and may provide indirect insight on the central nervous system vasculopathies associated with excessive hemolysis.
Collapse
Affiliation(s)
- Omer I Butt
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
28
|
p53 promotes cellular survival in a context-dependent manner by directly inducing the expression of haeme-oxygenase-1. Oncogene 2011; 30:4476-86. [PMID: 21552291 DOI: 10.1038/onc.2011.150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A variety of cellular insults activate the tumour suppressor p53, leading generally to cell-cycle arrest or apoptosis. However, it is not inconceivable that cellular protective mechanisms may be required to keep cells alive while cell-fate decisions are made. In this respect, p53 has been suggested to perform functions that allow cells to survive, by halting of the cell-cycle, and thus preventing immediate cell death. Nonetheless, the existence of direct pro-survival p53 target genes regulating cellular survival is lacking. We show here evidence for p53-dependent cellular survival in a context-dependent manner. Both mouse and human cells lacking p53 are hypersensitive to hydrogen peroxide (H(2)O(2))-induced cell death compared with their isogenic wild-type counterparts. By contrast, p53(-/-) cells are expectedly resistant to cell death upon exposure to DNA-damaging agents such as cisplatin (CDDP) and etoposide. Although p53 and its classical targets such as p21 and Mdm2 are activated by both H(2)O(2) and CDDP, we found that the expression of haeme-oxygenase-1 (HO-1)-an antioxidant and antiapoptotic protein-was directly induced only upon H(2)O(2) treatment in a p53-dependent manner. Consistently, p53, but not its homologue p73, activated HO-1 expression and was bound to the HO-1 promoter specifically only upon H(2)O(2) treatment. Moreover, silencing HO-1 expression enhanced cell death upon H(2)O(2) treatment only in p53-proficient cells. Finally, H(2)O(2)-mediated cell death was rescued significantly in p53-deficient cells by antioxidant treatment, as well as by bilirubin, a by-product of HO-1 metabolism. Taken together, these data demonstrate a direct role for p53 in promoting cellular survival in a context-specific manner through the activation of a direct transcriptional target, HO-1.
Collapse
|
29
|
Ohnishi M, Katsuki H, Unemura K, Izumi Y, Kume T, Takada-Takatori Y, Akaike A. Heme oxygenase-1 contributes to pathology associated with thrombin-induced striatal and cortical injury in organotypic slice culture. Brain Res 2010; 1347:170-8. [PMID: 20515663 DOI: 10.1016/j.brainres.2010.05.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 12/14/2022]
Abstract
The blood coagulation factor thrombin that leaks from ruptured vessels initiates brain tissue damage after intracerebral hemorrhage. We have recently shown that mitogen-activated protein kinases (MAPKs) activated by thrombin exacerbate hemorrhagic brain injury via supporting survival of neuropathic microglia. Here, we investigated whether induction of heme oxygenase (HO)-1 is involved in these events. Zinc protoporphyrin IX (ZnPP IX), a HO-1 inhibitor, attenuated thrombin-induced injury of cortical cells in a concentration-dependent manner (0.3-3 microM) and tended to inhibit shrinkage of the striatal tissue at 0.3 microM. HO-1 expression was induced by thrombin in microglia and astrocytes in both the cortex and the striatum. The increase of HO-1 protein was suppressed by a p38 MAPK inhibitor SB203580, and early activation of p38 MAPK after thrombin treatment was observed in neurons and microglia in the striatum. Notably, concomitant application of a low concentration (0.3 microM) of ZnPP IX with thrombin induced apoptotic cell death in striatal microglia and significantly decreased the number of activated microglia in the striatal region. On the other hand, a carbon monoxide releaser reversed the protective effect of ZnPP IX on thrombin-induced injury of cortical cells. Overall, these results suggest that p38 MAPK-dependent induction of HO-1 supports survival of striatal microglia during thrombin insults. Thrombin-induced cortical injury may be also regulated by the expression of HO-1 and the resultant production of heme degradation products such as carbon monoxide.
Collapse
Affiliation(s)
- Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuencho-1, Fukuyama, Hiroshima 729-0292, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Robinson SR, Dang TN, Dringen R, Bishop GM. Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke. Redox Rep 2010; 14:228-35. [PMID: 20003707 DOI: 10.1179/135100009x12525712409931] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hemorrhagic stroke is a common cause of permanent brain damage, with a significant amount of the damage occurring in the weeks following a stroke. This secondary damage is partly due to the toxic effects of hemin, a breakdown product of hemoglobin. The serum proteins hemopexin and albumin can bind hemin, but these natural defenses are insufficient to cope with the extremely high amounts of hemin (10 mM) that can potentially be liberated from hemoglobin in a hematoma. The present review discusses how hemin gets into brain cells, and examines the multiple routes through which hemin can be toxic. These include the release of redox-active iron, the depletion of cellular stores of NADPH and glutathione, the production of superoxide and hydroxyl radicals, and the peroxidation of membrane lipids. Important gaps are revealed in contemporary knowledge about the metabolism of hemin by brain cells, particularly regarding how hemin interacts with hydrogen peroxide. Strategies currently being developed for the reduction of hemin toxicity after hemorrhagic stroke include chelation therapy, antioxidant therapy and the modulation of heme oxygenase activity. Future strategies may be directed at preventing the uptake of hemin into brain cells to limit the opportunity for toxic interactions.
Collapse
Affiliation(s)
- Stephen R Robinson
- School of Psychology & Psychiatry, Monash University, Victoria, Australia.
| | | | | | | |
Collapse
|
31
|
Protective effects of heme oxygenase-1 against MPP(+)-induced cytotoxicity in PC-12 cells. Neurol Sci 2010; 31:307-13. [PMID: 20127499 DOI: 10.1007/s10072-010-0216-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyses the rate-limiting step of heme degradation to biliverdin, which is in turn reduced to bilirubin, CO and free iron. HO-1 can be induced by several harmful stimuli including oxidative stress, and it has a protective role against the cytotoxicity in different cells. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridinium (MPP(+)) is a neurotoxic substance that induces the degeneration of dopaminergic neurons. This study examined whether HO-1 can be induced by MPP(+) and whether HO-1 has a protective role against the MPP(+)-induced cytotoxicity in PC-12 cells. MPP(+) triggered a relatively rapid induction of HO-1. The MPP(+)-induced cytotoxicity and reactive oxygen species (ROS) production markedly increased by HO-1 inhibitor, zinc protoporphyrin-IX (ZnPP-IX). The increase of ROS production by ZnPP-IX was completely abrogated by either two products of HO (biliverdin or bilirubin) while the increase of cytotoxicity by ZnPP-IX was attenuated partially. These suggest that HO-1 expression might have some cytoprotective effect against MPP(+)-induced cytotoxicity.
Collapse
|
32
|
Röhl C, Armbrust E, Herbst E, Jess A, Gülden M, Maser E, Rimbach G, Bösch-Saadatmandi C. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation. Neurotox Res 2009; 17:317-31. [PMID: 19763738 DOI: 10.1007/s12640-009-9108-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/19/2009] [Accepted: 08/25/2009] [Indexed: 01/06/2023]
Abstract
Microglia and astrocytes are the cellular key players in many neurological disorders associated with oxidative stress and neuroinflammation. Previously, we have shown that microglia activated by lipopolysaccharides (LPS) induce the expression of antioxidative enzymes in astrocytes and render them more resistant to hydrogen peroxide (H2O2). In this study, we examined the mechanisms involved with respect to the cellular action of different peroxides, the ability to detoxify peroxides, and the status of further antioxidative systems. Astrocytes were treated for 3 days with medium conditioned by purified quiescent (microglia-conditioned medium, MCM[-]) or LPS-activated (MCM[+]) microglia. MCM[+] reduced the cytotoxicity of the organic cumene hydroperoxide in addition to that of H2O2. Increased peroxide resistance was not accompanied by an improved ability of astrocytes to remove H2O2 or an increased expression/activity of peroxide eliminating antioxidative enzymes. Neither peroxide-induced radical generation nor lipid peroxidation were selectively affected in MCM[+] treated astrocytes. The glutathione content of peroxide resistant astrocytes, however, was increased and superoxide dismutase and heme oxygenase were found to be upregulated. These changes are likely to contribute to the higher peroxide resistance of MCM[+] treated astrocytes by improving their ability to detoxify reactive oxygen radicals and oxidation products. For C6 astroglioma cells a protective effect of microglia-derived factors could not be observed, underlining the difference of primary cells and cell lines concerning their mechanisms of oxidative stress resistance. Our results indicate the importance of microglial-astroglial cell interactions during neuroinflammatory processes.
Collapse
Affiliation(s)
- Claudia Röhl
- Institute of Toxicology and Pharmacology for Natural Scientists, Christian-Albrechts-University, Brunswiker Str. 10, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheng X, Liu X, Bing T, Cao Z, Shangguan D. General Peroxidase Activity of G-Quadruplex−Hemin Complexes and Its Application in Ligand Screening. Biochemistry 2009; 48:7817-23. [DOI: 10.1021/bi9006786] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaohong Cheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zehui Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
34
|
Aarabi B, Hesdorffer DC, Simard JM, Ahn ES, Aresco C, Eisenberg HM, McCunn M, Scalea T. Comparative study of decompressive craniectomy after mass lesion evacuation in severe head injury. Neurosurgery 2009; 64:927-39; discussion 939-40. [PMID: 19287327 DOI: 10.1227/01.neu.0000341907.30831.d2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE This study was conducted to evaluate outcome after decompressive craniectomy (DC) in the setting of mass evacuation with or without intracranial pressure (ICP) monitoring. METHODS Over a 48-month period (March 2000 to March 2004), 54 of 967 consecutive head injury patients underwent DC for evacuation of a mass lesion. DC was performed without ICP monitoring in 27 patients who required urgent decompression (group A) and in 27 patients who did not require urgent surgery and who had their ICP monitored for 1 to 14 days before surgery (group B). RESULTS In group A, the mean Glasgow Coma Scale score was 6.0; 80% had computed tomographic evidence of a shift greater than 5 mm; and 25 patients underwent DC immediately after resuscitation. In group B, the mean Glasgow Coma Scale score was 7.3; 40% had computed tomographic evidence of shift; and 75% underwent DC 24 hours or longer after presentation. Overall, 22 patients died (12 in group A and 10 in group B), 11 remained vegetative or severely disabled (3 in group A and 8 in group B), and 19 had good recovery (11 in group A and 8 in group B). Two patients were lost to follow-up. In 18 group B patients with ICP greater than 20 mm Hg before mass evacuation, ICP dropped an average of 13 mm Hg (P < 0.001). A mass lesion greater than 50 mL (odds ratio [OR], 2.86; 95% confidence interval [CI], 1.04-7.89) and evidence of low attenuation on computed tomography before (OR, 3.3; 95% CI, 1.1-10.3) or after (OR, 2.92; 95% CI, 1.02-8.34) DC were predictors of death. A good outcome occurred in 42% of patients with and in 63% of patients without delayed traumatic injury (OR, 0.3; 95% CI, 0.1-1.1). Outcome was favorable in 78.6% of patients who had no ICP monitoring before DC versus 47.1% of patients with ICP monitoring (OR, 0.2; 95% CI, 0.1-1.2). CONCLUSION In this study, mortality after DC for mass lesion was greater than expected, and outcome did not differ between patients with or without ICP monitoring.
Collapse
Affiliation(s)
- Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 2009; 110:469-85. [DOI: 10.1111/j.1471-4159.2009.06160.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Chen-Roetling J, Li Z, Regan RF. Hemoglobin neurotoxicity is attenuated by inhibitors of the protein kinase CK2 independent of heme oxygenase activity. Curr Neurovasc Res 2009; 5:193-8. [PMID: 18691077 DOI: 10.2174/156720208785425684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown, and may accelerate oxidative injury to neurons exposed to heme or hemoglobin. HO-1 and HO-2 are activated in vitro by the phos-phatidylinositol 3-kinase (PI3K)/Akt and protein kinase C (PKC)/CK2 pathways, respectively. The present study tested the hypotheses that CK2, PKC, and PI3K inhibitors would reduce both HO activity and neuronal vulnerability to hemoglobin in murine cortical cultures. Oxidative cell injury was quantified by LDH release and malondialdehyde assays. HO activity was assessed by carbon monoxide assay. Consistent with prior observations, treating primary cortical cultures with hemoglobin for 16h resulted in release of approximately half of neuronal LDH and a seven-fold increase in malondialdehyde. Both endpoints were significantly reduced by the CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBB) and 2-dimethyl-amino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), and by the PKC inhibitor GF109203X; the PI3K inhibitors LY294002 and wortmannin had no effect. None of these inhibitors altered basal HO activity. The 1.9-fold activity increase observed after hemoglobin treatment was largely prevented by LY294002 and LY303511, a structural analog of LY294002 that does not inhibit PI3K activity. It was not reduced by wortmannin, TBB or GF109203X. These results suggest that the protective effect of CK2 and PKC inhibitors in this model is not dependent on reduction in HO activity. In this culture system that expresses both HO-1 and HO-2, HO activity does not appear to be primarily regulated by the PKC/CK2 or PI3K pathways.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, Thompson Building Room 239, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
37
|
Orozco-Ibarra M, Estrada-Sánchez AM, Massieu L, Pedraza-Chaverrí J. Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: role of CO and bilirubin. Int J Biochem Cell Biol 2008; 41:1304-14. [PMID: 19063990 DOI: 10.1016/j.biocel.2008.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 12/11/2022]
Abstract
Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions.
Collapse
Affiliation(s)
- Marisol Orozco-Ibarra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México DF, Mexico
| | | | | | | |
Collapse
|
38
|
Morita K, Lee MS, Her S. Possible relation of hemin-induced HO-1 expression to the upregulation of VEGF and BDNF mRNA levels in rat C6 glioma cells. J Mol Neurosci 2008; 38:31-40. [PMID: 18937073 DOI: 10.1007/s12031-008-9156-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/06/2008] [Indexed: 12/21/2022]
Abstract
Glial cells are generally considered to contribute to retaining the integrity of neural function through the protection of neuronal cells against neurodegenerative insults and also expected to play a potential role in the protection of cerebrovascular systems from various toxic insults of hemorrhaged blood, thus proposing a possible implication of glial cells in the recovery of brain function from the damage caused by cerebral hemorrhage. Based on this hypothetical idea, the direct effect of hemin on the expression of genes encoding heme oxygenase-1 (HO-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) in glial cells was examined using rat C6 glioma cells as an in vitro model system. Hemin elevated both HO-1 and VEGF mRNA levels in the glioma cells at the concentration causing no critical damage to the cells, and the elevation of BDNF mRNA levels was also observed by exposing the cells to hemin under the same conditions. Furthermore, the elevation of VEGF and BDNF mRNA levels induced by hemin was blocked by pretreatment of the cells with the agents inhibiting not only HO-1 gene expression but also its enzymatic activity. These pharmacological studies indicate that hemin can induce the enhancement of VEGF and BDNF gene expression probably through the mechanism mediated by HO-1 activity in the glioma cells, proposing the possibility that glial cells are capable of contributing to the recovery of brain function from the damage caused by cerebral hemorrhage through the production of neurogenic and angiogenic factors.
Collapse
Affiliation(s)
- Kyoji Morita
- Laboratory of Neuropharmacology, Department of Nursing, Shikoku University School of Health Sciences, Ohjin, Tokushima, 771-1192, Japan.
| | | | | |
Collapse
|
39
|
Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2008; 10:1767-812. [PMID: 18576916 DOI: 10.1089/ars.2008.2043] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme oxygenase-1, an enzyme degrading heme to carbon monoxide, iron, and biliverdin, has been recognized as playing a crucial role in cellular defense against stressful conditions, not only related to heme release. HO-1 protects endothelial cells from apoptosis, is involved in blood-vessel relaxation regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in blood-vessel formation by means of angiogenesis and vasculogenesis. The latter functions link HO-1 not only to cardiovascular ischemia but also to many other conditions that, like development, wound healing, or cancer, are dependent on neovascularization. The aim of this comprehensive review is to address the mechanisms of HO-1 regulation and function in cardiovascular physiology and pathology and to demonstrate some possible applications of the vast knowledge generated so far. Recent data provide powerful evidence for the involvement of HO-1 in the therapeutic effect of drugs used in cardiovascular diseases. Novel studies open the possibilities of application of HO-1 for gene and cell therapy. Therefore, research in forthcoming years should help to elucidate both the real role of HO-1 in the effect of drugs and the clinical feasibility of HO-1-based cell and gene therapy, creating the effective therapeutic avenues for this refined antioxidant system.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM. Overexpression of Heme Oxygenase-1 Protects Dopaminergic Neurons against 1-Methyl-4-Phenylpyridinium-Induced Neurotoxicity. Mol Pharmacol 2008; 74:1564-75. [DOI: 10.1124/mol.108.048611] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 2008; 155:623-40. [PMID: 18794892 DOI: 10.1038/bjp.2008.342] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Injury to the CNS elicits a host defense reaction that utilizes astrocytes, microglia, neurons and oligodendrocytes. Neuroinflammation is a major host defense mechanism designed to restore normal structure and function after CNS insult, but like other forms of inflammation, chronic neuroinflammation may contribute to pathogenesis. The inducible haeme oxygenase isoform, haeme oxygenase-1 (HO-1), is a phase 2 enzyme upregulated in response to electrophilic xenobiotics, oxidative stress, cellular injury and disease. There is emerging evidence that HO-1 expression helps mediate the resolution of inflammation, including neuroinflammation. Whether this is solely because of the catabolism of haeme or includes additional mechanisms is unclear. This review provides a brief background on the molecular biology and biochemistry of haeme oxygenases and the actions of haeme, bilirubin, iron and carbon monoxide in the CNS. It then presents our current state of knowledge regarding HO-1 expression in the CNS, regulation of HO-1 induction in neural cells and discusses the prospect of pharmacological manipulation of HO-1 as therapy for CNS disorders. Because of recognized species and cellular differences in HO-1 regulation, a major objective of this review is to draw attention to areas where gaps exist in the experimental record regarding regulation of HO-1 in neural cells. The results indicate the HO-1 system to be an important therapeutic target in CNS disorders, but our understanding of HO-1 expression in human neural cells is severely lacking.
Collapse
Affiliation(s)
- P J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
42
|
Marques CP, Cheeran MCJ, Palmquist JM, Hu S, Lokensgard JR. Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis. J Neurovirol 2008; 14:229-38. [PMID: 18569457 DOI: 10.1080/13550280802093927] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although production of reactive nitrogen and reactive oxygen species (RNS and ROS) is a component of innate defense against viral infection, their overproduction in the brain may also lead to deleterious consequences. To investigate potential immunopathologic roles of oxidative stress during herpes encephalitis, the authors examined the expression kinetics of inducible nitric oxide synthase (iNOS) as well as heme oxygenase-1 (HO-1), a marker of oxidative stress, and evaluated infection-induced oxidative brain damage. Results from these studies showed that both iNOS and HO-1 gene expression were highly elevated in the brain within 7 days post infection (d.p.i.) and remained elevated through 21 d.p.i. Real-time bioluminescence imaging of HO-1 promoter-luciferase transgenic mice confirmed HO-1 promoter activity in the brains of HSV-1-infected animals within 3 d.p.i., which peaked between 5 and 7 d.p.i. Immunohistochemical staining for both 3-nitrotyrosine and 8-hydroxydeoxyguanosine (8-OH-dG), as well as quantitative assessment of 8-isoprostane levels, demonstrated the presence of viral infection-induced oxidative brain damage. In addition, when brain leukocytes obtained from animals with experimental herpes encephalitis were sorted using fluorescence-activated cell sorting (FACS) and the individual cell populations analyzed, CD45(int)/CD11b(+) resident microglia were found to be the major cellular source of iNOS expression.
Collapse
Affiliation(s)
- Cristina P Marques
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
43
|
Olesen BT, Clausen J, Vang O. Characterization of the transcriptional profile in primary astrocytes after oxidative stress induced by Paraquat. Neurotoxicology 2008; 29:13-21. [DOI: 10.1016/j.neuro.2007.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 11/30/2022]
|
44
|
Davies AL, Kramer JLK, Hayes KC. Carbon monoxide-releasing molecule tricarbonyldichlororuthenium (II) dimer induces concentration-dependent alterations in the electrophysiological properties of axons in mammalian spinal cord. Neuroscience 2007; 151:1104-11. [PMID: 18248914 DOI: 10.1016/j.neuroscience.2007.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/03/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
Traumatic spinal cord injury (SCI) typically involves intraparenchymal hemorrhage and a cascade of inflammatory and cytotoxic processes leading to tissue necrosis and apoptosis. A consequence of the hemorrhage is the accumulation of deoxygenated heme proximal and distal to the epicenter of the lesion. The heme oxygenase (HO) system is an endogenous heme degradation system and is upregulated following neurotrauma. The breakdown of heme via HO activity yields the byproducts carbon monoxide (CO), biliverdin, and iron. CO has documented neuromodulatory properties; however, the effects of elevated concentrations of CO on axonal conduction in the spinal cord have not previously been studied. The present study tested the hypothesis that CO causes alterations in the electrophysiological properties of axons within the isolated guinea-pig spinal cord. Ex vivo spinal cord preparations were exposed to 100, 500, and 1000 microM concentrations of the carbon monoxide-releasing molecule (CORM) 2 for 30 min in a double sucrose gap electrophysiological recording system and the compound action potential (CAP) and membrane potential (CMP) were recorded continuously during pretreatment, CORM-2 treatment, and washout (30 min) with Krebs' solution. CAP amplitude and area were significantly (P<0.05) reduced following treatment with 500 and 1000 microM CORM-2 and did not recover during washout. No effect on CMP was observed, however, stimulus-peak latency did increase significantly (P<0.05) following CORM-2 treatment at these concentrations, and a decrease in the amplitude of the second CAP elicited by paired-pulse stimulation was also evident at interpulse intervals of 2 and 4 ms. These results are consistent with a CO-induced alteration in axonal conduction, possibly attributable to modified Na+ channel conductance. They also identify a new mechanism by which post-traumatic hemorrhage contributes to the neurological deficits observed following SCI.
Collapse
Affiliation(s)
- A L Davies
- Neuroscience Program, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
45
|
Chen M, Regan RF. Time course of increased heme oxygenase activity and expression after experimental intracerebral hemorrhage: correlation with oxidative injury. J Neurochem 2007; 103:2015-21. [PMID: 17760860 DOI: 10.1111/j.1471-4159.2007.04885.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme oxygenase (HO) activity in tissue adjacent to an intracerebral hematoma may modulate cellular vulnerability to heme-mediated oxidative injury. Although HO-1 is induced after experimental intracerebral hemorrhage (ICH), the time course of this induction, its effect on tissue HO activity, and its association with oxidative injury markers has not been defined. We therefore quantified HO activity, HO-1 expression, tissue heme content, and protein carbonylation for 8 days after injection of autologous blood into the mouse striatum. Increased striatal HO-1 protein was observed within 24 h, peaked on day 5 at a level that was 10-fold greater than baseline, and returned to baseline by day 8; HO-2 expression was not altered. HO activity increased by only 1.6-fold at its peak on day 5, and had also returned to baseline by day 8. A significant increase in protein carbonylation was observed at 3-5 days, which also was markedly attenuated by 8 days, concomitant with a return of tissue heme to near-normal levels. These results suggest that the increase in HO activity in tissue surrounding an experimental ICH is considerably less than would be predicted based on an analysis of HO-1 expression per se. As HO-1 expression is temporally associated with increased tissue heme and increased protein carbonylation, it may be more useful as a marker of heme-mediated oxidative stress in ICH models, rather than as an index of HO activity.
Collapse
Affiliation(s)
- Mai Chen
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
46
|
Lin Y, Vreman HJ, Wong RJ, Tjoa T, Yamauchi T, Noble-Haeusslein LJ. Heme oxygenase-1 stabilizes the blood-spinal cord barrier and limits oxidative stress and white matter damage in the acutely injured murine spinal cord. J Cereb Blood Flow Metab 2007; 27:1010-21. [PMID: 17047682 DOI: 10.1038/sj.jcbfm.9600412] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We hypothesized that heme oxygenase (HO)-1, the inducible form of HO, represents an important defense against early oxidative injury in the traumatized spinal cord by stabilizing the blood-spinal cord barrier and limiting the infiltration of leukocytes. To test this hypothesis, we first examined the immunoexpression of HO-1 and compared barrier permeability and leukocyte infiltration in spinal cord-injured HO-1-deficient (+/-) and wild-type (WT, +/+) mice. Heme oxygenase was expressed in both endothelial cells and glia of the injured cord. Barrier disruption to luciferase and infiltration of neutrophils were significantly greater in the HO-1+/- than WT mice at 24 h postinjury (P<or=0.019 and =0.049, respectively). We next examined by Western immunoblots the generation of 4-hydroxynoneal (HNE) and malondialdehyde (MDA), major products of lipid peroxidation, in the injured epicenter. There was a significant increase in 10 kDa HNE- and MDA-modified proteins in the HO-1+/- as compared with WT mice (P=0.037 and 0.043, respectively). Finally, we compared the degradation of myelin basic protein (MBP), an indicator of white matter damage, in the HO-1+/- and WT mice by Western immunoblots. There was significantly greater degradation of MBP in the HO-1+/- compared with WT mice (P=0.049). Together, these findings show that HO-1 modulates oxidative stress and white matter injury in the acutely injured spinal cord. This modulation may be partially attributed to the ability of HO-1 to stabilize the blood-spinal cord barrier and limit neutrophil infiltration.
Collapse
Affiliation(s)
- Yong Lin
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California 94143-0520, USA
| | | | | | | | | | | |
Collapse
|
47
|
Qu Y, Chen-Roetling J, Benvenisti-Zarom L, Regan RF. Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase-2 knockout mice. J Neurosurg 2007; 106:428-35. [PMID: 17367065 DOI: 10.3171/jns.2007.106.3.428] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Experimental evidence suggests that hemoglobin degradation products contribute to cellular injury after intracerebal hemorrhage (ICH). Hemoglobin breakdown is catalyzed in part by the heme oxygenase (HO) enzymes. In the present study, the authors tested the hypothesis that HO-2 gene deletion is cytoprotective in an experimental ICH model. METHODS After anesthesia was induced with isoflurane, 3- to 6-month-old HO-2 knockout and wild-type mice were stereotactically injected with 15 microl autologous blood and a group of control mice were injected with an equal volume of sterile saline. Striatal protein and lipid oxidation were quantified 72 hours later using carbonyl and malondialdehyde assays. Cell viability was determined by performing a 3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. Following blood injection, the investigators found a 3.4-fold increase in protein carbonylation compared with that in the contralateral striatum in wild-type mice; in knockout mice, the investigators found a twofold increase. The mean malondialdehyde concentration in injected striata was increased twofold in wild-type mice at this time, compared with 1.5-fold in knockout mice. Cell viability, as determined by MTT reduction, was reduced in injected striata to 38 +/- 4% of that in the contralateral striata in wild-type mice, compared with 66 +/- 5% in HO-2 knockout mice. Baseline striatal HO-1 protein expression was similar in wild-type and HO-2 knockout mice, but was induced more rapidly in the former after blood injection. CONCLUSIONS Deletion of HO-2 attenuates oxidative cell injury after whole-blood injection into the mouse striatum. Therapies that specifically target HO-2 may improve outcome after ICH.
Collapse
Affiliation(s)
- Yan Qu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennyslvania 19107, USA
| | | | | | | |
Collapse
|
48
|
Benvenisti-Zarom L, Regan RF. Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury. Neurobiol Dis 2007; 26:688-95. [PMID: 17467999 PMCID: PMC1952678 DOI: 10.1016/j.nbd.2007.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 01/28/2023] Open
Abstract
In prior studies, we have observed that HO activity protects astrocytes from heme-mediated injury, but paradoxically increases neuronal injury. In this study, we tested the hypothesis that an adenovirus encoding the human HO-1 gene driven by an enhanced glial fibrillary acidic protein promoter (Ad-GFAP-HO-1) would increase HO-1 expression selectively in astrocytes, and provide cytoprotection. Treatment with 100 MOI Ad-GFAP-HO-1 for 24 h resulted in HO-1 expression that was 6.4-fold higher in cultured primary astrocytes than in neurons. Astrocyte HO activity was increased by approximately fourfold over baseline, which was sufficient to reduce cell death after 24-h hemin exposure by 60%, as assessed by both MTT and LDH release assays. A similar reduction in cell protein oxidation, quantified by carbonyl assay, was also observed. These results suggest that HO-1 transgene expression regulated by an enhanced GFAP promoter selectively increases HO-1 expression in astrocytes, and is cytoprotective. Further investigation of this strategy in vivo is warranted.
Collapse
Affiliation(s)
| | - Raymond F. Regan
- *Corresponding Author. Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, Thompson Building Room 239, Philadelphia, PA 19107, Telephone: 215-955-2695; FAX: 215-923-6225, E-mail:
| |
Collapse
|
49
|
Li Q, Li J, Zhang L, Wang B, Xiong L. Preconditioning with hyperbaric oxygen induces tolerance against oxidative injury via increased expression of heme oxygenase-1 in primary cultured spinal cord neurons. Life Sci 2007; 80:1087-93. [PMID: 17291539 DOI: 10.1016/j.lfs.2006.11.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 10/26/2006] [Accepted: 11/19/2006] [Indexed: 10/23/2022]
Abstract
Hyperbaric oxygen (HBO) preconditioning can induce ischemic tolerance in the spinal cord. The effect can be attenuated by the administration of an oxygen free radical scavenger or by inhibition of antioxidant enzymes. However, the mechanism underlying HBO preconditioning of neurons against ischemic injury remains enigmatic. Therefore, in the present study primary cultured spinal cord neurons were treated with HBO and then subjected to a hydrogen peroxide (H(2)O(2)) insult. The results show that H(2)O(2) stimulation of the cultured spinal neurons caused severe DNA damage and decreased cell viability, and that these neurons were well protected against damage after a single exposure to HBO preconditioning (0.35 MPa, 98% O(2), 37 degrees C, 2 h). The protective effect started 4 h after pretreatment and lasted for at least 24 h. The cultured neurons after HBO treatment also exhibited increased heme oxygenase-1 (HO-1) expression at both the protein and mRNA levels, which paralleled the protective effect of HBO. Treatment with tin-mesoporphyrin IX (SnMP), a specific HO-1 inhibitor, before HBO pretreatment abolished the HBO-induced adaptive protection noted in the cultured spinal neurons. In conclusion, HBO preconditioning can protect primary cultured spinal cord neurons against oxidative stress, and the upregulation of HO-1 expression plays an essential role in HBO induced preconditioning effect.
Collapse
Affiliation(s)
- Qingbo Li
- Department of Aerospace Hygiene and Health Service, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | | | | | | | | |
Collapse
|