1
|
Simamora A, Timotius KH, Setiawan H, Saputri FA, Putri CR, Aryani D, Ningrum RA, Mun'im A. Ultrasonic-Assisted Extraction of Xanthorrhizol from Curcuma xanthorrhiza Roxb. Rhizomes by Natural Deep Eutectic Solvents: Optimization, Antioxidant Activity, and Toxicity Profiles. Molecules 2024; 29:2093. [PMID: 38731583 PMCID: PMC11085723 DOI: 10.3390/molecules29092093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Xanthorrhizol, an important marker of Curcuma xanthorrhiza, has been recognized for its different pharmacological activities. A green strategy for selective xanthorrhizol extraction is required. Herein, natural deep eutectic solvents (NADESs) based on glucose and organic acids (lactic acid, malic acid, and citric acid) were screened for the extraction of xanthorrhizol from Curcuma xanthorrhiza. Ultrasound-assisted extraction using glucose/lactic acid (1:3) (GluLA) gave the best yield of xanthorrhizol. The response surface methodology with a Box-Behnken Design was used to optimize the interacting variables of water content, solid-to-liquid (S/L) ratio, and extraction to optimize the extraction. The optimum conditions of 30% water content in GluLA, 1/15 g/mL (S/L), and a 20 min extraction time yielded selective xanthorrhizol extraction (17.62 mg/g) over curcuminoids (6.64 mg/g). This study indicates the protective effect of GluLA and GluLA extracts against oxidation-induced DNA damage, which was comparable with those obtained for ethanol extract. In addition, the stability of the xanthorrhizol extract over 90 days was revealed when stored at -20 and 4 °C. The FTIR and NMR spectra confirmed the hydrogen bond formation in GluLA. Our study reported, for the first time, the feasibility of using glucose/lactic acid (1:3, 30% water v/v) for the sustainable extraction of xanthorrhizol.
Collapse
Affiliation(s)
- Adelina Simamora
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Kris Herawan Timotius
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia
| | - Heri Setiawan
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | | | | | - Dewi Aryani
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Ratih Asmana Ningrum
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, West Java, Indonesia
| | - Abdul Mun'im
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| |
Collapse
|
2
|
Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp Neurol 2024; 373:114655. [PMID: 38110142 DOI: 10.1016/j.expneurol.2023.114655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
One of the major causes of long-term disability and mortality is ischemic stroke that enjoys limited treatment approaches. On the one hand, oxidative stress, induced by excessive generation of reactive oxygen species (ROS), plays a critical role in post-stroke inflammatory response. Increased ROS generation is one of the basic factors in the progression of stroke-induced neuroinflammation. Moreover, intravenous (IV) thrombolysis using recombinant tissue plasminogen activator (rtPA) as the only medication approved for patients with acute ischemic stroke who suffer from some clinical restrictions it could not cover the complicated episodes that happen after stroke. Thus, identifying novel therapeutic targets is crucial for successful preparation of new medicines. Recent evidence indicates that the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) contributes significantly to regulating the antioxidant production in cytosol, which causes antiinflammatory effects on neurons. New findings have shown a relationship between activation of the Nrf2 and glial cells, nuclear factor kappa B (NF-κB) pathway, the nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, and expression of inflammatory markers, suggesting induction of Nrf2 activation can represent a promising therapeutic alternative as the modulators of Nrf2 dependent pathways for targeting inflammatory responses in neural tissue. Hence, this review addresses the relationship of Nrf2 signaling with inflammation and Nrf2 activators' potential as therapeutic agents. This review helps to improve required knowledge for focused therapy and the creation of modern and improved treatment choices for patients with ischemic stroke.
Collapse
Affiliation(s)
- Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Negin Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Oh YC, Jeong YH, Yang HJ, Li W, Ma JY. Lumbricus Extract Prevents LPS-Induced Inflammatory Activation of BV2 Microglia and Glutamate-Induced Hippocampal HT22 Cell Death by Suppressing MAPK/NF-κB/NLRP3 Signaling and Oxidative Stress. Curr Issues Mol Biol 2023; 45:9926-9942. [PMID: 38132466 PMCID: PMC10742620 DOI: 10.3390/cimb45120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Microglia-induced inflammatory signaling and neuronal oxidative stress are mutually reinforcing processes central to the pathogenesis of neurodegenerative diseases. Recent studies have shown that extracts of dried Pheretima aspergillum (Lumbricus) can inhibit tissue fibrosis, mitochondrial damage, and asthma. However, the effects of Lumbricus extracts on neuroinflammation and neuronal damage have not been previously studied. Therefore, to evaluate the therapeutic potential of Lumbricus extract for neurodegenerative diseases, the current study assessed the extract's anti-inflammatory and antioxidant activities in BV2 microglial cultures stimulated with lipopolysaccharide (LPS) along with its neuroprotective efficacy in mouse hippocampal HT22 cell cultures treated with excess glutamate. Lumbricus extract dose-dependently inhibited the LPS-induced production of multiple proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) and reversed the upregulation of proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Lumbricus also activated the antioxidative nuclear factor erythroid 2-relayed factor 2/heme oxygenase-1 pathway and inhibited LPS-induced activation of the nuclear factor-κB/mitogen-activated protein kinases/NOD-like receptor family pyrin domain containing 3 inflammatory pathway. In addition, Lumbricus extract suppressed the glutamate-induced necrotic and apoptotic death of HT22 cells, effects associated with upregulated expression of antiapoptotic proteins, downregulation of pro-apoptotic proteins, and reduced accumulation of reactive oxygen species. Chromatography revealed that the Lumbricus extract contained uracil, hypoxanthine, uridine, xanthine, adenosine, inosine, and guanosine. Its effects against microglial activation and excitotoxic neuronal death reported herein support the therapeutic potential of Lumbricus for neurodegenerative diseases.
Collapse
Affiliation(s)
- You-Chang Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (H.J.Y.); (W.L.)
| | | | | | | | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (H.J.Y.); (W.L.)
| |
Collapse
|
4
|
Banerjee A, Somasundaram I, Das D, Jain Manoj S, Banu H, Mitta Suresh P, Paul S, Bisgin A, Zhang H, Sun XF, Duttaroy AK, Pathak S. Functional Foods: A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants. Nutrients 2023; 15:nu15112631. [PMID: 37299594 DOI: 10.3390/nu15112631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.
Collapse
Affiliation(s)
- Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Indumathi Somasundaram
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416012, Maharashtra, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Samatha Jain Manoj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Husaina Banu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Pavane Mitta Suresh
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, San Pablo 76130, Mexico
| | - Atil Bisgin
- Department of Medical Genetics, Medical Faculty, Cukurova University, Adana 01250, Turkey
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Ocology, Department of Biomedical and Clinical Sciences, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
5
|
Van HT, Luu TN, Pham TV, Tran MD, Tran TKN, Le VS, Nguyen QH, Le TT, Nguyen-Phi N. Chemical Constituents and Antibacterial Activity of Essential Oils from Curcuma thorelii. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
6
|
Simamora A, Timotius KH, Yerer MB, Setiawan H, Mun'im A. Xanthorrhizol, a potential anticancer agent, from Curcuma xanthorrhiza Roxb. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154359. [PMID: 35933899 DOI: 10.1016/j.phymed.2022.154359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xanthorrhizol (XTZ), a bisabolene sesquiterpenoid, is abundantly found in the plant Curcuma xanthorrhiza Roxb. Traditionally, C. xanthorrhiza is widely used for the treatment of different health conditions, including common fever, infection, lack of appetite, fatigue, liver complaints, and gastrointestinal disorders. XTZ exhibits wide-ranging pharmacological activities, including anticancer, antioxidative, anti-inflammatory, antimicrobial, and antidiabetic activities, in addition to a protective effect on multiple organs. The present review provides detailed findings on the anticancer activities of XTZ and the underlying cellular and molecular mechanisms. METHODS Literature was searched systematically in main databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, with keywords "tumor AND xanthorrhizol" or "cancer AND xanthorrhizol". RESULTS Studies show that XTZ has preventive and therapeutic activities against different types of cancer, including breast, cervical, colon, liver, lung, oral and esophageal, and skin cancers. XTZ regulates multiple signaling pathways that block carcinogenesis and proliferation. In vitro and in vivo studies showed that XTZ targets different kinases, inflammatory cytokines, apoptosis proteins, and transcription factors, leading to the suppression of angiogenesis, metastasis, and the activation of apoptosis and cell cycle arrest. CONCLUSION The potential anticancer benefits of XTZ recommend further in vivo studies against different types of cancer. Further, XTZ needs to be confirmed for its toxicity, bioavailability, protective, antifatigue, and energy booster activities. Future studies for the therapeutic development of XTZ may be directed to cancer-related fatigue.
Collapse
Affiliation(s)
- Adelina Simamora
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; Centre for Enzyme Research in Health and Diseases, Krida Wacana Christian University, Jakarta 11510, Indonesia
| | - Kris Herawan Timotius
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia; Centre for Enzyme Research in Health and Diseases, Krida Wacana Christian University, Jakarta 11510, Indonesia
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, University of Erciyes, Kayseri 38039, Turkey
| | - Heri Setiawan
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Abdul Mun'im
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
| |
Collapse
|
7
|
Xanthorrhizol Ameliorates Oxidative Stress and Inflammation in Freund's Complete Adjuvant-Induced Rheumatoid Arthritis in Rats. Appl Biochem Biotechnol 2022; 194:6423-6437. [PMID: 35932370 DOI: 10.1007/s12010-022-04091-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease and a common cause of disability. This study is aimed to ascertain the therapeutic potentials of the xanthorrhizol against Freund's complete adjuvant (FCA)-stimulated RA in rats. The RA was initiated in the rats via injecting FCA (0.1 ml) subcutaneously and then treated with xanthorrhizol (20 mg/kg) for 25 days. The hematological markers were investigated using the automated hematological analyzer. The organ index (spleen and thymus) and paw volume were inspected by standard methods. The ALP, SGOT, and SGPT activities were examined using kits. The levels of inflammatory biomarkers, i.e., IL-1β, IL-6, IL-10, and TNF-α, were inspected using assay kits. The status of MDA, SOD, CAT, GSH, COX-2, iNOS, and NF-κB was quantified using respective assay kits. The xanthorrhizol treatment appreciably improved the body weight and hematological parameters and reduced the arthritis score, organ index, and paw volume in the RA rats. The levels of RBCs and Hb were effectively improved, and activities of ALP, SGOT, and SGPT were decreased by the xanthorrhizol in the RA rats. The RA rats treated with 20 mg/kg of xanthorrhizol demonstrated the depleted IL-1β, IL-6, and TNF-α levels. The antioxidant markers SOD, CAT, and GSH were improved, and inflammatory biomarker levels such as COX-2, iNOS, and NF-κB were decreased by the xanthorrhizol in the RA rats. Overall, these outcomes witnessed that the xanthorrhizol effectively ameliorated the oxidative stress and inflammatory responses and attenuated the RA in rats. Hence, it could be a talented anti-arthritic medication to treat RA.
Collapse
|
8
|
Kang J, Won J, Hwang JK, Kang W. Bioavailability of xanthorrhizol following oral administration of a supercritical extract of Java turmeric. Food Sci Biotechnol 2022; 31:1309-1313. [PMID: 35992318 PMCID: PMC9385918 DOI: 10.1007/s10068-022-01124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022] Open
Abstract
Although xanthorrhizol, a sesquiterpenoid oil obtained from the rhizome of Curcuma xanthorrhiza Roxb., known as Java turmeric, has many pharmacological effects, its pharmacokinetics remain unclear. Therefore, we investigated the pharmacokinetics of xanthorrhizol in mice and rats. Xanthorrhizol was administered intravenously and orally to mice, while xanthorrhizol and a Java turmeric supercritical extract were administered orally to rats. The terminal half-life (t1/2), clearance, and absolute bioavailability (BA) of xanthorrhizol in mice were almost 8 h, 6.5 L/h/kg, and 10.2%, respectively. In comparison, the clearance of xanthorrhizol was 3-fold higher in rats than mice. The absolute BAs of xanthorrhizol in rats were 12.9% and 13.4% after oral administration of xanthorrhizol and a supercritical extract, respectively. Our results regarding the pharmacokinetics of xanthorrhizol could guide the conversion of intravenous and oral doses, and help identify the optimal maintenance doses of xanthorrhizol and the extract for desirable pharmacodynamic effects.
Collapse
|
9
|
Kiriacos CJ, Khedr MR, Tadros M, Youness RA. Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Front Oncol 2022; 12:837408. [PMID: 35664773 PMCID: PMC9157490 DOI: 10.3389/fonc.2022.837408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Being "positive" has been one of the most frustrating words anyone could hear since the end of 2019. This word had been overused globally due to the high infectious nature of SARS-CoV-2. All citizens are at risk of being infected with SARS-CoV-2, but a red warning sign has been directed towards cancer and immune-compromised patients in particular. These groups of patients are not only more prone to catch the virus but also more predisposed to its deadly consequences, something that urged the research community to seek other effective and safe solutions that could be used as a protective measurement for cancer and autoimmune patients during the pandemic. Aim The authors aimed to turn the spotlight on specific herbal remedies that showed potential anticancer activity, immuno-modulatory roles, and promising anti-SARS-CoV-2 actions. Methodology To attain the purpose of the review, the research was conducted at the States National Library of Medicine (PubMed). To search databases, the descriptors used were as follows: "COVID-19"/"SARS-CoV-2", "Herbal Drugs", "Autoimmune diseases", "Rheumatoid Arthritis", "Asthma", "Multiple Sclerosis", "Systemic Lupus Erythematosus" "Nutraceuticals", "Matcha", "EGCG", "Quercetin", "Cancer", and key molecular pathways. Results This manuscript reviewed most of the herbal drugs that showed a triple action concerning anticancer, immunomodulation, and anti-SARS-CoV-2 activities. Special attention was directed towards "matcha" as a novel potential protective and therapeutic agent for cancer and immunocompromised patients during the SARS-CoV-2 pandemic. Conclusion This review sheds light on the pivotal role of "matcha" as a tri-acting herbal tea having a potent antitumorigenic effect, immunomodulatory role, and proven anti-SARS-CoV-2 activity, thus providing a powerful shield for high-risk patients such as cancer and autoimmune patients during the pandemic.
Collapse
Affiliation(s)
- Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monika Rafik Khedr
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miray Tadros
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
10
|
Goyal R, Bala R, Sindhu RK, Zehravi M, Madaan R, Ramproshad S, Mondal B, Dey A, Rahman MH, Cavalu S. Bioactive Based Nanocarriers for the Treatment of Viral Infections and SARS-CoV-2. NANOMATERIALS 2022; 12:nano12091530. [PMID: 35564239 PMCID: PMC9104170 DOI: 10.3390/nano12091530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
Since ancient times, plants have been used for their medicinal properties. They provide us with many phytomolecules, which serve a synergistic function for human well-being. Along with anti-microbial, plants also possess anti-viral activities. In Western nations, about 50% of medicines were extracted from plants or their constituents. The spread and pandemic of viral diseases are becoming a major threat to public health and a burden on the financial prosperity of communities worldwide. In recent years, SARS-CoV-2 has made a dramatic lifestyle change. This has promoted scientists not to use synthetic anti-virals, such as protease inhibitors, nucleic acid analogs, and other anti-virals, but to study less toxic anti-viral phytomolecules. An emerging approach includes searching for eco-friendly therapeutic molecules to develop phytopharmaceuticals. This article briefly discusses numerous bioactive molecules that possess anti-viral properties, their mode of action, and possible applications in treating viral diseases, with a special focus on coronavirus and various nano-formulations used as a carrier for the delivery of phytoconstituents for improved bioavailability.
Collapse
Affiliation(s)
- Ravi Goyal
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Rajni Bala
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Rakesh K. Sindhu
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Reecha Madaan
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| |
Collapse
|
11
|
Streyczek J, Apweiler M, Sun L, Fiebich BL. Turmeric Extract ( Curcuma longa) Mediates Anti-Oxidative Effects by Reduction of Nitric Oxide, iNOS Protein-, and mRNA-Synthesis in BV2 Microglial Cells. Molecules 2022; 27:molecules27030784. [PMID: 35164047 PMCID: PMC8840760 DOI: 10.3390/molecules27030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/02/2023] Open
Abstract
Plant-derived products have been used since the beginnings of human history to treat various pathological conditions. Practical experience as well as a growing body of research suggests the benefits of the use of turmeric (Curcuma longa) and some of its active components in the reduction of oxidative stress, a mechanism leading to neurodegeneration. In this current study, we investigated the effects of a preparation of Curcuma longa, and its constituents curcumin, tetrahydrocurcumin, and curcumenol, in one of the molecular pathways leading to oxidative stress, which is the release of NO, a free radical involved in stress conditions, using the BV2 microglial cell line. The concentration-dependent reduction of NO is linked to reduced amounts of iNOS protein- and mRNA-synthesis and is possibly mediated by the phosphorylation of mitogen-activated protein kinases (MAPK) such as p42/44 or p38 MAPK. Therefore, the use of turmeric extract is a promising therapeutic option for diseases linked to the dysregulation of oxidative stress, with fewer side-effects in comparison to the currently used pharmacotherapeutics.
Collapse
Affiliation(s)
- Jana Streyczek
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, D-79104 Freiburg, Germany; (J.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, D-79104 Freiburg, Germany; (J.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, D-79104 Freiburg, Germany; (J.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, D-79104 Freiburg, Germany; (J.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
- Correspondence:
| |
Collapse
|
12
|
Cai Y, Sheng Z, Wang J. Xanthorrhizol inhibits non-small cell carcinoma (A549) cell growth and promotes apoptosis through modulation of PI3K/AKT and NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:120-130. [PMID: 34664399 DOI: 10.1002/tox.23383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/12/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Xanthorrhizol (XNT) is a sesquiterpenoid agent isolated from Curcuma xanthorrhiza; It is known to exhibit various pharmacological activities including anti-cancer. We investigated the anti-cell proliferative and proapoptotic effects of XNT on Non-small cell carcinoma (A549) cells were analyzed by the generation of reactive oxygen species (ROS), alteration of mitochondrial membrane potential (ΔΨm), oxidative DNA damage, and apoptosis morphological changes were explored by Hoechst and AO/EtBr staining. Our study demonstrated that XNT treatment significantly reduced the viability of A549 cells in a concentration-dependent manner. We observed that XNT-induced oxidative stress-mediated apoptotic cell death by increasing intracellular ROS generation, depleting antioxidant levels, enhancing lipid peroxidation, increased apoptotic morphological changes, and % of DNA damage on human lung cancer cells. Furthermore, we observed that the XNT induce apoptosis through inhibits phosphorylation of PI3K, AKTand inhibit NF-κBp65 transcriptional signaling activity. In addition, XNT treatment alters the ΔΨm, thereby induces apoptosis was closely coordinated with the induction of pro-apoptotic markers Bax, Bad, caspase- 3, 9 and cytochrome c, and suppression of anti-apoptotic (Bcl-2, Bcl-XL) protein expression. According to our results, XNT-inducing apoptosis in A549 cells by causing oxidative damage and modulating apoptotic signaling events. Finally, XNT-induced apoptotic cell death was confirmed by the TUNEL assay. Therefore, XNT might be used as a chemotherapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yong Cai
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoying Sheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiying Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Kim M, Cho H, Ahn DG, Jung HG, Seo HY, Kim JS, Lee YJ, Choi JY, Park IH, Shin JS, Kim SJ, Oh JW. In Vitro Replication Inhibitory Activity of Xanthorrhizol against Severe Acute Respiratory Syndrome Coronavirus 2. Biomedicines 2021; 9:biomedicines9111725. [PMID: 34829954 PMCID: PMC8615586 DOI: 10.3390/biomedicines9111725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the large number of repositioned drugs and direct-acting antivirals in clinical trials for the management of the ongoing COVID-19 pandemic, there are few cost-effective therapeutic options for severe acute respiratory syndrome (SARS) coronavirus 2 (SCoV2) infection. In this paper, we show that xanthorrhizol (XNT), a bisabolane-type sesquiterpenoid compound isolated from the Curcuma xanthorrhizza Roxb., a ginger-line plant of the family Zingiberaceae, displays a potent antiviral efficacy in vitro against SCoV2 and other related coronaviruses, including SARS-CoV-1 (SCoV1) and a common cold-causing human coronavirus. XNT reduced infectious SCoV2 titer by ~3-log10 at 20 μM and interfered with the replication of the SCoV1 subgenomic replicon, while it had no significant antiviral effects against hepatitis C virus and noroviruses. Further, XNT exerted similar antiviral functions against SCoV2 variants, such as a GH clade strain and a delta strain currently predominant worldwide. Neither SCoV2 entry into cells nor the enzymatic activity of viral RNA polymerase (Nsp12), RNA helicase (Nsp13), or the 3CL main protease (Nsp5) was inhibited by XNT. While its CoV replication inhibitory mechanism remains elusive, our results demonstrate that the traditional folk medicine XNT could be a promising antiviral candidate that inhibits a broad range of SCoV2 variants of concern and other related CoVs.
Collapse
Affiliation(s)
- Minwoo Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Hee Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Dae-Gyun Ahn
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Han Young Seo
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Ji-Su Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Youn-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.-J.L.); (J.Y.C.)
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.-J.L.); (J.Y.C.)
| | - In Ho Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (I.H.P.); (J.-S.S.)
| | - Jeon-Soo Shin
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (I.H.P.); (J.-S.S.)
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
- Correspondence: ; Tel.: +82-2-2123-2881; Fax: +82-2-362-7265
| |
Collapse
|
14
|
Syahputra G, Gustini N, Bustanussalam B, Hapsari Y, Sari M, Ardiansyah A, Bayu A, Putra MY. Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, M pro, and PL pro receptors. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e68432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the uncontrolled spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), development and distribution of antiviral drugs and vaccines have gained tremendous importance. This study focused on two viral proteases namely main protease (Mpro) and papain-like protease (PLpro) and human angiotensin-converting enzyme (ACE-2) to identify which of these are essential for viral replication. We screened 102 secondary metabolites against SARS-CoV-2 isolated from 36 terrestrial plants and 36 marine organisms from Indonesian biodiversity. These organisms are typically presumed to have antiviral effects, and some of them have been used as an immunomodulatory activity in traditional medicine. For the molecular docking procedure to obtain Gibbs free energy value (∆G), toxicity, ADME and Lipinski, AutoDock Vina was used. In this study, five secondary metabolites, namely corilagin, dieckol, phlorofucofuroeckol A, proanthocyanidins, and isovitexin, were found to inhibit ACE-2, Mpro, and PLpro receptors in SARS-CoV-2, with a high affinity to the same sites of ptilidepsin, remdesivir, and chloroquine as the control molecules. This study was delimited to molecular docking without any validation by simulations concerned with molecular dynamics. The interactions with two viral proteases and human ACE-2 may play a key role in developing antiviral drugs for five active compounds. In future, we intend to investigate antiviral drugs and the mechanisms of action by in vitro study.
Collapse
|
15
|
Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021; 11:1708-1720. [PMID: 34386317 PMCID: PMC8343111 DOI: 10.1016/j.apsb.2020.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPK, 5′-adenosine monophosphate-activated protein kinase
- ATF6, activating transcription factor 6
- ATG, autophagy related genes
- Autophagy
- BCL-2, B-cell lymphoma 2
- BNIP3L, BCL2/adenovirus
- COPII, coat protein complex II
- Cerebral ischemia
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- FUNDC1, FUN14 domain containing 1
- GPCR, G-protein coupled receptor
- HD, Huntington's disease
- IPC, ischemic preconditioning
- IRE1, inositol-requiring enzyme 1
- JNK, c-Jun N-terminal kinase
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LKB1, liver kinase B1
- Lysosomal activation
- Mitochondria
- Mitophagy
- Natural compounds
- Neurological disorders
- Neuroprotection
- OGD/R, oxygen and glucose deprivation-reperfusion
- PD, Parkinson's disease
- PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase
- PI3K, phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TFEB, transcription factor EB
- TIGAR, TP53-induced glycolysis and apoptosis regulator
- ULK, Unc-51- like kinase
- Uro-A, urolithin A
- eIF2a, eukaryotic translation-initiation factor 2
- mTOR, mechanistic target of rapamycin
- ΔΨm, mitochondrial membrane potential
Collapse
|
16
|
Javanese Turmeric ( Curcuma xanthorrhiza Roxb.): Ethnobotany, Phytochemistry, Biotechnology, and Pharmacological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9960813. [PMID: 34194529 PMCID: PMC8214482 DOI: 10.1155/2021/9960813] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022]
Abstract
Curcuma xanthorrhiza Roxb., locally famed as Temulawak, has been extensively utilized in Indonesia as medicinal and nutritional plants since immemorial time. The rhizome of this plant is an important ingredient for jamu formulation (Indonesian traditional medicine). C. xanthorrhiza is traditionally used to treat several ailments such as lack of appetite, stomach disorder, liver illness, constipation, bloody diarrhea, dysentery, arthritis, children's fevers, hypotriglyceridaemia, hemorrhoids, vaginal discharge, rheumatism, and skin eruptions. To date, over 40 active compounds, including terpenoids, curcuminoids, and other phenolic compounds, have been isolated and identified from C. xanthorrhiza Roxb. Some pharmacological tests reported that C. xanthorrhiza Roxb. has antioxidant, antimicrobial, anti-inflammatory, anticancer and antitumor, antidiabetic, and skincare and hepatoprotective properties. Efforts for biotechnologically production of C. xanthorrhiza have also been conducted, resulting in some micropropagation protocols of this plant. The current review focuses on the botanical description and distribution, ethnomedicinal uses, production and conservation status, phytochemical properties, and pharmacological activities of C. xanthorrhiza Roxb. to provide accurate and reliable data for future researches and commercialization purposes.
Collapse
|
17
|
Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition. Mediators Inflamm 2021; 2021:6687089. [PMID: 33790692 PMCID: PMC7997760 DOI: 10.1155/2021/6687089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
The activation of microglial cells and their subsequent neuroinflammatory reactions are related to various degenerative brain diseases. Therefore, the regulation of microglial cell activation is an important point for the research of therapeutic agents for treating or preventing neurodegenerative disorders. Saussureae Radix (SR) is the root of Saussurea lappa Clarke, and it has been used for a long time as an herbal medicine in East Asia to treat indigestion and inflammation of the digestive system. In previous studies, however, the effect of SR ethanolic extract on microglial cell-mediated neuroinflammation was not fully explained. In this study, we explored the antineuroinflammatory activities and molecular mechanisms of SR in microglial cells stimulated with LPS (lipopolysaccharide). Our results illustrated that SR does not cause cytotoxicity and significantly weakens the production of nitric oxide (NO) and inflammatory cytokines. SR treatment also inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 2, induced heme oxygenase- (HO-) 1, and activated the nuclear factor erythroid 2-related factor 2 (Nrf-2) pathway. In addition, SR significantly repressed the transcriptional activities of the nuclear factor- (NF-) κB and activator protein- (AP-) 1. Furthermore, SR effectively inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT). Isolation and high-performance liquid chromatography (HPLC) analysis indicated two major sesquiterpenoids (costunolide and dehydrocostuslactone). These compounds significantly inhibited the production of neuroinflammatory mediators and induced HO-1 expression. These findings show that SR could be a potential candidate for the treatment of inflammation-related degenerative brain diseases.
Collapse
|
18
|
Khalid GS, Hamrah MH, Ghafary ES, Hosseini S, Almasi F. Antibacterial and Antimicrobial Effects of Xanthorrhizol in the Prevention of Dental Caries: A Systematic Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1149-1156. [PMID: 33731986 PMCID: PMC7959204 DOI: 10.2147/dddt.s290021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/20/2021] [Indexed: 12/14/2022]
Abstract
Background Xanthorrhizol is one of the numerous phytochemicals whose pharmacological benefits have been explored for its antibacterial and antimicrobial effects. In light of the role bacteria play for initiating tooth decay, this present systematic review assessed xanthorrhizol’s effect against dental caries. Methods The electronic databases including Pubmed, Scopus and Embase were searched up to September 2020, Studies examining the antibacterial and antimicrobial effects of xanthorrhizol in the prevention and treatment of dental caries. Results Eleven studies met the criteria for final inclusion. Findings from these studies showed that xanthorrhizol showed significant inhibition of notable caries causing bacteria including Streptococcus mutans, Streptococcus sanguinis, Enterococcus faecalis and Bacillus cereus. Furthermore, there was no reported toxicity. However, it could not selectively target the growth of cariogenic bacteria. Conclusion So far, studies exploring the use of xanthorrhizol as a potential drug for the prevention and treatment of dental caries have shown promising outcomes. However, more work needs to be done especially in areas such as optimal dose or concentration, in addition, in vitro, in vivo and clinical studies and selective targeting of cariogenic bacteria has been performed.
Collapse
Affiliation(s)
| | | | - Elaha Somaya Ghafary
- Department of Periodontics, Kabul University of Medical Sciences, Kabul, Afghanistan
| | - Sepideh Hosseini
- Department of Pediatric Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Almasi
- Department of Pediatric Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Comprehensive computational target fishing approach to identify Xanthorrhizol putative targets. Sci Rep 2021; 11:1594. [PMID: 33452398 PMCID: PMC7810825 DOI: 10.1038/s41598-021-81026-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Xanthorrhizol (XNT), is a bioactive compound found in Curcuma xanthorrhiza Roxb. This study aimed to determine the potential targets of the XNT via computational target fishing method. This compound obeyed Lipinski's and Veber's rules where it has a molecular weight (MW) of 218.37 gmol-1, TPSA of 20.23, rotatable bonds (RBN) of 4, hydrogen acceptor and donor ability is 1 respectively. Besides, it also has half-life (HL) values 3.5 h, drug-likeness (DL) value of 0.07, oral bioavailability (OB) of 32.10, and blood-brain barrier permeability (BBB) value of 1.64 indicating its potential as therapeutic drug. Further, 20 potential targets were screened out through PharmMapper and DRAR-CPI servers. Co-expression results derived from GeneMANIA revealed that these targets made connection with a total of 40 genes and have 744 different links. Four genes which were RXRA, RBP4, HSD11B1 and AKR1C1 showed remarkable co-expression and predominantly involved in steroid metabolic process. Furthermore, among these 20 genes, 13 highly expressed genes associated with xenobiotics by cytochrome P450, chemical carcinogenesis and steroid metabolic pathways were identified through gene ontology (GO) and KEGG pathway analysis. In conclusion, XNT is targeting multiple proteins and pathways which may be exploited to shape a network that exerts systematic pharmacological effects.
Collapse
|
20
|
Ramli NZ, Yahaya MF, Tooyama I, Damanhuri HA. A Mechanistic Evaluation of Antioxidant Nutraceuticals on Their Potential against Age-Associated Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1019. [PMID: 33092139 PMCID: PMC7588884 DOI: 10.3390/antiox9101019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals have been extensively studied worldwide due to its neuroprotective effects in in vivo and in vitro studies, attributed by the antioxidative properties. Alzheimer (AD) and Parkinson disease (PD) are the two main neurodegenerative disorders that are discussed in this review. Both AD and PD share the similar involvement of oxidative stress in their pathophysiology. Nutraceuticals exert their antioxidative effects via direct scavenging of free radicals, prevent damage to biomolecules, indirectly stimulate the endogenous antioxidative enzymes and gene expressions, inhibit activation of pro-oxidant enzymes, and chelate metals. In addition, nutraceuticals can act as modulators of pro-survival, pro-apoptotic, and inflammatory signaling pathways. They have been shown to be effective particularly in preclinical stages, due to their multiple mechanisms of action in attenuating oxidative stress underlying AD and PD. Natural antioxidants from food sources and natural products such as resveratrol, curcumin, green tea polyphenols, and vitamin E are promising therapeutic agents in oxidative stress-mediated neurodegenerative disease as they have fewer adverse effects, more tolerable, cheaper, and sustainable for long term consumption.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
21
|
Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N. Traditional Herbal Medicine Candidates as Complementary Treatments for COVID-19: A Review of Their Mechanisms, Pros and Cons. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2560645. [PMID: 33101440 PMCID: PMC7569437 DOI: 10.1155/2020/2560645] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/11/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that belongs to the coronavirus family. The first case was reported in December 2019, and the disease has become a pandemic. Impaired immune regulation is one of the factors that play a role in its pathogenesis and results in poor outcomes of COVID-19 patients. There have been many studies with drug candidates used as antivirals or immunomodulators. However, the results of these investigations showed that the drug candidates were not significantly effective against the disease. Meanwhile, people believe that consuming herbal immunomodulators can prevent or even cure COVID-19. Unfortunately, specific preclinical and clinical trials to evaluate the effects of herbal immunoregulators have not been conducted. Certain natural compounds might be effective for the treatment of COVID-19 based on general concepts from previous experiments. This review discusses some herbal agents extracted from various plants, including Echinacea, Cinchona, Curcuma longa, and Curcuma xanthorrhiza, which are considered for the treatment of COVID-19. In addition, we discuss the pros and cons of utilising herbal medicine during the COVID-19 pandemic, draw some conclusions, and make recommendations at the end of the session.
Collapse
Affiliation(s)
- Rhea Veda Nugraha
- Graduate School of Biomedical Sciences Master Program, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Hastono Ridwansyah
- Graduate School of Biomedical Sciences Master Program, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Mohammad Ghozali
- Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Astrid Feinisa Khairani
- Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
- Immunology Study Group, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
22
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
23
|
Zerumbone ameliorates behavioral impairments and neuropathology in transgenic APP/PS1 mice by suppressing MAPK signaling. J Neuroinflammation 2020; 17:61. [PMID: 32066466 PMCID: PMC7027354 DOI: 10.1186/s12974-020-01744-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a major clinical problem, but there is a distinct lack of effective therapeutic drugs for this disease. We investigated the potential therapeutic effects of zerumbone, a subtropical ginger sesquiterpene, in transgenic APP/PS1 mice, rodent models of AD which exhibit cerebral amyloidosis and neuroinflammation. Methods The N9 microglial cell line and primary microglial cells were cultured to investigate the effects of zerumbone on microglia. APP/PS1 mice were treated with zerumbone, and non-cognitive and cognitive behavioral impairments were assessed and compared between the treatment and control groups. The animals were then sacrificed, and tissues were collected for further analysis. The potential therapeutic mechanism of zerumbone and the signaling pathways involved were also investigated by RT-PCR, western blot, nitric oxide detection, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and flow cytometry analysis. Results Zerumbone suppressed the expression of pro-inflammatory cytokines and induced a switch in microglial phenotype from the classic inflammatory phenotype to the alternative anti-inflammatory phenotype by inhibiting the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B signaling pathway in vitro. After a treatment period of 20 days, zerumbone significantly ameliorated deficits in both non-cognitive and cognitive behaviors in transgenic APP/PS1 mice. Zerumbone significantly reduced β-amyloid deposition and attenuated pro-inflammatory microglial activation in the cortex and hippocampus. Interestingly, zerumbone significantly increased the proportion of anti-inflammatory microglia among all activated microglia, potentially contributing to reduced β-amyloid deposition by enhancing phagocytosis. Meanwhile, zerumbone also reduced the expression of key molecules of the MAPK pathway, such as p38 and extracellular signal-regulated kinase. Conclusions Overall, zerumbone effectively ameliorated behavioral impairments, attenuated neuroinflammation, and reduced β-amyloid deposition in transgenic APP/PS1 mice. Zerumbone exhibited substantial anti-inflammatory activity in microglial cells and induced a phenotypic switch in microglia from the pro-inflammatory phenotype to the anti-inflammatory phenotype by inhibiting the MAPK signaling pathway, which may play an important role in its neuroprotective effects. Our results suggest that zerumbone is a potential therapeutic agent for human neuroinflammatory and neurodegenerative diseases, in particular AD.
Collapse
|
24
|
Zhang L, Zhang Y, Du Y, Wang J, Chi L. RETRACTED: Development of curcumin-loaded silk fibroin nanoparticles as drug delivery vehicle for the treatment of ischemic stroke for patients in nursing care in hospitals. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Oh YC, Jeong YH, Li W, Go Y. Angelicae Gigantis Radix Regulates LPS-Induced Neuroinflammation in BV2 Microglia by Inhibiting NF-κB and MAPK Activity and Inducing Nrf-2 Activity. Molecules 2019; 24:molecules24203755. [PMID: 31635294 PMCID: PMC6832664 DOI: 10.3390/molecules24203755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Angelicae Gigantis Radix (AGR) has been widely used as a traditional medicine in East Asia. The effects of AGR on neuroinflammation have not previously been studied in detail. In the study presented here, we investigated the antineuroinflammatory properties of this herb and its mechanism of operation. The effects of AGR on neuroinflammation were studied by measuring the production of inflammatory factors and related enzymes, and analyzing the expression levels of proteins and genes involved its activity, in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that AGR pretreatment strongly inhibits the production of nitric oxide (NO), cytokines, and the enzymes inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2, and effectively induces the activation of heme oxygenase (HO)-1 and its regulator, nuclear factor erythroid 2-related factor 2 (Nrf-2). We also found that AGR effectively regulates the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK). We confirmed the antineuroinflammatory effects of the main constituents of the plant as identified by high-performance liquid chromatography (HPLC). Our results indicate that the neuroinflammation inhibitory activity of AGR occurs through inhibition of NF-κB and MAPK and activation of Nrf-2.
Collapse
Affiliation(s)
- You-Chang Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Yun Hee Jeong
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Wei Li
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Younghoon Go
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| |
Collapse
|
26
|
Kochaphum S, Banyat P, Tadtong S, Sareedenchai V, Athikomkulchai S. Neuritogenic and Neuroprotective Activities of the Essential Oil From Rhizomes of Curcuma alismatifolia. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19864217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The essential oil from rhizomes of Curcuma alismatifolia Gagnep. was extracted by hydrodistillation. Chemical analysis by gas chromatography-mass spectrometry identified 12 compounds, of which the most prominent were xanthorrhizol (82.2%), ar-curcumene (6.5%), α-cedrene (1.8%), and β-bisabolol (1.1%). The essential oil at 1 ng/mL showed neuroprotective and neuritogenic activity on P19-derived neurons by significantly enhancing cell viability, length, and branching numbers of the cultured P19-derived neurons. In addition, xanthorrhizol, the major compound of the essential oil, at 10 ng/mL also exhibited the protection of P19-derived neurons. However, the mechanism of their neuroprotective activity was not correlated with their antioxidant activity.
Collapse
Affiliation(s)
- Sirote Kochaphum
- Faculty of Pharmacy, Srinakharinwirot University, Nakhon-nayok, Thailand
| | - Parinya Banyat
- Faculty of Pharmacy, Srinakharinwirot University, Nakhon-nayok, Thailand
| | - Sarin Tadtong
- Faculty of Pharmacy, Srinakharinwirot University, Nakhon-nayok, Thailand
| | | | | |
Collapse
|
27
|
Effect of Side Chain Functional Groups on the DPPH Radical Scavenging Activity of Bisabolane-Type Phenols. Antioxidants (Basel) 2019; 8:antiox8030065. [PMID: 30884775 PMCID: PMC6466534 DOI: 10.3390/antiox8030065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 01/19/2023] Open
Abstract
Methods for improving the antioxidant activity of phenolic compounds have been widely investigated; however, most studies have focused on the structure⁻activity correlations of substituents on the aromatic rings of catechols or flavonoids. We investigated the influence of side chain functional groups on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of xanthorrhizol and curcuphenol analogues. These compounds were synthesised by the side chain functional group conversion of curcumene, followed by direct oxidation of the aromatic ring. We determined the DPPH radical scavenging activity from the half-maximal effective concentration (EC50) obtained from a DPPH assay in methanol. The positional relationships of the side chain with the aromatic ring and phenolic OH group were determined using density functional theory calculations, and the stability of different conformations was compared. Electron transfer-proton transfer was determined to be the dominant mechanism in the DPPH reaction with xanthorrhizol analogues, based on the correlation between the EC50 and ionisation potential. The radical cation was greatly stabilised in the structure where the side chain functional group was close to the aromatic ring. Stabilisation also depended on the phenolic OH group position. In future antioxidant design, aromatic ring substituent conversion and the use of functional groups far from the OH group or ring should be explored.
Collapse
|
28
|
Mukherjee A, Sarkar S, Jana S, Swarnakar S, Das N. Neuro-protective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury. Brain Res 2018; 1704:164-173. [PMID: 30326199 DOI: 10.1016/j.brainres.2018.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/31/2022]
Abstract
Cerebral ischemia-reperfusion (CIR) accelerates the progression of neurodegeneration by causing mitochondrial dysfunction to overproduce reactive oxygen species (ROS). Curcumin shows protective effects against CIR-induced oxidative damage. Free curcumin (FC) is effective at high doses due to its poor bioavailability. Also the blood-brain barrier (BBB) limits the passage of substances from circulation into the cerebral region. Thus, formulation of curcumin within polyethylene glycol (PEG)-ylated polylactide-co-glycolide (PLGA) nanoparticles (NC) was applied orally to aged rats to explore its role against CIR injury. Mitochondrial damage was evaluated. The levels of pro-inflammatory cytokines and components of apoptotic pathway were studied. Unlike FC, NC pre-treatment exerted better neuro-protection by ameliorating ROS-mediated oxidative damage and prevented CIR-induced neuronal apoptosis. Therefore, curcumin incorporated PEGylated PLGA nanoparticles may be used as a suitable delivery vehicle to the brain as they can increase curcumin bioavalability and the released curcumin may confer protection to the neurons against CIR-induced oxidative damage.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sibani Sarkar
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sayantan Jana
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Snehasikta Swarnakar
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nirmalendu Das
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
29
|
Curcumin attenuates cerebral ischemia injury in Sprague–Dawley rats and PC12 cells by suppressing overactivated autophagy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 184:1-6. [DOI: 10.1016/j.jphotobiol.2018.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/22/2022]
|
30
|
The antioxidant xanthorrhizol prevents amyloid-β-induced oxidative modification and inactivation of neprilysin. Biosci Rep 2018; 38:BSR20171611. [PMID: 29330223 PMCID: PMC5794500 DOI: 10.1042/bsr20171611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Activity of neprilysin (NEP), the major protease which cleaves amyloid-β peptide (Aβ), is reportedly reduced in the brains of patients with Alzheimer's disease (AD). Accumulation of Aβ generates reactive oxygen species (ROS) such as 4-hydroxynonenal (HNE), and then reduces activities of Aβ-degrading enzymes including NEP. Xanthorrhizol (Xan), a natural sesquiterpenoid, has been reported to possess antioxidant and anti-inflammatory properties. The present study examined the effects of Xan on HNE- or oligomeric Aβ42-induced oxidative modification of NEP protein. Xan was added to the HNE- or oligomeric Aβ42-treated SK-N-SH human neuroblastoma cells and then levels, oxidative modification and enzymatic activities of NEP protein were measured. Increased HNE levels on NEP proteins and reduced enzymatic activities of NEP were observed in the HNE- or oligomeric Aβ42-treated cells. Xan reduced HNE levels on NEP proteins and preserved enzymatic activities of NEP in HNE- or oligomeric Aβ42-treated cells. Xan reduced Aβ42 accumulation and protected neurones against oligomeric Aβ42-induced neurotoxicity through preservation of NEP activities. These findings indicate that Xan possesses therapeutic potential for the treatment of neurodegenerative diseases, including AD, and suggest a potential mechanism for the neuroprotective effects of antioxidants for the prevention of AD.
Collapse
|
31
|
Xanthorrhizol contents, α-glucosidase inhibition, and cytotoxic activities in ethyl acetate fraction of Curcuma zanthorrhiza accessions from Indonesia. REVISTA BRASILEIRA DE FARMACOGNOSIA 2018. [DOI: 10.1016/j.bjp.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Erpina E, Rafi M, Darusman LK, Vitasari A, Putra BR, Rohaeti E. Simultaneous quantification of curcuminoids and xanthorrhizol inCurcuma xanthorrhizaby high-performance liquid chromatography. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1343729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Epi Erpina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
- Tropical Biopharmaca Research Center-Institute of Research and Community Services, Bogor Agricultural University, Bogor, Indonesia
| | - Latifah Kosim Darusman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
- Tropical Biopharmaca Research Center-Institute of Research and Community Services, Bogor Agricultural University, Bogor, Indonesia
| | - Arum Vitasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Budi Riza Putra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Eti Rohaeti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
33
|
Bo LJ, Miao Z, Wang ZF, Zhang KZ, Gao Z. A study on effect of curcumin on anticerebral aneurysm in the male albino rats. Brain Behav 2017; 7:e00729. [PMID: 28948066 PMCID: PMC5607535 DOI: 10.1002/brb3.729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION This study investigated the curcumin effect on the cerebral aneurysm. Apoptosis is known to play a fundamental role in the pathogenesis of a cerebral aneurysm. Therefore, we investigated the effect of curcumin on apoptosis of smooth muscle cells of a cerebral aneurysm-induced male albino rats. METHODS In this study, the cerebral aneurysm has been induced in the male albino rats by the CaCl2 administration. After cerebral aneurysm induction, smooth muscle cells were isolated. Cells were treated with curcumin (25 & 50 mg/kg bwt) for 48 hr. RESULTS Curcumin reduced altered mitochondrial morphology significantly, evidenced through fluorescence and confocal study. Curcumin treatment reduced the expression of p53, caspase-3, and bax/bxl-2 ratio significantly. Curcumin treatment also reversed the cellular architecture of smooth muscle cell wall significantly. Fluorescence and the confocal study confirmed the reduction in apoptosis in a cerebral aneurysm-induced smooth muscle cells of male albino rats. CONCLUSION Taking all these data together, it may suggest that the curcumin could significantly reduce the CaCl2-induced cerebral aneurysm through the inhibition of cell apoptosis in the cells.
Collapse
Affiliation(s)
- Li-Juan Bo
- Department of Infectious Disease China-Japan Union Hospital Ji Lin University Changchun China
| | - Zhuang Miao
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Zhan-Feng Wang
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Kai-Zhi Zhang
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Zheng Gao
- Department of Neurosurgery People's Hospital of Dandong City Dandong China
| |
Collapse
|
34
|
Zhao C, Hou W, Lei H, Huang L, Wang S, Cui D, Xing C, Wang X, Peng Y. Potassium 2-(l-hydroxypentyl)-benzoate attenuates neuroinflammatory responses and upregulates heme oxygenase-1 in systemic lipopolysaccharide-induced inflammation in mice. Acta Pharm Sin B 2017; 7:470-478. [PMID: 28752032 PMCID: PMC5518660 DOI: 10.1016/j.apsb.2017.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022] Open
Abstract
A neuroinflammatory response is commonly involved in the progression of many neurodegenerative diseases. Potassium 2-(1-hydroxypentyl)-benzoate (PHPB), a novel neuroprotective compound, has shown promising effects in the treatment of ischemic stroke and Alzheimer׳s disease (AD). In the present study, the anti-inflammatory effects of PHPB were investigated in the plasma and brain of C57BL/6 mice administered a single intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). Levels of iNOS and the cytokines TNFα, IL-1β and IL-10 were elevated in plasma, cerebral cortex and hippocampus after LPS injection and the number of microglia and astrocytes in cortex and hippocampus were increased. LPS also upregulated the expression of heme oxygenase-1 (HO-1) in the cortex and hippocampus. PHPB reduced the levels of iNOS and cytokines in the plasma and brain, decreased the number of microglia and astrocytes and further enhanced the upregulation of HO-1. In addition, PHPB inhibited the LPS-induced phosphorylation of ERK, P38 and JNK. These results suggest that PHPB is a potential candidate in the treatment of neurodegenerative diseases through inhibiting neuroinflammation.
Collapse
|
35
|
Zhang Y, Yan Y, Cao Y, Yang Y, Zhao Q, Jing R, Hu J, Bao J. Potential therapeutic and protective effect of curcumin against stroke in the male albino stroke-induced model rats. Life Sci 2017; 183:45-49. [PMID: 28663065 DOI: 10.1016/j.lfs.2017.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 01/01/2023]
Abstract
AIMS The present study was carried out to understand the therapeutic effect of curcumin (CUR) against stroke in the experimental animal model. The study investigates the healing effect of CUR on mitochondrial dysfunction and inflammation. MATERIALS AND METHODS Male albino, Wistar strain rats were used for the induction of middle cerebral artery occlusion (MCAO), and reperfusion. Enzyme-linked immunosorbent assay (ELISA) was used for the determination of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the brain region. Western blot analysis was used to determine the protein expression levels of Bax, Bcl-2, p53, and Sirt1. KEY FINDINGS The water level was determined in brain region by using standard method. Experimental results indicated that the use of CUR significantly reduced brain edema and water content. IL-6 and TNF-α were significantly reduced in the brain region following use of CUR. Mitochondrial membrane potential (MMP) also reduced significantly after CUR treatment. Protein expression of p53 and Bax were significantly reduced, whereas Bcl-2 and Sirt1 were increased following CUR treatment. SIGNIFICANCE Taking all these data together, it is suggested that the use of CUR may be a potential therapeutic agent for the treatment of stroke.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Yi Yan
- Department of Anesthesiology, Kunming General Hospital of Chengdu Military Command, Kunming 650032, China
| | - Yi Cao
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Yongtao Yang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Qing Zhao
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Rui Jing
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Jiayi Hu
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Juan Bao
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China.
| |
Collapse
|
36
|
Young Cho J, Yeon Kim H, Me Kim H, Na Song H, Hong E, Hwang JK, Sook Chun H. Standardized ethanolic extract of the rhizome of Curcuma xanthorrhiza prevents murine ulcerative colitis by regulation of inflammation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
Liu YF, Yang CW, Liu H, Sui SG, Li XD. Efficacy and Therapeutic Potential of Curcumin Against Sepsis-Induced Chronic Lung Injury in Male Albino Rats. J Nutr Health Aging 2017; 21:307-313. [PMID: 28244571 DOI: 10.1007/s12603-016-0722-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study investigates curcumin effect against sepsis-induced chronic lung injury (CLI) of male albino rats. Rats were grouped into four groups such rats undergoing a sham cecal ligature puncture (CLP), rats undergoing CLP, rats undergoing CLP and treated with saline and rats undergoing CLP and treated with curcumin (100 mg/kg bwt). After 45 days of treatment, bronchoalveolar fluid (BALF), blood and lung tissues were collected from the each animal. The total protein content, wet and dry (W/D) weight of lung tissues and some inflammatory cells in the BALF were measured. Histopathological analysis was carried out to investigate the alteration of the cellular architecture of lung tissues. Lipid peroxidation malondialdehyde (MDA), superoxide dismutase (SOD) and myeloperoxidase (MPO) levels were determined. Cytokines such as interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-a) and macrophage inhibitory factor (MIF) were measured in the BALF. Curcumin administration significantly reduced CLP-induced inflammation and pulmonary edema. Curcumin treatment is significantly reduced MPO activity, and inflammatory cell accumulation in the BALF and also protein level, MDA, SOD, and W/D ratio were significantly reduced in the lung tissues. Also, curcumin reduced the expression of IL-A, TNF-a and MIF levels in the lung tissues. Histopathological study revealed the significant reduction of CLP-induced CLI in the curcumin-treated male albino rats. Taking all these data together, it is concluded that curcumin can act as a suitable therapeutic agent against CLP-induced CLI of male albino rats.
Collapse
Affiliation(s)
- Y-F Liu
- Xiang-Dong Li, Emergency center, The Second Hospital of Dalian Medical University, NO.467 Zhongshan Road, ShaHekou District, Dalian, Liaoning 116023, China. E-mail:
| | | | | | | | | |
Collapse
|
38
|
Quantitative determination of xanthorrhizol in rat plasma by HPLC–MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal 2017; 132:56-59. [DOI: 10.1016/j.jpba.2016.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 11/23/2022]
|
39
|
Lee DS, Jeong GS. Butein provides neuroprotective and anti-neuroinflammatory effects through Nrf2/ARE-dependent haem oxygenase 1 expression by activating the PI3K/Akt pathway. Br J Pharmacol 2016; 173:2894-909. [PMID: 27465039 PMCID: PMC5055139 DOI: 10.1111/bph.13569] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Butein, 3,4,2',4'-tetrahydroxychalcone, has various pharmacological effects. However, no study has demonstrated the specific neurobiological mechanisms of the effects of butein in neuronal cells. The present study examined the role of butein as an antioxidative and anti-inflammatory inducer of haem oxygenase 1 (HO1) in mouse hippocampal HT22, BV2 microglial and primary mouse hippocampus neurons. EXPERIMENTAL APPROACH We investigated the neuroprotective effects of butein on glutamate-induced HT22 cell and primary mouse hippocampal neuron death and its anti-neuroinflammatory effects on LPS-induced activation of BV2 cells. We elucidated the underlying mechanisms by assessing the involvement of NF-κB, HO1, nuclear factor-E2-related factor 2 (Nrf2) and Akt signalling. KEY RESULTS Butein decreased cellular oxidative injury and the production of ROS in glutamate-treated HT22 cells and primary mouse hippocampal neurons. Furthermore, butein suppressed LPS-induced pro-inflammatory enzymes and mediators in BV2 microglia. Butein inhibited IL-6, IL-1β and TNF-α production and mRNA expression. In addition, butein decreased NO and PGE2 production and inducible NOS and COX-2 expression through the NF-κB signalling pathway. Butein up-regulated Nrf2/ARE-mediated HO1 expression through the PI3K/Akt pathway and this was positively associated with its cytoprotective effects and anti-neuroinflammatory actions. CONCLUSION AND IMPLICATIONS Our results indicate that butein effectively prevents glutamate-induced oxidative damage and LPS-induced activation and that the induction of HO1 by butein through the PI3K/Akt pathway and Nrf2 activation appears to play a pivotal role in its effects on neuronal cells. Our results provide evidence for the neuroprotective properties of butein.
Collapse
Affiliation(s)
- Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju, Korea
| | | |
Collapse
|
40
|
Chang XR, Wang L, Li J, Wu DS. Analysis of anti-depressant potential of curcumin against depression induced male albino wistar rats. Brain Res 2016; 1642:219-225. [DOI: 10.1016/j.brainres.2016.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/26/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
|
41
|
Liu Y, Chen L, Shen Y, Tan T, Xie N, Luo M, Li Z, Xie X. Curcumin Ameliorates Ischemia-Induced Limb Injury Through Immunomodulation. Med Sci Monit 2016; 22:2035-42. [PMID: 27302110 PMCID: PMC4913813 DOI: 10.12659/msm.896217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The prevalence of peripheral arterial disease (PAD) is increasing worldwide. Currently, there is no effective treatment for PAD. Curcumin is an ingredient of turmeric that has antioxidant, anti-inflammation, and anticancer properties. In the present study we investigated the potential effect of curcumin in protecting against ischemic limb injury. Material/Methods We used an established hindlimb ischemia mouse model in our study. Curcumin was administrated through intraperitoneal (I.P.) injection. Immunohistochemical staining and ELISA assays were performed. Treadmill training was used to evaluate skeletal muscle functions of animals. Results Our experiments using in vivo treadmill training showed that curcumin treatment improved the running capacity of animals after ischemic injury. Histological analysis revealed that curcumin treatment significantly reduced the skeletal muscle damage and fibrosis associated with ischemic injury. In order to determine the cellular and molecular mechanisms underlying curcumin-mediated tissue protection, immunohistochemical staining and ELISA assays were performed. The results showed that curcumin treatment led to less macrophage infiltration and less local inflammatory responses as demonstrated by decreasing TNF-α, IL-1, and IL-6 levels. Further immunofluorescent staining of tissue slides indicated that curcumin treatment inhibited the NF-κB signaling pathway. Finally, curcumin can inhibit NF-κB activation induced by LPS in macrophages. Conclusions Our study results show that curcumin treatment can ameliorate hindlimb injury following ischemic surgery, which suggests that curcumin could be used for PAD treatment.
Collapse
Affiliation(s)
- Yang Liu
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland)
| | - Yi Shen
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nanzi Xie
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Ming Luo
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Zhihong Li
- Division of General Surgery, Pudong New Area District, Zhoupu Hospital, Shanghai, China (mainland)
| | - Xiaoyun Xie
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
42
|
The therapeutic effect of curcumin in male albino rats and its putative mechanisms on cerebral microvascular flow. Brain Res 2016; 1642:131-135. [PMID: 27017961 DOI: 10.1016/j.brainres.2016.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/23/2022]
Abstract
The present study aimed to investigate the therapeutic effect of curcumin on hypertension and its putative mechanisms in the cerebral microcirculation. The surgical preparation was made to generate a cranial window for observation of the capillary network in the cerebral cortex region. Digital image processing, intravital videomicroscopy, and laser Doppler flow meter were used in this investigation. The number of open capillaries, arterial blood pressure, red cell velocity, microvascular diameter, circulating endothelial cells, relative blood flow and frequency were determined. Control rats showed severe dysfunction in the microcirculation with increased blood pressure. In curcumin treated mice, the blood pressure significantly reduced compared to their respective controls. Curcumin significantly increased blood velocity and LDF flow in hypertensive and normotensive rats. Curcumin significantly altered the circulating endothelial cells and open capillaries number in the male albino rats. Our results suggested that the curcumin exerts its therapeutic effect in male albino rats by regulating vasomotion function, increasing blood perfusion, releasing the peripheral resistance and opening efficiently capillaries. Taking all these data together, it is concluded that the curcumin might be useful in the regulation of the cerebral microcirculatory function and hypertension.
Collapse
|
43
|
Zhang L, Kong XJ, Wang ZQ, Xu FS, Zhu YT. A Study on Neuroprotective Effects of Curcumin on the Diabetic Rat Brain. J Nutr Health Aging 2016; 20:835-840. [PMID: 27709232 DOI: 10.1007/s12603-016-0723-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study was aimed to study the neuroprotective therapeutic effect of curcumin on the male albino rat brain. Subarachnoid hemorrhage leads to severe mortality rate and morbidity, and oxidative stress is a crucial factor in subarachnoid hemorrhage. Therefore, we investigated the effect of curcumin on oxidative stress and glutamate and glutamate transporter-1 on a subarachnoid hemorrhage-induced male albino rats. The curcumin commonly used for the treatment and saline used for the control. Curcumin (10 mg/kg bwt) dissolved in saline and administered orally to the rats for one week. Glutamate, glutamate transporter-1, malondialdehyde (MDA), superoxide dismutase (SOD), catalase, glutathione reductase and lactate dehydrogenase (LDH) activities were determined. Glutamate level was lower in the curcumin-treated rats compared to their respective controls. Glutamate transporter-1 did not alter in the curcumin-treated rats compared to their controls. Glutamate transporter-1 protein expression is significantly reduced in the curcumin-treated rats. MDA levels decreased 18 and 29 % in the hippocampus and the cortex region respectively. SOD (17% and 32%), and catalase (19% and 24%) activities were increased in the curcumin-treated hippocampus and the cortex region respectively. Glutathione reductase (13% and 19%) and LDH (21% and 30%) activities were increased in the treated hippocampus and the cortex region respectively. The mRNA expression of NK-kB and TLR4 was significantly reduced following curcumin treatment. Taking all these data together, the curcumin found to be effective against oxidative stress and glutamate neurotoxicity in the male albino rats.
Collapse
Affiliation(s)
- L Zhang
- Yi- Tang Zhu, Department of Clinical Laboratory; Cangzhou Central Hospital of Hebei Province, No.16 Xinhuaxi Road, Cangzhou City 061001, Hebei Province, P.R.China, Tel and Fax: +86-0137-2075536,
| | | | | | | | | |
Collapse
|
44
|
Oon SF, Nallappan M, Tee TT, Shohaimi S, Kassim NK, Sa’ariwijaya MSF, Cheah YH. Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer Cell Int 2015; 15:100. [PMID: 26500452 PMCID: PMC4618344 DOI: 10.1186/s12935-015-0255-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/12/2015] [Indexed: 12/16/2022] Open
Abstract
Xanthorrhizol (XNT) is a bisabolane-type sesquiterpenoid compound extracted from Curcuma xanthorrhiza Roxb. It has been well established to possess a variety of biological activities such as anticancer, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, antihypertensive, antiplatelet, nephroprotective, hepatoprotective, estrogenic and anti-estrogenic effects. Since many synthetic drugs possess toxic side effects and are unable to support the increasing prevalence of disease, there is significant interest in developing natural product as new therapeutics. XNT is a very potent natural bioactive compound that could fulfil the current need for new drug discovery. Despite its importance, a comprehensive review of XNT's pharmacological activities has not been published in the scientific literature to date. Here, the present review aims to summarize the available information in this area, focus on its anticancer properties and indicate the current status of the research. This helps to facilitate the understanding of XNT's pharmacological role in drug discovery, thus suggesting areas where further research is required.
Collapse
Affiliation(s)
- Seok Fang Oon
- />Department of Biology, Faculty of Science, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Meenakshii Nallappan
- />Department of Biology, Faculty of Science, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Thiam Tsui Tee
- />ZACH Biotech Depot Sdn. Bhd., 43300 Cheras, Selangor Malaysia
| | - Shamarina Shohaimi
- />Department of Biology, Faculty of Science, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Nur Kartinee Kassim
- />Department of Chemistry, Faculty of Science, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Mohd Shazrul Fazry Sa’ariwijaya
- />Department of Biochemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia-UKM, 43600 Bangi, Selangor Malaysia
| | - Yew Hoong Cheah
- />ZACH Biotech Depot Sdn. Bhd., 43300 Cheras, Selangor Malaysia
| |
Collapse
|
45
|
Chen D, Tao X, Wang Y, Tian F, Wei Y, Chen G, Shen H, Wang Z, Yu Z, Li H, Chen G. Curcumin accelerates reendothelialization and ameliorates intimal hyperplasia in balloon-injured rat carotid artery via the upregulation of endothelial cell autophagy. Int J Mol Med 2015; 36:1563-71. [PMID: 26459716 PMCID: PMC4678154 DOI: 10.3892/ijmm.2015.2365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022] Open
Abstract
Delayed reendothelialization and intimal hyperplasia (IH) contribute to the failure of vascular interventions. Curcumin (Cur) has been used for various types of diseases with antioxidant, antiproliferative and anti-inflammatory effects. However, investigations involving the application of Cur in inhibiting IH are limited. The aim of the present study was to evaluate the potential therapeutic effects of Cur and its underlying mechanisms on a rat model of carotid artery (CA) intimal injury. In vitro, an endothelial cell (EC) migration assay was conducted using cultured primary human umbilical vein endothelial cells (HUVECs) that were exposed to Cur. In vivo, CA angioplasty injury was used to generate a rat model of intimal injury. CAs were collected at 3 days, and 1 and 4 weeks after injury, respectively, for western blot analysis and double-immunofluorescence analyses, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, oxidative stress indicator analysis and hematoxylin and eosin staining of the neointima. In vivo, Cur significantly enhanced the migration and healing of HUVECs and simultaneously promoted microtubule-associated protein light chain 3-II (LC3-II) expression when HUVECs were subjected to an artificial scratch. In vitro, endangium from the Cur-treated rats exhibited a significantly reduced number of apoptotic ECs and oxidative stress level compared to that of the sham group. In addition, Cur treatment markedly improved quantification of the LC3-II concomitant with the downregulation of p62 in the injured CA. At 1 week following injury, sizable neointimal lesions had developed, although prominent intima thickening was not observed. At 4 weeks, apparent hemadostenosis occurred resulting from the exorbitance IH. Cur treatment markedly reduced the thickness of the neointimal lesion. It is noteworthy that high-dose Cur may have exerted more significant effects than low-dose Cur. Cur can potentially become a therapeutic drug for angiostenosis by imparting a protective effect that accelerates reendothelialization and ameliorates IH and was mediated by its pro-autophagic effect.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaoyang Tao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yang Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengxuan Tian
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yongxin Wei
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guilin Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhengquan Yu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
46
|
Curcumin treatment recovery the decrease of protein phosphatase 2A subunit B induced by focal cerebral ischemia in Sprague-Dawley rats. Lab Anim Res 2015; 31:134-8. [PMID: 26472966 PMCID: PMC4602080 DOI: 10.5625/lar.2015.31.3.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Curcumin provides various biological effects through its anti-inflammatory and antioxidant properties. Moreover, curcumin exerts a neuroprotective effect against ischemic condition-induced brain damage. Protein phosphatase 2A (PP2A) is a ubiquitous serine and threonine phosphatase with various cell functions and broad substrate specificity. Especially PP2A subunit B plays an important role in nervous system. This study investigated whether curcumin regulates PP2A subunit B expression in focal cerebral ischemia. Cerebral ischemia was induced surgically by middle cerebral artery occlusion (MCAO). Adult male rats were injected with either vehicle or curcumin (50 mg/kg) 1 h after MCAO and cerebral cortex tissues were isolated 24 h after MCAO. A proteomics study, reverse transverse-PCR and Western blot analyses were performed to examine PP2A subunit B expression levels. We identified a reduction in PP2A subunit B expression in MCAO-operated animals using a proteomic approach. However, curcumin treatment prevented injury-induced reductions in PP2A subunit B levels. Reverse transverse-PCR and Western blot analyses confirmed that curcumin treatment attenuated the injury-induced reduction in PP2A subunit B levels. These findings can suggest that the possibility that curcumin maintains levels of PP2A subunit B in response to cerebral ischemia, which likely contributes to the neuroprotective function of curcumin in cerebral ischemic injury.
Collapse
|
47
|
Taha MN, Krawinkel MB, Morlock GE. High-performance thin-layer chromatography linked with (bio)assays and mass spectrometry - a suited method for discovery and quantification of bioactive components? Exemplarily shown for turmeric and milk thistle extracts. J Chromatogr A 2015; 1394:137-47. [PMID: 25846263 DOI: 10.1016/j.chroma.2015.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/16/2023]
Abstract
Extraction parameters, chemical fingerprint, and the single compounds' activity levels were considered for the selection of active botanicals. For an initial survey, the total bioactivity (i.e., total reducing capacity, total flavonoids contents and free radical scavenging capacity) of 21 aqueous and 21 ethanolic plant extracts was investigated. Ethanolic extracts showed a higher yield and were further analyzed by HPTLC in detail to obtain fingerprints of single flavonoids and further bioactive components. Exemplarily shown for turmeric (Curcuma longa) and milk thistle (Silybum marianum), effect-directed analysis (EDA) was performed using three selected (bio)assays, the Aliivibrio fischeri bioassay, the Bacillus subtilis bioassay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH*) assay. As a proof of principle, the bioactive components found in the extracts were confirmed by HPTLC-MS. Bioassays in combination with planar chromatography directly linked to the known, single effective compounds like curcumin and silibinin. However, also some unknown bioactive components were discovered and exemplarily characterized, which demonstrated the strength of this kind of EDA. HPTLC-UV/Vis/FLD-EDA-MS could become a useful tool for selection of active botanicals and for the activity profiling of the active ingredients therein. The flexibility in effect-directed detections allows a comprehensive survey of effective ingredients in samples. This streamlined methodology comprised a non-targeted, effect-directed screening first, followed by a highly targeted characterization of the discovered bioactive compounds. HPTLC-EDA-MS can also be recommended for bioactivity profiling of food on the food intake side, as not only effective phytochemicals, but also unknown bioactive degradation products during food processing or contamination products or residues or metabolites can be detected. Thus, an efficient survey on potential food intake effects on wellness could be obtained. Having performed both, sum parameter assays and HPTLC analysis, a comparison of both approaches was made and discussed.
Collapse
Affiliation(s)
- Mahmoud N Taha
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; Justus Liebig University Giessen, Institute of Nutritional Science, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - Michael B Krawinkel
- Justus Liebig University Giessen, Institute of Nutritional Science, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
48
|
Wu JX, Zhang LY, Chen YL, Yu SS, Zhao Y, Zhao J. Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation. Neural Regen Res 2015; 10:481-9. [PMID: 25878600 PMCID: PMC4396114 DOI: 10.4103/1673-5374.153700] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2014] [Indexed: 12/26/2022] Open
Abstract
Recent studies have shown that induced expression of endogenous antioxidative enzymes thr-ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 μM curcumin or post-treated with 5 μM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thioredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neuroprotection after cerebral ischemia.
Collapse
Affiliation(s)
- Jing-Xian Wu
- Department of Pathology, Chongqing Medical University, Chongqing, China ; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Lu-Yu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yan-Lin Chen
- Department of Pathology, Chongqing Medical University, Chongqing, China ; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shan-Shan Yu
- Department of Pathology, Chongqing Medical University, Chongqing, China ; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, China ; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jing Zhao
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China ; Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
49
|
KCHO-1, a Novel Antineuroinflammatory Agent, Inhibits Lipopolysaccharide-Induced Neuroinflammatory Responses through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse BV2 Microglia Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:357154. [PMID: 25580149 PMCID: PMC4279125 DOI: 10.1155/2014/357154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/24/2014] [Indexed: 12/16/2022]
Abstract
The brain is vulnerable to oxidative stress and inflammation that can occur as a result of aging or neurodegenerative diseases. Our work has sought to identify natural products that regulate heme oxygenase (HO)-1 and to determine their mechanism of action in neurodegenerative diseases. KCHO-1 is a novel herbal therapeutic containing 30% ethanol (EtOH) extracts from nine plants. In this study, we investigated the antineuroinflammatory effects of KCHO-1 in lipopolysaccharide- (LPS-) treated mouse BV2 microglia. KCHO-1 inhibited the protein expression of inducible nitric oxide synthase (iNOS), iNOS-derived nitric oxide (NO), cyclooxygenase- (COX-) 2, and COX-2-derived prostaglandin E2 (PGE2) in LPS-stimulated BV2 microglia. It also reduced tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 production. This effect was correlated with the suppression of inhibitor of nuclear factor kappa B-α (IκB-α) phosphorylation and degradation and nuclear factor kappa B (NF-κB) translocation and DNA binding. Additionally, KCHO-1 upregulated HO-1 expression by promoting nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in mouse BV2 microglia. Tin protoporphyrin (SnPP), an HO activity inhibitor, was used to verify the inhibitory effects of KCHO-1 on proinflammatory mediators and proteins associated with HO-1 expression. Our data suggest that KCHO-1 has therapeutic potential in neurodegenerative diseases caused by neuroinflammation.
Collapse
|
50
|
A critical review on extraction techniques and gas chromatography based determination of grapevine derived sesquiterpenes. Anal Chim Acta 2014; 846:8-35. [DOI: 10.1016/j.aca.2014.05.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022]
|